CHAPTER 5 Circuit Elements

Α	Heterostructure field-effect transistors (HFETs)	SPICE3
B	Non-linear dependent sources	SPICE3
B	GaAs field-effect transistor	PSPICE
С	Capacitors	
D	Diodes	
E	Linear voltage-controlled voltage sources	
F	Linear current-controlled current sources	
G	Linear voltage-controlled current sources	
Н	Linear current-controlled voltage sources	
Ι	Independent current sources	
J	Junction field-effect transistors (JFETs)	
K	Coupled inductors (transformers)	
L	Inductors	
Μ	Metal oxide semiconductor field-effect transistors (MOSFETs)	
Ν	Heterojunction bipolar transistors (HBTs)	SPICE3
0	Lossy transmission lines (LTRA)	SPICE3
Q	Bipolar junction transistors (BJTs)	
R	Resistors	
S	Voltage-controlled switches	
Т	Lossless transmission lines	
U	Uniform distributed <i>RC</i> lines (URC)	SPICE3
U	Digital devices	PSPICE
V	Independent voltage sources	
W	Current-controlled switches	
X	Subcircuit call	
Z	GaAs metal semiconductor field-effect transistors (MESFETs)	SPICE3

Chapter 5 Circuit Elements

A circuit's topology is described by listing all circuit elements and specifying the nodes to which they are connected. Each statement describes one circuit element. Statements always start with the element name. The node numbers are then listed, and the element value or model name follows. Optional parameters may also follow the listed nodes. The name of an element always starts with a specific letter which indicates the type of element. Table 5.1 shows the list of elements and their code letters. Subsequent letters are reserved for user-defined element names. In element description and in examples SPICE keywords and letters are written using **bold** characters. Names that can be chosen by the user start with capital letters and *italic* characters are used.

For example, a capacitor name must begin with the letter **C** and can have up to eight characters (letters or digits): **C**2, **C**coupl, **C**27, and **CBLOCK**. The original SPICE2 version, which was written in Fortran, requires the use of capital letters. Most current SPICE programs allow both small and capital letters. In most SPICE versions, nodes numbers must be nonnegative integers but need not be numbered sequentially. In a newer SPICE programs, node can also have names described by strings of letters and digits. The number zero is always reserved for ground and must be used that way. Each node in the circuit must have a dc path to ground. Every node must have at least two connections, except for transmission line nodes (to permit unterminated transmission lines) and MOSFET substrate nodes (which actually have two internal connections).

The nonlinear source must begin with the letter **B**. *Pnode* and *Nnode* are the positive and negative nodes, respectively. The values of the **V** and **I** parameters determine the voltages and currents across and through the device, respectively. There is no distinction between current-controlled and voltage-controlled sources for the **B** element. If **I** = is given, then the device is a current source. If **V**= is given, the device is a voltage source. The small-signal ac behavior of the **B** source is a linear dependent source with a gain constant equal to the derivative (or derivatives) of the source at the dc operating point.

Expression may be any function of voltages and currents through voltage sources in the system. The source output, determined by the V= or I= option, can be either a voltage or a current. Function defined in SPICE3 program are shown in Table 5.1.

Table 5.1	Functions defined in SPICE3	
Function	Description	Units
abs(x)	absolute value	
acos(x)	arccosine	result in radians
acosh(x)	inverse hyperbolic cosine	-
asin(x)	arcsine	result in radians
asinh(x)	inverse hyperbolic sine	-
atan(x)	arctan	result in radians
atanh(x)	inverse hyperbolic tangent	-
$\cos(x)$	cosine	x in radians
$\cosh(x)$	hyperbolic cosine	-
exp(x)	exponential function	-
$\ln(x)$	logarithm with base <i>e</i>	-
$\log(x)$	logarithm with base 10	-
sin(x)	sine	x in radians
sinh(x)	hyperbolic sine	-
sqrt(x)	square root	-
tan (<i>x</i>)	tangent	x in radians
$\mathbf{u}(x)$	$\begin{bmatrix} 1 & x > 0 \end{bmatrix}$	-
	$u(x) = \begin{cases} 1 & x > 0\\ 0 & x < 0 \end{cases}$	
uramp (<i>x</i>)	$u(x) = \begin{cases} x & x > 0\\ 0 & x < 0 \end{cases}$	
	$\int_{-\infty}^{\infty} u(x) = \left[0 x < 0 \right]$	

Table 5.1 Functions defined in SPICE3

The following operations are defined: + - * / ^ unary -

If the argument of **log**, **ln**, or **sqrt** becomes less than zero, the absolute value of the argument is used. If a divisor becomes zero or the argument of **log** or **ln** becomes zero, an error will result. Other problems may occur when the argument for a function in a partial derivative enters a region where that function is undefined.

To get time into an expression, you can integrate the current from a constant current source with a capacitor and use the resulting voltage to represent time. Remember to set the initial voltage across the capacitor and use **UIC** in the **.TRAN** statement.

General forms	Restrictions
Bname Dnode Gnode Snode Model [Rarea]	PSPICE
Examples	
B 8 2 3 5 BMOD	PSPICE
B 3 1 2 4 BMODEL 0.5	PSPICE

A GaAsFET is described by a statement that starts with the name of the GaAs FET device **B***name*. This name must start with the letter **B**. Node numbers *Dnode*, *Gnode*, and *Snode* for drain, gate, and source follows the name. Next, the model *Model* name is listed. Model parameters are specified in the **.MODEL** statement. *Rarea* is the relative area factor. If *Rarea* is not specified, 1 is assumed.

1. GaAs FET model

.MODEL Model_name GASFET [Model parameters]

2. Model parameters

In PSPICE, four different models are implemented: level 1 through level 4.

	Parameters for All Levels				
Name	Parameter	Units	Default	Typical	
LEVEL	Model index	-	1	2	
VTO	Pinch-off voltage	V	-2.5	-2.0	
ВЕТА	Transconductance coefficient	A/V ²	0.1	0.1	
LAMBDA	Channel-length modulation parameter	1/V	0	10^{3}	

PSPICE only

			-	
RD	Drain ohmic resistance	Ω	0	100
RS	Source ohmic resistance	Ω	0	100
RG	Gate ohmic resistance	Ω	0	10
IS	Gate p-n saturation current	А	10-14	10 ⁻¹⁴
Ν	Gate p-n emission coefficient	_	1	1.2
VBI	Gate p-n potential	V	1.0	0.9
CGS	Zero-bias G-S junction capacitance	F	0	5 pF
CGD	Zero-bias G-D junction capacitance	F	0	5 pF
CDS	Zero-bias D-S capacitance	F	0	1 pF
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	0.5
EG	Bandgap voltage	eV	1.1	1.4
XTI	IS temperature exponent	-	0	
VTOTC	VTO temperature coefficient	V/°C	0	
BETATCE	BETA exponential temperature coefficient	%/°C	0	
TRG1	RG temperature coefficient (linear)	1/°C	0	0.001
TRD1	RD temperature coefficient (linear)	1/°C	0	0.001
TRS1	RS temperature coefficient (linear)	1/°C	0	0.001
KF	Flicker noise coefficient	-	0	-
AF	Flicker noise exponent	-	1	-

Parameters for Level 1					
Name	Parameter	Units	Default	Typical	
ALPHA	Saturation voltage parameter	1/V	2.0	2.0	
TAU	Conduction current delay time	S	0		
М	Gate pn grading coefficient	-	0.5	0.5	

	Parameters for Level 2					
Name	Parameter	Units	Default	Typical		
ALPHA	Saturation voltage parameter	1/V	2.0	2.0		
В	Doping tail extending parameter	1/V	0.3	0.3		
TAU	Conduction current delay time	S	0			
М	Gate p-n grading coefficient	-	0.5	0.5		
VDELTA	Capacitance transition voltage	V	0.2	0.2		
VMAX	Capacitance limiting voltage	V	0.5	0.5		

	Parameters for Level3			
Name	Parameter	Units	Default	Typical
ALPHA	Saturation voltage parameter	1/V	2.0	2.0
GAMMA	Static feedback parameter	-	0	
DELTA	Output feedback parameter	1/AV	0	
Q	Power-law parameter	-	2	2
TAU	Conduction current delay time	S	0	
М	Gate pn grading coefficient	-	0.5	0.5
VDELTA	Capacitance transition voltage	V	0.2	0.2
VMAX	Capacitance limiting voltage	V	0.5	0.5

	Parameters for Level 4					
Name	Parameter	Units	Default	Typical		
ACGAM	Capacitance modulation	-	0			
DELTA	Output feedback parameter	1/AV	0			
Q	Power-law parameter	-	2	2		
HFGAM	High-frequency V_{GD} feedback parameter	-	0			
HFG1	HFGAM modulation by V_{SG}	1/V	0			
HFG2	HFGAM modulation by V_{DG}	1/V	0			
HFETA	High-frequency V_{GS} feedback parameter	-	0			
HFE1	HFETA modulation by V_{GD}	1/V	0			

HFE2	HFETA modulation by V_{GS}	1/V	0	
LFGAM	Low-frequency feedback parameter	-	0	
LFG1	LFGAM modulation by V_{SG}	1/V	0	
LFG2	LFGAM modulation by V_{DG}	1/V	0	
MXI	Saturation knee-potential modulation	-	0	
MVST	Subthreshold modulation	1/V	0	
Р	Linear-region power law exponent	-	2	2
TAUD	Relaxation time for thermal reduction	s	0	
TAUG	Relaxation time for GAM feedback	s	0	
VBD	Gate junction breakdown potential	V	1	5
VST	Subthreshold potential	V	0	0
XC	Capacitance pinch-off reduction factor	-	0	
XI	Saturation knee potential factor	-	1000	
Z	Knee transition parameter	-	0.5	
VMAX	Capacitance limiting voltage	V	0.5	0.5

C - Capacitor

General forms	Restriction
	S
Cname Pnode Nnode Value [IC=Init_cond]	
Cname Pnode Nnode POLY c0 c1 c2 [IC=Init_cond]	SPICE2
Cname Pnode Nnode [Value] [Model] [L=Length] [W=Width] [IC=Init_cond]	SPICE3
Cname Pnode Nnode [Model] Value [IC=Init_cond]	PSPICE
Examples	
CBL 3 0 10uF	
C3 3 5 100nF IC=1V	
CCOUP 7 12 47nF	
C 12 4 5 CMODEL L =10u W =2u	SPICE3

This statement defines a capacitor with capacitance specified by *Value* (in farads) where *Pnode* and *Nnode* are the positive and negative nodes. An optional statement IC=Init_cond

specifies the initial (time-zero) voltage (in volts) on the capacitance for transient analysis. This initial condition takes effect only when the **UIC** option is specified in the **.TRAN** statement.

A nonlinear capacitor can be defined using the **POLY** statement where c0 c1 c2 ... are the coefficients of a polynomial describing the element value. The capacitance is expressed as a function of the voltage across the capacitor and is computed as

$$Value = c0 + c1V + c2V^{2} + ...$$

where V is the voltage across the capacitor. Although a nonlinear capacitor with keyword **POLY** was implemented in the original SPICE2 very few SPICE versions have this option implemented.

In SPICE3 and newer versions of SPICE the semiconductor capacitances can be declared. In this case the capacitance model is has to be specified in the **.MODEL** line:

.MODEL Model C [model_papramters] ...

Name	Parameter	Units	Default
CJ	Junction bottom capacitance	F/m ²	-
CJSW	Junction sidewall capacitance	F/m ²	-
DEFW	Default device width	m	1e-6
NARROW	Narrowing due to side etching	m	0.0

1. Model parameters

This more general model for the capacitor gives you the possibility of modeling capacitance values based on geometric and process information. If *Value* is given then information on geometry and process will be ignored. If *Model* is specified, the capacitance value is calculated based on information on process and geometry using the following formula:

$$Value = CJ (Length - NARROW) (Width - NARROW) + 2 CJSW (Length + Width - 2 NARROW)$$
(C-1)

If *Value* is not given, then *Model* and *Length* must be specified. If *Width* is not given, then the model default width **DEFW** will be used.

