C H A P T E R 5

Circuit
 Elements

A	Heterostructure field-effect transistors (HFETs)	SPICE3
\mathbf{B}	Non-linear dependent sources	SPICE3
\mathbf{B}	GaAs field-effect transistor	PSPICE
\mathbf{C}	Capacitors	
\mathbf{D}	Diodes	
\mathbf{E}	Linear voltage-controlled voltage sources	
\mathbf{F}	Linear current-controlled current sources	
\mathbf{G}	Linear voltage-controlled current sources	
\mathbf{H}	Linear current-controlled voltage sources	
\mathbf{I}	Independent current sources	SPICE3
\mathbf{J}	Junction field-effect transistors (JFETs)	SPICE3
\mathbf{K}	Coupled inductors (transformers)	
\mathbf{L}	Inductors	
\mathbf{M}	Metal oxide semiconductor field-effect transistors (MOSFETs)	
\mathbf{N}	Heterojunction bipolar transistors (HBTs)	
\mathbf{O}	Lossy transmission lines (LTRA)	SPICE3
\mathbf{Q}	Bipolar junction transistors (BJTs)	PSPICE
\mathbf{R}	Resistors	
\mathbf{S}	Voltage-controlled switches	
\mathbf{T}	Lossless transmission lines	
\mathbf{U}	Uniform distributed $R C$ lines (URC)	SPICE3
\mathbf{U}	Digital devices	
\mathbf{V}	Independent voltage sources	
\mathbf{W}	Current-controlled switches	
\mathbf{X}	Subcircuit call	
\mathbf{Z}	GaAs metal semiconductor field-effect transistors (MESFETs)	

A circuit's topology is described by listing all circuit elements and specifying the nodes to which they are connected. Each statement describes one circuit element. Statements always start with the element name. The node numbers are then listed, and the element value or model name follows. Optional parameters may also follow the listed nodes. The name of an element always starts with a specific letter which indicates the type of element. Table 5.1 shows the list of elements and their code letters. Subsequent letters are reserved for user-defined element names. In element description and in examples SPICE keywords and letters are written using bold characters. Names that can be chosen by the user start with capital letters and italic characters are used.

For example, a capacitor name must begin with the letter \mathbf{C} and can have up to eight characters (letters or digits): C2, Ccoupl, C27, and CBLOCK. The original SPICE2 version, which was written in Fortran, requires the use of capital letters. Most current SPICE programs allow both small and capital letters. In most SPICE versions, nodes numbers must be nonnegative integers but need not be numbered sequentially. In a newer SPICE programs, node can also have names described by strings of letters and digits. The number zero is always reserved for ground and must be used that way. Each node in the circuit must have a dc path to ground. Every node must have at least two connections, except for transmission line nodes (to permit unterminated transmission lines) and MOSFET substrate nodes (which actually have two internal connections).

B - Nonlinear Dependent Source
SPICE3 only

	Restrictions
Bname Pnode Nnode [$\mathbf{I}=$ Expression $][\mathbf{V}=$ Expression $]$ Examples	SPICE3
BN 34 I=COS(V(8)+SIN(V(13)) B1 $78 \mathbf{V}=\ln \left(\boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\operatorname { l o g }}\left(\mathbf{V}(3,5)^{\wedge} 2\right)\right)\right)_{-\mathbf{V}}^{(8)^{\wedge}} 3+\mathbf{V}(7)^{\wedge} \mathbf{V}(8)$ B7 $1221 \mathbf{I}=1 \mathrm{~mA}$ BNEW 37 V=exp(2*I(VS3))	SPICE3 SPICE3 SPICE3 SPICE3

The nonlinear source must begin with the letter B. Pnode and Nnode are the positive and negative nodes, respectively. The values of the \mathbf{V} and \mathbf{I} parameters determine the voltages and currents across and through the device, respectively. There is no distinction between currentcontrolled and voltage-controlled sources for the \mathbf{B} element. If $\mathbf{I}=$ is given, then the device is a current source. If $\mathbf{V}=$ is given, the device is a voltage source. The small-signal ac behavior of the \mathbf{B} source is a linear dependent source with a gain constant equal to the derivative (or derivatives) of the source at the dc operating point.

Expression may be any function of voltages and currents through voltage sources in the system. The source output, determined by the $\mathbf{V}=$ or $\mathbf{I}=$ option, can be either a voltage or a current. Function defined in SPICE3 program are shown in Table 5.1.

Table 5.1 Functions defined in SPICE3

Function	Description	Units
$\mathbf{a b s}(x)$	absolute value	
$\operatorname{acos}(x)$	arccosine	result in radians
$\operatorname{acosh}(x)$	inverse hyperbolic cosine	-
$\operatorname{asin}(x)$	arcsine	result in radians
$\operatorname{asinh}(x)$	inverse hyperbolic sine	-
$\boldsymbol{\operatorname { a t a n }}(x)$	arctan	result in radians
$\operatorname{atanh}(x)$	inverse hyperbolic tangent	-
$\boldsymbol{\operatorname { c o s }}(x)$	cosine	x in radians
$\cosh (x)$	hyperbolic cosine	-
$\exp (x)$	exponential function	-
$\ln (x)$	logarithm with base e	-
$\log (x)$	logarithm with base 10	-
$\boldsymbol{\operatorname { s i n }}(x)$	sine	x in radians
$\sinh (x)$	hyperbolic sine	-
$\operatorname{sqrt}(x)$	square root	-
$\boldsymbol{\operatorname { t a n }}(x)$	tangent	x in radians
$\mathbf{u}(x)$	$u(x)= \begin{cases}1 & x>0 \\ 0 & x<0\end{cases}$	-
$\operatorname{uramp}(x)$	$u(x)= \begin{cases}x & x>0 \\ 0 & x<0\end{cases}$	

The following operations are defined: $+\quad$ * / ^ unary -
If the argument of $\mathbf{l o g}$, $\mathbf{l n}$, or sqrt becomes less than zero, the absolute value of the argument is used. If a divisor becomes zero or the argument of $\mathbf{l o g}$ or $\mathbf{l n}$ becomes zero, an error will result. Other problems may occur when the argument for a function in a partial derivative enters a region where that function is undefined.

To get time into an expression, you can integrate the current from a constant current source with a capacitor and use the resulting voltage to represent time. Remember to set the initial voltage across the capacitor and use UIC in the .TRAN statement.

GASFET

General forms	Restrictions
Bname Dnode Gnode Snode Model [Rarea]	PSPICE
Examples	
B8 2 3 5 BMOD	PSPICE
B3 12 4 BMODEL 0.5	PSPICE

A GaAsFET is described by a statement that starts with the name of the GaAs FET device Bname. This name must start with the letter B. Node numbers Dnode, Gnode, and Snode for drain, gate, and source follows the name. Next, the model Model name is listed. Model parameters are specified in the .MODEL statement. Rarea is the relative area factor. If Rarea is not specified, 1 is assumed.

1. GaAs FET model

.MODEL Model_name GASFET [Model parameters]

2. Model parameters

In PSPICE, four different models are implemented: level 1 through level 4.

Parameters for All Levels				
Name	Parameter	Units	Default	Typical
LEVEL	Model index	-	1	2
VTO	Pinch-off voltage	V	-2.5	-2.0
BETA	Transconductance coefficient	$\mathrm{A} / \mathrm{V}^{2}$	0.1	0.1
LAMBDA	Channel-length modulation parameter	$1 / \mathrm{V}$	0	10^{3}

RD	Drain ohmic resistance	Ω	0	100
$\mathbf{R S}$	Source ohmic resistance	Ω	0	100
RG	Gate ohmic resistance	Ω	0	10
IS	Gate p-n saturation current	A	$10-^{14}$	10^{-14}
\mathbf{N}	Gate p-n emission coefficient	-	1	1.2
VBI	Gate p-n potential	V	1.0	0.9
$\mathbf{C G S}$	Zero-bias G-S junction capacitance	F	0	5 pF
$\mathbf{C G D}$	Zero-bias G-D junction capacitance	F	0	5 pF
$\mathbf{C D S}$	Zero-bias D-S capacitance	F	0	1 pF
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	0.5
EG	Bandgap voltage	eV	1.1	1.4
XTI	IS temperature exponent	-	0	
VTOTC	VTO temperature coefficient	$\mathrm{V} /{ }^{\circ} \mathrm{C}$	0	
$\mathbf{B E T A T C E}$	BETA exponential temperature coefficient	$\% /{ }^{\circ} \mathrm{C}$	0	
TRG1	RG temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0.001
TRD1	RD temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0.001
TRS1	RS temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0.001
KF	Flicker noise coefficient	-	0	-
$\mathbf{A F}$	Flicker noise exponent	-	1	-

Parameters for Level 1				
Name	Parameter	Units	Default	Typical
ALPHA	Saturation voltage parameter	$1 / \mathrm{V}$	2.0	2.0
TAU	Conduction current delay time	s	0	
\mathbf{M}	Gate $p n$ grading coefficient	-	0.5	0.5

Parameters for Level 2				
Name	Parameter	Units	Default	Typical
ALPHA	Saturation voltage parameter	$1 / \mathrm{V}$	2.0	2.0
B	Doping tail extending parameter	$1 / \mathrm{V}$	0.3	0.3
TAU	Conduction current delay time	s	0	
\mathbf{M}	Gate p-n grading coefficient	-	0.5	0.5
VDELTA	Capacitance transition voltage	V	0.2	0.2
VMAX	Capacitance limiting voltage	V	0.5	0.5

Parameters for Level3				
Name	Parameter	Units	Default	Typical
ALPHA	Saturation voltage parameter	$1 / \mathrm{V}$	2.0	2.0
GAMMA	Static feedback parameter	-	0	
DELTA	Output feedback parameter	$1 / \mathrm{AV}$	0	
Q	Power-law parameter	-	2	2
TAU	Conduction current delay time	s	0	
\mathbf{M}	Gate pn grading coefficient	-	0.5	0.5
VDELTA	Capacitance transition voltage	V	0.2	0.2
VMAX	Capacitance limiting voltage	V	0.5	0.5

Parameters for Level 4				
Name	Parameter	Units	Default	Typical
ACGAM	Capacitance modulation	-	0	
DELTA	Output feedback parameter	$1 / \mathrm{AV}$	0	
Q	Power-law parameter	-	2	2
HFGAM	High-frequency $V_{G D}$ feedback parameter	-	0	
HFG1	HFGAM modulation by $V_{S G}$	$1 / \mathrm{V}$	0	
HFG2	HFGAM modulation by $V_{D G}$	$1 / \mathrm{V}$	0	
HFETA	High-frequency $V_{G S}$ feedback parameter	-	0	
HFE1	HFETA modulation by $V_{G D}$	$1 / \mathrm{V}$	0	

HFE2	HFETA modulation by $V_{G S}$	$1 / \mathrm{V}$	0	
LFGAM	Low-frequency feedback parameter	-	0	
LFG1	LFGAM modulation by $V_{S G}$	$1 / \mathrm{V}$	0	
LFG2	LFGAM modulation by $V_{D G}$	$1 / \mathrm{V}$	0	
MXI	Saturation knee-potential modulation	-	0	
MVST	Subthreshold modulation	$1 / \mathrm{V}$	0	
P	Linear-region power law exponent	-	2	2
TAUD	Relaxation time for thermal reduction	s	0	
TAUG	Relaxation time for GAM feedback	s	0	
VBD	Gate junction breakdown potential	V	1	5
VST	Subthreshold potential	V	0	0
XC	Capacitance pinch-off reduction factor	-	0	
XI	Saturation knee potential factor	-	1000	
Z	Knee transition parameter	-	0.5	
VMAX	Capacitance limiting voltage	V	0.5	0.5

C-Capacitor

General forms	Restriction s
Cname Pnode Nnode Value [IC=Init_cond $]$	
Cname Pnode Nnode POLY c0 c1 c2 ... [IC=Init_cond]	SPICE2
Cname Pnode Nnode [Value] [Model] [L=Length] [W=Width] [IC=Init_cond]	SPICE3
Cname Pnode Nnode [Model] Value [IC=Init_cond]	PSPICE
Examples	
CBL 30 10uF	
C3 35 100nF IC=1V	
CCOUP 71247 nF	
C12 45 CMODEL $\mathbf{L}=10 \mathrm{u} \mathbf{W}=2 \mathrm{u}$	SPICE3

This statement defines a capacitor with capacitance specified by Value (in farads) where Pnode and Nnode are the positive and negative nodes. An optional statement IC=Init_cond
specifies the initial (time-zero) voltage (in volts) on the capacitance for transient analysis. This initial condition takes effect only when the UIC option is specified in the .TRAN statement.

