Non-Linear Analog Circuit Test and Diagnosis under Process Variation using V-Transform Coefficients

Suraj Sindia Vishwani D. Agrawal
Dept. of ECE, Auburn University, AL, USA

Virendra Singh
Indian Institute of Science, Bangalore, India

May 2, 2011
Outline

1. Motivation
2. Coefficient Based Test
3. Fault Classification
4. Results
Outline

1. Motivation
2. Coefficient Based Test
3. Fault Classification
4. Results
Fault Classification

Motivation

1. Semiconductor processes at advanced nodes are subject to random variability
 - Poly/thin film resistors - line edge roughness ($\sigma \approx 15\%\mu$)
 - Capacitors - Oxide thickness fluctuation & line edge roughness ($\sigma \approx 20\%\mu$)
Motivation

<table>
<thead>
<tr>
<th>1</th>
<th>Semiconductor processes at advanced nodes are subject to random variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly/thin film resistors - line edge roughness ($\sigma \approx 15%\mu$)</td>
<td></td>
</tr>
<tr>
<td>Capacitors - Oxide thickness fluctuation & line edge roughness ($\sigma \approx 20%\mu$)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Faults due to variability can mask or exacerbate failure from conventional defect mechanisms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust contamination, Processing Equipment, Material impurity, Clean room contamination, Operator imperfection, etc., (Fault sizes $\mu_{dev} > 50%$)</td>
<td></td>
</tr>
</tbody>
</table>
Fault Classification

Motivation

1. Semiconductor processes at advanced nodes are subject to random variability
 - Poly/thin film resistors - line edge roughness ($\sigma \approx 15\% \mu$)
 - Capacitors - Oxide thickness fluctuation & line edge roughness ($\sigma \approx 20\% \mu$)

2. Faults due to variability can mask or exacerbate failure from conventional defect mechanisms.
 - Dust contamination, Processing Equipment, Material impurity, Clean room contamination, Operator imperfection, etc., (Fault sizes $\mu_{dev} > 50\%$)

3. Distinguishing failure mechanisms between process variation (PV) and conventional ones can possibly help improve yield.
Types Of Faults

- Manufacturing Defect
- Random Variation
Ideal Test For An Analog Circuit

Wish list for an analog circuit test scheme

- Suitable for large class of circuits
- Detects sufficiently small parametric faults – high sensitivity
- Low design complexity of the input signal
- Small area overhead – requires little circuit augmentation
- Large number observables – handy in diagnosis
Motivation Coefficient Based Test Fault Classification Results

Ideal Test For An Analog Circuit

Wish list for an analog circuit test scheme

- Suitable for large class of circuits
- Detects sufficiently small parametric faults – high sensitivity
- Low design complexity of the input signal
- Small area overhead – requires little circuit augmentation
- Large number observables – handy in diagnosis
- Aids distinction of small defects from process variation (PV) induced faults – need in advanced tech nodes
Outline

1. Motivation
2. Coefficient Based Test
3. Fault Classification
4. Results
Cascaded Amplifiers – An Example

Two stage amplifier with 4^{th} degree non-linearity in V_{in}

$$V_{out} = c_0 + c_1 V_{in} + c_2 V_{in}^2 + c_3 V_{in}^3 + c_4 V_{in}^4$$

Polynomial Coefficients

\[c_0 = V_{DD} - R_2 K \left(\frac{W}{L} \right)_2 \left[(V_{DD} - V_T)^2 + R_1^2 K^2 \left(\frac{W}{L} \right)_1 V_T^4 \right. \]

\[-2(V_{DD} - V_T)R_1 \left(\frac{W}{L} \right)_1 V_T^2 \]

\[c_1 = R_2 K \left(\frac{W}{L} \right)_2 \left[4R_1^2 K^2 \left(\frac{W}{L} \right)_1 V_T^3 + 2(V_{DD} - V_T)R_1 K \left(\frac{W}{L} \right)_1 V_T \right] \]

\[c_2 = R_2 K \left(\frac{W}{L} \right)_2 \left[2(V_{DD} - V_T)R_1 K \left(\frac{W}{L} \right)_1 - 6R_1^2 K^2 \left(\frac{W}{L} \right)_1 V_T^2 \right] \]

\[c_3 = 4V_T K^3 \left(\frac{W}{L} \right)_1 \left(\frac{W}{L} \right)_2 R_1^2 R_2 \]

\[c_4 = -K^3 \left(\frac{W}{L} \right)_1 \left(\frac{W}{L} \right)_2 R_1^2 R_2 \]
V-Transform