D - Diode

General forms	Restrictions
D name Pnode Nnode Model [Rarea] [OFF] [IC =Vd]	
D name Pnode Nnode Model [Rarea]	PSPICE
D name Pnode Nnode Modell [Rarea] [OFF] [IC =Vd] [TEMP =T]	SPICE3
Examples	
D REC 3 5 DMOD 0.2	
D 1 7 12 SWITCH	
DBRIDGE 5 11 DIODEM 3	
DCLMP 9 12 DMOD2 2.0 IC=0.4V	
D 3 3 4 DMOD TEMP =25	SPICE3

D*name* is the device name, and for the diode it must start with the letter **D**. *Pnode* and *Nnode* are the anode and cathode nodes, respectively. *Model* is the model name, and *Rarea* is the relative area factor. If *Rarea* is not specified, 1 is assumed. An optional parameter IC=Vd is used together with a **UIC** in a transient analysis. The keyword **OFF** indicates an optional starting condition for the dc analysis.

In SPICE3, the optional **TEMP** value is the temperature at which this device is to operate. It overrides the temperature specified in the **.OPTION** statement.

1. Diode model

.MODEL Model_name D [Model parameters]

2. Model parameters

Name	Parameter	Units	Default	Typical
IS	Saturation current for <i>Rarea</i> = 1	Α	10^{-14}	10-14
RS	RS Ohmic series resistance for <i>Rarea</i> = 1		0	3
Ν	N Emission coefficient		1	1
TT Transit time		S	0	10-9
CJO	Zero-bias junction capacitance for <i>Rarea</i> = 1	F	0	3.10-12
VJ	Junction potential	V	1	0.8
Μ	Grading coefficient	-	0.5	0.5

TO	P		1.1.1	1.1.1
EG	Energy gap	eV	1.11	1.11
XTI	Saturation current temperature exponent	-	3.0	3.0
KF	Flicker noise coefficient	-	0	-
AF	Flicker noise exponent	-	1	-
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	-
BV	Reverse breakdown voltage	V	8	80
IBV	Current at breakdown voltage	Α	10-3	$2 \cdot 10^{-3}$
TNOM	Temperature at which parameters were measured	°C	27	27
IVE	PSPICE extensions	•		0.1
IKF	Corner for high injection current roll-off for <i>Rarea</i> = 1	Α	8	0.1
TIKF IKF temperature coefficient (linear)		1/°C	0	0
ISR			0	10-8
NR	Recombination emission coefficient	-	2	2
NBV	Reverse breakdown ideality factor	-	1	1
IBVL	Low-level reverse breakdown "knee" current for <i>Rarea</i> = 1	А	0	0
NBVL	Low-level reverse breakdown ideality factor	-	1	10-8
TBV1	BV temperature coefficient (linear)	1/°C	0	0.003
TBV2	BV temperature coefficient (quadratic)	$1/^{\circ}C^{2}$	0	0
TRS1	TRS1 RS temperature coefficient (linear)		0	0.002
TRS2	RS temperature coefficient (quadratic)	$1/^{\circ}C^{2}$	0	0

Examples:

*Diode small power .MODEL 1N3879 D(IS=1.6e-18 BV=50 IBV=10u M=0.27 CJO=100p RS=9m TT=0.3u)

*Switching diode .MODEL 1N4148 D(IS=0.1p RS=16 CJO=2p TT=12n BV=100 IBV=0.1p)

*Rectifier diode with 400 V breakdown voltage and 25 A .MODEL 1N3494 D(IS=5E-14 BV=400 IBV=0.001 M=0.84 CJO=1.5NF RS=3m TT=8u)

*Germanium diode .MODEL 1N5817 D(N=1.2 IS=20U RS=.08 EG=.69 XTI=2 CJO=200p BV=25 IBV=.01m + M=.523 VJ=2)

* Zener diode, 6.8 V .MODEL 1N754 D(IS=1E-15 RS=.25 CJO=150p M=.55 VJ=.75 ISR=2n BV=6.8 IBV=20m)

* Variable-capacitance diode .MODEL MV2201 D(IS=1p CJO=15p M=.4261 VJ=.75 FC=.5 BV=25 IBv=10u)

E12 2 0 TABLE {V(3,8)} = (0,0) (25,1)

E3 8 0 LAPLACE {V(7)} = {1/(1+0.1*s)}

ELP 6 0 CHEBYSHEV $\{V(7)\}$ = LP 1.6k 2.5K 0.5dB 60dB

ELP 7 0 FREQ {V(8)} = (0,0,0) (1kHz,0,0) (1.5kHz,-45,0) DELAY=1ms

Pinp 0	Pnode
	$ \begin{array}{c} & \\ & + \\ - \end{array} Gain \left[V(Pinp) - V(Ninp) \right] $
Ninp o	Nnode

General forms	Restrictions
Ename Pnode Nnode Pinp Ninp Gain	
Ename Pnode Nnode POLY(Dimensions) Pinp Ninp Coef	PSPICE
E name Pnode Nnode VALUE = { <i>Expression</i> }	PSPICE
E name Pnode Nnode TABLE { <i>Expression</i> } = (<i>Input, Output</i>)	PSPICE
E name Pnode Nnode LAPLACE { <i>Expression</i> } = { <i>Transf_expression</i> }	PSPICE
E name Pnode Nnode CHEBYSHEV { <i>Expression</i> } ={ LB HP BP BR }	PSPICE
+ Freq1 Freq2 Atten1 Atten2	
E name Pnode Nnode FREQ { <i>Expression</i> } = [[MAG DB][DEG RAD] R_I]	PSPICE
+ (Freq Magnitude Phase) [DELAY = Delay]	
Examples	
E3 4 3 9 7 2.0	
E BUFF 3 7 4 6 100	
EAMP 4 6 POLY(1) 5 8 0 10	PSPICE
ENL 10 11 POLY(2) 7 0 8 3 0.0 7.5 0.1 2m	PSPICE
E 13 5 0 VALUE = $\{12*SQRT(V(5,2))\}$	PSPICE
E3 4 5 TABLE {V(3) - V(1)}= (-2,4.2) (0,0) (3,5.6) (5,6)	PSPICE

The first of the general forms applies for linear sources, and this form is used in SPICE2 and SPICE3. Other forms are PSPICE extensions. *Pnode* is the positive node, and *Nnode* is the negative node. *Pinp* and *Ninp* are the positive and negative controlling nodes, respectively. *Gain* is the voltage gain. **POLY**(*Dimensions*) specifies the number of dimensions of the polynomial. The number of pairs of controlling nodes must be equal to the number of dimensions. A particular node may appear more than once, and the output and controlling nodes need not be different. The *Coef* parameter specifies coefficients of the polynomial.

PSPICE

PSPICE

PSPICE PSPICE

The VALUE, TABLE, LAPLACE, FREQ, and CHEBYSHEV forms are part of the analog behavioral modeling feature of PSPICE. The TABLE form has a maximum size of 2048 input/output value pairs. If a DELAY value is specified, the simulator will modify the phases in the FREQ table to incorporate the specified delay value. This is useful for tables which the simulator identifies as being noncausal. When this occurs, the simulator provides a delay value necessary to make the table causal. The new syntax allows this value to be specified in subsequent simulation runs, without requiring the user to modify the table.

1. Function used in PSPICE

The functions can be used in the PSPICE expressions are listed in Table 5.2.

Function	Description	Comments
ABS(x)		
ACOS(x)	arccosine	$-1.0 \le x \le 1.0$
ARCTAN (<i>x</i>)	arctangent	result in radians
ASIN(x)	arcsine	result in radians
ATAN(x)	arctangent	result in radians
ATAN2(y, x)	$\tan^{-1}(y/x)$	result in radians
COS(x)	$\cos(x)$	x in radians
$\mathbf{COSH}(x)$	hyperbolic cosine	
$\mathbf{DDT}(x)$	time derivative of <i>x</i>	only for transient analysis
$\mathbf{EXP}(x)$	e ^x	
$\mathbf{IF}(t, x, y)$	x if t = TRUE $y if t = FALSE$	<i>t</i> is a Boolean expression; <i>x</i> and <i>y</i> are either numerical values or expressions
$\mathbf{IMG}(x)$	imaginary part of <i>x</i>	returns 0 for real numbers
LIM(x, min, max)	<i>min</i> if <i>x</i> < <i>min</i> <i>max</i> if <i>x</i> > <i>max</i> <i>x</i> otherwise	
LOG(x)	logarithm with base <i>e</i>	
LOG10 (<i>x</i>)	logarithm with base 10	
$\mathbf{M}(x)$	magnitude of x	the same as $ABS(x)$
$\mathbf{MAX}(x, y)$	maximum of x and y	
MIN(x, y)	minimum of x and y	
$\mathbf{P}(x)$	phase of <i>x</i>	returns 0 for real numbers
$\mathbf{PWR}(x, y)$	$ x ^{\vee}$	can be replaced by $\{x^{**}y\}$
$\mathbf{PWRS}(x, y)$	$/x/^{p}$ if x>0 $-/x/^{p}$ if x<0	
$\mathbf{R}(x)$	real part of <i>x</i>	
$\mathbf{SGN}(x)$	1 if x>0 0 if x=0 -1 if x<0	signum function
SIN(x)	sin(x)	x in radians
$\mathbf{SINH}(x)$	hyperbolic sine	
$\mathbf{SQRT}(x)$	square root	
$\mathbf{STD}(x)$	time integral of <i>x</i>	only for transient analysis
$\mathbf{STP}(x)$	$\begin{array}{c} 1 \text{ if } x > 0 \\ 0 \text{ if } x \le 0 \end{array}$	step function
TABLE $(x, x_{i}, x_{j},, x_{n}, y_{n})$	piecewise characteristics	
TAN(x)	tangent	x in radians
TANH(x)	hyperbolic tangent	

 Table 5.2
 Functions used in PSPICE

Chebyshev filters have two attenuation values, given in dB, which specify the pass-band ripple and the stop-band attenuation. They may be given in either order. Low-pass (LP) and high pass (HP) have two cutoff frequencies, specifying the pass-band and stop-band edges, while band- pass (BP) and band-reject (BR) filters must have four.

F - Current-Controlled Current Source

FSEN 7 8 VSENSE 180 F5 5 9 VINP 50 F7 4 8 VINP 100 FA 4 7 POLY(1) VIN 0 1k FNL 5 8 POLY(2) VCTRL1 VCTRL2 0.0 7.3 0.1 0.01

The first of the general form applies to the linear case. *Vname* is the name of a voltage source through which the controlling current flows. *Gain* is the current gain, *Pnode* is the positive node, and *Nnode* is the negative node. Current is directed from the positive node, through the source, to the negative node. The current through the controlling voltage source determines the output current. The direction of positive controlling current is from the positive node, through the source, to the negative node of *Vname*. The controlling source must be an independent voltage source (**V** device).

PSPICE

PSPICE

The second form is a PSPICE extension for the nonlinear case. **POLY**(*dimensions*) specifies the number of dimensions of the polynomial. The number of controlling voltage sources must be equal to the number of dimensions.