A nonlinear capacitor can be defined using the POLY statement where $c 0 c 1 c 2 \ldots$ are the coefficients of a polynomial describing the element value. The capacitance is expressed as a function of the voltage across the capacitor and is computed as

$$
\text { Value }=c 0+c 1 V+c 2 V^{2}+\ldots
$$

where V is the voltage across the capacitor. Although a nonlinear capacitor with keyword POLY was implemented in the original SPICE2 very few SPICE versions have this option implemented.

In SPICE3 and newer versions of SPICE the semiconductor capacitances can be declared. In this case the capacitance model is has to be specified in the .MODEL line:
.MODEL Model C [model_papramters] ...

1. Model parameters

Name	Parameter	Units	Default
CJ	Junction bottom capacitance	$\mathrm{F} / \mathrm{m}^{2}$	-
CJSW	Junction sidewall capacitance	$\mathrm{F} / \mathrm{m}^{2}$	-
DEFW	Default device width	m	$1 \mathrm{e}-6$
NARROW	Narrowing due to side etching	m	0.0

This more general model for the capacitor gives you the possibility of modeling capacitance values based on geometric and process information. If Value is given then information on geometry and process will be ignored. If Model is specified, the capacitance value is calculated based on information on process and geometry using the following formula:

$$
\begin{align*}
\text { Value }= & \mathbf{C J}(\text { Length }-\mathbf{N A R R O W})(\text { Width }- \text { NARROW }) \\
& +2 \mathbf{C J S W}(\text { Length }+ \text { Width }-2 \text { NARROW }) \tag{C-1}
\end{align*}
$$

If Value is not given, then Model and Length must be specified. If Width is not given, then the model default width DEFW will be used.

General forms	Restrictions
Dname Pnode Nnode Model [Rarea] [OFF] [IC=Vd] Dname Pnode Nnode Model [Rarea] Dname Pnode Nnode Modell [Rarea] [OFF] [IC=Vd] [TEMP=T]	PSPICE SPICE3
Examples	
DREC 35 DMOD 0.2 D1 712 SWITCH DBRIDGE 511 DIODEM 3 DCLMP 912 DMOD2 $2.0 \mathbf{I C}=0.4 \mathrm{~V}$ D3 34 DMOD TEMP=25	SPICE3

Dname is the device name, and for the diode it must start with the letter D. Pnode and Nnode are the anode and cathode nodes, respectively. Model is the model name, and Rarea is the relative area factor. If Rarea is not specified, 1 is assumed. An optional parameter $\mathbf{I C}=V d$ is used together with a UIC in a transient analysis. The keyword OFF indicates an optional starting condition for the dc analysis.

In SPICE3, the optional TEMP value is the temperature at which this device is to operate. It overrides the temperature specified in the .OPTION statement.

1. Diode model

.MODEL Model_name D [Model parameters]
2. Model parameters

Name	Parameter	Units	Default	Typical
IS	Saturation current for Rarea $=1$	A	10^{-14}	10^{-14}
RS	Ohmic series resistance for Rarea $=1$	Ω	0	3
N	Emission coefficient	-	1	1
TT	Transit time	s	0	10^{-9}
CJO	Zero-bias junction capacitance for Rarea $=1$	F	0	$3 \cdot 10^{-12}$
VJ	Junction potential	V	1	0.8
M	Grading coefficient	-	0.5	0.5

EG	Energy gap	eV	1.11	1.11
XTI	Saturation current temperature exponent	-	3.0	3.0
KF	Flicker noise coefficient	-	0	-
AF	Flicker noise exponent	-	1	-
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	-
BV	Reverse breakdown voltage	V	∞	80
IBV	Current at breakdown voltage	A	10^{-3}	$2 \cdot 10^{-3}$
TNOM	Temperature at which parameters were measured	${ }^{\circ} \mathrm{C}$	27	27
PSPICE extensions	IKF	Corner for high injection current roll-off for Rarea $=1$	A	∞
TIKF	IKF temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0
ISR	Recombination saturation current for Rarea $=1$	A	0	10^{-8}
NR	Recombination emission coefficient	-	2	2
NBV	Reverse breakdown ideality factor	-	1	1
IBVL	Low-level reverse breakdown "knee" current for Rarea $=1$	A	0	0
NBVL	Low-level reverse breakdown ideality factor	-	1	10^{-8}
TBV1	BV temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0.003
TBV2	BV temperature coefficient (quadratic)	$1 /{ }^{\circ} \mathrm{C}^{2}$	0	0
TRS1	RS temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0.002
TRS2	RS temperature coefficient (quadratic)	$1 /{ }^{\circ} \mathrm{C}^{2}$	0	0

Examples:

*Diode small power
.MODEL 1N3879 D (IS=1.6e-18 BV=50 IBV=10u M=0.27 CJO=100p RS=9m TT=0.3u)
*Switching diode
.MODEL 1N4148 D(IS=0.1p RS=16 CJO=2p TT=12n BV=100 IBV=0.1p)
*Rectifier diode with 400 V breakdown voltage and 25 A
.MODEL 1N3494 D (IS=5E-14 BV=400 IBV=0.001 M=0.84 CJO=1.5NF RS=3m TT=8u)
*Germanium diode
.MODEL $1 \mathrm{~N} 5817 \mathrm{D}(\mathrm{N}=1.2 \mathrm{IS}=20 \mathrm{U}$ RS=. $08 \mathrm{EG}=.69 \mathrm{XTI}=2 \mathrm{CJO}=200 \mathrm{p}$ BV=25 IBV=.01m
$+\mathrm{M}=.523 \mathrm{VJ}=2$)

* Zener diode, 6.8 V
.MODEL $1 \mathrm{~N} 754 \mathrm{D}(\mathrm{IS}=1 \mathrm{E}-15 \mathrm{RS}=.25 \mathrm{CJO}=150 \mathrm{p} \mathrm{M}=.55 \mathrm{VJ}=.75 \mathrm{ISR}=2 \mathrm{n} \mathrm{BV}=6.8 \mathrm{IBV}=20 \mathrm{~m})$
* Variable-capacitance diode
.MODEL MV2201 D(IS=1p CJO=15p M=.4261 VJ=. $75 \quad \mathrm{FC}=.5 \quad \mathrm{BV}=25 \mathrm{IBv}=10 \mathrm{u})$

E - Voltage-Controlled Voltage Source

Pinp ○ General forms	Restrictions
Ename Pnode Nnode Pinp Ninp Gain	
Ename Pnode Nnode POLY(Dimensions) Pinp Ninp ... Coef...	PSPICE
Ename Pnode Nnode VALUE $=\{$ Expression $\}$	PSPICE
Ename Pnode Nnode TABLE $\{$ Expression $\}=($ Input, Output) ...	PSPICE
Ename Pnode Nnode LAPLACE $\{$ Expression $\}=\{$ Transf_expression $\}$	PSPICE
Ename Pnode Nnode CHEBYSHEV $\{$ Expression $\}=\{\mathbf{L B}\|\mathbf{H P}\| \mathbf{B P} \mid \mathbf{B R}\}$	PSPICE
+ Freql Freq2 ... Atten1 Atten2 ... Ename Pnode Nnode FREQ $\{$ Expression $\}=\left[[\mathbf{M A G} \mid \mathbf{D B}][\mathbf{D E G} \mid \mathbf{R A D}] \mid \mathbf{R} _\mathbf{I}\right]$ + (Freq Magnitude Phase) ... [DELAY = Delay $]$	PSPICE
Examples	
E3 43972.0	
EBUFF 3746100	
EAMP 46 POLY(1) 58010	PSPICE
ENL 1011 POLY (2) 70830.07 .50 .12 m	PSPICE
E13 50 VALUE $=\{12 * \operatorname{SQRT}(\mathrm{~V}(5,2))\}$	PSPICE
E3 45 TABLE $\{\mathrm{V}(3)-\mathrm{V}(1)\}=(-2,4.2)(0,0)(3,5.6)(5,6)$	PSPICE
E1220 TABLE $\{\mathrm{V}(3,8)\}=(0,0)(25,1)$	PSPICE
E3 80 LAPLACE $\{\mathrm{V}(7)\}=\{1 /(1+0.1 * \mathrm{~s})\}$	PSPICE
ELP 60 CHEBYSHEV $\{\mathrm{V}(7)\}=$ LP 1.6 k 2.5 K 0.5 dB 60 dB	PSPICE
ELP 70 FREQ $\{\mathrm{V}(8)\}=(0,0,0)(1 \mathrm{kHz}, 0,0)(1.5 \mathrm{kHz},-45,0)$ DELAY $=1 \mathrm{~ms}$	PSPICE

The first of the general forms applies for linear sources, and this form is used in SPICE2 and SPICE3. Other forms are PSPICE extensions. Pnode is the positive node, and Nnode is the negative node. Pinp and Ninp are the positive and negative controlling nodes, respectively. Gain is the voltage gain. POLY(Dimensions) specifies the number of dimensions of the polynomial. The number of pairs of controlling nodes must be equal to the number of dimensions. A particular node may appear more than once, and the output and controlling nodes need not be different. The Coef parameter specifies coefficients of the polynomial.

The VALUE, TABLE, LAPLACE, FREQ, and CHEBYSHEV forms are part of the analog behavioral modeling feature of PSPICE. The TABLE form has a maximum size of 2048 input/output value pairs. If a DELAY value is specified, the simulator will modify the phases in the FREQ table to incorporate the specified delay value. This is useful for tables which the simulator identifies as being noncausal. When this occurs, the simulator provides a delay value necessary to make the table causal. The new syntax allows this value to be specified in subsequent simulation runs, without requiring the user to modify the table.

1. Function used in PSPICE

The functions can be used in the PSPICE expressions are listed in Table 5.2.
Table 5.2 Functions used in PSPICE

Function	Description	Comments
$\operatorname{ABS}(x)$	$\|x\|$	
$\operatorname{ACOS}(x)$	arccosine	$-1.0 \leq x \leq 1.0$
ARCTAN(x)	arctangent	result in radians
$\operatorname{ASIN}(x)$	arcsine	result in radians
ATAN (x)	arctangent	result in radians
ATAN2 (y, x)	$\tan ^{-1}(y / x)$	result in radians
$\operatorname{COS}(x)$	$\cos (x)$	x in radians
$\operatorname{COSH}(x)$	hyperbolic cosine	
DDT (x)	time derivative of x	only for transient analysis
$\boldsymbol{\operatorname { E X P }}(x)$	e^{x}	
$\mathbf{I F}(t, x, y)$	$\begin{aligned} & x \text { if } t=\text { TRUE } \\ & y \text { if } t=\text { FALSE } \end{aligned}$	t is a Boolean expression; x and y are either numerical values or expressions
IMG(x)	imaginary part of x	returns 0 for real numbers
$\mathbf{L I M}\left(x\right.$, min, max ${ }^{\text {a }}$	\min if $x<$ min \max if $x>\max$ x otherwise	
LOG (x)	logarithm with base e	
LOG10(x)	logarithm with base 10	
M (x)	magnitude of x	the same as $\mathbf{A B S}(x)$
$\mathbf{M A X}(x, y)$	maximum of x and y	
$\mathbf{M I N}(x, y)$	minimum of x and y	
$\mathbf{P}(x)$	phase of x	returns 0 for real numbers
$\mathbf{P W R}(x, y)$	$\|x\|^{y}$	can be replaced by $\left\{x^{* *} y\right\}$
$\operatorname{PWRS}(x, y)$	$\begin{aligned} & \|x\|^{y} \text { if } x>0 \\ & -\|x\|^{y} \text { if } x<0 \\ & \hline \end{aligned}$	
$\mathbf{R}(x)$	real part of x	
SGN(x)	$\begin{aligned} & \hline 1 \text { if } x>0 \\ & 0 \text { if } x=0 \\ & -1 \text { if } x<0 \end{aligned}$	signum function
SIN (x)	$\sin (x)$	x in radians
SINH (x)	hyperbolic sine	
SQRT (x)	square root	
STD (x)	time integral of x	only for transient analysis
$\operatorname{STP}(x)$	$\begin{aligned} & \hline 1 \text { if } x>0 \\ & 0 \text { if } x \leq 0 \\ & \hline \end{aligned}$	step function
TABLE $\left(x, x_{v}, x_{2}, \ldots, x_{v}, y_{n}\right)$	piecewise characteristics	
TAN (x)	tangent	x in radians
TANH (x)	hyperbolic tangent	

Chebyshev filters have two attenuation values, given in dB , which specify the pass-band ripple and the stop-band attenuation. They may be given in either order. Low-pass (LP) and high pass (HP) have two cutoff frequencies, specifying the pass-band and stop-band edges, while band- pass (BP) and band-reject (BR) filters must have four.