Definition

\[V_{C_i} = e^{\gamma C'_i} \quad \forall \ 0 \leq i \leq n \]

\[\frac{dC'_i}{dp_j} = \left| \frac{dC_i}{dp_j} \right| \quad \forall \ 0 \leq i \leq n \]

- \(C_i \) – ith polynomial coefficient
- \(C'_i \) – ith modified polynomial coefficient
- \(V_{C_i} \) – ith V-Transform coefficient
V-Transform Coefficient – Sensitivity Gain

Sensitivity of coefficients

\[
\frac{S_{p_i}^{V_{C_i}}}{S_{p_i}^{C_i}} = \frac{\left| \frac{dC_i}{dp_i} \right| \gamma e^{\gamma C_i'} \bullet \frac{p_i}{e^{\gamma C_i'}}}{\frac{dC_i}{dp_i} \bullet \frac{p_i}{C_i}} = \gamma C_i
\]

\(\gamma C_i\) – Increased sensitivity over ordinary polynomial coefficients

\(\gamma\) – Sensitivity parameter that can be chosen according to the desired degree of sensitivity
Test Setup

\[f(\cdot) \]
\[v_{in} \]
\[v_{out} \]
\[\text{Circuit Under Test} \]
\[\text{Estimate Polynomial Coefficients} \]
\[a_0 - a_N \]
\[V_{CO} - V_{CN} \]

- \(v_{ac} \)
- \(V_{bias} \)
- Variable Frequency
- Variable Offset

Motivation Coefficient Based Test Fault Classification Results
Outline

1. Motivation
2. Coefficient Based Test
3. Fault Classification
4. Results
Fault Classification

\[C \leq_{\mathcal{H}_1} C_{th} \]

\(\mathcal{H}_1 \): Fault likely due to manufacturing defect
\(\mathcal{H}_2 \): Fault likely due to process parameter variation
Fault Classification

Summary of steps

- Probability density function of the coefficients are computed by Monte Carlo simulations for fault-free circuits.
- Probability density function of the coefficients are computed by Monte Carlo simulations for faulty circuits.
- Threshold values of coefficients – Boundaries between process variation (PV) and manufacturing defects is estimated for each frequency.
- Confidence of classifying a fault as PV or manufacturing defect is improved by observing one or more coefficients at multiple frequencies.
If P_i is the probability of coefficient being outside its permissible interval due to process variation, then we define confidence in diagnosing CUT to be faulty due to PV, C (N is the total number of coefficients).

$$C = \frac{1}{\prod_{i=1}^{i=N} (1 - P_i)}$$
Results – Benchmark Elliptic Filter
Results - V-Transform Coefficients

\[V_{C_5} = 1.0402 \quad V_{C_4} = 1.6572 \quad V_{C_3} = 8.4224 \quad V_{C_2} = 12.7904 \quad V_{C_1} = 33.0492 \quad V_{C_0} = 93.1396 \]
Results at DC - Elliptic Filter

Parameter combinations leading to max values of V-Transform coefficients with $\alpha = 0.05$

<table>
<thead>
<tr>
<th>Circuit Parameter, (ohm)</th>
<th>V_{c0}</th>
<th>V_{c1}</th>
<th>V_{c2}</th>
<th>V_{c3}</th>
<th>V_{c4}</th>
<th>V_{c5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1 = 19.6k$</td>
<td>18.6k</td>
<td>20.5k</td>
<td>20.5k</td>
<td>20.5k</td>
<td>18.6k</td>
<td>18.6k</td>
</tr>
<tr>
<td>$R_2 = 196k$</td>
<td>186k</td>
<td>205k</td>
<td>186k</td>
<td>186k</td>
<td>186k</td>
<td>205k</td>
</tr>
<tr>
<td>$R_3 = 147k$</td>
<td>139k</td>
<td>154k</td>
<td>154k</td>
<td>154k</td>
<td>139k</td>
<td>154k</td>
</tr>
<tr>
<td>$R_4 = 1k$</td>
<td>950</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>$R_5 = 71.5$</td>
<td>70</td>
<td>80</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>$R_6 = 37.4k$</td>
<td>37.4k</td>
<td>37.4k</td>
<td>37.4k</td>
<td>37.4k</td>
<td>37.4k</td>
<td>37.4k</td>
</tr>
<tr>
<td>$R_7 = 154k$</td>
<td>161k</td>
<td>161k</td>
<td>146k</td>
<td>161k</td>
<td>146k</td>
<td>146k</td>
</tr>
<tr>
<td>$R_{11} = 110k$</td>
<td>115k</td>
<td>115k</td>
<td>104k</td>
<td>115k</td>
<td>104k</td>
<td>104k</td>
</tr>
<tr>
<td>$R_{12} = 110k$</td>
<td>104k</td>
<td>115k</td>
<td>104k</td>
<td>104k</td>
<td>104k</td>
<td>104k</td>
</tr>
</tbody>
</table>
Results at DC - Elliptic Filter