G - Voltage-Controlled Current Source

General forms	Restrictions
Gname Pnode Nnode Pinp Ninp Gm	
Gname Pnode Nnode POLY(Dimensions) Pinp Ninp Coef	PSPICE
G name Pnode Nnode VALUE = { <i>Expression</i> }	PSPICE
G name Pnode Nnode TABLE {Expression} =(Input, Output)	PSPICE
G name Pnode Nnode LAPLACE { <i>Expression</i> } ={ <i>Transf_expression</i> }	PSPICE
Gname Pnode Nnode CHEBYSHEV{Expression} = {LB HP BP BR}	PSPICE
+ Freq1 Freq2 Atten1 Atten2	
Gname Pnode Nnode FREQ {Expression} = [[MAG DB][DEG RAD] R_I]	PSPICE
+ (Freq Magnitude Phase) [DELAY = Delay]	
Examples	
G 1 2 3 11 13 10.0	
G BUFF 1 2 10 11 1.0	
GAMP 4 8 POLY(1) 3 7 0.0 100.0	PSPICE
GNL 3 8 POLY(2) 2 9 1 0 0.0 7.7 0.1 0.001	PSPICE
$GSQRT 5 0 VALUE = \{5V*SQRT(V(3,2))\}$	PSPICE
G T2 3 0 TABLE { $V(4,8)$ } = (0,0) (50,1)	PSPICE
GRC 4 0 LAPLACE $\{V(5)\} = \{1/(1+.01*s)\}$	PSPICE
GLP 7 0 CHEBYSHEV {V(4)} = LP 1.6k 2.5k .2dB 40dB	PSPICE
GLP 6 0 FREQ {V(4)} = (0,0,0) (1kHz,0,0) (3kHz,-45,0) DELAY=2ms	PSPICE
$GPSK 4 8 VALUE = \{2mA*sin(6.28*10kHz*TIME+V(8))\}$	PSPICE
$GT 49 VALUE = \{20E-6*PWR(V(1)*V(2),1.5)\}$	PSPICE
GLOSSY 3 6 LAPLACE $\{V(3)\} = \{exp(-sqrt(C*s*(R+L*s)))\}$	PSPICE

The first form applies for linear sources and is used in SPICE2 and SPICE3. Other forms are PSPICE extensions. *Pnode* is the positive node, and *Nnode* is the negative node. Positive current goes from the positive node through the source to the negative node. *Pinp* and *Ninp* are the positive and negative controlling nodes, respectively. *Gm* is the transconductance in A/V. **POLY**(*Dimensions*) specifies the number of dimensions of the polynomial. The number of pairs of controlling nodes must be equal to the number of dimensions. A particular node may appear more than once, and the output and controlling nodes need not be different. The *Coef* parameter specifies coefficients of the polynomial. Valid expressions for PSPICE are described with **E** source.

The VALUE, TABLE, LAPLACE, FREQ, and CHEBYSHEV forms are part of the analog behavioral modeling feature of PSPICE. The TABLE form has a maximum size of 2048 input/output value pairs. If a DELAY value is specified, the simulator will modify the phases in the FREQ table to incorporate the specified delay value. This is useful for tables which the simulator identifies as being noncausal. When this occurs, the simulator provides a delay value

necessary to make the table causal. The new syntax allows this value to be specified in subsequent simulation runs, without requiring the user to modify the table.

Chebyshev filters have two attenuation values, given in dB, which specify the pass band ripple and the stop-band attenuation. They may be given in either order. Low-pass (LP) and high-pass (HP) have two cutoff frequencies, specifying the pass-band and stop-band edges, while band- pass (BP) and band-reject (BR) filters must have four.

H - Current-Controlled Voltage Source

General forms	Restrictions
Hname Pnode Nnode Vname Rm	
Hname Pnode Nnode POLY(dimensions) Vname Coef	PSPICE
Examples	
HSEN 3 7 V12 50.0	
HAMP 3 9 POLY(1) VINP 0.0 100.0	PSPICE
HNL 4 8 POLY(2) VCTRL1 VCTRL2 0.0 5.8 0.1 0.02	PSPICE

The first general form applies to the linear source. *Vname* is the name of a voltage source through which the controlling current flows, Rm is the transresistance, *Pnode* is the positive node, and *Nnode* is the negative node of the output voltage source. The current through the controlling voltage source determines the output current. The direction of positive controlling current is from the positive node, through the source, to the negative node of *Vname*. The controlling source must be an independent voltage source (**V** device).

The second form is the PSPICE extension for the nonlinear case. **POLY**(*dimensions*) specifies the number of dimensions of the polynomial. The number of controlling voltage sources must be equal to the number of dimensions.

I - Independent Current Source

General forms	Restrictions
Iname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]] [Signal_shape]	
Iname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]]	PSPICE
+ [STIMULUS = Name] [Signal_shape]	
Iname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]] [Signal_shape]	SPICE3
+ [DISTOF1 F1mag [F1phase]] [DISTOF2 F2mag [F2phase]]	
Examples	
ISRC 4 8 AC 0.333 45.0	
INP 5 9 DC 1V AC 1mV 90	
IPULSE 3 0 PULSE (0 1 mA 5ns 1ns 1ns 100ns 200ns)	
I4 4 7 DC 5V AC 1mV SIN(0.01 0.001 1MEGHz)	
I9 6 9 AC 0.1 60 SFFM (0 1 100kHz 0.5 1kHz)	
IIN3 3 0 AC 1M DISTOF1 DISTOF2 0.001	SPICE3

A current source of positive value will force current out of the *Pnode* node, through the source, and into the *Nnode* node. *Value* is the dc and transient analysis value of the source. If the source value is time-invariant (e.g., a power supply), then the value may optionally be preceded by the letters **DC**.

Mag is the ac magnitude and *Phase* is the ac phase. The source is set to this value in the ac analysis. If Mag is omitted following the keyword **AC**, a value of unity is assumed. If *Phase* is omitted, a value of zero is assumed. If parameters other than source values are omitted or set to zero, the default values shown will be assumed. If a source is assigned a time-dependent value, the time-zero value is used for dc analysis.

The keyword STIMULUS is used in newer versions of PSPICE to call up custom signal shapes created with the stimulus editor. By specifying *Signal_shape*, a time-dependent waveform for transient analysis can be assigned. If a source is assigned a time-dependent value, the time-zero value is used for dc analysis. There are five independent source functions: pulse, exponential, sinusoidal, piecewise linear, and single-frequency FM. These five signal shapes are described in more detail in what follows.

1. Pulse waveforms

Form **PULSE** (I1 I2 TD TR TF PW PER)

Examples: I5 5 0 **PULSE**(-1mA 1mA 5ns 2ns 2ns 50ns 100ns) I8 7 0 **PULSE**(0 5mA 5us 1us 1us 20us 50us)

Parameters	Meaning	Default	Units
I1	Initial value		А
I2	Pulsed value		А
TD	Delay time	0.0	S
TR	Rise time	Tstep	S
TF	Fall time	Tstep	S
PW	Pulse width	Tstop	S
PER	Period	Tstop	S

Parameters *Tstep* and *Tstop* are specified in the **.TRAN** statement.

2. Sine waves

Form **SIN**(IO IA FREQ TD DF PHASE)

Examples: I4 4 0 **SIN**(0 1mA 10kHz 10us 1k) I7 3 9 **SIN**(0 5mA 1kHz)

parameters	meaning	default	units	Restrictions
IO	Offset		А	
IA	Amplitude		Α	
FREQ	Frequency	1/Tstop	Hz	
TD	Delay	0.0	sec	
DF	Damping factor	0.0	1/sec	
PHASE	Phase	0.0	degre	PSPICE
			e	

The shape of the waveform is described by the following expressions: For time < **TD**:

$$IO + IA \sin\left[2\pi\left(\frac{PHASE}{360}\right)\right]$$
(I-2)

For time > **TD**:

$$IO + IA \exp\left[-\left(time - TD\right)THETA\right] \sin\left[2\pi\left(FREQ\left(time - TD\right) + \frac{PHASE}{360}\right)\right]$$
(I-3)

3. Exponential waveforms

Format **EXP**(I1 I2 TD1 TAU1 TD2 TAU2)

```
Examples: I5 5 0 EXP(-5mA 1mA 2ns 30ns 60ns 40ns)
I12 4 5 EXP( 5mA 5us 10ns 15ns 18ns)
```

Parameters	Meaning	Default	Units
I1	Initial value		Α
I2	Pulsed value		Α
TD1	Rise delay time	0.0	S
TAU1	Rise time constant	Tstep	s
TD2	Fall delay time	TD1+Tstep	S
TAU2	Fall time constant	Tstep	S

The shape of the waveform is described by the following equations:

For *time* < **TD1**:

$$i(time) = 0 \tag{I-4}$$

For **TD1** < *time* < **TD2**:

$$i(time) = \mathbf{I1} + (\mathbf{I2} - \mathbf{I1}) \left[1 - \exp\left(-\frac{time - \mathbf{TD1}}{\mathbf{TAU1}}\right) \right]$$
(I-5)

For *time* > **TD2**:

$$i(time) = \mathbf{I1} + (\mathbf{I2} - \mathbf{I1}) \left[1 - \exp\left(-\frac{time - \mathbf{TD1}}{\mathbf{TAU1}}\right) \right] + (\mathbf{I1} - \mathbf{I2}) \left[1 - \exp\left(-\frac{time - \mathbf{TD2}}{\mathbf{TAU2}}\right) \right]$$
(I-6)

4. Piecewise linear waveforms

Format: **PWL**(T1 I1 [Tn In] ...)

Example: ICLOCK 7 5 **PWL**(0 -7 10NS -7 11NS -3 17NS -3 18NS -7 50NS -7)

Parameters	Meaning	Default	Units
Tn	Time at corner	-	S
In	Current at corner	_	A

Each pair of values (**Tn**, **In**) specifies the value of the source **In** (in A) at *time*=**Tn**. The value of the source at intermediate values of time is determined by using linear interpolation of the input values.

5. FM waveforms

Form

SFFM (IO IA FC MDI FS)

Examples:

I7 6 0 **SFFM**(0 1mA 10kHz 0.5 1kHz) I3 3 4 **SFFM**(5mA 1mA 200kHz 0.7 5kHz)

Parameters	Meaning	Default	Units
ΙΟ	Offset	-	А
IA	Amplitude	-	А
FC	Carrier frequency	1/Tstop	Hz
MDI	Modulation index	0	
FS	Signal frequency	1/Tstop	Hz

The **SFFM** (single-frequency frequency-modulated) waveform is described by the following equation:

$$i(time) = \mathbf{IO} + \mathbf{IA} \, \sin\left[2\pi \, \mathbf{FC} \, time + \mathbf{MDI} \sin\left(2\pi \, \mathbf{FS} \, time\right)\right] \tag{I-7}$$

General forms	Restrictions
Jname Dnode Gnode Snode Model [Rarea] [OFF] [IC=Vds, Vgs]	SPICE2
Jname Dnode Gnode Snode Model [Rarea]	PSPICE
J name Dnode Gnode Snode Model [Rarea] [OFF] [IC =Vds, Vgs] + [TEMP =T]	SPICE3
Examples	
J4 3 5 9 JMOD	
J2 9 2 7 JM1 OFF	SPICE2/3

JFET is described by a statement that starts with the name of the JFET device Jname. This name must start with the letter J. Node numbers Dnode, Gnode, and Snode for drain, gate, and source follows the name. Next the model Model name is listed. Model parameters are specified in the **.MODEL** statement. Keywords **NJF** and **PJW** are used there for *n*-channel and *p*-channel, respectively. Rarea is the relative area factor. If Rarea is not specified, 1 is assumed. In SPICE2 and SPICE3, an optional parameter IC=Vd is used together with an UIC in a transient analysis. Keyword **OFF** indicates an optional starting condition for dc analysis. In SPICE3, different temperatures can be set for individual transistors using the keyword **TEMP**.