F - Current-Controlled Current Source

General forms	Restrictions
Fname Pnode Nnode Vname Gain	PSPICE
Fname Pnode Nnode POLY(dimensions) Vname ... coef...	
FSEN 7 8 VSENSE 180	
F5 5 9 VINP 50	
F7 4 8 VINP 100	
FA 4 7 POLY(1) VIN 0 1k	PSPICE
FNL 5 8 POLY(2) VCTRL1 VCTRL2 0.0 7.3 0.1 0.01	PSPICE

The first of the general form applies to the linear case. Vname is the name of a voltage source through which the controlling current flows. Gain is the current gain, Pnode is the positive node, and Nnode is the negative node. Current is directed from the positive node, through the source, to the negative node. The current through the controlling voltage source determines the output current. The direction of positive controlling current is from the positive node, through the source, to the negative node of Vname. The controlling source must be an independent voltage source (\mathbf{V} device).

The second form is a PSPICE extension for the nonlinear case. POLY(dimensions) specifies the number of dimensions of the polynomial. The number of controlling voltage sources must be equal to the number of dimensions.

G - Voltage-Controlled Current Source

Pinp o Ninp 。 General forms	Restrictions
Gname Pnode Nnode Pinp Ninp Gm	
Gname Pnode Nnode POLY(Dimensions) Pinp Ninp ... Coef ...	PSPICE
Gname Pnode Nnode VALUE $=\{$ Expression $\}$	PSPICE
Gname Pnode Nnode TABLE $\{$ Expression $\}=($ Input, Output) ...	PSPICE
Gname Pnode Nnode LAPLACE $\{$ Expression $\}=\{$ Transf_expression $\}$	PSPICE
Gname Pnode Nnode CHEBYSHEV $\{$ Expression $\}=\{\mathbf{L B}\|\mathbf{H P}\| \mathbf{B P} \mid \mathbf{B R}\}$	PSPICE
+ Freq1 Freq2 ... Atten1 Atten2 ... Gname Pnode Nnode FREQ $\{$ Expression $\}=\left[[\mathbf{M A G} \mid \mathbf{D B}][\mathbf{D E G} \mid \mathbf{R A D}] \mid \mathbf{R} _\mathbf{I}\right]$ + (Freq Magnitude Phase) ... [DELAY = Delay $]$	PSPICE
Examples	
G123 111310.0	
GBUFF 1210111.0	
GAMP 48 POLY(1) 370.0100 .0	PSPICE
GNL 38 POLY(2) 29100.07 .70 .10 .001	PSPICE
GSQRT 50 VALUE $=\{5 \mathrm{~V} * \operatorname{SQRT}(\mathrm{~V}(3,2))\}$	PSPICE
GT2 30 TABLE $\{\mathrm{V}(4,8)\}=(0,0)(50,1)$	PSPICE
GRC 40 LAPLACE $\{\mathrm{V}(5)\}=\{1 /(1+.01 * \mathrm{~s})\}$	PSPICE
GLP 70 CHEBYSHEV $\{\mathrm{V}(4)\}=$ LP 1.6 k 2.5 k .2 dB 40 dB	PSPICE
GLP 60 FREQ $\{\mathrm{V}(4)\}=(0,0,0)(1 \mathrm{kHz}, 0,0)(3 \mathrm{kHz},-45,0)$ DELAY $=2 \mathrm{~ms}$	PSPICE
GPSK 48 VALUE $=\{2 \mathrm{~mA} * \sin (6.28 * 10 \mathrm{kHz} *$ TIME+V(8) $)\}$	PSPICE
GT 49 VALUE $=\{20 \mathrm{E}-6 * \mathbf{P W R}(\mathrm{~V}(1) * \mathrm{~V}(2), 1.5)\}$	PSPICE
GLOSSY $36 \mathbf{L A P L A C E}\{\mathrm{~V}(3)\}=\left\{\exp \left(-\mathrm{sqrt}\left(\mathrm{C} * \mathrm{~s}^{*}(\mathrm{R}+\mathrm{L} * \mathrm{~s})\right)\right.\right.$) $\}$	PSPICE

The first form applies for linear sources and is used in SPICE2 and SPICE3. Other forms are PSPICE extensions. Pnode is the positive node, and Nnode is the negative node. Positive current goes from the positive node through the source to the negative node. Pinp and Ninp are the positive and negative controlling nodes, respectively. $G m$ is the transconductance in A/V. POLY(Dimensions) specifies the number of dimensions of the polynomial. The number of pairs of controlling nodes must be equal to the number of dimensions. A particular node may appear more than once, and the output and controlling nodes need not be different. The Coef parameter specifies coefficients of the polynomial. Valid expressions for PSPICE are described with E source.

The VALUE, TABLE, LAPLACE, FREQ, and CHEBYSHEV forms are part of the analog behavioral modeling feature of PSPICE. The TABLE form has a maximum size of 2048 input/output value pairs. If a DELAY value is specified, the simulator will modify the phases in the FREQ table to incorporate the specified delay value. This is useful for tables which the simulator identifies as being noncausal. When this occurs, the simulator provides a delay value
necessary to make the table causal. The new syntax allows this value to be specified in subsequent simulation runs, without requiring the user to modify the table.

Chebyshev filters have two attenuation values, given in dB , which specify the pass band ripple and the stop-band attenuation. They may be given in either order. Low-pass ($\mathbf{L P}$) and high-pass (HP) have two cutoff frequencies, specifying the pass-band and stop-band edges, while band- pass ($\mathbf{B P}$) and band-reject ($\mathbf{B R}$) filters must have four.

H - Current-Controlled Voltage Source

General forms	Restrictions
Hname Pnode Nnode Vname Rm	
Hname Pnode Nnode POLY(dimensions) Vname... Coef...	PSPICE
HSEN 3 7 V12 50.0	
HAMP 3 9 POLY(1) VINP 0.0 100.0	PSPICE
HNL 4 8 POLY(2) VCTRL1 VCTRL2 0.0 5.8 0.1 0.02	PSPICE

The first general form applies to the linear source. Vname is the name of a voltage source through which the controlling current flows, $R m$ is the transresistance, Pnode is the positive node, and Nnode is the negative node of the output voltage source. The current through the controlling voltage source determines the output current. The direction of positive controlling current is from the positive node, through the source, to the negative node of Vname. The controlling source must be an independent voltage source (\mathbf{V} device).

The second form is the PSPICE extension for the nonlinear case. POLY(dimensions) specifies the number of dimensions of the polynomial. The number of controlling voltage sources must be equal to the number of dimensions.

I-Independent Current Source

General forms	Restrictions
Iname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]] [Signal_shape]	
Iname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]]	PSPICE
+ [STIMULUS = Name] [Signal_shape]	
Iname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]] [Signal_shape] + [DISTOF1 F1mag [F1phase]] [DISTOF2 F2mag [F2phase]]	SPICE3
Examples	
ISRC 48 AC 0.33345 .0	
INP 59 DC 1V AC 1mV 90	
IPULSE 30 PULSE (0 1 mA 5 ns 1 ns 1 ns 100 ns 200 ns)	
I4 47 DC 5V AC 1 mV SIN(0.010 .0011 MEGHz)	
I9 69 AC 0.160 SFFM (0 1 100kHz 0.51 kHz)	
IIN3 30 AC 1M DISTOF1 DISTOF2 0.001	SPICE3

A current source of positive value will force current out of the Pnode node, through the source, and into the Nnode node. Value is the dc and transient analysis value of the source. If the source value is time-invariant (e.g., a power supply), then the value may optionally be preceded by the letters DC.

Mag is the ac magnitude and Phase is the ac phase. The source is set to this value in the ac analysis. If Mag is omitted following the keyword AC, a value of unity is assumed. If Phase is omitted, a value of zero is assumed. If parameters other than source values are omitted or set to zero, the default values shown will be assumed. If a source is assigned a time-dependent value, the time-zero value is used for dc analysis.

The keyword STIMULUS is used in newer versions of PSPICE to call up custom signal shapes created with the stimulus editor. By specifying Signal_shape, a time-dependent waveform for transient analysis can be assigned. If a source is assigned a time-dependent value, the time-zero value is used for dc analysis. There are five independent source functions: pulse, exponential, sinusoidal, piecewise linear, and single-frequency FM. These five signal shapes are described in more detail in what follows.

1. Pulse waveforms

Form
PULSE (I1 I2 TD TR TF PW PER)
Examples: I5 50 PULSE(-1mA 1mA 5ns 2ns 2ns 50 ns 100 ns)
I8 70 PULSE(0 5mA 5us 1us 1us 20us 50us)

Parameters	Meaning	Default	Units
I1	Initial value		A
I2	Pulsed value		A
TD	Delay time	0.0	s
TR	Rise time	Tstep	s
TF	Fall time	Tstep	s
PW	Pulse width	Tstop	s
PER	Period	Tstop	s

Parameters Tstep and Tstop are specified in the .TRAN statement.

2. Sine waves

Form
SIN(IO IA FREQ TD DF PHASE)
Examples: I4 40 SIN(0 1mA 10kHz 10us 1k)
I7 39 SIN(0 5mA 1kHz)

parameters	meaning	default	units	Restrictions
IO	Offset		A	
IA	Amplitude		A	
FREQ	Frequency	$1 /$ Tstop	Hz	
TD	Delay	0.0	sec	
DF	Damping factor	0.0	$1 / \mathrm{sec}$	
PHASE	Phase	0.0	degre e	PSPICE

$$
\begin{equation*}
\mathbf{I}_{\mathbf{S}}=\mathbf{I} \mathbf{A} \sin \left(2 \pi \frac{\mathbf{P H A S E}}{360}\right) \tag{I-1}
\end{equation*}
$$

The shape of the waveform is described by the following expressions:
For time < TD:
$\mathbf{I O}+\mathbf{I A} \sin \left[2 \pi\left(\frac{\mathbf{P H A S E}}{360}\right)\right]$
For time > TD:
$\mathbf{I O}+\mathbf{I A} \exp [-($ time $-\mathbf{T D}) \mathbf{T H E T A}] \sin \left[2 \pi\left(\right.\right.$ FREQ $($ time $\left.\left.-\mathbf{T D})+\frac{\text { PHASE }}{360}\right)\right]$

3. Exponential waveforms

Format
EXP(I1 I2 TD1 TAU1 TD2 TAU2)
Examples: \quad I5 $50 \mathbf{E X P}(-5 m A 1 m A 2 n s ~ 30 n s ~ 60 n s ~ 40 n s) ~$ I12 $45 \mathbf{E X P}(5 \mathrm{~mA} 5 \mathrm{us} 10 \mathrm{~ns} 15 \mathrm{~ns} 18 \mathrm{~ns})$

Parameters	Meaning	Default	Units
I1	Initial value		A
I2	Pulsed value		A
TD1	Rise delay time	0.0	s
TAU1	Rise time constant	Tstep	s
TD2	Fall delay time	TD1+Tstep	s
TAU2	Fall time constant	Tstep	s

The shape of the waveform is described by the following equations:
For time < TD1:

$$
\begin{equation*}
i(\text { time })=0 \tag{I-4}
\end{equation*}
$$

For TD1 < time < TD2:

$$
\begin{equation*}
i(\text { time })=\mathbf{I} \mathbf{1}+(\mathbf{I} \mathbf{2}-\mathbf{I} \mathbf{1})\left[1-\exp \left(-\frac{\text { time }-\mathbf{T D} \mathbf{1}}{\mathbf{T A U 1}}\right)\right] \tag{I-5}
\end{equation*}
$$

For time > TD2:
$i($ time $)=\mathbf{I} 1+(\mathbf{I} 2-\mathbf{I} 1)\left[1-\exp \left(-\frac{\text { time }-\mathbf{T D 1}}{\mathbf{T A U 1}}\right)\right]+(\mathbf{I} 1-\mathbf{I} 2)\left[1-\exp \left(-\frac{\text { time }-\mathbf{T D 2}}{\mathbf{T A U 2}}\right)\right]$

4. Piecewise linear waveforms

Format: \quad PWL(T1 I1 [Tn In] ...)
Example: ICLOCK 75 PWL(0-7 10NS -7 11NS -3 17NS -3 18NS -7 50NS -7)

Parameters	Meaning	Default	Units
Tn	Time at corner	-	s
In	Current at corner	-	A

Each pair of values (Tn, In) specifies the value of the source In (in A) at time=Tn. The value of the source at intermediate values of time is determined by using linear interpolation of the input values.

