
1104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

Fig. 10. Measurement results: the output signal of the preamplifier and the
gain control signal.

Fig. 11. Test result of the VGA. When the AGC loop is stable, the control
voltage of the VGA is 1.28 V and the gain of the preamplifier is 50 dB similar
to simulated one.

IV. CONCLUSION

In this paper, a transient noise model for frequency-dependent noise
sources such as1=f noise of G-R noise has been introduced. There-
fore, we can make noise signals for transient simulation not only from
white noise sources but also from frequency-dependent noise sources.
By using the proposed noise model, we can simulate dynamic and exact
noise performances of circuits including noise peak detector or large
gain stage. Measured noise performances of designed OSP are almost
the same as simulated ones. Using this model, we can reduce the design
time because the transient noise performance can be simulated.

REFERENCES

[1] C. D. Motchenbacher and J. A. Connelly,Low Noise Electronic System
Design. New York: Wiley, 1993, pp. 8–32.

[2] A. Van der Ziel and S. K. Kim, “Generation-recombination noise at 77
K in silicon bars and JFET’s,”Solid-State Electron., vol. 22, no. 2-D,
pp. 177–179, 1979.

[3] R. G. Meyer, L. Nagel, and S. K. Lui, “Computer simulation of1
noise performance of electronic circuits,”IEEE J. Solid-State Circuits,
vol. SC-6, pp. 237–240, June 1973.

[4] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Nu-
merical Recipes. Cambridge, U.K.: Cambridge Univ. Press, 1986, pp.
202–203.

[5] A. Van der Ziel, “Thermal noise in field effect transistors,”Proc. IEEE,
vol. 50, pp. 1808–1812, Aug. 1962.

[6] A. R. Bennet,Electronical Noise. New York: McGraw-Hill, 1960, p.
42.

[7] P. Z. Peebles Jr. ,Probability, Random Variables, and Random Signal
Processor. New York: McGraw-Hill, 1993, pp. 147–150.

[8] A. B. Carson,Communication Systems. New York: McGraw-Hill,
1986, pp. 143–146.

[9] , Communication Systems. New York: McGraw-Hill, 1986, pp.
38–39.

[10] B. Porat,A Course in Digital Signal Processing. New York: Wiley,
1997, pp. 101–104.

A Test Evaluation Technique for VLSI Circuits Using
Register-Transfer Level Fault Modeling

Pradip A. Thaker, Vishwani D. Agrawal, and Mona E. Zaghloul

Abstract—Stratified fault sampling is used in register transfer level
(RTL) fault simulation to estimate the gate-level fault coverage of given
test patterns. RTL fault modeling and fault-injection algorithms are
developed such that the RTL fault list of a module can be treated as a
representative fault sample of the collapsed gate-level stuck-at fault set
of the module. The RTL coverage for the module is experimentally found
to track the gate-level coverage within the statistical error bounds. For a
very large scale integration system, consisting of several modules, the level
of description may differ from module to module. Therefore, the stratified
fault sampling technique is used to determine the overall coverage as a
weighted sum of RTL module coverages. Several techniques are proposed
to determine these weights, known as stratum weights. For a system
timing controller application specific integrated circuit, the stratified RTL
coverage of verification test-benches is estimated to be within 0.6% of the
actual gate-level coverage of the synthesized circuit. This ASIC consists
of 40 modules (consisting of 9000 lines of Verilog hardware description
language) that are synthesized into 17 126 equivalent logic gates by a
commercial synthesis tool. Similar results on two other systems are
reported.

Index Terms—Design for test, RTL fault coverage, RTL fault modeling,
stratified fault sampling.

I. INTRODUCTION

Test patterns for large very large scale integration (VLSI) systems
are often derived from the knowledge of the circuit function. A fault
simulator is then used to find the effectiveness of the test patterns in

Manuscript received August 2, 2001; revised December 24, 2001 and Au-
gust 5, 2002. This paper is an excerpt of a doctoral thesis presented at George
Washington University by P. Thaker in 2000. This paper was recommended by
Associate Editor S. Reddy.

P. A. Thaker was with the Department of Electrical and Computer Engi-
neering, George Washington University, Washington, DC 20052 USA. He is
now with Zagros Networks, Rockville, MD 20850 USA (e-mail: pthaker_
2000@yahoo.com).

V. D. Agrawal is with the Department of Electrical and Computer Engi-
neering, Rutgers University, Piscataway, NJ 08854 USA (e-mail: vishwani02@
yahoo.com).

M. E. Zaghloul is with the Department of Electrical and Computer Engi-
neering, George Washington University, Washington, DC 20052 USA.

Digital Object Identifier 10.1109/TCAD.2003.814958

0278-0070/03$17.00 © 2003 IEEE



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003 1105

detecting gate-level “stuck-at” faults. Existing gate-level fault-simula-
tion techniques suffer prohibitively expensive performance penalties
when applied to the modern VLSI systems of larger sizes. Also, find-
ings of such test generation and fault-simulation efforts in the post
logic-synthesis phase are too late in the design cycle to be useful for
design-for-test (DFT)-related improvements in the architecture. There-
fore, an effective register-transfer level (RTL) fault model is highly de-
sirable.