1. JFET models

.MODEL Model_name NJF [Model parameters] .MODEL Model_name PJF [Model parameters]

	_			
Name	Parameter	Units	Default	Typical
VTO	Threshold voltage	V	-2.0	-2.0
BETA	Transconductance parameter	A/V^2	10-4	10-4
LAMBDA	Channel-length modulation parameter	1/V	0	0
RD	Drain resistance	Ω	0	20
RS	Source resistance	Ω	0	20
CGS	Zero-bias G-S junction capacitance	F	0	5 pF
CGD	Zero-bias G-D junction capacitance	F	0	5 pF
PB	Gate junction potential	V	1	0.8
IS	Gate junction saturation current	Α	1.0^{-14}	1.0-15
KF	Flicker noise coefficient	-	0	
AF	Flicker noise exponent	-	1	1
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	0.5
TNOM	Parameter measurement temperature	°C	27	27
	PSPICE extensions			
Ν	Gate pn emission coefficient	-	1	1
ISR	Gate pn recombination current parameter	А	0	
NR	Emission coefficient for ISR	-	2	2
ALPHA	Ionization coefficient	1/V	0	
VK	Ionization "knee" voltage	V	0	
М	Grading p-n coefficient	-	0.5	0.5
VTOTC	VTO temperature coefficient	V/°C	0	
BETACE	BETA exponential temperature coefficient	%/°C	0	
XTI	IS temperature coefficient	-	3	3

2. Model parameters

Examples:

* JFET p-type, analog switch; 40 V 50 mA, low Ron resistance

.MODEL J175 PJF (VTO=-5 BETA=3.6m LAMBDA=7m RD=15 RS=15 IS=3.5f CGS=12P + CGD=16P KF=5E-16)

* JFET n-type, analog switch; 40V 50 mA, low Ron resistance

.MODEL 1N4393 NJF (VTO=-1.50 BETA=4m LAMBDA=.035 RD=14 RS=15 IS=2E-15 + CGS=7p CGD=9p KF=1.5E-16

* JFET n-type, low noise, very high frequency .MODEL 1N4416 NJF (VTO=-3.8 BETA=5.3m LAMBDA=.035 RD=35 RS=100 IS=5.E-15 + CGS=6p CGD=3p KF=3.246E-18)

*JFET n-type, general purpose 25 V, 10 mA .MODEL 1N5457 NJF (VTO=-3 BETA=1.5m LAMBDA=5.16m RD=40 RS=70 IS=5f +CGS=15p CGD=4p KF=3E-17)

*JFET n-type, low-noise audio amplifier 30 V, 10 mA .MODEL BC264B NJF VTO=-1.8 BETA=1.2m LAMBDA=18m RD= 0 RS= 0 + IS = 0.3f CGS= p CGD=2p PB=0.77

The mutual coupling statement describes a mutual inductive coupling between two inductors. *Lname1* and *Lname2* are the names of the two coupled inductors, and *Value* is the coupling coefficient K which must be greater than 0 and less than or equal to 1. Using the dot convention, place a dot on the first node of each inductor. The relation between the coupling coefficient K and the mutual inductance is given by:

$$M_{ij} = K_{\sqrt{L_i L_j}} \tag{K-1}$$

where L_i and L_j are the coupled pair of inductors, and M_{ij} is the mutual inductance between L_i and L_j .

A voltage induced in *ith* inductor L_i is given by:

$$v_i = L_i \frac{dI_i}{dt} + M_{ij} \frac{dI_j}{dt} + M_{ik} \frac{dI_k}{dt} + \cdots$$
(K-2)

Newer versions of PSPICE include a model for inductive and capacitive coupling between two transmission lines using **Lm** and **Cm** coupling parameters. In the case of mutual coupling between transmission lines (names start with the letter **T**), two parameters can be specified. The **Cm** parameter describes the capacitive coupling in F/m, and the **Lm** parameter describes inductive coupling in H/m. PSPICE allows for declaration of coupling between more than two inductors.

In PSPICE the **CORE** model can be used to model lossy transformers; see: D. C. Jiles and D. L. Atherton, "Theory of Ferromagnetic Hysteresis", *Journal of Magnetism and Magnetic Materials* **61**, 48 (1986).. The following **.MODEL** statement can accompany the mutual coupling declaration.

1. Core model

Name	Parameter	Units	Default
AREA	Mean magnetic cross section	cm ²	0.1
PATH	Mean magnetic path length	cm	1
GAP	Effective air-gap length	cm	0
PACK	Pack (stacking) factor		1
MS	Magnetization saturation	A/m	10+6
Α	Thermal energy parameter	A/m	10+3
С	Domain flexing parameter		0.2
K	Domain anisotropy parameter	A/m	500
ALPHA	Interdomain coupling parameter		10-3
GAMMA	Domain damping parameter	1/s	

2. Model parameters

General forms	Restrictions
Lname Pnode Nnode Value [IC=Init_cond]	
Lname Pnode Nnode POLY c0 c1 c2 [IC=Init_cond]	SPICE2
Examples	
L37915mH	
L5 4 6 3mH IC=10uA	
LS 1 9 50uH IC=2mA	

The inductor statement defines an inductor with inductance specified by *Value* (in H) where *Pnode* and *Nnode* are the positive and negative nodes. An optional statement **IC**=*Init_cond* specifies the initial (time-zero) current that flows from *Pnode*, through the inductor, to *Nnode*. This initial condition takes effect only when the **UIC** option is specified in the **.TRAN** statement.

In SPICE2, a nonlinear inductor can be defined using the **POLY** keyword where c0 c1 c2 ... are the coefficients of a polynomial describing the element value. The inductance is expressed as a function of the current through the inductor and is computed as

$$Value = c0 + c1I + c2I^{2} + ...$$
(L-1)

Although the nonlinear inductor was originally implemented in SPICE2 with the keyword **POLY**, very few newer SPICE versions have this option implemented.

M - MOS Transistor

NMOS PMOS	6
Gnode Dnode Gnode	e Snode ○Bnode Dnode
General forms	Restrictions
Mname Dnode Gnode Snode Bnode Model [L=Length] [W=Width] + [AD=Darea] [AS=Sarea] [PD=Dperi] [PS=Speri] [NRD=Dsq] + [NRS=Ssq] [OFF] [IC=Vds, Vgs, Vbs] Mname Dnode Gnode Snode Bnode Model [L=Length] [W=Width] + [AD=Darea] [AS=Sarea] [PD=Dperi] [PS=Speri] [NRD=Dsq] + [NRS=Ssq] [NRG=Gsq] [NRB=Bsq] [M=Value] Mname Dnode Gnode Snode Bnode Model [L=Length] [W=Width]	PSPICE SPICE3
+ [AD=Darea] [AS=Sarea] [PD=Dperi] [PS=Speri] [NRD=Dsq] + [NRS=Ssq] [OFF] [IC=Vds, Vgs, Vbs] [TEMP=T] Examples	
M1 3 7 9 0 PMOS L=5u W=20u M7 12 6 0 10 TYPEP M12 10 19 8 0 mosn w=5.6u 1=67. 3u M4 4 6 2 0 MODN L=3u W=15u AD=200p AS=200pP PD=30u PS=40u M7 8 7 3 0 TYPEN MA 4 7 8 8 PNOM L=2.5u W=16u	
$ \begin{array}{l} \textbf{MB 3 6 9 20 PNOM L=2.5u W=10u} \\ \textbf{MB 3 6 9 20 PNOM L=2.5u W=10u TEMP=55} \\ \textbf{M4 4 5 2 0 NMOD L=5u W=40u AD=150p AS=150p PD=40u} \\ \textbf{+ PS=40u NRD=15 NRS=25 NRG=12} \\ \end{array} $	SPICE3 PSPICE

M*name* is the device name, and in the case of the MOS transistor it must begin with the letter **M**. *Dnode*, *Gnode*, *Snode*, and *Bnode* are the drain, gate, source and bulk/substrate/well nodes, respectively. *Model* is the model name, and **L** and **W** are the channel length and width in meters. **AD** and **AS** are the drain and source diffusion areas in square meters. **PD** and **PS** are the perimeters of the drain and source lateral junctions in meters. **NRD** and **NRS** are the relative resistivities of the drain and source in number of squares. These parasitic resistances can be specified either by sheet resistance **RSH**, which is multiplied by **NRD** and **NRS**, or by **RD** and **RS** in the **.MODEL** definition. The calculation of resistance using the sheet resistance concept (resistance per square) is also explained in the resistor Section (Eq. R-1). Default values for **L**, **W**, **AD** and **AS** are **L** = 100 μ m, **W** = 100 μ m, **AD** = 0, and **AS** = 0. These default values can be changed with the **.OPTION** statement using **DEFL**, **DEFW**, **DEFAS**, and **DEFAD** keywords. Default values of **PD** and **PS** are 0.0, while default values of **NRD** and **NRS** are 1.0.

In SPICE2/3, the keyword **OFF** indicates an optional starting condition of the device for dc analysis. The optional initial value IC = Vds, Vgs, Vbs is used together with **UIC** in a transient

analysis. In the case of the SPICE3, the optional **TEMP** value is the temperature at which this device operates and it overrides the temperature specified in the **.OPTION** statement.

In PSPICE, in addition to source and drain resistances, the user may specify the gate and bulk resistances using **NRG** and **NRB** parameters. **M** is a device multiplier which simulates the effect of multiple transistors connected in parallel.

1. MOS transistor models

.MODEL Model_name NMOS [Model parameters] .MODEL Model_name PMOS [Model parameters]

A large number of MOS transistor models are used. These models are distinguished by the keyword LEVEL and a number. Some SPICE implementations (i.e. AIM-SPICE) have up to 20 different levels of MOS models. In this section three basic levels (1, 2, and 3), which are implemented in all SPICE versions, and the newer BSIM models, which are also becoming a standard, are described. Numbers in the brackets reefer to the reference list at the end of MOS section of Chapter 6.

LEVEL=2 LEVEL=3	Shichman-Hodges model [1] [8] Geometric-based analytical Meyer model [2] [8] Semi-empirical short channel Dang model [3] [8] BSIM1 (Berkeley Short Channel Igfet Model) [4] [9]	All SPICE implementations All SPICE implementations All SPICE implementations SPICE3 and new PSPICE
	BSIM2 Jeng model [5] [9] BSIM3 (version 1) [6] [9]	SPICE3 New PSPICE
	BSIM3 (version 2) [6] [9] MOS6 Sakurai-Newton model [7]	New PSPICE SPICE3

2.	Parameters of MOS transistor models	

Г

	Common for all Levels			
Name	Parameter description	Unit	Default	Typical
LEVEL	Model index	-	1	
L	Default channel length (PSPICE only)	m	DEFL	100µ
W	Default channel width (PSPICE only)	m	DEFL	100µ
RD	Drain ohmic resistance	Ω	0	5
RS	Source ohmic resistance	Ω	0	5
RG	Gate ohmic resistance (PSPICE only)	Ω	0	5
RB	Bulk/substrate ohmic resistance (PSPICE only)	Ω	0	5
CBD	Zero-bias bulk-drain junction capacitance	F	0	20 fF
CBS	Zero-bias bulk-source junction capacitance	F	0	20 fF

IS	Bulk junction saturation current	А	10-14	$3 \cdot 10^{-15}$
JS	Bulk junction saturation current per sq-meter of junction area	A/m ²	0	10 ⁻⁸
JSSW	Bulk junction saturation current per length of sidewall area (PSPICE only)	A/m	0	10 ⁻¹²
Ν	Bulk junction emission coefficient (PSPICE only)	-	1	1
PB	Bulk junction potential	V	0.8	0.85
PBSW	Bulk junction sidewall potential (PSPICE only)	V	PB	0.85
CGSO	Gate-source overlap capacitance per meter channel width	F/m	0	3.10-11
CGDO	Gate-drain overlap capacitance per meter channel width	F/m	0	3.10-11
CGBO	Gate-bulk overlap capacitance per meter channel length	F/m	0	3·10 ⁻¹⁰
RSH	Drain and source diffusion sheet resistance	$\Omega/$	0	10
CJ	Zero-bias bulk junction bottom capacitance per square meter of junction area	F/m ²	0	2·10 ⁻⁴
CJSW	Zero-bias bulk junction sidewall capacitance per length of sidewall	F/m	0	10-8
MJ	Bulk junction bottom grading coefficient	-	0.5	0.5
CJSW	Zero-bias bulk junction sidewall capacitance per meter of junction perimeter (PSPICE only)	F/m	0	10 ⁻⁹
MJSW	Bulk junction sidewall grading coefficient	-	0.50 (Le	evel 1)
	(PSPICE only)		0.33 (Lev	vel 2, 3)
ТТ	Bulk junction transit time (PSPICE only)	S	0	10-8
KF	Flicker noise coefficient	-	0	10 ⁻²⁶
AF	Flicker noise exponent	-	1.0	1.2
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	0.5
TNOM	Nominal temperature which overwrites the value specified in .OPTION statement (SPICE3 only)	K	300	300