5. FM waveforms

Form

Examples:

SFFM (IO IA FC MDI FS)
I7 $60 \mathbf{S F F M}(01 \mathrm{~mA} 10 \mathrm{kHz} 0.51 \mathrm{kHz})$ I3 34 SFFM(5 mA 1 mA 200 kHz 0.75 kHz)

Parameters	Meaning	Default	Units
IO	Offset	-	A
IA	Amplitude	-	A
FC	Carrier frequency	$1 /$ Tstop	Hz
MDI	Modulation index	0	
FS	Signal frequency	$1 /$ Tstop	Hz

The SFFM (single-frequency frequency-modulated) waveform is described by the following equation:

$$
\begin{equation*}
i(\text { time })=\mathbf{I O}+\mathbf{I} \mathbf{A} \sin [2 \pi \mathbf{F C} \text { time }+\mathbf{M D I} \sin (2 \pi \mathbf{F S} \text { time })] \tag{I-7}
\end{equation*}
$$

General forms	Restrictions
Jname Dnode Gnode Snode Model [Rarea] [0FF] [IC=Vds, Vgs]	SPICE2
Jname Dnode Gnode Snode Model [Rarea]	PSPICE
Jname Dnode Gnode Snode Model $[$ Rarea $][\mathbf{O F F}][\mathbf{I C}=V d s$, Vgs] $+[$ TEMP $=T]$	SPICE3
Examples	
J4 359 JMOD	
J2927JM1 OFF	SPICE2/3

JFET is described by a statement that starts with the name of the JFET device Jname. This name must start with the letter J. Node numbers Dnode, Gnode, and Snode for drain, gate, and source follows the name. Next the model Model name is listed. Model parameters are specified in the .MODEL statement. Keywords NJF and PJW are used there for n-channel and p-channel, respectively. Rarea is the relative area factor. If Rarea is not specified, 1 is assumed. In SPICE2 and SPICE3, an optional parameter IC= $V d$ is used together with an UIC in a transient analysis. Keyword OFF indicates an optional starting condition for dc analysis. In SPICE3, different temperatures can be set for individual transistors using the keyword TEMP.

1. JFET models

.MODEL Model_name NJF [Model parameters]
.MODEL Model_name PJF [Model parameters]

2. Model parameters

Name	Parameter	Units	Default	Typical					
VTO	Threshold voltage	V	-2.0	-2.0					
BETA	Transconductance parameter	$\mathrm{A} / \mathrm{V}^{2}$	10^{4}	10^{-4}					
LAMBDA	Channel-length modulation parameter	$1 / \mathrm{V}$	0	0					
RD	Drain resistance	Ω	0	20					
RS	Source resistance	Ω	0	20					
CGS	Zero-bias G-S junction capacitance	F	0	5 pF					
CGD	Zero-bias G-D junction capacitance	F	0	5 pF					
PB	Gate junction potential	V	1	0.8					
IS	Gate junction saturation current	A	1.0^{-14}	1.0^{-15}					
KF	Flicker noise coefficient	-	0						
AF	Flicker noise exponent	-	1	1					
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	0.5					
TNOM	Parameter measurement temperature	${ }^{\circ} \mathrm{C}$	27	27					
	PSPICE extensions								
N	Gate pn emission coefficient	-	1	1					
ISR	Gate pn recombination current parameter	A	0						
NR	Emission coefficient for ISR	-	2	2					
ALPHA	Ionization coefficient	$1 / \mathrm{V}$	0						
VK	Ionization "knee" voltage	V	0						
M	Grading p-n coefficient	-	0.5	0.5					
VTOTC	VTO temperature coefficient	$\mathrm{V} /{ }^{\circ} \mathrm{C}$	0						
BETACE	BETA exponential temperature coefficient	$\% /{ }^{\circ} \mathrm{C}$	0						
XTI	IS temperature coefficient	-	3	3					

Examples:

* JFET p-type, analog switch; 40 V 50 mA , low Ron resistance
.MODEL J175 PJF (VTO $=-5$ BETA=3.6m LAMBDA=7m RD=15 RS=15 IS=3.5f CGS=12P
$+\mathrm{CGD}=16 \mathrm{P}$ KF=5E-16)
* JFET n-type, analog switch; 40 V 50 mA , low Ron resistance
.MODEL 1N4393 NJF (VTO=-1.50 BETA=4m LAMBDA=. 035 RD=14 RS=15 IS=2E-15
+ CGS=7p CGD=9p KF=1.5E-16

```
* JFET n-type, low noise, very high frequency
.MODEL 1N4416 NJF (VTO=-3.8 BETA=5.3m LAMBDA=.035 RD=35 RS=100 IS=5.E-15
+CGS=6p CGD=3p KF=3.246E-18)
*JFET n-type, general purpose 25 V, 10 mA
.MODEL 1N5457 NJF (VTO=-3 BETA=1.5m LAMBDA=5.16m RD=40 RS=70 IS=5f
+CGS=15p CGD=4p KF=3E-17)
*JFET n-type, low-noise audio amplifier 30 V, 10 mA
.MODEL BC264B NJF VTO=-1.8 BETA=1.2m LAMBDA=18m RD=0 RS=0
+ IS = 0.3f CGS= p CGD=2p PB=0.77
```


K - Mutual Coupling

General forms	Restrictions
Kname Lnamel Lname2 Value	
Kname Lname1 Lname2 ... Value [Model [size]]	PSPICE
Kname Tnamel Tname2 $\mathbf{C m}=$ Cap_coupl $\mathbf{L m}=$ Ind_coupl	PSPICE
Examples	
K4 L5 L7 0.9	
KTUN L4 L 70.95	
K5 T1 T7 Cm= $10.0 \mathrm{pF} \mathbf{L m}=5 \mathrm{mH}$	PSPICE
K12 L6 L8 L2 0.85	PSPICE
K6 L2 L3 0.99 KMOD	PSPICE

The mutual coupling statement describes a mutual inductive coupling between two inductors. Lname1 and Lname 2 are the names of the two coupled inductors, and Value is the coupling coefficient K which must be greater than 0 and less than or equal to 1 . Using the dot convention, place a dot on the first node of each inductor. The relation between the coupling coefficient K and the mutual inductance is given by:

$$
\begin{equation*}
M_{i j}=K \sqrt{L_{i} L_{j}} \tag{K-1}
\end{equation*}
$$

where L_{i} and L_{j} are the coupled pair of inductors, and $M_{i j}$ is the mutual inductance between L_{i} and L_{j}
A voltage induced in ith inductor L_{i} is given by:

$$
\begin{equation*}
v_{i}=L_{i} \frac{d I_{i}}{d t}+M_{i j} \frac{d I_{j}}{d t}+M_{i k} \frac{d I_{k}}{d t}+\cdots \tag{K-2}
\end{equation*}
$$

Newer versions of PSPICE include a model for inductive and capacitive coupling between two transmission lines using $\mathbf{L m}$ and $\mathbf{C m}$ coupling parameters. In the case of mutual coupling between transmission lines (names start with the letter \mathbf{T}), two parameters can be specified. The $\mathbf{C m}$ parameter describes the capacitive coupling in F / m, and the $\mathbf{L m}$ parameter describes inductive coupling in H / m. PSPICE allows for declaration of coupling between more than two inductors.

In PSPICE the CORE model can be used to model lossy transformers; see: D. C. Jiles and D. L. Atherton, "Theory of Ferromagnetic Hysteresis", Journal of Magnetism and Magnetic Materials 61, 48 (1986).. The following .MODEL statement can accompany the mutual coupling declaration.

1. Core model

.MODEL Model CORE [.MODEL name type [list_of_parameters] ...

2. Model parameters

Name	Parameter	Units	Default
AREA	Mean magnetic cross section	cm^{2}	0.1
PATH	Mean magnetic path length	cm	1
GAP	Effective air-gap length	cm	0
PACK	Pack (stacking) factor		1
MS	Magnetization saturation	A / m	10^{+6}
A	Thermal energy parameter	A / m	$10^{0^{3}}$
C	Domain flexing parameter		0.2
K	Domain anisotropy parameter	A / m	500
ALPHA	Interdomain coupling parameter		10^{-3}
GAMMA	Domain damping parameter	$1 / \mathrm{s}$	

L - Inductor

The inductor statement defines an inductor with inductance specified by Value (in H) where Pnode and Nnode are the positive and negative nodes. An optional statement IC=Init_cond specifies the initial (time-zero) current that flows from Pnode, through the inductor, to Nnode. This initial condition takes effect only when the UIC option is specified in the .TRAN statement.

In SPICE2, a nonlinear inductor can be defined using the POLY keyword where $c 0 c 1 c 2$... are the coefficients of a polynomial describing the element value. The inductance is expressed as a function of the current through the inductor and is computed as

$$
\begin{equation*}
\text { Value }=c 0+c 1 I+c 2 I^{2}+\ldots \tag{L-1}
\end{equation*}
$$

Although the nonlinear inductor was originally implemented in SPICE2 with the keyword POLY, very few newer SPICE versions have this option implemented.

General forms	Restrictions
$\mathbf{M n a m e}$ Dnode Gnode Snode Bnode Model [$\mathbf{L}=$ Length] [W=Width] $+[\mathbf{A D}=$ Darea $][\mathbf{A S}=$ Sarea $][\mathbf{P D}=$ Dperi $][\mathbf{P S}=$ Speri $][\mathbf{N R D}=$ Dsq $]$ $+[\mathbf{N R S}=S s q][\mathbf{O F F}][\mathbf{I C}=V d s, V g s, V b s]$ $\mathbf{M n a m e}$ Dnode Gnode Snode Bnode Model [L=Length] [W=Width] $+[\mathbf{A D}=$ Darea $][\mathbf{A S}=$ Sarea $][\mathbf{P D}=$ Dperi $][\mathbf{P S}=$ Speri $][\mathbf{N R D}=$ Dsq $]$ $+[\mathbf{N R S}=S s q][\mathbf{N R G}=G s q][\mathbf{N R B}=B s q][\mathbf{M}=$ Value $]$ Mname Dnode Gnode Snode Bnode Model [L=Length] [W=Width] $+[\mathbf{A D}=$ Darea $][\mathbf{A S}=$ Sarea $][\mathbf{P D}=$ Dperi $][\mathbf{P S}=$ Speri $][\mathbf{N R D}=$ Dsq $]$ $+[\mathbf{N R S}=S s q][\mathbf{O F F}][\mathbf{I C}=V d s, V g s, V b s][\mathbf{T E M P}=T]$ Examples	PSPICE SPICE3
M1 3790 PMOS L=5u W=20u M7 126010 TYPEP M12 101980 mosn w=5.6u l=67. 3u M4 4620 MODN L=3u W=15u AD=200p AS=200pP PD=30u PS=40u M78730 TYPEN MA 4788 PNOM L=2.5u $\mathbf{W}=16 u$ MB 36920 PNOM L=2.5u $\mathbf{W}=10 u \quad$ TEMP=55 M4 4520 NMOD L=5u W=40u AD=150p AS=150p PD=40u + PS=40u NRD=15 NRS=25 NRG=12	SPICE3 PSPICE

Mname is the device name, and in the case of the MOS transistor it must begin with the letter M. Dnode, Gnode, Snode, and Bnode are the drain, gate, source and bulk/substrate/well nodes, respectively. Model is the model name, and \mathbf{L} and \mathbf{W} are the channel length and width in meters. AD and $\mathbf{A S}$ are the drain and source diffusion areas in square meters. PD and $\mathbf{P S}$ are the perimeters of the drain and source lateral junctions in meters. NRD and NRS are the relative resistivities of the drain and source in number of squares. These parasitic resistances can be specified either by sheet resistance RSH, which is multiplied by NRD and NRS, or by RD and RS in the .MODEL definition. The calculation of resistance using the sheet resistance concept (resistance per square) is also explained in the resistor Section (Eq. R-1). Default values for \mathbf{L}, $\mathbf{W}, \mathbf{A D}$ and $\mathbf{A S}$ are $\mathbf{L}=100 \mu \mathrm{~m}, \mathbf{W}=100 \mu \mathrm{~m}, \mathbf{A D}=0$, and $\mathbf{A S}=0$. These default values can be changed with the .OPTION statement using DEFL, DEFW, DEFAS, and DEFAD keywords. Default values of PD and PS are 0.0, while default values of NRD and NRS are 1.0.

In SPICE2/3, the keyword OFF indicates an optional starting condition of the device for dc analysis. The optional initial value $\mathbf{I C}=V d s, V g s, V b s$ is used together with UIC in a transient
analysis. In the case of the SPICE3, the optional TEMP value is the temperature at which this device operates and it overrides the temperature specified in the .OPTION statement.

In PSPICE, in addition to source and drain resistances, the user may specify the gate and bulk resistances using NRG and NRB parameters. \mathbf{M} is a device multiplier which simulates the effect of multiple transistors connected in parallel.

1. MOS transistor models

.MODEL Model_name NMOS [Model parameters]
 .MODEL Model_name PMOS [Model parameters]

A large number of MOS transistor models are used. These models are distinguished by the keyword LEVEL and a number. Some SPICE implementations (i.e. AIM-SPICE) have up to 20 different levels of MOS models. In this section three basic levels (1, 2, and 3), which are implemented in all SPICE versions, and the newer BSIM models, which are also becoming a standard, are described. Numbers in the brackets reefer to the reference list at the end of MOS section of Chapter 6.