Several high-level fault models and fault-simulation techniques have
been proposed by many authors including Thatte and Abraham [1],
Gosh and Chakraborty [2], Ghosh [3], Ward and Armstrong [4], Arm-
stronget al.[5], Cho and Armstrong [6], and Sanchez and Hidalgo [7].
None of these techniques establish the relationship between high-level
fault coverage and gate-level fault coverage. Mao and Gulati [8] pro-
posed an RTL fault model and a simulation methodology but did not
establish the relationship of RTL faults to gate-level faults. Their ap-
proach also required one to run fault simulation twice (first in an op-
timistic and then in a pessimistic mode) and to use the average of the
results to reduce the difference between the RTL and the gate-level
fault coverages. This is an inefficient solution derived purely empiri-
cally. The authors did not establish any theoretical basis to generalize
the application of their fault model. Their experimental data indicate
as much as a 10% error between the actual gate-level fault coverage
and the RTL fault coverage. Ferrandiet al. [9] presented stuck-at fault
model along with binary decision diagram (BDD) approach to create
faulty and fault-free control data-flow graphs (CDFGs) to guide the test
vector generation process. Both approaches [8], [9] do not establish
any predetermined error bounds between RTL coverage reported by
their proposed fault model and actual gate-level fault coverage. Hayne
and Johnson [10] developed a fault model based on an abstraction of
the industry standard single-stuck-line faults in the behavioral domain.
This fault model was developed such that for every possible gate-level
fault in the circuit, there is a corresponding faulty RTL circuit. Similar
efforts by others were focused on developing a model that, when ap-
plied to the RTL description, could produce the behavior of all possible
gate-level single “stuck-at” faults. The RTL fault models that fall short
of achieving this goal have been considered incomplete.

The procedure presented in this paper works on the premise that all
hardware (gate-level) faults may not be represented at the RTL since
the RTL description is a higher level of abstraction, which may not
contain the low-level structural information implicit in many gate-level
failures. Also, since the gate-level netlist can change drastically with
every logic synthesis iteration, efforts to model all possible gate faults
at the RTL are inefficient. Instead, in this paper, an RTL fault model
and fault-injection algorithm are developed such that the RTL fault-list
of a module becomes a representative sample of the corresponding
collapsed gate-level fault-list. The proposed RTL fault model and the
fault-injection algorithm are developed from an analysis of the proper-
ties of the gate-level single stuck-at fault (SSF) model and mapping of
RTL constructs onto gate-level structures during logic synthesis.

In this paper, the problem of RTL fault modeling is addressed in two
parts. First, RTL fault model and an injection algorithm is developed
for single RTL module. Second, application of stratified sampling tech-
nique is proposed for VLSI system consisting of multiple modules.

For a module, the proposed RTL faults are assumed to have a distri-
bution of detection probabilities similar to that for collapsed gate faults
of a corresponding gate-level netlist. Under this assumption, RTL faults
are a “representative sample” of any gate-level fault-set, and the dif-
ference between RTL and gate-level fault coverages of a module for
a given set of test patterns is expected to be within the error bounds
for the random fault-sampling technique [11], [12]. The effectiveness
of this RTL module fault model is verified using several real-life in-
dustry-application VLSI circuits.

It is observed that the total number of RTL faults in a module does not
represent the size of the gate-level fault-list. This lack of a clearly de-
fined relationship between the number of RTL faults and the number of
possible gate-level faults presents a problem for a VLSI system, which
consists of several modules. Although the RTL fault-list of each module
is a representative sample of the corresponding gate-level fault-list of
that module, the overall RTL fault-list of the multimodule system does
not constitute a representative sample of the overall gate-level fault-list.
This observation led us to consider a technique known asstratified sam-
pling[13]. A VLSI system is divided along RTL module boundaries
into several nonoverlapping blocks we callstrata. The stratum weights
for these modules are determined using any of the proposed techniques
described in a later section. RTL fault coverages of modules are added
according their respective stratum weights to determine the stratified
RTL fault coverage for the VLSI system. The stratified RTL fault cov-
erage serves as an estimate of the gate-level fault coverage of the VLSI
system for the given set of test patterns. The error bounds for this es-
timate are statistically calculated. The stratified RTL fault coverages
of several real-life industry-application VLSI systems are compared
with the corresponding gate-level fault coverages for various test pat-
tern sets.

Sections II–IV describe the research contribution of this paper.
Section II contains a detailed description of the proposed RTL fault
model, the fault-injection algorithm and the RTL fault-simulation
methodology. The relationship of the proposed RTL faults and the
traditional single stuck-at gate faults is elaborated using an example.
Section III presents the application of stratified sampling theory to
RTL fault modeling. Section IV outlines the stratum weight extraction
techniques. Section V describes the experimental work and results
generated for several real-life industry-application VLSI systems.
Section VI summarizes and outlines limitations of the proposed
approach.

II. RTL FAULT MODEL, INJECTIONALGORITHM, AND SIMULATION

Hardware description language (HDL) constructs are classified into
three types: structural, RTL, and behavioral [14]. RTL constructs repre-
sent a subset of HDL constructs, which, with additional design guide-
lines, ensure proper synthesis of a gate-level netlist by logic synthesis
tools. With event scheduling and resource allocation information built
in, an RTL model represents the microarchitecture of a circuit.

Some of the previous research in the area of high-level fault-mod-
eling scopes its application to behavioral design modeling [3], [7] while
other research aims at RTL design modeling [8], [10]. The research pre-
sented in this paper focuses on RTL design modeling. Although spe-
cific Verilog constructs [15] are used as a medium to explain the pro-
posed RTL fault model, the concepts developed here can be applied to
any other hardware description language. A few clarifications on the
terminology used in this paper are given below:

Language Operators: RTL language operators are classified into
Boolean (&, j, ^,�), synthetic (+,�, �,�,�,<,>,==, ! =),
and logical (&&, k, !) operators. A further classification of these
operators, as used in another context, is unnecessary for the pur-
pose of fault modeling.
Identifiers: Identifiers are the names that one gives to the objects
like wires, gates, and functions in the circuit. All identifiers that
specify signal names will be referred to as “variables” in this
paper.