	Level 1, 2, 3, and 6 (Sakurai-New	ton)		
Name	Parameter description	Unit	Default	Typical
VTO	Zero-bias threshold voltage	V	0	1.0
КР	Transconductance parameter	A/V ²	$2 \cdot 10^{-5}$	3.10-5
GAMMA	Bulk threshold parameter	$V^{0.5}$	0	0.35
PHI	Surface potential	V	0.6	0.65
LAMBDA	Channel-length modulation parameter (level 1 and level 2 only)	1/V	0	0.02
тох	Oxide thickness	m	10-7	10-7
NSUB	Substrate doping	cm ⁻³	0	5·10 ¹⁵
NSS	Surface state density	cm- ²	0	$2 \cdot 10^{10}$
NFS	Fast surface state density	cm- ²	0	10 ¹⁰
TPG	Type of gate material (+1 for opposite to substrate, -1 for same as substrate, and 0 for Al gate)	-	1	1
XJ	Metallurgical junction depth	m		1u
LD	Lateral diffusion	m	0	0.7u
WD	Lateral diffusion width (PSPICE only)	m	0	0.5u
UO	Surface mobility	cm ² /V-s	600	700
UCRIT	Critical field for mobility degradation (level 2 only)	V/cm	10 ⁴	10 ⁴
UEXP	Critical field exponent in mobility degradation (level 2 only)	-	0	0.1
UTRA	Transverse field coefficient (mobility) (deleted for level 2)	-	0	0.3
VMAX	Maximum drift velocity of carriers	m/s	0	$3 \cdot 10^4$
NEFF	Total channel charge (fixed and mobile) coefficient (level 2 only)	-	1.0	3.0
XQC	Thin-oxide capacitance model flag and a fraction of channel charge attributed to drain (0-0.5)	-	1	0.4
DELTA	Width effect on threshold voltage	-	0	1.0
THETA	Mobility modulation (level 3 only)	1/V	0	0.1
ETA	Static feedback (level 3 only)	-	0	1.0
KAPP	Saturation field factor (level 3 only)	-	0.2	0.5

Transistor parameters may often be specified in different ways. For example, the reverse current can be specified either with the **IS** parameter (in A) or with **JS** (in A/m²). The first choice is an absolute value, while the second choice is multiplied by **AD** and **AS** to give the reverse current at the drain and source junctions, respectively. The latter approach is preferred. The same is also true for the parameters **CBD**, **CBS**, and **CJ**. Parasitic resistances can be given with **RD** and **RS** (in Ω) or with **RSH** (in Ω /). **RSH** is multiplied by number of squares **NRD** and **NRS**.

Examples:

* NMOS transistor for 2um n-well MOSIS technology
.MODEL CMOSN NMOS LEVEL=2 PHI=0.7 TOX=40n XJ=0.2U TPG=1 VTO=0.8
+ DELTA=4.1 LD=0.3u KP=45u UO=550 UEXP=0.12 UCRIT=96k RSH=0.15 GAMMA=0.6
+ NSUB=7.3E+15 NFS=1.1E+11 VMAX=59k LAMBDA=0.03 CGDO=400p CGSO=400p
+ CGBO=350p CJ=0.1m MJ=0.6 CJSW=470p MJSW=0.3 PB=0.8
* PMOS transistor for 2um n-well MOSIS technology
.MODEL CMOSP PMOS LEVEL=2 PHI=0.7 TOX=40n XJ=0.2U TPG=-1 VTO=-0.9
+ DELTA=4.6 LD=0.35u KP=17u UO=205 UEXP=0.29 UCRIT=83k RSH=0.11 GAMMA=0.7
+ NSUB=9.5E+15 NFS=1.1E+11 VMAX=1MEG LAMBDA=0.046 CGDO=440p

+ CGSO=440p CGBO=390p CJ=0.3m MJ=0.6 CJSW=280p MJSW=0.4 PB=0.8

In the case of BSIM parameters for LEVEL=4, there are no default values, and all parameters must be specified. Also, some parameters, those marked with an asterisk "*" in the Table for Level 4, have channel length/width dependencies. For each of these parameters, two additional parameters should be specified. For example, if a parameter has the name **PNAM** then two additional parameters **LPNAM** and **WPNAM** should be specified. The actual parameter value is calculated using

 $\mathbf{PNAM} = \mathbf{PNAM} + \frac{\mathbf{LPNAM}}{\mathbf{L} - \mathbf{DL}} + \frac{\mathbf{WPNAM}}{\mathbf{W} - \mathbf{DW}}$

where \mathbf{L} and \mathbf{W} are the channel length and width specified in the device line. Level 4 parameters were designed for automatic parameter extraction, and all model parameters should be copied from the device extractor rather than entered manually.

	Level 4 - BSIM1			
Name	Parameter description	Unit	L/W	
тох	Gate oxide thickness	μm		
VFB	Flat band voltage	V	*	
PHI	Surface inversion potential	V	*	
K1	Body effect coefficient		*	
K2	Drain/source depletion charge sharing coefficient	-	*	

DL	Shortening of channel	μm	
DW	Narrowing of channel	μm	
NO	Zero-bias subthreshold slope coefficient	-	*
NB	Sensitivity of subthreshold slope to substrate bias	-	*
ND	Sensitivity of subthreshold slope to drain bias	-	*
VDD	Measurement bias range	V	
MUS	Mobility at zero substrate bias and at V_{DS} = VDD	$cm^2/V \cdot s$	
X2MS	Sensitivity of mobility to substrate bias at V_{DS} = VDD	$cm^2/V^2 \cdot s$	*
X3MS	Sensitivity of mobility to drain bias at V_{DS} = VDD	$cm^2/V^2 \cdot s$	*
MUZ	Zero-bias mobility	$cm^2/V \cdot s$	
X2MZ	Sensitivity of mobility to substrate bias at $V_{DS}=0$	$cm^2/V^2 \cdot s$	*
UO	Zero-bias transverse-field mobility degradation coefficient	1/V	*
X2U0	Sensitivity of transverse field mobility degradation effect to substrate bias	1/V ²	*
U1	Zero-bias velocity saturation coefficient	μm/V	*
X2U1	Sensitivity of velocity saturation effect to substrate bias	μ m/V ²	*
X3U1	Sensitivity of velocity saturation effect on drain bias at $V_{DS} = \mathbf{VDD}$	μ m/V ²	*
WDF	Source-drain junction default width	m	
DELL	Source-drain junction length reduction	m	
ТЕМР	Temperature at which parameters are measured	°C	
ЕТА	Zero-bias drain-induced barrier-lowering coefficient	-	*
X2E	Sensitivity of drain-induced barrier-lowering effect to substrate bias	1/V	*
X3E	Sensitivity of drain-induced barrier-lowering effect to drain bias at $V_{DS} =$ VDD	1/V	*
XPART	Gate-oxide capacitance charge model flag. XPART = 0 selects a 40/60 drain/source partition of the gate charge in saturation, while XPART = 1 selects a 0/100 drain/source charge partition.	-	

1. LTRA model

.MODEL Model LTRA [list_of_parameters]

2. Model parameters

SPICE3 only

Name	Parameter	Units	Default	Restricti
				ons
R	Resistance/length.	Ω/m	0.0	SPICE3
L	Inductance/length.	H/m	0.0	SPICE3
С	Capacitance/length.	F/m	0.0	SPICE3
G	Conductance/length.	$1/\Omega \cdot m$	0.0	SPICE3
LEN	Length of line.	m	-	SPICE3
REL	Breakpoint control.	-	1	SPICE3
ABS	Breakpoint control.	-	1	SPICE3
NOSTEPLIMIT	Don't limit time step to less than line delay. This flag will remove the default restrictions of limiting the time-step to less than the line delay in the <i>RLC</i> case.	Flag	Not set	SPICE3
NOCONTROL	Don't do complex timestep control. This flag prevents the default limitation on the time-step based on convolution error criteria in the <i>RLC</i> and <i>RC</i> cases. This speeds up the simulation, but may in some cases reduce the accuracy.	Flag	Not set	SPICE3

LININTERP	Use linear interpolation. When this flag is set, linear interpolation is used instead of the default quadratic interpolation for calculating delayed signals.	Flag	Not set	SPICE3
MIXEDINTERP	When this flag is set, SPICE uses a metric for judging whether quadratic interpolation is applicable, and if not so, it uses linear interpolation. Otherwise the default quadratic interpolation is used.	Flag	Not set	SPICE3
COMPACTREL	Special RELTOL for history compacting	-	RELTOL	SPICE3
COMPACTABS	Special ABSTOL for history compacting	-	ABSTOL	SPICE3
TRUNCNR	Use Newton-Raphson method for time step control. This flag initiates Newton-Raphson iterations to determine an appropriate time step in the time step control routines. The default is a trial-and-error procedure which cuts the previous time step in half.	Flag	Not set	SPICE3
TRUNCDONTCUT	Don't limit time step to keep impulse- response errors low. This flag removes the default cutting of the time step to limit errors in the actual calculation of impulse-response related quantities.	Flag	Not set	SPICE3

Example:

* coaxial cable with Z0=50 ohms and 100 pF/m 100 m long .MODEL LOSSY LTRA(R=2.5 G=0 L=250n C=100P LEN=100)

LTRA uses a two-port convolution model for lossy transmission lines. n1 and n2 are the nodes at port 1, and n3 and n4 are the nodes at port 2. It is worth mentioning that a lossy transmission line with zero loss may be more accurate than the lossless transmission line. The length **LEN** of the line must be specified.

The following types of lines are implemented :

- *RLC* uniform transmission line with series loss only
- *RC* uniform *RC* line
- *LC* lossless transmission line
- *RG* distributed series resistance and parallel conductance only

Other line structures may lead to erroneous results

Q - Bipolar Transistor

Q*name* is the device name for a bipolar junction transistor and it must begin with the letter **Q**. *Cnode*, *Bnode*, *Enode*, and *Snode* are the collector, base, emitter and substrate nodes, respectively. For the case of **NPN** and **PNP** transistors, the substrate node is associated with the collector-substrate diode. For the case of **LPNP** (lateral *pnp* transistor) the substrate is associated with the base-substrate diode. If *Snode* is not given, ground is assumed. *Model* is the model name and *Rarea* is the relative area. If *Rarea* is omitted, the default *Rarea*=1.0 is assumed. The keyword **OFF** indicates an optional starting condition of the device for dc analysis. The optional initial value **IC**=*Vbe*, *Vce* is used together with **UIC** in transient analysis. In the case of the SPICE3, the optional **TEMP** value is the temperature at which this device operates, and it overrides the temperature specified In the **.OPTION** statement.

