Chapter 3: Foundational Results

- Overview
- Safety Questions
- Turing Machine Mapping

Overview

- Safety Questions
- HRU Model
What Is “Secure”?

- Adding a generic right \(r \) where there was not one is “leaking”
- If a system \(S \), beginning in initial state \(s_0 \), cannot leak right \(r \), it is safe with respect to the right \(r \).
- What is a generic right?

 Generic rights correspond to a class of objects

Definitions

- **Definition 3-1.** When a generic right \(r \) is added to an element of the access control matrix not already containing \(r \), that right is said to be leaked.
- **Definition 3-2.** If a system can never leak the right \(r \), the system (including the initial state \(s_0 \)) is called safe with respect to the right \(r \). If the system can leak the right \(r \) (enter an unauthorized state), it is called unsafe with respect to the right \(r \).
Example

- A computer system allows the network administrator to read all network traffic. It disallows all other users from reading this traffic. The system is designed in such a way that the network administrator cannot communicate with other users. Is this system safe?

Yes, there is no way for the right r of the network administrator over the network device to leak.

Safety Question

- Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 - Here, “safe” = “secure” for an abstract model
Mono-Operational Commands

- Answer: yes
- Sketch of proof:
 Consider minimal sequence of commands $c_1, ..., c_k$ to leak the right r.
 - Can merge all creates into one
 Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \leq n(s+1)(o+1)$

General Case

- Answer: no
- Sketch of proof:
 Reduce halting problem to safety problem
 Turing Machine review:
 - Infinite tape in one direction
 - States K, symbols M; distinguished blank b
 - Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
 - Halting state is q_f; TM halts when it enters this state
Turing Machine

It is undecidable whether a given state of a given protection system is safe for a given generic right.

Mapping

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Current state is k

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>C</td>
<td>k</td>
<td>own</td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state

Command Mapping

$\delta(k, C) = (k_1, X, R)$ at intermediate becomes

```plaintext
command $c_{k,C}(s_3, s_4)$
if own in $A[s_3, s_4]$ and $k$ in $A[s_3, s_3]$ and $C$ in $A[s_3, s_3]$
then
  delete $k$ from $A[s_3, s_3]$;
  delete $C$ from $A[s_3, s_3]$;
  enter $X$ into $A[s_3, s_3]$;
  enter $k_1$ into $A[s_4, s_4]$;
end
```
Mapping

After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state

Command Mapping

$\delta(k_1, D) = (k_2, Y, R)$ at end becomes

```plaintext
command crightmost_{k_2}(s_4 s_5)
if end in A[s_4, s_4] and k_1 in A[s_4, s_4] and D in A[s_4, s_4]
then
   delete end from A[s_4, s_4];
   create subject s_5;
   enter own into A[s_4, s_5];
   enter end into A[s_5, s_5];
   delete k_1 from A[s_4, s_4];
   delete D from A[s_4, s_4];
   enter Y into A[s_4, s_4];
   enter end into A[s_4, s_5];
end
```
Rest of Proof

- Protection system exactly simulates a Turing Machine
 - Exactly 1 end right in ACM
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command
- If TM enters state q_f, then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Implies halting problem decidable
- Conclusion: safety question undecidable

Other Results

- Set of unsafe systems is recursively enumerable
- Delete create primitive; then safety question is complete in P-SPACE
- Safety question for mono-conditional, monotonic protection systems is decidable
- Safety question for mono-conditional protection systems with create, enter, delete (and no destroy) is decidable.
Key Points

• Safety problem undecidable
• Limiting scope of systems can make problem decidable