LEVEL=1 Shichman-Hodges model [1] [8]
LEVEL=2 Geometric-based analytical Meyer model [2] [8]
LEVEL=3 Semi-empirical short channel Dang model [3] [8]
LEVEL $=4 \quad$ BSIM1 (Berkeley Short Channel Igfet Model) [4] [9]
LEVEL=5 BSIM2 Jeng model [5] [9]
LEVEL=5 BSIM3 (version 1) [6] [9]
LEVEL=6 BSIM3 (version 2) [6] [9]
LEVEL=6 MOS6 Sakurai-Newton model [7]

All SPICE implementations All SPICE implementations All SPICE implementations SPICE3 and new PSPICE

SPICE3
New PSPICE
New PSPICE
SPICE3
2. Parameters of MOS transistor models

Common for all Levels				
Name	Parameter description	Unit	Default	Typical
LEVEL	Model index	-	1	
L	Default channel length (PSPICE only)	m	DEFL	100μ
\mathbf{W}	Default channel width (PSPICE only)	m	DEFL	100μ
RD	Drain ohmic resistance	Ω	0	5
RS	Source ohmic resistance	Ω	0	5
RG	Gate ohmic resistance (PSPICE only)	Ω	0	5
RB	Bulk/substrate ohmic resistance (PSPICE only)	Ω	0	5
CBD	Zero-bias bulk-drain junction capacitance	F	0	20 fF
$\mathbf{C B S}$	Zero-bias bulk-source junction capacitance	F	0	20 fF

IS	Bulk junction saturation current	A	10^{-14}	$3 \cdot 10^{-15}$
JS	Bulk junction saturation current per sq-meter of junction area	A/m ${ }^{2}$	0	10^{-8}
JSSW	Bulk junction saturation current per length of sidewall area (PSPICE only)	A/m	0	10^{-12}
N	Bulk junction emission coefficient (PSPICE only)	-	1	1
PB	Bulk junction potential	V	0.8	0.85
PBSW	Bulk junction sidewall potential (PSPICE only)	V	PB	0.85
CGSO	Gate-source overlap capacitance per meter channel width	F/m	0	$3 \cdot 10^{-11}$
CGDO	Gate-drain overlap capacitance per meter channel width	F/m	0	$3 \cdot 10^{-11}$
CGBO	Gate-bulk overlap capacitance per meter channel length	F/m	0	$3 \cdot 10^{-10}$
RSH	Drain and source diffusion sheet resistance	$\Omega /$	0	10
CJ	Zero-bias bulk junction bottom capacitance per square meter of junction area	$\mathrm{F} / \mathrm{m}^{2}$	0	$2 \cdot 10^{-4}$
CJSW	Zero-bias bulk junction sidewall capacitance per length of sidewall	F/m	0	10^{-8}
MJ	Bulk junction bottom grading coefficient	-	0.5	0.5
CJSW	Zero-bias bulk junction sidewall capacitance per meter of junction perimeter (PSPICE only)	F/m	0	10^{-9}
MJSW	Bulk junction sidewall grading coefficient (PSPICE only)	-	$\begin{gathered} 0.50 \text { (Level 1) } \\ 0.33 \text { (Level 2, 3) } \end{gathered}$	
TT	Bulk junction transit time (PSPICE only)	s	0	10^{-8}
KF	Flicker noise coefficient	-	0	10^{-26}
AF	Flicker noise exponent	-	1.0	1.2
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	0.5
TNOM	Nominal temperature which overwrites the value specified in .OPTION statement (SPICE3 only)	K	300	300

Level 1, 2, 3, and 6 (Sakurai-Newton)

Name	Parameter description	Unit	Default	Typical
VTO	Zero-bias threshold voltage	V	0	1.0
KP	Transconductance parameter	A/ V^{2}	$2 \cdot 10^{-5}$	$3 \cdot 10^{-5}$
GAMMA	Bulk threshold parameter	$\mathrm{V}^{0.5}$	0	0.35
PHI	Surface potential	V	0.6	0.65
LAMBDA	Channel-length modulation parameter (level 1 and level 2 only)	1/V	0	0.02
TOX	Oxide thickness	m	10^{-7}	10^{-7}
NSUB	Substrate doping	cm^{-3}	0	$5 \cdot 10^{15}$
NSS	Surface state density	cm^{-2}	0	$2 \cdot 10^{10}$
NFS	Fast surface state density	cm^{-2}	0	10^{10}
TPG	Type of gate material (+1 for opposite to substrate, -1 for same as substrate, and 0 for Al gate)	-	1	1
XJ	Metallurgical junction depth	m		1 u
LD	Lateral diffusion	m	0	0.7u
WD	Lateral diffusion width (PSPICE only)	m	0	0.5u
UO	Surface mobility	$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$	600	700
UCRIT	Critical field for mobility degradation (level 2 only)	V/cm	10^{4}	10^{4}
UEXP	Critical field exponent in mobility degradation (level 2 only)	-	0	0.1
UTRA	Transverse field coefficient (mobility) (deleted for level 2)	-	0	0.3
VMAX	Maximum drift velocity of carriers	m/s	0	$3 \cdot 10^{4}$
NEFF	Total channel charge (fixed and mobile) coefficient (level 2 only)	-	1.0	3.0
XQC	Thin-oxide capacitance model flag and a fraction of channel charge attributed to drain (0-0.5)	-	1	0.4
DELTA	Width effect on threshold voltage	-	0	1.0
THETA	Mobility modulation (level 3 only)	1/V	0	0.1
ETA	Static feedback (level 3 only)	-	0	1.0
KAPP	Saturation field factor (level 3 only)	-	0.2	0.5

Transistor parameters may often be specified in different ways. For example, the reverse current can be specified either with the IS parameter (in A) or with JS (in A/m²). The first choice is an absolute value, while the second choice is multiplied by $\mathbf{A D}$ and $\mathbf{A S}$ to give the reverse current at the drain and source junctions, respectively. The latter approach is preferred. The same is also true for the parameters CBD, CBS, and CJ. Parasitic resistances can be given with RD and RS (in Ω) or with RSH (in $\Omega /$). RSH is multiplied by number of squares NRD and NRS.

Examples:

```
* NMOS transistor for 2um n-well MOSIS technology
.MODEL CMOSN NMOS LEVEL=2 PHI=0.7 TOX=40n XJ=0.2U TPG=1 VTO=0.8
+ DELTA=4.1 LD=0.3u KP=45u UO=550 UEXP=0.12 UCRIT=96k RSH=0.15 GAMMA=0.6
+ NSUB=7.3E+15 NFS=1.1E+11 VMAX=59k LAMBDA=0.03 CGDO=400p CGSO=400p
+ CGBO=350p CJ=0.1m MJ=0.6 CJSW=470p MJSW=0.3 PB=0.8
* PMOS transistor for 2um n-well MOSIS technology
.MODEL CMOSP PMOS LEVEL=2 PHI=0.7 TOX=40n XJ=0.2U TPG=-1 VTO=-0.9
+ DELTA=4.6 LD=0.35u KP=17u UO=205 UEXP=0.29 UCRIT=83k RSH=0.11 GAMMA=0.7
+ NSUB=9.5E+15 NFS=1.1E+11 VMAX=1MEG LAMBDA=0.046 CGDO=440p
+ CGSO=440p CGBO=390p CJ=0.3m MJ=0.6 CJSW=280p MJSW=0.4 PB=0.8
```

In the case of BSIM parameters for LEVEL=4, there are no default values, and all parameters must be specified. Also, some parameters, those marked with an asterisk "*" in the Table for Level 4, have channel length/width dependencies. For each of these parameters, two additional parameters should be specified. For example, if a parameter has the name PNAM then two additional parameters LPNAM and WPNAM should be specified. The actual parameter value is calculated using

$$
\text { PNAM }=\text { PNAM }+\frac{\text { LPNAM }}{\text { L }- \text { DL }}+\frac{\text { WPNAM }}{\text { W }- \text { DW }}
$$

where \mathbf{L} and \mathbf{W} are the channel length and width specified in the device line. Level 4 parameters were designed for automatic parameter extraction, and all model parameters should be copied from the device extractor rather than entered manually.

Level 4 - BSIM1			
Name	Parameter description	Unit	L/W
TOX	Gate oxide thickness	$\mu \mathrm{m}$	
VFB	Flat band voltage	V	$*$
PHI	Surface inversion potential	V	$*$
K1	Body effect coefficient		$*$
K2	Drain/source depletion charge sharing coefficient	-	$*$

DL	Shortening of channel	$\mu \mathrm{m}$	
DW	Narrowing of channel	$\mu \mathrm{m}$	
N0	Zero-bias subthreshold slope coefficient	-	*
NB	Sensitivity of subthreshold slope to substrate bias	-	*
ND	Sensitivity of subthreshold slope to drain bias	-	*
VDD	Measurement bias range	V	
MUS	Mobility at zero substrate bias and at $V_{D S}=$ VDD	$\mathrm{cm}^{2} / \mathrm{V} \cdot \mathrm{s}$	
X2MS	Sensitivity of mobility to substrate bias at $V_{D S}=$ VDD	$\mathrm{cm}^{2} / \mathrm{V}^{2} \cdot \mathrm{~s}$	*
X3MS	Sensitivity of mobility to drain bias at $V_{D S}=$ VDD	$\mathrm{cm}^{2} / \mathrm{V}^{2} \cdot \mathrm{~s}$	*
MUZ	Zero-bias mobility	$\mathrm{cm}^{2} / \mathrm{V} \cdot \mathrm{s}$	
X2MZ	Sensitivity of mobility to substrate bias at $V_{D S}=0$	$\mathrm{cm}^{2} / \mathrm{V}^{2} \cdot \mathrm{~s}$	*
U0	Zero-bias transverse-field mobility degradation coefficient	1/V	*
X2U0	Sensitivity of transverse field mobility degradation effect to substrate bias	$1 / V^{2}$	*
U1	Zero-bias velocity saturation coefficient	$\mu \mathrm{m} / \mathrm{V}$	*
X2U1	Sensitivity of velocity saturation effect to substrate bias	$\mu \mathrm{m} / \mathrm{V}^{2}$	*
X3U1	Sensitivity of velocity saturation effect on drain bias at $V_{D S}=\mathbf{V D D}$	$\mu \mathrm{m} / \mathrm{V}^{2}$	*
WDF	Source-drain junction default width	m	
DELL	Source-drain junction length reduction	m	
TEMP	Temperature at which parameters are measured	${ }^{\circ} \mathrm{C}$	
ETA	Zero-bias drain-induced barrier-lowering coefficient	-	*
X2E	Sensitivity of drain-induced barrier-lowering effect to substrate bias	1/V	*
X3E	Sensitivity of drain-induced barrier-lowering effect to drain bias at $V_{D S}=$ VDD	1/V	*
XPART	Gate-oxide capacitance charge model flag. XPART $=0$ selects a 40/60 drain/source partition of the gate charge in saturation, while XPART $=1$ selects a $0 / 100$ drain/source charge partition.	-	

General forms
Oname n1 n2 n3 n4 Model
Restrictions
(In PSPICE, lossy transmission lines use names which start with the letter \mathbf{T})

Examples

O5 2070 lmod
SPICE3
O1573123 connection

1. LTRA model

.MODEL Model LTRA [list_of_parameters]
2. Model parameters

SPICE3 only

Name	Parameter	Units	Default	Restricti ons
\mathbf{R}	Resistance/length.	Ω / m	0.0	SPICE3
\mathbf{L}	Inductance/length.	H / m	0.0	SPICE3
\mathbf{C}	Capacitance/length.	F / m	0.0	SPICE3
\mathbf{G}	Conductance/length.	$1 / \Omega \cdot \mathrm{m}$	0.0	SPICE3
LEN	Length of line.	m	-	SPICE3
REL	Breakpoint control.	-	1	SPICE3
ABS	Breakpoint control.	1	SPICE3	
NOSTEPLIMIT	Don't limit time step to less than line delay. This flag will remove the default restrictions of limiting the time-step to less than the line delay in the RLC case.	Not set	SPICE3	
NOCONTROL	Don't do complex timestep control. This flag prevents the default	Flag	Not set	SPICE3
	limitation on the time-step based on convolution error criteria in the RLC and $R C$ cases. This speeds up the simulation, but may in some cases reduce the accuracy.			