1. Bipolar transistor models

.MODEL Model_name NPN [Model parameters] .MODEL Model_name PNP [Model parameters] .MODEL Model_name LPNP [Model parameters]

PSPICE only

2. Parameters of bipolar transistor model (modified Gummel-Poon model)

Name	Parameter description	Unit	Default	Typical
IS	Saturation current for Rarea=1	А	10 ⁻¹⁶	10 ⁻¹⁵
ISE	<i>B-E</i> leakage saturation current for <i>Rarea</i> =1	А	0	10 ⁻¹²
ICS	<i>B-C</i> leakage saturation current for <i>Rarea</i> =1	А	0	10 ⁻¹²
BF	Forward current gain	_	100	100

BR	Reverse current gain	-	1	0.1
NF	Forward current emission coefficient	-	1.0	1.2
NR	Reverse current emission coefficient	-	1.0	1.3
NE	B-E leakage emission coefficient	-	1.5	1.4
NC	B-C leakage emission coefficient	-	1.5	1.4
VAF	Forward Early voltage	V	8	100
VAR	Reverse Early voltage	V	8	50
IKF	β_F high current roll-off corner	Α	8	0.05
IKR	β_R high current roll-off corner	А	∞	0.01
IRB	Current where base resistance falls by half for <i>Rarea</i> =1	А	∞	0.1
RB	Zero-bias base resistance	Ω	0	100
RBM	Minimum base resistance	Ω	RB	10
RE	Emitter series resistance for Rarea=1	Ω	0	1
RC	Collector series resistance for Rarea=1	Ω	0	50
CJE	<i>B-E</i> zero-bias depletion capacitance	F	0	10 ⁻¹²
CJC	<i>B-C</i> zero-bias depletion capacitance	F	0	10 ⁻¹²
CJS	Zero-bias collector-substrate capacitance	F	0	10 ⁻¹²
VJE	<i>B-E</i> built-in potential	V	0.75	0.8
VJC	<i>B</i> - <i>C</i> built-in potential	V	0.75	0.7
VJS	Substrate junction built-in potential	V	0.75	0.7
MJE	B-E junction exponential factor	-	0.33	0.33
MJC	<i>B-C</i> junction exponential factor	-	0.33	0.5
MJS	Substrate junction exponential factor	-	0	0.5
ХСЈС	Fraction of <i>B</i> - <i>C</i> capacitance connected to internal base node (see Fig. 6)	-	0	0.5
TF	Forward transit time	s	0	10-10
TR	Reverse transit time	s	0	10-8
XTF	Coefficient for bias dependence of τ_F	-	0	-
VTF	Voltage for t_F dependence on V_{BC}	V	∞	-
ITF	Current where $t_F = f(I_C, V_{BC})$ starts	А	0	-
PTF	Excess phase at $freq = 1/(2pt_F)$ Hz	deg	0	-
ХТВ	Forward and reverse beta temperature exponent		0	-

EGEnergy gapeV1.111.1XTITemperature exponent for effect on I_s -33.5KFFlicker noise coefficient-00AFFlicker noise exponent-11FCCoefficient for the forward biased depletion capacitance formula-0.50.5SPICE3 extensionTNOMNominal temperature which overrides the value specified in .OPTION statementK300300
KFFlicker noise coefficient-0AFFlicker noise exponent-1FCCoefficient for the forward biased depletion capacitance formula-0.5SPICE3 extensionTNOMNominal temperature which overrides the valueK300300
AF Flicker noise exponent - 1 FC Coefficient for the forward biased depletion capacitance formula - 0.5 0.5 SPICE3 extension V V V V V V TNOM Nominal temperature which overrides the value K 300 300
FC Coefficient for the forward biased depletion capacitance formula - 0.5 0.5 SPICE3 extension V V V V V TNOM Nominal temperature which overrides the value K 300 300
capacitance formula Image: Capacitance formula SPICE3 extension TNOM Nominal temperature which overrides the value K 300 300
TNOM Nominal temperature which overrides the valueK300300
1
PSPICE extensions
NK High-current roll-off coefficient - 0.5 0.5
ISS Substrate saturation current for <i>Rarea</i> =1 A 0 10^{-15}
NS Substrate emission coefficient - 1 1
QCOEpitaxial layer charge factor for Rarea=1C0
RCO Epitaxial region resistance for <i>Rarea</i> =1 Ω 0 100
VOCarrier mobility knee voltageV1020
GAMMA Epitaxial layer doping factor 10^{-11} 10^{-11}
TRE1RE temperature coefficient (linear) $1/^{\circ}$ C00.001
TRE2 RE temperature coefficient (quadratic) $1/{}^{\circ}C^{2}$ 0 0
TRB1RB temperature coefficient (linear) $1/^{\circ}$ C00.002
TRB2RB temperature coefficient (quadratic) $1/^{\circ}C^2$ 00
TRM1RBM temperature coefficient (linear) $1/^{\circ}$ C00.002
TRM2RBM temperature coefficient (quadratic) $1/^{\circ}C^2$ 00
TRC1RC temperature coefficient (linear) $1/^{\circ}$ C00.003
TRC2RC temperature coefficient (quadratic) $1/^{\circ}C^2$ 00

Examples:

* small power general purpose npn transistor

.MODEL 2N2222 NPN (IS=15.2f NF=1 BF=105 VAF=98.5 IKF=.5 ISE=8.2p NE=2 + BR=4 NR=1 VAR=20 IKR=.225 RE=.373 RB=1.49 RC=.149 XTB=1.5 CJE=35.5p + CJC=12.2P TF=0.5n TR=85n)

+ CJC - 12.21 II - 0.511 IK - 0.511

* small power general purpose pnp transistor 40 V, 200 mA

.MODEL 2N2904 PNP (IS=0.3n NF=1 BF=100 VAF=120 IKF=.14 ISE=46.1p NE=2 BR=4

+ NR=1 VAR=20 IKR=.2 RE=.5 RB=2 RC=.2 XTB=1.5 CJE=15p CJC=20p TF=600p TR=60n)

* small power general purpose npn transistor 40 V, 200 mA .MODEL 2N3903 NPN (IS=1F NF=1 BF=400 VAF=120 IKF=70m ISE=3P NE=2 BR=4 NR=1 + VAR=20 RE=21 RB=8 RC=1 XTB=1.5 CJE=8p CJC=5p TF=600p TR=0.3u)

*small power general purpose npn transistor 45 V, 200mA

.MODEL BC107A NPN (IS=10f NF=1 BF=300 VAF=120 IKF=0.05 ISE=5p NE=2 BR=4

+ NR=1 VAR=30 XTB=1.5 RE=1 RB=3 RC=0.3 CJE=15p CJC=5p TF=0.5n TR=60n)

*small power general purpose pnp transistor 45 V, 200 mA .MODEL BC177A PNP (IS=0.1f ISE=0.5f NF=1 NE=1.4 BF=300 BR=13 IKF=.1 IKR=.01 + ISC=0.1f NC=1.1 NR=1 RB=.2 RE=.4 RC=1 VAR=10 VAF=90 CJE=16p TF=.5n

+ CJC=10p TR=70n MJC=.4 VJC=.6)

*small power germanium transistor 25 V, 100 mA .MODEL 2N2955 PNP (IS=1.25n NF=1 BF=80 VAF=90 IKF=60m ISE=5n NE=2 BR=4 NR=1 + VAR=14 IKR=90m RE=2 RB=10 RC=1 XTB=1.5 CJE=30p CJC=9p TF=0.4n TR=20n)

* power npn transistor 15 A, 100V, 100 W

.MODEL 2N3055 NPN(IS=5p NF=1 BF=100 VAF=100 IKF=.25 ISE=30p ISC=5n RB=3

+ IRB=1m RBM=.4 NE=1.5 RC=.04 BR=3 MJC=.4 VJE=1 MJE=.45 XTB=1 CJE=600p

+ TF=80n CJC=200p TR=2u PTF=120 XTF=1 ITF=3)

* power npn transistor 4 A, 40 V .MODEL 2N5190 NPN (IS=5p NF=1 BF=150 VAF=120 IKF=0.3 ISE=0.7n NE=2 BR=4 + NR=1 VAR=20 XTB=2.5 RE=0.2 RB=12 RBM=1.2 IRB=0.5m RC=0.07 CJE=0.3n + CJC=0.3n TF=45n TR=1u PTF=120 XTF=1 ITF=3.5 ISC=5n MJC=0.2 VJC=1.2

+ MJE=0.3 VJE=0.5)

* power pnp transistor 4 A, 40 V .MODEL 2N5193 PNP (IS=0.4p NF=1 BF=100 VAF=100 IKF=0.3 ISE=0.3n ISC=7n NE=2 + BR=4 NR=1 VAR=20 XTB=1.4 RE=0.15 RB=15 RBM=1.5 IRB=0.3m RC=0.06 CJE=0.3n + CJC=0.5n VJC=1.25 MJE=0.3 VJE=0.65)

R - Resistor

General forms	Restrictions
R name Pnode Nnode Value [TC =TC1 [TC2]]	
R name Pnode Nnode [Value] [Model] [L=Length] [W=Width]	SPICE3
+ $[\mathbf{TEMP}=T]$	
R name Pnode Nnode [Model] [Value] [TC =TC1 [TC2]]	PSPICE
Examples	
R 1 3 7 1k	
R C 7 9 10k TC =0.02,0.0015	
R L 3 9 3.7k	
R LOAD 2 12 RMODEL $\mathbf{L} = 48$ um $\mathbf{W} = 3$ um	SPICE3
R 12 2 9 RMOD 800k TC = 0.01, 0.0015	PSPICE

The resistor statement consists of a name which must start with the letter **R**, node names *Pnode* and *Nnode*, and a value of resistance specified by *Value* (in ohms). An ptional **TC**=*TC1* [*TC2*] specifies the temperature dependence of resistance, where *TC1* and *TC2* are linear and quadratic temperature coefficients, respectively.

The basic resistor statement has many extensions that are implementation-dependent. Semiconductor resistors are implemented in SPICE3. This extension models temperature effects and calculates the resistance based on geometry and processing information. If *Value* is given, then the *Value* defines the resistance, and information on geometry and processing is ignored. If *Model* is specified, the resistance value is calculated based on information about the process and geometry in the model statement:

$$R = \mathbf{RSH} \frac{Length - \mathbf{NARROW}}{Width - \mathbf{NARROW}}$$
(R-1)

If *Value* is not given, *Model* and *Length* must be specified. If *Width* is not given, it will be given the default value. The optional TEMP value is the temperature at which this device operates. It overrides the default temperature specified in the **.OPTION** statement. The temperature dependence of the resistance is calculated using

$$R(T) = R(\mathbf{TNOM}) \left[1 + TCI \left(T - \mathrm{TNOM} \right) + TC2 \left(T - \mathrm{TNOM} \right)^2 \right]$$
(**R-2**)

The resistor model contains process-related parameters, and the resistance value is a function of the temperature.

1. Resistor model

.MODEL *Model* **R** [*list_of_parameters*]

2. Model parameters

Name	Parameter	Units	Default	Restrictions
TC1	First-order temperature coefficient		0.0	
TC2	Second order temperature coefficient		0.0	
RSH	Sheet resistance	Ω/ -		SPICE3
DEFW	Default width m 1e-6		SPICE3	
NARROW	NARROW Narrowing due to side etching m		0.0	SPICE3
TNOM	Parameter measurement temperature	ire °C 27		SPICE3
R Resistance multiplier		_	1	PSPICE
TCE Exponential temperature coefficient		%/°C	0	PSPICE

PSPICE uses the **TCE** parameter to calculate the temperature dependence of resistance:

$$R(T) = R(T_{nom}) \ 1.01^{\text{TCE}(T-T_{nom})}$$

S - Voltage Controlled Switch

General forms	Restrictions
Sname Pnode Nnode Pinp Ninp Model	PSPICE
Sname Pnode Nnode Pinp Ninp Model [ON] [OFF]	SPICE3
Examples	
S7 4 7 2 9 SW1	
SW5 28 3 0 Smodel	
S4 4 9 6 2 SW2 OFF	SPICE3
S 3 3 7 2 9 sw1 ON	SPICE3
s3 3680 SMOD off	SPICE3

The voltage-controlled switch statement begins with the letter **S**. *Pnode* and *Nnode* represent the connections to the switch terminals. *Pinp* and *Ninp* are positive end negative controlling nodes, respectively. The model name, *Model*, is mandatory, while the initial conditions are optional. The controlling voltages are defined the same way as in voltage-controlled voltage (letter **E**) and current (letter **G**) sources. In SPICE3, the optional parameter **ON** or **OFF** specifies the switch state for the dc operating point.

(**R-3**)

The switch model allows an almost ideal switch to be described in SPICE. The switch is not quite ideal, in that the resistance cannot change from 0 to infinity, but must always have a finite and nonzero positive value. By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements.

The switch can have a hysteresis described by the **VH** parameter. For example, the voltagecontrolled switch will be in the on state, with a resistance **RON**, at **VT+VH**. The switch will be in the off state, with a resistance **ROFF**, at **VT-VH**.