A. RTL Fault Model and Injection Algorithm

An RTL fault model and a fault-injection algorithm are developed
such that the RTL fault-list of a module becomes a representative
sample of the collapsed gate-level fault-list. The classical definition of



1106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

the term “representative sample” in the context of statistical theory is
given by Stephan and McCarthy [16] as:

A representative sample is a sample which, for a specified set
of variables, resembles the population from which it is drawn to
the extent that certain specified analyses that are to be carried out
on the sample (computation of means, standard deviations, etc.,
for particular variables) will yield results which will fall within
acceptable limits set about the corresponding population values,
except that in a small proportion of such analyses of samples (as
specified in the procedure used to obtain this one) the results will
fall outside the limits.
In order for the RTL fault-list of a module to be a representative

sample of the collapsed gate-level fault-list, RTL faults should have a
distribution of detection probabilities similar to that for collapsed gate
faults. The detection probability of a fault is defined by Sethet al. [17]
as the “probability of detecting a fault by a randomly selected pattern.”
In other words, if a given test set containsn patterns and a fault is de-
tectedk times during fault simulation using the test set, the detection
probability of the fault is given ask=n. When two fault-lists (one con-
taining RTL faults and the other gate-level collapsed faults) with similar
detection probability distributions are simulated for a given set of test
patterns, the respective fault coverages are expected to track each other
closely within statistical error bounds. Agrawal and Kato [11], [12],
established error bounds for the random fault-sampling technique in
which detection probability distributions for a random sample and that
for the entire gate-fault population are expected to be similar. If the
RTL fault-list of a module is indeed a representative sample of the col-
lapsed gate-level fault-list, the difference between RTL and gate-level
fault coverages of a module for a given set of test patterns should be
within the established error bounds [11], [12]. This is verified by the
experimental data given in a later section.

RTL design description dictates the microarchitecture of the gate-
level representation. During logic synthesis, RTL operators map onto
Boolean components of varying complexity, e.g., Boolean and logical
RTL operators map onto Boolean gates, synthetic operators map onto
components such as adders, comparators, etc. The RTL variables map
onto signal lines in the gate-level netlist, though the relationship may
not be a one-to-one mapping. The goal of the proposed fault model is to
judiciously place RTL faults in the design description of a module. This
is assured by mirroring properties of the gate-level single SSF model
in the RTL fault model. These properties are listed below.

Properties of the gate level SSF model include the following.

• Boolean components are assumed to be fault-free.
• Signal lines contain faults:

• a stuck-at-zero (s-a-0) fault when the logic level is fixed at
value 0;

• a stuck-at-one (s-a-1) fault when the logic level is fixed at
value 1.

• According to the SSF assumption, only one fault is applied at a
time when a test set is either being created or evaluated.

• The fault list is reduced using the concept of equivalence or dom-
inance fault collapsing or the checkpoint theorem [12], [18]. The
collapsed fault-list of a module contains input as well as fanout
faults.

The following are properties of the RTL fault model.

• Language operators (which map onto Boolean components in the
gate-level netlist) are assumed to be fault-free.

• Variables (which map onto signal lines in the gate-level netlist)
contain faults:

• an s-a-0 fault when the logic level is fixed at value 0;
• an s-a-1 fault when the logic level is fixed at value 1.

Fig. 1. RTL faults in a schematic representation.

• The proposed RTL fault model follows the single-fault assump-
tion and, therefore, only one fault is applied at a time when a test
set is evaluated.

• The RTL fault-list of a module contains input as well as fanout
faults. RTL variables appearing more than once in executable
statements or instantiations of lower level modules in the de-
sign hierarchy are considered to have fanout. Input faults of an
RTL module have a one-to-one equivalence to input faults of the
module at the gate level. The fanout faults of variables inside an
RTL module represent a subset of the fanout faults of a possible
gate-level implementation.

The above definition of the RTL fault model and the fault-injection
procedure encompasses modeling of faults for synthetic, Boolean and
logical operators, sequential elements, and fanout or stem variables,
as well as the collapsing of RTL faults. RTL faults are depicted with
crosses (“x”) in Fig. 1.

When RTL constructs contain synthetic operators, faults are injected
only on the input variables of such operators. During logic synthesis,
synthetic operators are replaced by combinational circuits imple-
menting the respective functions, e.g., adder, subtracter, comparator,
etc. Internal details of such functions are not available at the RT level
and, therefore, only the subset of the checkpoint faults of the gate-level
representation of these operators, namely, the primary input faults are
modeled.

When a function is represented by RTL constructs containing
Boolean operators, faults are injected on variables that form the
Boolean equations. Some internal signals of these constructs are
available at the RT level and, therefore, RTL faults are placed at
primary inputs and internal nodes including signal stems and fanouts.
The postsynthesis gate-level representation of such a construct may be
structurally different from the RTL Boolean representation. However,
some RTL faults have equivalent faults in a collapsed gate-level
fault-list of any postsynthesis design.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003 1107

When RTL constructs contain logical operators, faults are injected
on variables that constitute inputs of such operators. Most often the
postsynthesis gate-level implementation of a function described using
logical operators maintains the structure implied in the RTL descrip-
tion. In such cases, RTL faults have a one-to-one equivalence to the
collapsed gate faults of the synthesized logic.

Hardware description languages support two types of sequential el-
ements, latch as well as flip-flop. In both cases, RTL faults are placed
on input ports of these components. In the case of the flip-flop, faults
are placed on clock as well as the reset variables.

In the gate-level SSF model, stem and fanout faults are unique since
neither equivalence nor dominance relations exist between them. Stem
and fanout faults are treated as special cases in the RTL fault model as
well. A separate RTL fault is injected on each fanout of each bit of the
variable. Also, a unique RTL fault is placed on each stem. In a VLSI
system, several modules are interconnected. The interconnecting sig-
nals between modules have similar issues about stem and fanout-fault
modeling. The properties described for stem and fanout-fault modeling
for RTL constructs are applied for interconnecting signals between
modules as well.

The fault-collapsing technique is widely used during gate-level fault
simulation to reduce the size of the fault-list [18], [12]. Smaller fault-
lists require lesser resources, and improve run-time performance. Al-
though it is desirable, fault collapsing is not performed at the RT level
since the structural information needed to analyze the equivalence of
faults is missing. At the minimum, the proposed RTL fault model in-
herently avoids generating duplicate faults.