LININTERP	Use linear interpolation. When this flag is set, linear interpolation is used instead of the default quadratic interpolation for calculating delayed signals.	Flag	Not set	SPICE3
MIXEDINTERP	When this flag is set, SPICE uses a metric for judging whether quadratic interpolation is applicable, and if not so, it uses linear interpolation. Otherwise the default quadratic interpolation is used.	Flag	Not set	SPICE3
COMPACTREL	Special RELTOL for history compacting	-	RELTOL	SPICE3
COMPACTABS	Special ABSTOL for history compacting	-	ABSTOL	SPICE3
TRUNCNR	Use Newton-Raphson method for time step control. This flag initiates Newton-Raphson iterations to determine an appropriate time step in the time step control routines. The default is a trial-and-error procedure which cuts the previous time step in half.	Flag	Not set	SPICE3
TRUNCDONTCUT	Don't limit time step to keep impulseresponse errors low. This flag removes the default cutting of the time step to limit errors in the actual calculation of impulse-response related quantities.	Flag	Not set	SPICE3

Example:

* coaxial cable with $\mathrm{Z} 0=50$ ohms and $100 \mathrm{pF} / \mathrm{m} 100 \mathrm{~m}$ long
.MODEL LOSSY LTRA(R=2.5 G=0 L=250n C=100P LEN=100)
LTRA uses a two-port convolution model for lossy transmission lines. $n 1$ and $n 2$ are the nodes at port 1 , and $n 3$ and $n 4$ are the nodes at port 2 . It is worth mentioning that a lossy transmission line with zero loss may be more accurate than the lossless transmission line. The length LEN of the line must be specified.

The following types of lines are implemented :

- $R L C$ - uniform transmission line with series loss only
- $R C$ - uniform $R C$ line
- $L C$ - lossless transmission line
- $R G$ - distributed series resistance and parallel conductance only

Other line structures may lead to erroneous results

General forms	Restrictions
$\begin{aligned} & \text { Qname Cnode Bnode Enode }[\text { Snode }] \text { Model }[\text { Rarea }] \\ & \text { Qname Cnode Bnode Enode }[\text { Snode }] \text { Model }[\text { Rarea }][\text { OFF }][\text { IC=Vbe, Vce }] \\ & +[\mathbf{T E M P}=T] \end{aligned}$	PSPICE SPICE3
Examples	
Q3 4560 QMOD OFF Q7 460 QMOD2 $\mathbf{I C}=0.7,10$ Q12 479 QPNP Q17 739 QNPN IC=0.6,5.0 TEMP=55	SPICE3

Qname is the device name for a bipolar junction transistor and it must begin with the letter Q. Cnode, Bnode, Enode, and Snode are the collector, base, emitter and substrate nodes, respectively. For the case of NPN and PNP transistors, the substrate node is associated with the collector-substrate diode. For the case of LPNP (lateral pnp transistor) the substrate is associated with the base-substrate diode. If Snode is not given, ground is assumed. Model is the model name and Rarea is the relative area. If Rarea is omitted, the default Rarea=1.0 is assumed. The keyword OFF indicates an optional starting condition of the device for dc analysis. The optional initial value $\mathbf{I C}=V b e$, Vce is used together with UIC in transient analysis. In the case of the SPICE3, the optional TEMP value is the temperature at which this device operates, and it overrides the temperature specified In the .OPTION statement.

1. Bipolar transistor models

.MODEL Model_name NPN [Model parameters]
.MODEL Model_name PNP [Model parameters]
.MODEL Model_name LPNP [Model parameters]
PSPICE only
2. Parameters of bipolar transistor model (modified
Gummel-Poon model)

Name	Parameter description	Unit	Default	Typical
IS	Saturation current for Rarea $=1$	A	10^{-16}	10^{-15}
ISE	B- E leakage saturation current for Rarea $=1$	A	0	10^{-12}
ICS	B-C leakage saturation current for Rarea $=1$	A	0	10^{-12}
BF	Forward current gain	-	100	100

BR	Reverse current gain	-	1	0.1
NF	Forward current emission coefficient	-	1.0	1.2
NR	Reverse current emission coefficient	-	1.0	1.3
NE	B-E leakage emission coefficient	-	1.5	1.4
NC	B-C leakage emission coefficient	-	1.5	1.4
VAF	Forward Early voltage	V	∞	100
VAR	Reverse Early voltage	V	∞	50
IKF	β_{F} high current roll-off corner	A	∞	0.05
IKR	β_{R} high current roll-off corner	A	∞	0.01
IRB	Current where base resistance falls by half for Rarea=1	A	∞	0.1
RB	Zero-bias base resistance	Ω	0	100
RBM	Minimum base resistance	Ω	RB	10
RE	Emitter series resistance for Rarea=1	Ω	0	1
RC	Collector series resistance for Rarea=1	Ω	0	50
CJE	$B-E$ zero-bias depletion capacitance	F	0	10^{-12}
CJC	$B-C$ zero-bias depletion capacitance	F	0	10^{-12}
CJS	Zero-bias collector-substrate capacitance	F	0	10^{-12}
VJE	$B-E$ built-in potential	V	0.75	0.8
VJC	B - C built-in potential	V	0.75	0.7
VJS	Substrate junction built-in potential	V	0.75	0.7
MJE	$B-E$ junction exponential factor	-	0.33	0.33
MJC	$B-C$ junction exponential factor	-	0.33	0.5
MJS	Substrate junction exponential factor	-	0	0.5
XCJC	Fraction of $B-C$ capacitance connected to internal base node (see Fig. 6)	-	0	0.5
TF	Forward transit time	s	0	10^{-10}
TR	Reverse transit time	s	0	10^{-8}
XTF	Coefficient for bias dependence of τ_{F}	-	0	-
VTF	Voltage for t_{F} dependence on $V_{B C}$	V	∞	-
ITF	Current where $t_{F}=f\left(I_{C}, V_{B C}\right)$ starts	A	0	-
PTF	Excess phase at freq $=1 /\left(2 p t_{F}\right) \mathrm{Hz}$	deg	0	-
XTB	Forward and reverse beta temperature exponent		0	-

EG	Energy gap	eV	1.11	1.1
XTI	Temperature exponent for effect on I_{s}	-	3	3.5
KF	Flicker noise coefficient	-	0	
AF	Flicker noise exponent	-	1	
FC	Coefficient for the forward biased depletion capacitance formula	-	0.5	0.5
SPICE3 extension				
TNOM	Nominal temperature which overrides the value specified in .OPTION statement	K	300	300
PSPICE extensions				
NK	High-current roll-off coefficient	-	0.5	0.5
ISS	Substrate saturation current for Rarea=1	A	0	10^{-15}
NS	Substrate emission coefficient	-	1	1
QCO	Epitaxial layer charge factor for Rarea=1	C	0	
RCO	Epitaxial region resistance for Rarea=1	Ω	0	100
VO	Carrier mobility knee voltage	V	10	20
GAMMA	Epitaxial layer doping factor		10^{-11}	10^{-11}
TRE1	RE temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0.001
TRE2	RE temperature coefficient (quadratic)	$1 /{ }^{\circ} \mathrm{C}^{2}$	0	0
TRB1	RB temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0.002
TRB2	RB temperature coefficient (quadratic)	$1 /{ }^{\circ} \mathrm{C}^{2}$	0	0
TRM1	RBM temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0.002
TRM2	RBM temperature coefficient (quadratic)	$1 /{ }^{\circ}{ }^{2}$	0	0
TRC1	$\mathbf{R C}$ temperature coefficient (linear)	$1 /{ }^{\circ} \mathrm{C}$	0	0.003
TRC2	RC temperature coefficient (quadratic)	$1 /{ }^{\circ} \mathrm{C}^{2}$	0	0

Examples:

* small power general purpose npn transistor
.MODEL 2N2222 NPN (IS=15.2f NF=1 BF=105 VAF=98.5 IKF=.5 ISE=8.2p NE=2
$+\mathrm{BR}=4 \mathrm{NR}=1 \mathrm{VAR}=20 \mathrm{IKR}=.225 \mathrm{RE}=.373 \mathrm{RB}=1.49 \mathrm{RC}=.149 \mathrm{XTB}=1.5 \mathrm{CJE}=35.5 \mathrm{p}$
$+\mathrm{CJC}=12.2 \mathrm{P} \mathrm{TF}=0.5 \mathrm{n}$ TR=85n)
* small power general purpose pnp transistor $40 \mathrm{~V}, 200 \mathrm{~mA}$
.MODEL 2N2904 PNP (IS=0.3n NF=1 BF=100 VAF=120 IKF=. 14 ISE=46.1p NE=2 BR=4
$+\mathrm{NR}=1 \mathrm{VAR}=20 \mathrm{IKR}=.2 \mathrm{RE}=.5 \mathrm{RB}=2 \mathrm{RC}=.2 \mathrm{XTB}=1.5 \mathrm{CJE}=15 \mathrm{p} \mathrm{CJC}=20 \mathrm{p} \mathrm{TF}=600 \mathrm{p}$ TR=60n)

```
* small power general purpose npn transistor 40 V, 200 mA
.MODEL 2N3903 NPN (IS=1F NF=1 BF=400 VAF=120 IKF=70m ISE=3P NE=2 BR=4 NR=1
+ VAR=20 RE=21 RB=8 RC=1 XTB=1.5 CJE=8p CJC=5p TF=600p TR=0.3u)
*small power general purpose npn transistor 45 V, 200mA
.MODEL BC107A NPN (IS=10f NF=1 BF=300 VAF=120 IKF=0.05 ISE=5p NE=2 BR=4
+ NR=1 VAR=30 XTB=1.5 RE=1 RB=3 RC=0.3 CJE=15p CJC=5p TF=0.5n TR=60n)
*small power general purpose pnp transistor 45 V, 200 mA
.MODEL BC177A PNP (IS=0.1f ISE=0.5f NF=1 NE=1.4 BF=300 BR=13 IKF=.1 IKR=. 01
+ISC=0.1f NC=1.1 NR=1 RB=.2 RE=.4 RC=1 VAR=10 VAF=90 CJE=16p TF=.5n
+CJC=10p TR=70n MJC=.4 VJC=.6)
*small power germanium transistor 25 V, 100 mA
.MODEL 2N2955 PNP (IS=1.25n NF=1 BF=80 VAF=90 IKF=60m ISE=5n NE=2 BR=4 NR=1
+VAR=14 IKR=90m RE=2 RB=10 RC=1 XTB=1.5 CJE=30p CJC=9p TF=0.4n TR=20n)
* power npn transistor 15 A, 100V, 100 W
.MODEL 2N3055 NPN(IS=5p NF=1 BF=100 VAF=100 IKF=.25 ISE=30p ISC=5n RB=3
+IRB=1m RBM=.4 NE=1.5 RC=.04 BR=3 MJC=.4 VJE=1 MJE=.45 XTB=1 CJE=600p
+TF=80n CJC=200p TR=2u PTF=120 XTF=1 ITF=3)
* power npn transistor 4 A, 40 V
.MODEL 2N5190 NPN (IS=5p NF=1 BF=150 VAF=120 IKF=0.3 ISE=0.7n NE=2 BR=4
+ NR=1 VAR=20 XTB=2.5 RE=0.2 RB=12 RBM=1.2 IRB=0.5m RC=0.07 CJE=0.3n
+ CJC=0.3n TF=45n TR=1u PTF=120 XTF=1 ITF=3.5 ISC=5n MJC=0.2 VJC=1.2
+ MJE=0.3 VJE=0.5)
* power pnp transistor 4 A, 40 V
.MODEL 2N5193 PNP (IS=0.4p NF=1 BF=100 VAF=100 IKF=0.3 ISE=0.3n ISC=7n NE=2
+ BR=4 NR=1 VAR=20 XTB=1.4 RE=0.15 RB=15 RBM=1.5 IRB=0.3m RC=0.06 CJE=0.3n
+ CJC=0.5n VJC=1.25 MJE=0.3 VJE=0.65)
```


General forms	Restrictions
Rname Pnode Nnode Value [TC=TC1 [TC2]]	
Rname Pnode Nnode [Value] [Model] [L=Length] [W=Width] $+[$ TEMP $=T]$	SPICE3
Rname Pnode Nnode [Model] [Value] [TC=TC1 [TC2]]	PSPICE
Examples	
R1371k	
RC 79 10k TC=0.02,0.0015	
RL 393.7 k	
RLOAD 212 RMODEL $\mathbf{L}=48 \mathrm{um} \mathbf{W}=3 \mathrm{um}$	SPICE3
R12 29 RMOD 800k TC = 0.01, 0.0015	PSPICE

The resistor statement consists of a name which must start with the letter \mathbf{R}, node names Pnode and Nnode, and a value of resistance specified by Value (in ohms). An ptional TC=TC1 [TC2]] specifies the temperature dependence of resistance, where $T C 1$ and $T C 2$ are linear and quadratic temperature coefficients, respectively.

The basic resistor statement has many extensions that are implementation-dependent. Semiconductor resistors are implemented in SPICE3. This extension models temperature effects and calculates the resistance based on geometry and processing information. If Value is given, then the Value defines the resistance, and information on geometry and processing is ignored. If Model is specified, the resistance value is calculated based on information about the process and geometry in the model statement:

$$
\begin{equation*}
R=\mathbf{R S H} \frac{\text { Length }- \text { NARROW }}{\text { Width }- \text { NARROW }} \tag{R-1}
\end{equation*}
$$

If Value is not given, Model and Length must be specified. If Width is not given, it will be given the default value. The optional TEMP value is the temperature at which this device operates. It overrides the default temperature specified in the .OPTION statement. The temperature dependence of the resistance is calculated using

$$
\begin{equation*}
R(T)=R(\mathbf{T N O M})\left[1+T C 1(T-\mathrm{TNOM})+T C 2(T-\mathrm{TNOM})^{2}\right] \tag{R-2}
\end{equation*}
$$

The resistor model contains process-related parameters, and the resistance value is a function of the temperature.