1. SW model

.MODEL Model SW [list_of_parameters] SPICE3

2. SW model parameters

Name	Parameter	Default	Units	Restrictions
VT	Threshold voltage	0.0	V	SPICE3
VH	Hysteresis voltage	0.0	V	SPICE3
RON	On resistance	1.0	Ω	
ROFF	Off resistance	1/GMIN	Ω	SPICE3

Examples:

.MODEL SMOD SW RON=1m ROFF=20k VT=3V .MODEL SMOD SW VT=4V VH=1V .MODEL SMOD SW RON=10 ROFF=10MEG VT=2V

3. VSWITCH model

.MODEL Model VSWITCH [list_of_parameters]

PSPICE

4. VSWITCH model parameters

Name	Parameter	Default	Units	Restrictions
VON	Threshold current for on state	10-3	V	PSPICE
VOFF	Threshold current for off state	0.0	V	PSPICE
RON	On resistance	1.0	Ω	
ROFF	Off resistance	10^{6}	Ω	PSPICE

The use of an ideal element that is highly non-linear, such as a switch, can cause large discontinuities to occur in the circuit node voltages. The rapid voltage change associated with a switch changing state can cause numerical round off or tolerance problems leading to erroneous results or time step difficulties. You can improve the situation by taking the following steps. Set the switch impedances only high and low enough to be negligible with respect to other elements in the circuit. Using switch impedances that are close to "ideal" under all circumstances will aggravate the discontinuity problem. When modeling real devices such as MOSFETS, the on resistance should be adjusted to a realistic level depending on the size of the device being modeled.

If a wide range of **ON** to **OFF** resistance must be used (**ROFF/RON** > 10^{+12}), then the tolerance on errors allowed during transient analysis should be decreased by specifying the **.OPTIONS TRTOL** parameter to be less than the default value of 7.0. When switches are placed around capacitors, the **.OPTIONS CHGTOL** parameters should also be reduced. Suggested values for these two options are 1.0 and 1E-16, respectively. These changes inform SPICE to be more careful near the switch points so that no errors are made due to the rapid change in the circuit response.

T - Transmission Lines

n1n3	
n2 n4	
General forms	Restrictions
T name n1 n2 n3 n4 Z0 =Value [TD =Delay] [F =Freq [NL =Wavelength]]	SPICE2/3
+[IC =V1, I1, V2, I2]	
T name n1 n2 n3 n4 Model [IC =V1, I1, V2, I2]	PSPICE ideal
Tname n1 n2 n3 n4 LEN=Electrical_length R=Resistance_per_length	PSPICE lossy
+ L=Inductance_per_length G=Conductance_per_length	
+ C=Capacitance_per_length	
(In SPICE3, lossy transmission lines use names which start with the letter O	SPICE3
)	
Examples	
T 1 1 0 70 Z0 =50 TD =10ns 12 17 1k	SPICE2/3
T1 2 0 3 0 Z0=75 TD=10ns IC=1V,1mA,1V,1mA	SPICE2/3
T 1 2 6 4 9 Z0 =200 TD =115ns	SPICE2/3
T2 3 6 2 8 Z0 =75 F =1MEG	SPICE2/3
T3 3 5 7 9 Z0=50 F=4.5MEG NL=0.5	SPICE2/3
T1 2 5 8 2 LEN=1 R=.25 L=.5u G=10u C=50p	PSPICE
T 3 2 7 5 9 TMOD 1	PSPICE

n1 and n2 are the nodes at port 1; n3 and n4 are the nodes at port 2. For the ideal case, **Z0** is the characteristic impedance. The transmission line's length can be specified either by **TD**, a delay in seconds, or by **F** and **NL**, a frequency and a relative wavelength at **F**. **NL** defaults to 0.25 (**F** is then the quarter-wave frequency). Although **TD** and **F** are both shown as optional, one of the two must be specified.

Note that this element models only one propagating mode. If all four nodes are distinct in the actual circuit, then two modes may be excited. To simulate such a situation, two transmission-line elements are required. The (optional) initial condition specification consists of the voltage and current at each of the transmission line ports. Note that the initial conditions (if any) apply 'only' if the **UIC** option is specified on the **.TRAN** line. One should be aware that SPICE will use a transient time step which does not exceed 1/2 the minimum transmission line delay. Therefore, very short transmission lines (compared with the analysis time frame) will cause long run times.

For the case of a lossy line, **LEN** is the electrical length. **R**, **L**, **G**, and **C** are the per unit length values of resistance, inductance, conductance, and capacitance, respectively. The lossy line model is similar to that shown for the ideal case, except that the delayed voltage and current values include terms that vary with frequency. These terms are computed in transient analysis using an impulse response convolution method, and the internal time step is limited by the time resolution required to accurately model the frequency characteristics of the line. As with ideal lines, short lossy lines will cause long run times.

For the case of a line that uses a model, the electrical length is given after the model name. All of the transmission line parameters from either the ideal, or lossy parameter set can be expressions. In addition, \mathbf{R} and \mathbf{G} can be general Laplace expressions. This option allows the user to model frequency-dependent effects, such as skin effect and dielectric loss. However, this adds to the computation time for transient analysis, since the impulse responses must be obtained by an inverse FFT.

The simulator uses a distributed model to represent the properties of a lossy transmission line, and the line resistance, inductance, conductance, and capacitance are all continuously apportioned along the line's length. A common approach to simulating lossy lines is to model these characteristics using discrete passive elements to represent small sections of the line. This is the lumped model approach, which involves connecting a set of many small subcircuits in series.

An additional PSPICE extension allows systems of coupled transmission lines to be simulated. Transmission line coupling is specified using the \mathbf{K} mutual coupling device. This is done in much the same way that coupling is specified for inductors.

The distributed model used in the simulation process frees you from having to determine how many lumps are sufficient, and eliminates spurious oscillations. It also allows lossy lines to be simulated in a fraction of the time necessary when using the lumped approach, for the same accuracy.

1. TRN model

.MODEL Model **TRN** [list_of_parameters]

2. Model parameters

PSPICE only

Name	Parameter	Units	Default	Restrictions			
	Ideal transmission line						
ZO	Characteristic impedance	Ω		PSPICE			
TD	Transmission delay	S		PSPICE			
NL	Relative wavelength		0.25	PSPICE			
F	Frequency for NL	Hz		PSPICE			
	Lossy transmission line						
LEN	LEN Electrical length Any unit PSPICE						
R	Resistance per LEN units	Ω/unit		PSPICE			
L	Inductance per LEN unit	H/unit		PSPICE			
С	Capacitance per LEN unit	F/unit		PSPICE			
G	Conductance per LEN unit	$1/\Omega$ ·unit		PSPICE			

General form	Restrictions
Uname n1 n2 n3 Model L=Length [N=Lumps]	SPICE3
Examples	
U7 4 2 8 UMOD L=500um	SPICE3
URC 3 6 9 URC L=1mil N=12	SPICE3

n1 and n2 are the two nodes of the *RC* line itself, while n3 is the capacitive node. *Model* is the name of the model, *Length* is the length of the line in meters and *Lumps*, if given, is the number of segments to use in modeling the RC line.

1. URC model

.MODEL Model URC [list_of_parameters]

2. Model parameters

SPICE3 only

Name	Parameter	Units	Default	Restricti
				ons
K	Propagation constant	-	2.0	SPICE3
FMAX	Maximum frequency	Hz	10 ⁹	SPICE3
RPERL	PERL Resistance per unit length		1000	SPICE3
CPERL	Capacitance per unit length	F/m	10-15	SPICE3
ISPERL	ISPERL Saturation current per unit length		0	SPICE3
RSPERL	Diode resistance per unit length	Ω/m	0	SPICE3

The model is accomplished by a subcircuit expansion of the URC line into a network of lumped RC segments with internally generated nodes. The RC segments are in a geometric progression, increasing toward the middle of the URC line, with K as a proportionality constant. N is the number of lumped segments used. If not specified on the URC line, N is determined by the following expression:

log	$\left[2\pi RCF_{\max}\left(\frac{\mathbf{K}-1}{\mathbf{K}}\right)^{2}\right]$	(U. 1)
IN =	logK	(U-1)

The URC line is made up strictly of resistor and capacitor segments unless the **ISPERL** parameter is given a nonzero value, in which case the capacitors are replaced with reverse-biased diodes with a zero-bias junction capacitance equivalent to the capacitance replaced, and with a

SPICE3 only

saturation current of **ISPERL** amps per meter of transmission line. An optional series resistance equivalent to **RSPERL** ohms per meter can be included.

Pnode Vname Restrictions *General forms* Vname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]] [Signal_shape] Vname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]] **PSPICE** + [**STIMULUS** = Name] [Signal shape] Vname Pnode Nnode [[DC] Value] [[AC] Mag [Phase]] [Signal_shape] SPICE3 + [**DISTOF1** *F1mag* [*F1phase*]] [**DISTOF2** *F2mag* [*F2phase*]] **Examples** VSC 2 6 AC 1 mV 45.0 VNP 4 7 DC 3V AC 1mV 90.0 **VPULSE 3 0 PULSE (0 5.2V 5ns 1ns 1ns 30ns 50ns)** V6 2 0 DC 1V AC 1mV SIN(0 0.001 1MEG) PSPICE V2 5 0 AC 10mV DISTOF1 DISTOF2 0.001 SPICE3 V3 6 9 AC 0.1 45 SFFM (0 1 250kHz 0.5 3kHz) SPICE3

Value is the dc and transient analysis value of the voltage source. If the source value is time-invariant (e.g., a power supply), then the value may optionally be preceded by the letters **DC**.

Mag is the ac magnitude and *Phase* is the ac phase. The source is set to this value in the ac analysis. If Mag is omitted following the keyword **AC**, a value of unity is assumed. If *Phase* is omitted, a value of zero is assumed. If parameters other than source values are omitted or set to zero, the default values shown will be assumed. If a source is assigned a time-dependent value, the time-zero value will be used for dc analysis.

The keyword STIMULUS is used in newer versions of PSPICE to call up custom signal shapes created with the stimulus editor. By specifying *Signal_shape*, a time-dependent waveform for transient analysis can be assigned. If a source is assigned a time-dependent value, the time-zero value is used for dc analysis. There are five independent source functions: pulse, exponential, sinusoidal, piecewise linear, and single-frequency FM. These five signal shapes are described in more detail in what follows.

V - Independent Voltage Source

1. Pulse waveforms

Form **PULSE** (V1 V2 TD TR TF PW PER)

Examples: VIN 3 0 **PULSE**(0 5V 10us 2us 2us 50us 100us) VIN 5 0 **PULSE**(-5V 5V 10us 2us 2us 50us)

Parameters	Meaning	Default	Units
V1	Initial value	-	V
V2	Pulsed value	-	V
TD	Delay time	0.0	sec
TR	Rise time	Tstep	sec
TF	Fall time	Tstep	sec
PW	Pulse width	Tstop	sec
PER	Period	Tstop	sec

Parameters *Tstep* and *Tstop* are specified in **.TRAN** statement.

2. Sine waves

Form **SIN**(VO VA FREQ TD DF PHASE)

Examples: V3 3 0 **SIN**(1V 2V 10MEG 1ns 1MEG) V6 6 2 **SIN**(0 10mV 100kHz)

parameters	meaning	default	units	Restrictions
VO	Offset		V	
VA	Amplitude		V	
FREQ	Frequency	1/Tstop	Hz	
TD	Delay	0.0	S	
DF	Damping factor	0.0	1/s	
PHASE	Phase	0.0	degre	PSPICE
			e	

The shape of the waveform is described by the following equations:

For time < **TD**:
VO + **VA** sin
$$\left[2\pi \left(\frac{\text{PHASE}}{360}\right)\right]$$
 (V-2)

For time > **TD**:

VO + **VA** exp
$$\left[-(time - TD)$$
THETA $\right]$ sin $\left[2\pi \left(FREQ \left(time - TD\right) + \frac{PHASE}{360}\right)\right]$ (V-3)

3. Exponential waveforms

Format **EXP**(V1 V2 TD1 TAU1 TD2 TAU2)

Examples:

V3 5 0 **EXP**(-5 -3 5ns 20ns 30ns 30ns) V6 3 2 **EXP**(0 5 5ns 20ns)

Parameters	Meaning	Default	Units
V1	Initial value		V
V2	Pulsed value		V
TD1	Rise delay time	0.0	S
TAU1	Rise time constant	Tstep	S
TD2	Fall delay time	TD1+Tstep	S
TAU2	Fall time constant	Tstep	S

The shape of the waveform is described by the following equations:

For *time* < **TD1**

$$v(time) = 0 \tag{V-4}$$

For **TD1** < *time* < **TD2**

$$v(time) = \mathbf{V1} + (\mathbf{V2} - \mathbf{V1}) \left[1 - \exp\left(-\frac{time - \mathbf{TD1}}{\mathbf{TAU1}}\right) \right]$$
(V-5)

for *time* > **TD2**

$$v(time) = \mathbf{V1} + (\mathbf{V2} - \mathbf{V1}) \left[1 - \exp\left(-\frac{time - \mathbf{TD1}}{\mathbf{TAU1}}\right) \right] + (\mathbf{V1} - \mathbf{V2}) \left[1 - \exp\left(-\frac{time - \mathbf{TD2}}{\mathbf{TAU2}}\right) \right] (\mathbf{V-6})$$

4. Piecewise linear waveforms

Format: **PWL**(T1 V1 [Tn Vn] ...)