Although there are several subtle and critical differences between
RTL fault model proposed here and previous approaches [8]–[10], we
do not intend to claim novelty of RTL faults described here. The nov-
elty of our technique lies in the coverage evaluation methods for the
proposed RTL fault model and the associated statistical tolerance. As
the RTL model gets coarser, the result remains correct though within
larger statistical tolerance bounds. These ideas are analyzed in the fol-
lowing sections.

B. RTL Fault-Simulation Method

The RTL fault simulator accepts the fault-injected RTL circuit de-
scription and the test pattern set as inputs. The RTL fault-simulation
method is analogous to the gate-level approach, in which good and
faulty circuits are created based on the SSF assumption and simulated
with a given set of test patterns. When responses of a good circuit and
the faulty circuit do not match, the fault is considered detected. Fault
simulation is continued until all faults are evaluated for the given set
of test patterns. At the completion of fault simulation, a report is gen-
erated which contains statistics and other information on detected as
well as undetected RTL faults. The RTL fault coverage of a module is
defined as the ratio of the number of detected RTL faults to all RTL
faults.

The RTL fault simulator used in this research isVerifault-XL. Ver-
ifault-XL is suitable for use as an RTL fault simulator due to its ca-
pability of propagating fault effects through RTL circuit description.
RTL faults are identified toVerifault-XLas zero-delay buffers inserted
between variables and executable statements as per the fault-injection
algorithm. For more details on the method of RTL fault grading using
Verifault-XL, one may refer to Mao and Gulati [8] andVerifault-XL
User’s Guide[19]. Several circuits (see Table I) were simulated using
this method. M1 through M4 are RTL modules with a single level of
hierarchy. These are studied in this section. D1, D2, and D3 are mul-
timodule designs. The technique of this section will apply to their in-
ternal modules. VLSI systems that comprise of several modules, how-
ever, require the special technique of Section III and so D1, D2, and
D3 will be discussed later.

TABLE I
DESIGNDATA OF MODULES AND VLSI SYSTEMS USED IN EXPERIMENTS

C. Study of Efficacy of RTL Fault Model and
Fault-Injection Algorithm

In this section, the effectiveness of the RTL fault model and fault-in-
jection algorithm in modeling hardware faults at the RT level is dis-
cussed.

1) Comparison of RTL and Gate Fault Lists:In practice, an
RTL module contains several interconnected Boolean components
described using various constructs. RTL faults are judiciously placed
at input ports of the module, on input variables of the Boolean
components, and on fanouts of interconnecting signals between
Boolean components. The RTL faults may also be placed on fanouts
of variables internal to the Boolean components if they are described
using Boolean RTL operators. Therefore, an RTL fault-list of a
module contains not just pin faults but also some internal faults. This is
illustrated by the example in Figs. 1 and 2. Fig. 1 contains a schematic
representation of a hardware function. Fig. 2 contains corresponding
RTL description. The proposed RTL fault model and fault-injection
procedure, when applied to the code, judiciously place faults in the
RTL code. RTL faults are depicted with crosses (“x”) in Fig. 1. As can
be observed in Fig. 1, the RTL fault set consists of pin faults as well
as internal faults of the module. Constraint-driven logic synthesis of
the RTL code given in Fig. 2 may produce many different gate-level
implementations. The gate-level implementations derive the microar-
chitecture from the RTL description. One of the gate-level netlists was
arbitrarily selected to demonstrate the relationship of RTL faults to the
gate faults. An analysis of the RTL and gate-level fault-lists reveals
that individual RTL faults, when applied one at a time to the RTL
design, produce behaviors that match the corresponding behaviors
of faulty gate-level circuits resulting from individual stuck-at gate
faults applied one at a time. Such RTL and gate-faults are considered
equivalent. The RTL and collapsed gate-level fault-lists contain 67
and 174 faults, respectively. Upon comparing the RTL fault-list to
the collapsed gate-level fault-list of the selected implementation, it is
found that each RTL fault is equivalent to a unique gate-level fault.
There are 107 gate-faults that do not have equivalent RTL fault. In
this case, an RTL fault-list is viewed as a representative subset of the
gate-level fault-list.

2) Comparison of RTL and Gate-Fault Coverage:If, indeed,
the proposed RTL fault model possesses the statistical properties
of a random sample of gate-level faults, the difference between the
RTL and the gate-level fault coverages of a module for a given set
of test patterns should be within the error bounds for the random
fault-sampling technique. Agrawal and Kato [11], [12] give the range
of coverage for the random sampling technique as

c�
�2k

2N
1 +

4Nc(1� c)

(�2k)
(1)

wherek = 1 � N=M , whenN faults are sampled from a total ofM
gate-level faults in the circuit,� = 3:00 for the three-sigma confi-



1108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

Fig. 2. RTL code example.

dence probability of 0.998, andc is the ratio of detected to total faults
among the sampled faults. When (1) is used for error bounds of the
gate-level fault coverage estimated by the proposed RTL fault-mod-
eling technique,N represents the number of RTL faults in a module,
M represents the number of gate faults in the module, andc represents
the ratio of the number of detected RTL faults to all RTL faults.

RTL and gate-level fault coverages of several real-life industry-ap-
plication circuits are compared. An RTL fault-list is created for each
RTL module using the proposed fault model and fault-injection pro-
cedure. RTL modules are then synthesized using the commercial logic
synthesis tool Design Compiler [20] and a 0.35-�m CMOS technology
library. A gate-level implementation is arbitrarily selected to measure
the gate-level fault coverage of the given test patterns. RTL and gate-

TABLE II
MEASUREDFAULT COVERAGE DATA FOR MODULES

level circuits are simulated using the fault simulatorVerifault-XL. Test
pattern sets were written for circuits using their functional specifica-
tions. The error between RTL and gate-level fault coverage is expected
to be within�3� range with a confidence probability of 99.8% as
per (1).