1. Resistor model

.MODEL Model \mathbf{R} [list_of_parameters]
2. Model parameters

Name	Parameter	Units	Default	Restrictions
TC1	First-order temperature coefficient	$1 /{ }^{\circ} \mathrm{C}$	0.0	
TC2	Second order temperature coefficient	$1 /{ }^{\circ} \mathrm{C}^{2}$	0.0	
RSH	Sheet resistance	$\Omega /$	-	SPICE3
DEFW	Default width	m	$1 \mathrm{e}-6$	SPICE3
NARROW	Narrowing due to side etching	m	0.0	SPICE3
TNOM	Parameter measurement temperature	${ }^{\circ} \mathrm{C}$	27	SPICE3
R	Resistance multiplier	-	1	PSPICE
TCE	Exponential temperature coefficient	$\% /{ }^{\circ} \mathrm{C}$	0	PSPICE

PSPICE uses the TCE parameter to calculate the temperature dependence of resistance:

$$
\begin{equation*}
R(T)=R\left(T_{\text {nom }}\right) 1.01^{\mathrm{TCE}\left(T-T_{\text {nom }}\right)} \tag{R-3}
\end{equation*}
$$

S - Voltage Controlled Switch

General forms	Restrictions
Sname Pnode Nnode Pinp Ninp Model	PSPICE
Sname Pnode Nnode Pinp Ninp Model [ON] [OFF]	SPICE3
Sxamples	
SW5 2 9 SW1 3 0 Smodel	
S44962 SW2 OFF	
S33729 sw1 ON	SPICE3
s3 3680 SMOD off	SPICE3
	SPICE3

The voltage-controlled switch statement begins with the letter S. Pnode and Nnode represent the connections to the switch terminals. Pinp and Ninp are positive end negative controlling nodes, respectively. The model name, Model, is mandatory, while the initial conditions are optional. The controlling voltages are defined the same way as in voltage-controlled voltage (letter \mathbf{E}) and current (letter \mathbf{G}) sources. In SPICE3, the optional parameter ON or OFF specifies the switch state for the dc operating point.

The switch model allows an almost ideal switch to be described in SPICE. The switch is not quite ideal, in that the resistance cannot change from 0 to infinity, but must always have a finite and nonzero positive value. By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements.

The switch can have a hysteresis described by the VH parameter. For example, the voltagecontrolled switch will be in the on state, with a resistance RON, at VT+VH. The switch will be in the off state, with a resistance ROFF, at VT-VH.

1. SW model

.MODEL Model SW [list_of_parameters]
SPICE3

2. SW model parameters

Name	Parameter	Default	Units	Restrictions
VT	Threshold voltage	0.0	V	SPICE3
VH	Hysteresis voltage	0.0	V	SPICE3
RON	On resistance	1.0	Ω	
ROFF	Off resistance	$1 / \mathbf{G M I N}$	Ω	SPICE3

Examples:
.MODEL SMOD SW RON=1m ROFF=20k VT=3V
.MODEL SMOD SW VT=4V VH=1V
.MODEL SMOD SW RON=10 ROFF=10MEG VT=2V
3. VSWITCH model
.MODEL Model VSWITCH [list_of_parameters]
PSPICE

4. VSWITCH model parameters

Name	Parameter	Default	Units	Restrictions
VON	Threshold current for on state	10^{-3}	V	PSPICE
VOFF	Threshold current for off state	0.0	V	PSPICE
RON	On resistance	1.0	Ω	
ROFF	Off resistance	10^{6}	Ω	PSPICE

The use of an ideal element that is highly non-linear, such as a switch, can cause large discontinuities to occur in the circuit node voltages. The rapid voltage change associated with a switch changing state can cause numerical round off or tolerance problems leading to erroneous results or time step difficulties. You can improve the situation by taking the following steps. Set the switch impedances only high and low enough to be negligible with respect to other elements in the circuit. Using switch impedances that are close to "ideal" under all circumstances will aggravate the discontinuity problem. When modeling real devices such as MOSFETS, the on resistance should be adjusted to a realistic level depending on the size of the device being modeled.

If a wide range of ON to OFF resistance must be used (ROFF/RON $>10^{+12}$), then the tolerance on errors allowed during transient analysis should be decreased by specifying the .OPTIONS TRTOL parameter to be less than the default value of 7.0. When switches are placed around capacitors, the .OPTIONS CHGTOL parameters should also be reduced. Suggested values for these two options are 1.0 and 1E-16, respectively. These changes inform SPICE to be more careful near the switch points so that no errors are made due to the rapid change in the circuit response.

T - Transmission Lines

$n 1$ and $n 2$ are the nodes at port $1 ; n 3$ and $n 4$ are the nodes at port 2 . For the ideal case, $\mathbf{Z 0}$ is the characteristic impedance. The transmission line's length can be specified either by TD, a delay in seconds, or by \mathbf{F} and $\mathbf{N L}$, a frequency and a relative wavelength at \mathbf{F}. NL defaults to 0.25 (\mathbf{F} is then the quarter-wave frequency). Although TD and \mathbf{F} are both shown as optional, one of the two must be specified.

Note that this element models only one propagating mode. If all four nodes are distinct in the actual circuit, then two modes may be excited. To simulate such a situation, two transmission-line elements are required. The (optional) initial condition specification consists of the voltage and current at each of the transmission line ports. Note that the initial conditions (if any) apply 'only' if the UIC option is specified on the .TRAN line. One should be aware that SPICE will use a transient time step which does not exceed $1 / 2$ the minimum transmission line delay. Therefore, very short transmission lines (compared with the analysis time frame) will cause long run times.

For the case of a lossy line, $\mathbf{L E N}$ is the electrical length. $\mathbf{R}, \mathbf{L}, \mathbf{G}$, and \mathbf{C} are the per unit length values of resistance, inductance, conductance, and capacitance, respectively. The lossy line model is similar to that shown for the ideal case, except that the delayed voltage and current values include terms that vary with frequency. These terms are computed in transient analysis using an impulse response convolution method, and the internal time step is limited by the time resolution required to accurately model the frequency characteristics of the line. As with ideal lines, short lossy lines will cause long run times.

For the case of a line that uses a model, the electrical length is given after the model name. All of the transmission line parameters from either the ideal, or lossy parameter set can be expressions. In addition, \mathbf{R} and \mathbf{G} can be general Laplace expressions. This option allows the user to model frequency-dependent effects, such as skin effect and dielectric loss. However, this adds to the computation time for transient analysis, since the impulse responses must be obtained by an inverse FFT.

The simulator uses a distributed model to represent the properties of a lossy transmission line, and the line resistance, inductance, conductance, and capacitance are all continuously apportioned along the line's length. A common approach to simulating lossy lines is to model these characteristics using discrete passive elements to represent small sections of the line. This is the lumped model approach, which involves connecting a set of many small subcircuits in series.

An additional PSPICE extension allows systems of coupled transmission lines to be simulated. Transmission line coupling is specified using the \mathbf{K} mutual coupling device. This is done in much the same way that coupling is specified for inductors.

The distributed model used in the simulation process frees you from having to determine how many lumps are sufficient, and eliminates spurious oscillations. It also allows lossy lines to be simulated in a fraction of the time necessary when using the lumped approach, for the same accuracy.

1. TRN model

.MODEL Model TRN [list_of_parameters]
2. Model parameters

PSPICE only

Name	Parameter	Units	Default	Restrictions	
Ideal transmission line					
ZO	Characteristic impedance	Ω		PSPICE	
TD	Transmission delay	s		PSPICE	
NL	Relative wavelength		0.25	PSPICE	
F	Frequency for NL	Hz		PSPICE	
LENsy transmission line	Electrical length	Any unit		PSPICE	
R	Resistance per LEN units	$\Omega /$ unit		PSPICE	
L	Inductance per LEN unit	H/unit		PSPICE	
C	Capacitance per LEN unit	F/unit		PSPICE	
G	Conductance per LEN unit	$1 / \Omega \cdot$ unit		PSPICE	

$n 1$ and $n 2$ are the two nodes of the $R C$ line itself, while $n 3$ is the capacitive node. Model is the name of the model, Length is the length of the line in meters and Lumps, if given, is the number of segments to use in modeling the RC line.

1. URC model

.MODEL Model URC [list_of_parameters]
2. Model parameters SPICE3 only

Name	Parameter	Units	Default	Restricti ons
K	Propagation constant	-	2.0	SPICE3
FMAX	Maximum frequency	Hz	10^{9}	SPICE3
RPERL	Resistance per unit length	Ω / m	1000	SPICE3
CPERL	Capacitance per unit length	F / m	10^{-15}	SPICE3
ISPERL	Saturation current per unit length	A / m	0	SPICE3
RSPERL	Diode resistance per unit length	Ω / m	0	SPICE3

The model is accomplished by a subcircuit expansion of the URC line into a network of lumped $R C$ segments with internally generated nodes. The $R C$ segments are in a geometric progression, increasing toward the middle of the URC line, with \mathbf{K} as a proportionality constant. \mathbf{N} is the number of lumped segments used. If not specified on the URC line, \mathbf{N} is determined by the following expression:

$$
\begin{equation*}
\mathbf{N}=\frac{\log \left[2 \pi R C F_{\max }\left(\frac{\mathbf{K}-1}{\mathbf{K}}\right)^{2}\right]}{\log \mathbf{K}} \tag{U-1}
\end{equation*}
$$

The URC line is made up strictly of resistor and capacitor segments unless the ISPERL parameter is given a nonzero value, in which case the capacitors are replaced with reverse-biased diodes with a zero-bias junction capacitance equivalent to the capacitance replaced, and with a
saturation current of ISPERL amps per meter of transmission line. An optional series resistance equivalent to RSPERL ohms per meter can be included.

V - Independent Voltage Source

General forms	Restrictions
Vname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]] [Signal_shape]	
Vname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]]	PSPICE
+ [STIMULUS = Name] [Signal_shape]	
Vname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]] [Signal_shape] + [DISTOF1 F1mag [F1phase]] [DISTOF2 F2mag [F2phase]]	SPICE3
Examples	
VSC 26 AC 1 mV 45.0	
VNP 47 DC 3V AC 1mV 90.0	
VPULSE 30 PULSE (0 5.2V 5ns 1ns 1ns 30ns 50ns)	
V620 DC 1V AC 1 mV SIN(0 0.001 1MEG)	PSPICE
V2 50 AC 10mV DISTOF1 DISTOF2 0.001	SPICE3
V3 69 AC 0.145 SFFM (0 1250 kHz 0.53 kHz)	SPICE3

Value is the dc and transient analysis value of the voltage source. If the source value is time-invariant (e.g., a power supply), then the value may optionally be preceded by the letters DC.

Mag is the ac magnitude and Phase is the ac phase. The source is set to this value in the ac analysis. If Mag is omitted following the keyword $\mathbf{A C}$, a value of unity is assumed. If Phase is omitted, a value of zero is assumed. If parameters other than source values are omitted or set to zero, the default values shown will be assumed. If a source is assigned a time-dependent value, the time-zero value will be used for dc analysis.

The keyword STIMULUS is used in newer versions of PSPICE to call up custom signal shapes created with the stimulus editor. By specifying Signal_shape, a time-dependent waveform for transient analysis can be assigned. If a source is assigned a time-dependent value, the time-zero value is used for dc analysis. There are five independent source functions: pulse, exponential, sinusoidal, piecewise linear, and single-frequency FM. These five signal shapes are described in more detail in what follows.

1. Pulse waveforms

Form
PULSE (V1 V2 TD TR TF PW PER)
Examples: VIN 30 PULSE(0 5V 10us 2us 2us 50us 100us)
VIN 50 PULSE(-5V 5V 10us 2us 2us 50us)

Parameters	Meaning	Default	Units
V1	Initial value	-	V
V2	Pulsed value	-	V
TD	Delay time	0.0	sec
TR	Rise time	Tstep	sec
TF	Fall time	Tstep	sec
PW	Pulse width	Tstop	sec
PER	Period	Tstop	sec

Parameters Tstep and Tstop are specified in .TRAN statement.