Examples: V5 3 7 **PWL**(0 -7V 5us -7V 6us 5V 20us 5V 21us -7V 30us -8V) V3 4 2 **PWL**(5ms 5V 20ms 5V 30ms 0V)

Parameters	Meaning	Default	Units
Tn	Time at corner	-	S
Vn	Voltage at corner	-	V

Each pair of values (**Tn**, **Vn**) specifies the value of the source **Vn** ([in V) at *time*=**Tn**. The value of the source at intermediate values of time is determined by using linear interpolation of the input values.

5. FM waveforms

Form SFFM(VO VA FC MDI FS)

Examples: V7 7 0 SFFM(0 1mV 20kHz 5 1kHz) V1 12 0 SFFM(0 10V 300kHz 0.5 10kHz)

parameters	meaning	default	units
VO	Offset	-	V
VA	Amplitude	-	V
FC	Carrier frequency	1/Tstop	Hz
MDI	Modulation index	0	
FS	Signal frequency	1/Tstop	Hz

The SFFM (single-frequency frequency-modulated) waveform is described by the following equation:

$$v(time) = \mathbf{VO} + \mathbf{VA} \, \sin\left[2\pi \,\mathbf{FC} \, time + \mathbf{MDI} \, \sin\left(2\pi \,\mathbf{FS} \, time\right)\right] \tag{V-7}$$

General forms	Restrictions
Wname Pnode Nnode Vname model	PSPICE
Wname Pnode Nnode Vname model [ON] [OFF]	SPICE3
Examples	
W3 4 7 VIN WMOD	
WON 47 VON WRELAY	
w1 40 vclock Switch	
W2 5 2 VR SM1 ON	SPICE3
wreset 7 2 V5 Lossysw OFF	SPICE3

The name of a current-controlled switch begins with the letter **W**. *Pnode* and *Nnode* represent the connections to the switch terminals. The model name, *Model*, is mandatory, while the initial conditions are optional. The controlling current is the current through the specified voltage source, defined the same way as in current-controlled dependent voltage (letter **F**) and current (letter **H**) sources. In SPICE3 the optional parameter **ON** or **OFF** specifies the switch state for the dc operating point.

The switch model allows an almost ideal switch to be described in SPICE. The switch is not quite ideal, in that the resistance cannot change from 0 to infinity, but must always have a finite and nonzero positive value. By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements.

The switch can have a hysteresis described by the **IH** parameter. For example, the currentcontrolled switch will be in the on state, with a resistance **RON**, at **IT**+**IH**. The switch will be in the off state, with a resistance **ROFF**, at **IT-IH**.

1. CSW model

.MODEL Model CSW [list_of_parameters]

SPICE3

Name	Parameter	Default	Units	Restrictions
IT	Threshold current	0.0	А	SPICE3
IH	Hysteresis current	0.0	А	SPICE3
RON	On resistance	1.0	Ω	
ROFF	Off resistance	1/GMIN	Ω	SPICE3

2. Model parameters

Examples:

.MODEL SMOD CSW IT=3V IH=1V .MODEL SMOD CSW RON=50 ROFF=10MEG IT=3mA

.MODEL Model ISWITCH [list_of_parameters]

Model Parameters

Name	Parameter	Default	Units	Restrictions
ION	Threshold current for on state	10-3	А	PSPICE
IOFF	Threshold current for off state	0.0	А	PSPICE
RON	On resistance	1.0	Ω	
ROFF	Off resistance	10 ⁶	Ω	PSPICE

The use of an ideal element that is highly nonlinear, such as a switch, can cause large discontinuities to occur in the circuit node voltages. The rapid voltage change associated with a switch changing state can cause numerical round off or tolerance problems leading to erroneous results or time step difficulties.

You can improve the situation by taking the following steps: Set the switch impedances only high and low enough to be negligible with respect to other elements in the circuit. Using switch impedances that are close to "ideal" under all circumstances will aggravate the discontinuity problem. When modeling real devices such as MOSFETS, the on resistance should be adjusted to a realistic level depending on the size of the device being modeled.

If a wide range of **ON** to **OFF** resistance must be used (**ROFF/RON** >10⁺¹²), then the tolerance on errors allowed during the transient analysis should be decreased by specifying the **.OPTIONS TRTOL** parameter to be less than the default value of 7.0. When switches are placed around capacitors, the **.OPTIONS CHGTOL** parameters should also be reduced. Suggested values for these two options are 1.0 and 1E-16, respectively. These changes inform SPICE to be more careful near the switch points so that no errors are made due to the rapid change in the circuit response.

PSPICE

X - Subcircuit Calls

Subcircuits are specified in SPICE by using pseudo-elements beginning with the letter \mathbf{X} , followed by the circuit nodes $n1 \ [n2 \ n3 \ ...]$ to be used in expanding the subcircuit and the name *Subname* of the subcircuit. The subcircuit is defined by the **.SUBCKT** statement. The number of nodes in the subcircuit call (\mathbf{X} statement) must be the same as in the subcircuit declaration (**.SUBCKT**).

Z - MESFET

SPICE3 only

 $\begin{array}{ccc} \mathsf{NMF} & \mathsf{PMF} \\ \hline \\ Gnode & & \\ Snode & & \\ \end{array} \\ \begin{array}{c} \mathsf{Dnode} \\ \mathsf{Gnode} \\ \mathsf{Snode} \\ \end{array} \\ \begin{array}{c} \mathsf{Dnode} \\ \mathsf{Snode} \\ \end{array} \\ \begin{array}{c} \mathsf{Snode} \\ \mathsf{Snode} \\ \end{array} \\ \end{array}$

General forms	Restrictions
Zname Dnode Gnode Snode Model [Rarea] [OFF] [IC=Vds, Vgs]	SPICE3
Examples	
Z2 5 3 0 ZPMOD OFF	SPICE3
Z 7 6 3 2 ZNMO IC = 5.0, 1.0	SPICE3

A MESFET is described by a statement starting with name of the MESFET device Zname. This name must start with the letter Z. Node numbers *Dnode*, *Gnode*, and *Snode* for drain, gate, and source follow the name. Next, the model name *Model* is listed. Model parameters are specified in the **.MODEL** statement. The keywords **NMF** and **PMW** are used there for *n*-channel and *p*-channel respectively. *Rarea* is the relative area factor. If *Rarea* is not specified, 1 is assumed. An optional parameter IC=Vd is used together with a UIC in transient analysis. The keyword **OFF** indicates an optional starting condition for dc analysis.

1. MESFET models

.MODEL Model_name NMF [Model parameters] .MODEL Model_name PMF [Model parameters]

Name	Parameter	Units	Default	Typical	Rarea
VTO	Pinch-off voltage	V	-2.0	-2.0	
ВЕТА	Transconductance parameter	A/V	1.0e-4	1.0e-3	*
В	Doping tail extending parameter	1/V	0.3	0.3	*
ALPHA	Saturation voltage parameter	1/V	2	2	*
LAMBDA	Channel-length modulation parameter	1/V	0	1.0e-4	
RD	Drain ohmic resistance	Ω	0	100	*
RS	Source ohmic resistance	Ω	0	100	*
CGS	Zero-bias G-S junction capacitance	F	0	5 pF	*
CGD	Zero-bias G-D junction capacitance	F	0	5 pF	*
PB	Gate junction potential	V	1	0.6	
KF	Flicker noise coefficient	-	0	-	
AF	Flicker noise exponent	-	1	-	
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	-	

2. Model parameters

Asterisks in the last column indicates that this parameter in all equations is multiplied by *Rarea* parameter specified in the \mathbf{Z} device line.

- B Nonlinear Dependent Source 185
- *B GaAs FET 187*1. GaAs FET model 187
 - 2. Model parameters 187
- *C Capacitor 190*1. Model parameters 191
- D Diode 192
 - 1. Diode model 192
 - 2. Model parameters 192
- *E* Voltage-Controlled Voltage Source 1941. Function used in PSPICE 195
- F Current-Controlled Current Source 196
- G Voltage-Controlled Current Source 197
- H Current-Controlled Voltage Source 198
- I Independent Current Source 199
 - 1. Pulse waveforms 200
 - 2. Sine waves 201
 - 3. Exponential waveforms 202
 - 4. Piecewise linear waveforms 203
 - 5. FM waveforms 204
- J JFET 205
 - 1. JFET models 205
 - 2. Model parameters 206
- K Mutual Coupling 207
- 1. Core model 208
- 2. Model parameters 208
- L Inductor 209
- M MOS Transistor 210
 - 1. MOS transistor models 211
 - 2. Parameters of MOS transistor models 211
- O Lossy Transmission Lines (LTRA) 216
 - 1. LTRA model 216
 - 2. Model parameters 216
- Q Bipolar Transistor 218
 - 1. Bipolar transistor models 218
- 2. Parameters of bipolar transistor model (modified Gummel-Poon model) 218
- R Resistor 222
 - 1. Resistor model 223
 - 2. Model parameters 223
- S Voltage Controlled Switch 223
 - 1. SW model 224
 - 2. SW model parameters 224
 - 3. VSWITCH model 224
 - 4. VSWITCH model parameters 224

- T Transmission Lines 225
 - 1. TRN model 226
 - 1.226
 - 2. Model parameters 226
- U Uniform Distributed RC Lines (URC) 227
 - 1. URC model 227
 - 1.227
 - 2. Model parameters 227
- V Independent Voltage Source 228
 - 1. Pulse waveforms 229
 - 1.229
 - 2. Sine waves 230
 - 2.230
 - 3. Exponential waveforms 231
 - 3. 231
 - 4. Piecewise linear waveforms 232
 - 4.232
 - 5. FM waveforms 233
 - 5.233
- W Current-Controlled Switch 234
 - 1. CSW model 234
 - 1.234
 - 2. Model parameters 234
- X Subcircuit Calls 236
- Z MESFET 236
 - 1. MESFET models 237
 - 2. Model parameters 237

bipolar transistor, 35

capacitor, 7 CSW model, 51 current-controlled current source, 13 current-controlled switch, 51 current-controlled voltage source, 15

diode, 9

EXP, 19 exponential waveforms, 19, 48

FM waveforms, 21, 50 functions used in PSPICE, 12

GaAs FET, 4 Gummel-Poon model, 35

independent current source, 16 independent voltage source, 45 inductor, 26 **ISWITCH keyword**, 52

JFET, 22

lossy transmission lines, 33 LTRA, 33 MESFET, 53 MOS transistor, 27 mutual coupling, 24

nonlinear dependent source, 2

piecewise linear waveforms, 20, 49 **PULSE**, 17 pulse waveforms, 17, 46 **PWL**, 20

resistor, 39

SIN, 18 sine waves, 18, 47 subcircuit calls, 53 SW model, 41

transmission lines, 42 TRN model, 43

uniform distributed RC lines, 44 URC, 44 URC model, 44

voltage controlled switch, 40 voltage-controlled current source, 14 voltage-controlled voltage source, 11 VSWITCH model, 41