All circuits used for experiments, M1-Counter (four-bit) module,
M2-Transmit Buffer module, M3-SDRAM Controller module,
M4-DSP Interface module, D1-Frame Timing Control ASIC,
D2-System Timing Controller ASIC, and D3-Digital Signal Processor
(DSP) ASIC, contain sequential as well as combinational logic. Design
data for these circuits (PI = number of primary input signals,
PO = number of primary output signals, Bidi = number of

bidiectional signals,Code Size = number of lines of Verilog

HDL code, andArea = gate area measured as number of two-input
NAND CMOS equivalent gates) are provided in Table I. As we pointed
out earlier, D1, D2, and D3 are multimodule systems that require a
different technique to be discussed in Section III. Only the single
module circuits M1–M4 are discussed in this section.

In Table II, for all except four data-points, RTL coverage is found
to track the gate-level coverage within statistical error bounds. These
four cases are being investigated and may contribute toward refinement
of the proposed fault model. Figs. 3 and 4 show correlation between
RTL and gate-level fault coverage across 26 data points for Module
M3. Similar results are reported for other circuits (M1, M2, and M4)
in [21].

From the experimental data (see Table II), we conclude that the RTL
fault coverage is a good estimate of the gate-level fault coverage for
medium to large size modules. It is observed that for very small mod-
ules such as module M1 (four-bit counter), the error between the RTL
and the gate-level fault coverages, though within statistically calculated
error bounds, is large (more than 5%). This is due to the small sample
size in the random-sampling technique [22]. However, modern VLSI



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003 1109

Fig. 3. Module M3: RTL and gate coverages versus test vectors.

Fig. 4. Module M3: Error versus RTL fault coverage.

systems contain many modules of a variety of sizes and large estima-
tion errors in a few small modules are insignificant while calculating
the overall fault coverage.

The main conclusion of this section is that the proposed RTL fault
model can be used to estimate the gate-level fault coverage of a module
within statistical error bounds.

III. A PPLICATION OFSTRATIFIED SAMPLING

The results of Section II show that the RTL fault coverage provides a
statistical estimate for the gate-level fault coverage. The experimental
data also reveal that there is no straightforward relationship between
the number of RTL faults and that of gate-level faults. Considering
the fault-modeling method, the number of RTL faults is a measure of
the size of the RTL description of the module. However, this number
does not correlate with the gate count. For example (see Table I), for
module M1, the numbers of gates and gate-faults are more than twice
the number of RTL faults. For modules M2 and M3, the gate count is
closer to the number of RTL faults, but there are almost twice as many
gate-level faults. The main conclusion of these experiments is that the
proposed RTL fault model can be used to estimate the gate-level fault
coverage of a module. But, the total number of RTL faults in the module
does not represent the size of the gate-level fault-list.

In general, a large VLSI system consists of many modules. The
lack of a definite relationship between the number of RTL faults and
the number of possible gate-level faults presents a problem. A module
with a large contribution of RTL faults to the overall RTL fault-list of
the VLSI system may get synthesized into a relatively small gate-level
implementation and consequently make a smaller contribution to the

TABLE III
INACCURATE ESTIMATION OF GATE FAULT COVERAGE

overall gate-level fault-list of that VLSI system. Similarly, a module
that contributes fewer faults to the RTL fault-list of the VLSI system
may result in a relatively large gate-level implementation after logic
synthesis, and thus, contribute a larger percentage of faults to the
overall gate-level fault-list of the system. Therefore, although the RTL
fault-list of each module in a VLSI system is a representative sample
of the corresponding gate-level fault-list of that module, the overall
RTL fault-list of the system does not constitute a representative
sample of the overall gate-level fault-list. Table III illustrates this
problem for a hypothetical VLSI system consisting of two modules,
m1 and m2. Based on the observation of the experiments in the
previous section, it is assumed that the measured RTL fault coverage
is close to the gate-level fault coverage in each module. The overall
RTL fault coverage of the system is obtained as(91 � 100 + 39�
100)=200 = 65%. The overall gate-level fault coverage of the system
is calculated as(90� 150+ 40� 400)=550 = 54%. It is found that
the overall coverages are quite different. This is because the two
modules, although equal in size at the RT level, translate into quite
different sizes at the gate-level. In order to find the gate-level fault
coverage, modules’ RTL coverages should be weighted according to
their relative gate-level sizes. Weighted RTL fault coverage can be
obtained as91� (150=550)+ 39� (400=550) = 53%. The above
observation leads us to consider a technique known asstratified
sampling [23].

According to the stratified-sampling technique, the fault population
is divided along RTL module boundaries. Thus, each module is con-
sidered a stratum. Within a stratum, the RTL faults are considered as
a sample of all (i.e., gate-level) faults. The ratio of the number of RTL
faults to the number of gate-level faults will be the sampling fraction
for the stratum. In general, if the number of RTL faults in a module
is larger, then a random sample of those can also be used. Suppose, a
VLSI system hasG gate-level faults distributed amongM modules (or
strata). Themth module hasGm gate-level faults. Then

G =

M

m=1

Gm

and

Weight ofmth module, Wm =
Gm
G

: (3)

From themth module,rm RTL faults are simulated. These can either
be all RTL faults (100% sample) or a random sample of all RTL faults
in themth module.