2. Sine waves

Form SIN(VO VA FREQ TD DF PHASE)

Examples: V3 30 SIN(1V 2V 10MEG 1ns 1MEG) V6 62 SIN(0 10mV 100kHz)

parameters	meaning	default	units	Restrictions
VO	Offset		V	
VA	Amplitude		V	
FREQ	Frequency	$1 /$ Tstop	Hz	
TD	Delay	0.0	s	
DF	Damping factor	0.0	$1 / \mathrm{s}$	
PHASE	Phase	0.0	degre e	PSPICE

The shape of the waveform is described by the following equations:
For time < TD:
$\mathbf{V O}+\mathbf{V A} \sin \left[2 \pi\left(\frac{\text { PHASE }}{360}\right)\right]$
For time > TD:
$\mathbf{V O}+\mathbf{V A} \exp [-($ time $-\mathbf{T D}) \mathbf{T H E T A}] \sin \left[2 \pi\left(\right.\right.$ FREQ $($ time $\left.\left.-\mathbf{T D})+\frac{\text { PHASE }}{360}\right)\right]$

3. Exponential waveforms

Format
$\operatorname{EXP}(\mathrm{V} 1 \mathrm{~V} 2 \mathrm{TD} 1$ TAU1 TD2 TAU2)
Examples: V3 $50 \mathbf{E X P}(-5-3$ 5ns 20ns 30ns 30ns)
V6 $32 \operatorname{EXP}(05$ 5ns 20ns)

Parameters	Meaning	Default	Units
V1	Initial value		V
V2	Pulsed value		V
TD1	Rise delay time	0.0	s
TAU1	Rise time constant	Tstep	s
TD2	Fall delay time	TD1+Tstep	s
TAU2	Fall time constant	Tstep	s

The shape of the waveform is described by the following equations:
For time < TD1

$$
\begin{equation*}
v(\text { time })=0 \tag{V-4}
\end{equation*}
$$

For TD1 < time < TD2

$$
\begin{equation*}
v(\text { time })=\mathbf{V} 1+(\mathbf{V} 2-\mathbf{V} 1)\left[1-\exp \left(-\frac{\text { time }-\mathbf{T D} 1}{\mathbf{T A U 1}}\right)\right] \tag{V-5}
\end{equation*}
$$

for time > TD2

$$
v(\text { time })=\mathbf{V} 1+(\mathbf{V} 2-\mathbf{V} 1)\left[1-\exp \left(-\frac{\text { time }-\mathbf{T D 1}}{\mathbf{T A U 1}}\right)\right]+(\mathbf{V} 1-\mathbf{V} 2)\left[1-\exp \left(-\frac{\text { time }-\mathbf{T D} 2}{\mathbf{T A U 2}}\right)\right](\mathbf{V}-\mathbf{6})
$$

4. Piecewise linear waveforms

Format: \quad PWL(T1 V1 [Tn Vn] ...)
Examples: V5 $37 \mathrm{PWL}(0-7 \mathrm{~V}$ 5us -7 V 6us 5V 20us 5V 21us -7 V 30us -8 V)
V3 42 PWL(5ms 5V 20ms 5V 30ms 0V)

Parameters	Meaning	Default	Units
Tn	Time at corner	-	s
Vn	Voltage at corner	-	V

Each pair of values $(\mathbf{T n}, \mathbf{V n})$ specifies the value of the source $\mathbf{V n}([i n \mathrm{~V})$ at time $=\mathbf{T n}$. The value of the source at intermediate values of time is determined by using linear interpolation of the input values.

5. FM waveforms

Form
SFFM(VO VA FC MDI FS)
Examples:

> V7 70 SFFM(0 1mV 20kHz 51 kHz)
> V1 120 SFFM(0 10V 300 kHz 0.510 kHz$)$

parameters	meaning	default	units
VO	Offset	-	V
VA	Amplitude	-	V
FC	Carrier frequency	1/Tstop	Hz
MDI	Modulation index	0	
FS	Signal frequency	1/Tstop	Hz

The SFFM (single-frequency frequency-modulated) waveform is described by the following equation:

$$
\begin{equation*}
v(\text { time })=\mathbf{V O}+\mathbf{V A} \sin [2 \pi \mathbf{F C} \text { time }+\mathbf{M D I} \sin (2 \pi \mathbf{F S} \text { time })] \tag{V-7}
\end{equation*}
$$

W - Current-Controlled Switch

General forms	Restrictions
Wname Pnode Nnode Vname model	PSPICE
Wname Pnode Nnode Vname model [ON] [OFF]	SPICE3
W3 4 7 VIN WMOD	
WON 4 7 VON WRELAY	
w1 4 0 vclock Switch	
W2 5 2 VR SM1 ON	SPICE3
wreset 72 V5 Lossysw OFF	SPICE3

The name of a current-controlled switch begins with the letter W. Pnode and Nnode represent the connections to the switch terminals. The model name, Model, is mandatory, while the initial conditions are optional. The controlling current is the current through the specified voltage source, defined the same way as in current-controlled dependent voltage (letter \mathbf{F}) and current (letter \mathbf{H}) sources. In SPICE3 the optional parameter ON or OFF specifies the switch state for the dc operating point.

The switch model allows an almost ideal switch to be described in SPICE. The switch is not quite ideal, in that the resistance cannot change from 0 to infinity, but must always have a finite and nonzero positive value. By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements.

The switch can have a hysteresis described by the $\mathbf{I H}$ parameter. For example, the currentcontrolled switch will be in the on state, with a resistance $\mathbf{R O N}$, at $\mathbf{I T}+\mathbf{I H}$. The switch will be in the off state, with a resistance ROFF, at IT-IH.

1. CSW model

.MODEL Model CSW [list_of_parameters]
SPICE3

2. Model parameters

Name	Parameter	Default	Units	Restrictions
IT	Threshold current	0.0	A	SPICE3
IH	Hysteresis current	0.0	A	SPICE3
RON	On resistance	1.0	Ω	
ROFF	Off resistance	$1 /$ GMIN	Ω	SPICE3

Examples:

.MODEL SMOD CSW IT=3V IH=1V
.MODEL SMOD CSW RON=50 ROFF=10MEG IT=3mA
.MODEL Model ISWITCH [list_of_parameters]
PSPICE

Model Parameters

Name	Parameter	Default	Units	Restrictions
ION	Threshold current for on state	10^{-3}	A	PSPICE
IOFF	Threshold current for off state	0.0	A	PSPICE
RON	On resistance	1.0	Ω	
ROFF	Off resistance	10^{6}	Ω	PSPICE

The use of an ideal element that is highly nonlinear, such as a switch, can cause large discontinuities to occur in the circuit node voltages. The rapid voltage change associated with a switch changing state can cause numerical round off or tolerance problems leading to erroneous results or time step difficulties.

You can improve the situation by taking the following steps: Set the switch impedances only high and low enough to be negligible with respect to other elements in the circuit. Using switch impedances that are close to "ideal" under all circumstances will aggravate the discontinuity problem. When modeling real devices such as MOSFETS, the on resistance should be adjusted to a realistic level depending on the size of the device being modeled.

If a wide range of ON to OFF resistance must be used (ROFF/RON $>10^{+12}$), then the tolerance on errors allowed during the transient analysis should be decreased by specifying the .OPTIONS TRTOL parameter to be less than the default value of 7.0. When switches are placed around capacitors, the .OPTIONS CHGTOL parameters should also be reduced. Suggested values for these two options are 1.0 and $1 \mathrm{E}-16$, respectively. These changes inform SPICE to be more careful near the switch points so that no errors are made due to the rapid change in the circuit response.

X - Subcircuit Calls

Subcircuits are specified in SPICE by using pseudo-elements beginning with the letter \mathbf{X}, followed by the circuit nodes $n 1$ [$n 2 n 3 \ldots$...] to be used in expanding the subcircuit and the name Subname of the subcircuit. The subcircuit is defined by the .SUBCKT statement. The number of nodes in the subcircuit call (\mathbf{X} statement) must be the same as in the subcircuit declaration (.SUBCKT).

Z - MESFET	SPICE3 only
NMF PMF	
General forms	Restrictions
Zname Dnode Gnode Snode Model [Rarea] [OFF] [IC=Vds, Vgs]	SPICE3
Examples	
Z25 30 ZPMOD OFF	SPICE3
Z7 632 ZNMO IC= 5.0, 1.0	SPICE3

A MESFET is described by a statement starting with name of the MESFET device Zname. This name must start with the letter Z. Node numbers Dnode, Gnode, and Snode for drain, gate, and source follow the name. Next, the model name Model is listed. Model parameters are specified in the .MODEL statement. The keywords NMF and PMW are used there for n channel and p-channel respectively. Rarea is the relative area factor. If Rarea is not specified, 1 is assumed. An optional parameter $\mathbf{I C}=V d$ is used together with a UIC in transient analysis. The keyword OFF indicates an optional starting condition for dc analysis.

1. MESFET models

.MODEL Model_name NMF [Model parameters] .MODEL Model_name PMF [Model parameters]

2. Model parameters

Name	Parameter	Units	Default	Typical	Rarea
VTO	Pinch-off voltage	V	-2.0	-2.0	
BETA	Transconductance parameter	A / V	$1.0 \mathrm{e}-4$	$1.0 \mathrm{e}-3$	$*$
B	Doping tail extending parameter	$1 / \mathrm{V}$	0.3	0.3	$*$
ALPHA	Saturation voltage parameter	$1 / \mathrm{V}$	2	2	$*$
LAMBDA	Channel-length modulation parameter	$1 / \mathrm{V}$	0	$1.0 \mathrm{e}-4$	
RD	Drain ohmic resistance	Ω	0	100	$*$
RS	Source ohmic resistance	Ω	0	100	$*$
CGS	Zero-bias G-S junction capacitance	F	0	5 pF	$*$
CGD	Zero-bias $G-D$ junction capacitance	F	0	5 pF	$*$
PB	Gate junction potential	V	1	0.6	
KF	Flicker noise coefficient	-	0	-	
AF	Flicker noise exponent	-	1	-	
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	-	

Asterisks in the last column indicates that this parameter in all equations is multiplied by Rarea parameter specified in the \mathbf{Z} device line.

B - Nonlinear Dependent Source 185
B - GaAs FET 187

1. GaAs FET model 187
2. Model parameters 187

C - Capacitor 190

1. Model parameters 191

D - Diode 192

1. Diode model 192
2. Model parameters 192

E-Voltage-Controlled Voltage Source 194

1. Function used in PSPICE 195

F-Current-Controlled Current Source 196
G - Voltage-Controlled Current Source 197
H - Current-Controlled Voltage Source 198
I - Independent Current Source 199

1. Pulse waveforms 200
2. Sine waves 201
3. Exponential waveforms 202
4. Piecewise linear waveforms 203
5. FM waveforms 204

J - JFET 205

1. JFET models 205
2. Model parameters 206

K - Mutual Coupling 207

1. Core model 208
2. Model parameters 208

L - Inductor 209
M - MOS Transistor 210

1. MOS transistor models 211
2. Parameters of MOS transistor models 211

O - Lossy Transmission Lines (LTRA) 216

1. LTRA model 216
2. Model parameters 216

Q - Bipolar Transistor 218

1. Bipolar transistor models 218
2. Parameters of bipolar transistor model (modified Gummel-Poon model) 218
R - Resistor 222
3. Resistor model 223
4. Model parameters 223

S - Voltage Controlled Switch 223

1. SW model 224
2. SW model parameters 224
3. VSWITCH model 224
4. VSWITCH model parameters 224

T-Transmission Lines 225

1. TRN model 226
2. 226
3. Model parameters 226

U - Uniform Distributed RC Lines (URC) 227

1. URC model 227
2. 227
3. Model parameters 227

V - Independent Voltage Source 228

1. Pulse waveforms 229
2. 229
3. Sine waves 230
4. 230
5. Exponential waveforms 231
6. 231
7. Piecewise linear waveforms 232
8. 232
9. FM waveforms 233
10. 233

W - Current-Controlled Switch 234

1. CSW model 234
2. 234
3. Model parameters 234

X - Subcircuit Calls 236
Z - MESFET 236

1. MESFET models 237
2. Model parameters 237
bipolar transistor, 35
capacitor, 7
CSW model, 51
current-controlled current source, 13
current-controlled switch, 51
current-controlled voltage source, 15
diode, 9
EXP, 19
exponential waveforms, 19, 48
FM waveforms, 21, 50
functions used in PSPICE, 12

GaAs FET, 4
Gummel-Poon model, 35
independent current source, 16
independent voltage source, 45
inductor, 26
ISWITCH keyword, 52

JFET, 22
lossy transmission lines, 33
LTRA, 33

MESFET, 53
MOS transistor, 27
mutual coupling, 24
nonlinear dependent source, 2
piecewise linear waveforms, 20, 49
PULSE, 17
pulse waveforms, 17, 46
PWL, 20
resistor, 39

SIN, 18
sine waves, 18,47
subcircuit calls, 53
SW model, 41
transmission lines, 42
TRN model, 43
uniform distributed RC lines, 44
URC, 44
URC model, 44
voltage controlled switch, 40
voltage-controlled current source, 14
voltage-controlled voltage source, 11
VSWITCH model, 41