Further, for a given set of test patterns two coverages for themth
module are defined as

Cm =
Detected gate faults inmth module

Gm
(4)

cm =
1

rm

r

i=1

ymi (5)

whereymi are random variables whose values are determined by fault
simulation:ymi = 1 if the ith sampled fault inmth module is detected,



1110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

orymi = 0 if that fault is not detected. According to Section II, the RTL
coveragecm is an unbiased estimate for the gate-level fault coverage
Cm of modulem [21], [24]. Cm, being the true gate-level fault cov-
erage of themth module, provides the total gate-level coverage of the
multimodule VLSI system as

C =

M

m=1

GmCm

G
=

M

m=1

WmCm: (6)

Here, module coverages have been weighted according to their sizes
to eliminate the type of error illustrated in Table III. The estimated value
for the true gate-level coverageC of the VLSI system is called stratified
RTL fault coverage and is obtained as

C =

M

m=1

Gmcm

G
=

M

m=1

Wmcm: (7)

Notice that the stratified RTL fault coverageC is different from the
overall nonstratified RTL fault coverage, which is given by

CRTL =

M

m=1

rmcm

M

m=1

rm

: (8)

The discussion and empirical data provided in Section II show that
the RTL fault coverage of a module is a close estimate of the gate-level
coverage of that module. That is, given a vector set, almost identical
fractions of the two types of faults are detected, or a randomly selected
RTL fault has the same probability of being detected as a gate-level
fault. By taking the statistical expectation of (7), it can be shown that
C is an unbiased estimate of the true coverageC, or

E(C) =

M

m=1

WmE(cm) =

M

m=1

WmCm = C: (9)

The variance of the estimate is evaluated as

�
2 = �

2(C) = E(C � C)2: (10)

On simplification [13], this leads to

�
2 =

1

G2

M

m=1

Gm(Gm � rm)�
2

m

rm
(11)

where�2m is the unbiased estimate for the variance ofymi, given by

�
2

m =
1

rm � 1

r

i=1

(ymi � cm)
2
: (12)

In (12), ymi = 1 for cmrm detected faults andymi = 0 for (1 �
cm)rm undetected faults. Therefore,

�
2

m =
1

rm � 1
(cmrm(1� cm)

2 + (1� cm)rmc
2

m)

=
rmcm(1� cm)

rm � 1
: (13)

Equation (11) can be expanded as

�
2 =

M

m=1

G2m

G2
�

Gmrm

G2
�2m

rm

=

M

m=1

W
2

m �

Wmrm

G

�2m

rm
: (14)

Since an RTL module description is significantly more compact
compared with the gate-level description,rm � Gm. Therefore,
simplifying (14) based on the approximation, we obtain

�
2 =

M

m=1

W 2

m�
2

m

rm
: (15)

Substituting (13) into (15), the variance of stratified RTL fault cov-
erage is given as

�
2 =

M

m=1

W 2

m

rm � 1
cm(1� cm): (16)

For a given confidence probability, the range of coverage is given as
[21]

C � t� (17)

wheret is the limit for which the area of the normalized (zero mean and
unity variance) Gaussian probability density equals some given confi-
dence probability. The values oft can be selected from tables of normal
distribution, or taken as three for the popularthree-sigma estimate.

It is evident from (7), (16), and (17) that the relevant parameters,
which determine stratified RTL fault coverage and error bounds, do
not require the knowledge of the absolute values ofGm or G. They
require the ratio of the two quantities in the form of stratum weights.
Techniques for determining the stratum weights of modules in a given
VLSI system are outlined next.

IV. STRATUM WEIGHT-EXTRACTION TECHNIQUES

The accurate stratum weights of the modules of a VLSI system can
be obtained only after final logic synthesis. However, since the goal
of the proposed RTL fault model and test evaluation technique is to
enable an accurate estimation of the gate-level fault coverage early in
the design cycle, alternative approaches are proposed here.

• Preliminary (early) logic synthesis based weight extraction.
• Entropy-measure-based weight extraction [25], [26].
• Use of early area (gate-count) estimates (using built-in RTL-syn-

thesis technology in formal verification tools such as Verplex
[27]) to determine weights. It is assumed here that the size of
the gate-level fault-list of each module is proportional to the
area (gate-count) of the corresponding module and thus stratum
weightWm can be approximated to be the ratio ofAm andA
instead ofGm andG, whereAm = area (gate-count) of the
module, andA = total area (gate-count) of the VLSI system.

These techniques allow one to estimate stratum weights of modules
during early phases of the design cycle without depending upon gener-
ation of the final gate-level netlist. The weights obtained by these tech-
niques may be different from those obtained from the final gate-level
netlist. In the analysis presented in Section III, error resulting from such
estimation is ignored with the assumption that even though the abso-
lute values ofGm andGmay vary significantly for different gate-level
netlists, their ratio represented as stratum weights does not vary much
due to large denominatorG. The impact of difference between the es-
timated and actual stratum weights on the stratified RTL fault coverage
and error bounds is assumed to be insignificant. These assumptions are
verified in Section V.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003 1111

V. EXPERIMENTAL RESULTS

A. Estimation of the Gate-Level Fault Coverage of a VLSI System

Several industry-application VLSI systems (see design data in
Table I) ranging in size from 1 000 to 105 000 gates were used for
empirical studies. The experimental procedure is as follows.

• A C++ parser processes the RTL code and generates fault-in-
jected RTL code without altering the circuit behavior. The parser
implements the fault-injection procedure for the proposed fault
model.

• From each module of the VLSI system, a set of RTL faults (all
or a random subset) is selected. These faults are simulated for the
given set of test patterns and module coverages are determined.

• Stratum weights for modules are computed using logic-synthesis-
based weight-extraction technique.

• Stratified RTL fault coverage is computed using (7). The strat-
ified RTL fault coverage serves as an estimate of the gate-level
fault coverage of the VLSI system. The range of the estimated
coverage is obtained using (17).

The experimental procedure described above was carried out using
commercial electronic design-automation tools. The RTL fault simu-
lation was performed using theVerifault-XLsimulator. The estimates
of the gate-level fault coverages were compared with the nonstratified
RTL fault coverages calculated using (8) as well as the actual gate-
level fault coverages. The actual gate-level fault coverage of each VLSI
system was obtained by fault grading the gate-level netlist. Gate-level
fault simulation, also preformed byVerifault-XL, used gate-level netlist
for the VLSI system obtained by logic synthesis of the RTL code for an
arbitrary set of optimization constraints.Design Compilerwas used for
logic synthesis [20]. Test patterns (test-benches) used for the RTL and
gate-level fault simulations were manually generated for design verifi-
cation using functional specifications of the systems.

Experimental data provided in Table IV indicates that the stratified
RTL fault coverage is a good estimate of the gate-level fault coverage.
In all except four cases, the true error is within statistical error bounds
determined from (16) and (17). As can be noted in data for system
D3 (Table IV), the error bounds for testbenches T1, T5, T6, and T7
are significantly wider than those for T2, T3, and T4. The RTL fault
simulation for testbenches T1, T5, T6, and T7 was performed using a
very small random sample of the overall RTL fault-list. This was done
to maintain reasonable CPU time for all test sets given that T1, T5,
T6, and T7 are significantly larger than T2, T3, and T4. As per (16),
the size of the RTL fault sample in each module and the error bounds
of the overall stratified RTL coverage of the system are related. The
smaller the number of RTL faults used in simulation, the wider the error
bounds. This is confirmed by the data presented in Table IV. Therefore,
in order to estimate the gate-level fault coverage within narrow error
bounds, a reasonable number of RTL faults should be selected during
simulations. Figs. 5 and 6 show correlation between stratified RTL and
gate-level fault coverage across several data points for Design D3.

B. Stratum Weight Estimation

The goal of the proposed RTL fault model and coverage evaluation
technique is to enable early estimation of gate-level coverage by run-
ning RTL fault simulations. Some of the key parameters needed to de-
termine stratified RTL fault coverage are stratum weights of all mod-
ules that constitute a VLSI system. The actual stratum weights can
be determined only after final logic synthesis is completed and final
gate-level netlist is available. However, use of final gate-level netlist
defeats the purpose of the technique presented here. Thus, for an early
estimation of stratum weights (without using final netlist), several alter-
native approaches are presented in Section IV with an assumption that
the impact of difference between the estimated (using proposed tech-

TABLE IV
FAULT COVERAGE DATA FOR VLSI SYSTEMS

Fig. 5. Design D3: Stratified RTL and gate-coverages versus test vectors.

niques) and actual stratum weights on the stratified RTL fault coverage
and error bounds is insignificant. This assumption is verified here with
experimental data.

For the VLSI system D3, several unique gate-level netlists were
obtained by logic synthesis. Each netlist is generated using a different
set of optimization constraints, e.g., area optimization (netlist 1), speed
optimization (netlist 2), and combined area and speed optimizations
(netlists 3 and 4). Gate-level fault-lists were generated from each
netlist and several sets of stratum weights were extracted (one from
each netlist). A set of stratum weights was also extracted using
area-estimation technique with a formal verification tool. Fig. 7
indicates the data points (number of gate-faults and area) for each
module in D3 (total 12 modules constitute Design D3) for each of



1112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

Fig. 6. Design D3: Error versus fault coverage.

Fig. 7. Design D3: Gate-count and area distribution.

Fig. 8. Design D3: Stratum weight distribution.

these approaches. Fig. 8 indicates the distribution of stratum weights
across all modules for each set. Figs. 9 and 10 show stratified RTL
fault coverage and error bounds determined using stratum weights
from each of these approaches.

It can be observed from the figures here, that the absolute values
of Gm andG may vary significantly for different gate-level netlists.
However, their ratios represented as stratum weightsWm do not vary
as much. Also, the impact of small variations in stratum weights on the
stratified RTL fault coverage and error bounds is very small. These ex-
perimental results validate the use of early/preliminary netlist or area-
estimation-based techniques for stratum weight extraction. For more
information, please refer to [21].

Fig. 9. Design D3: Stratified RTL fault coverage.

Fig. 10. Design D3: Error bounds.

VI. CONCLUSION

In this paper, a novel procedure that supports RTL fault simulation
and generates an estimate of the gate-level fault coverage for a given set
of test patterns is proposed along with experimental results from several
real-life industry-application VLSI systems. The proposed procedure
can be used as an integral part of the high-level test generation systems
[6], [10], [28]–[30]. The results of test-evaluation using the proposed
procedure can provide feedback for further improving the quality of
test patterns.

As established by Thakeret al. [31] with empirical data, the archi-
tectural testability properties and the subsequent test weaknesses of a
gate-level netlist are derived from the RTL description and remain un-
changed by the constraint-driven logic synthesis. The RTL fault simu-
lation using the proposed fault model provides means to identify testa-
bility problems at the RT level prior to logic synthesis. The circuits that
do not attain high fault coverage even with a large number of test pat-
terns indicate test-related flaws inherent in the design architecture. The
undetected RTL faults indicate hard-to-test functional areas of the de-
sign. The identification of these test problems early in the design cycle
prompts necessary architectural changes prior to logic synthesis, re-
ducing the impact on time-to-market.

Existing fault-simulation techniques, which are based on gate-level
SSF models, require a large memory and a lot of CPU time. The
RTL fault-simulation approach presented in this paper holds promise
for significantly reducing the performance penalties of the gate-level
fault-simulation approach. The experiments conducted to compare the
speed of RTL and gate-level fault simulations for an equal number
of faults, show that the RTL fault simulations runs 2 to 6 times
faster than the gate-level fault simulation. However, the commercial
fault simulator used for these experiments is designed for optimum
performance at the gate level, while supporting RTL fault simulation
as only a secondary feature. A true comparison of RTL and gate-level
fault-simulation performances can be obtained if fault simulators



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003 1113

optimized for RTL as well as gate-level fault models were used.
Currently, such option is not available. In future, a fault simulator
designed to work optimally with the proposed RTL fault model may
offer larger performance improvements.

The limitation of the proposed procedure is that it requires one to pre-
serve the partitioning of the VLSI systems across RTL module-bound-
aries in order to be able to use stratum weights reliably. Some of the
advanced optimization techniques recommend flattening of the RTL
structure/partitions during logic synthesis to maximize the area reduc-
tion. This and other similar logic synthesis/optimization techniques that
require removal or restructuring of design partitions built into the RTL
description as modules, should be avoided if the proposed procedure is
to be effectively used.

ACKNOWLEDGMENT

The authors thank A. Friedman, R. Roy, L. Blue, and N. Dvorson for
feedback and support.

REFERENCES

[1] S. M. Thatte and J. A. Abraham, “Test generation for microprocessors,”
IEEE Trans. Comput., vol. C-29, pp. 429–441, June 1980.

[2] S. Ghosh and T. J. Chakraborty, “On behavior fault-modeling for com-
binational digital designs,”J. Electron. Testing: Theory Applicat., vol.
2, no. 2, pp. 135–151, 1991.

[3] S. Ghosh, “Behavioral-level fault simulation,”IEEE Design & Test
Comput., vol. 5, pp. 31–42, June 1988.

[4] P. C. Ward and J. R. Armstrong, “Behavioral fault simulation in VHDL,”
in Proc. 27th Design Automation Conf., June 1990, pp. 587–593.

[5] J. R. Armstrong, F. S. Lam, and P. C. Ward, “Test generation and fault
simulation for behavioral models,” inPerformance and Fault Modeling
with VHDL. Englewood Cliffs, NJ: Prentice-Hall, 1992, pp. 240–303.

[6] C. H. Cho and J. R. Armstrong, “B-algorithm: A behavioral test gener-
ation algorithm,” inProc. Int. Test Conf., Oct. 1994, pp. 968–979.

[7] P. Sanchez and I. Hidalgo, “System fault simulation,” inProc. Int. Test
Conf., Oct. 1996, pp. 732–740.

[8] W. Mao and R. Gulati, “Improving gate level fault coverage by RTL fault
grading,” inProc. Int. Test Conf., Oct. 1996, pp. 150–159.

[9] F. Ferrandi, F. Fummi, and D. Sciuto, “Test generation and testability al-
ternatives exploration of critical algorithms for embedded applications,”
IEEE Trans. Comput., vol. 51, pp. 200–215, Feb. 2002.

[10] R. J. Hayne and B. W. Johnson, “Behavioral fault modeling in a VHDL
synthesis environment,” inProc. 17th VLSI Test Symp., Apr. 1999, pp.
333–340.

[11] V. D. Agrawal and H. Kato, “Fault sampling revisited,”IEEE Design &
Test of Comput., vol. 7, pp. 32–35, Aug. 1990.

[12] M. L. Bushnell and V. D. Agrawal,Essentials of Electronic Testing
for Digital, Memory and Mixed-Signal VLSI Circuits. Norwell, MA:
Kluwer, 2000, pp. 78–124.

[13] W. G. Cochran,Sampling Techniques. New York: Wiley, 1977, pp.
10–47.

[14] E. Sternheim, R. Singh, R. Madhavan, and Y. Trivedi,Digital Design
and Synthesis with Verilog HDL. San Jose, CA: Automata Pub., 1993,
pp. 14–63.

[15] P. A. Thaker, V. D. Agrawal, and M. E. Zaghloul, “Validation vector
grade (VVG): A new coverage metric for validation and test,” inProc.
17th IEEE VLSI Test Symp., Apr. 1999, pp. 182–188.

[16] F. Stephan and P. McCarthy,Sampling Opinions: An Analysis of Survey
Procedure. New York: Wiley, 1958, pp. 30–78.

[17] S. C. Seth, V. D. Agrawal, and H. Farhat, “A statistical theory of digital
circuit,” IEEE Trans. Comput., vol. 39, pp. 582–586, Apr. 1990.

[18] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital Systems
Testing and Testable Design. New York: IEEE Press, 1990, pp.
116–117.

[19] Verifault-XL™ User’s Guide. San Jose, CA: Cadence Design Sys-
tems, Inc., 1997.

[20] H. Bhatnagar,Advanced ASIC Chip Synthesis. Norwell, MA: Kluwer,
1999, pp. 105–150.

[21] P. A. Thaker, “Register-Transfer Level Fault Modeling and Test Evalu-
ation Technique,” Ph.D disertation, Dept. of Elect. and Comput. Eng.,
George Washington Univ., Washington, DC, 2000.

[22] V. D. Agrawal, “Sampling techniques for determining fault coverage in
LSI circuits,” J. Digital Syst., vol. 5, no. 3, pp. 189–202, 1981.

[23] A. Stuart,The Ideas of Sampling. High Wycombe, U.K.: Griffin and
Co., 1984, pp. 149–155.

[24] P. A. Thaker, V. D. Agrawal, and M. E. Zaghloul, “Register-transfer level
fault modeling and test evaluation techniques for VLSI circuits,” inProc.
Int. Test Conf., Oct. 2000, pp. 940–949.

[25] K. T. Cheng and V. D. Agrawal, “An entropy measure for the complexity
of multi-output boolean functions,” inProc. 27th Design Automation
Conf., June 1990, pp. 302–305.

[26] N. Pippenger, “Information theory and the complexity of boolean func-
tions,” Math. Syst. Theory, vol. 10, pp. 129–167, 1977.

[27] Verplex Formal Verification: Logic Equivalency Checker User’s Guide,
Malpitas, CA, 2002.

[28] S. Chiusano, F. Corno, and P. Prinetto, “RT-level TPG exploiting high-
level synthesis information,” inProc. 17th IEEE VLSI Test Symp., Apr.
1999, pp. 341–346.

[29] F. Corno, P. Prinetto, and M. S. Reorda, “Testability analysis and ATPG
on behavioral RT-level VHDL,” inProc. Int. Test Conf., Nov. 1997, pp.
753–759.

[30] E. M. Rudnick, R. Vietti, A. Ellis, F. Corno, P. Prinetto, and M. S. Re-
orda, “Fast sequential circuit test generation using high-level and gate-
level techniques,”Proc. IEEE Eur. Design Automation and Test Conf.,
pp. 570–576, Feb. 1998.

[31] P. A. Thaker, M. E. Zaghloul, and M. B. Amin, “Study of correlation of
testability aspects of RTL description and resulting structural implemen-
tations,” inProc. 12th Int. Conf. VLSI Design, Jan. 1999, pp. 256–259.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