Parameter combinations leading to min values of V-Transform coefficients with $\alpha = 0.05$

<table>
<thead>
<tr>
<th>Circuit Parameter, (ohm)</th>
<th>V_{c0}</th>
<th>V_{c1}</th>
<th>V_{c2}</th>
<th>V_{c3}</th>
<th>V_{c4}</th>
<th>V_{c5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1 = 19.6k$</td>
<td>20.5k</td>
<td>18.6k</td>
<td>18.6k</td>
<td>20.5k</td>
<td>20.5k</td>
<td>20.5k</td>
</tr>
<tr>
<td>$R_2 = 196k$</td>
<td>205k</td>
<td>186k</td>
<td>205k</td>
<td>205k</td>
<td>205k</td>
<td>186k</td>
</tr>
<tr>
<td>$R_3 = 147k$</td>
<td>150k</td>
<td>139k</td>
<td>139k</td>
<td>146k</td>
<td>154k</td>
<td>139k</td>
</tr>
<tr>
<td>$R_4 = 1k$</td>
<td>1010</td>
<td>950</td>
<td>950</td>
<td>950</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td>$R_5 = 71.5$</td>
<td>80</td>
<td>70</td>
<td>70</td>
<td>80</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>$R_6 = 37.4k$</td>
<td>39.2k</td>
<td>39.2k</td>
<td>39.2k</td>
<td>39.2k</td>
<td>35.5k</td>
<td>39.2k</td>
</tr>
<tr>
<td>$R_7 = 154k$</td>
<td>146k</td>
<td>146k</td>
<td>161k</td>
<td>146k</td>
<td>161k</td>
<td>161k</td>
</tr>
<tr>
<td>$R_{11} = 110k$</td>
<td>104k</td>
<td>104k</td>
<td>115k</td>
<td>104k</td>
<td>115k</td>
<td>115k</td>
</tr>
<tr>
<td>$R_{12} = 110k$</td>
<td>115k</td>
<td>104k</td>
<td>115k</td>
<td>115k</td>
<td>115k</td>
<td>115k</td>
</tr>
</tbody>
</table>
Results at DC - Elliptic Filter

Fault detection for some injected faults

<table>
<thead>
<tr>
<th>Circuit Parameter</th>
<th>Out of bound polynomial coefficient</th>
<th>Fault detected?</th>
<th>Out of bound V-Transform coefficient</th>
<th>Fault detected?</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>1</sub> down 25%</td>
<td>c<sub>3</sub>, c<sub>4</sub></td>
<td>Yes</td>
<td>V<sub>c<sub>0</sub></sub> – V<sub>c<sub>4</sub></sub></td>
<td>Yes</td>
</tr>
<tr>
<td>R<sub>2</sub> down 30%</td>
<td>c<sub>2</sub></td>
<td>Yes</td>
<td>V<sub>c<sub>2</sub></sub>, V<sub>c<sub>5</sub></sub></td>
<td>Yes</td>
</tr>
<tr>
<td>R<sub>3</sub> up 25%</td>
<td>c<sub>3</sub></td>
<td>Yes</td>
<td>V<sub>c<sub>1</sub></sub>, V<sub>c<sub>2</sub></sub>, V<sub>c<sub>3</sub></sub></td>
<td>Yes</td>
</tr>
<tr>
<td>R<sub>4</sub> down 30%</td>
<td>c<sub>0</sub></td>
<td>Yes</td>
<td>V<sub>c<sub>0</sub></sub> – V<sub>c<sub>4</sub></sub></td>
<td>Yes</td>
</tr>
<tr>
<td>R<sub>5</sub> up 30%</td>
<td>c<sub>4</sub></td>
<td>Yes</td>
<td>V<sub>c<sub>0</sub></sub>, V<sub>c<sub>4</sub></sub></td>
<td>Yes</td>
</tr>
<tr>
<td>R<sub>7</sub> up 10%</td>
<td>None</td>
<td>PV (C = 200)</td>
<td>V<sub>c<sub>1</sub></sub>, V<sub>c<sub>2</sub></sub></td>
<td>Yes</td>
</tr>
<tr>
<td>R<sub>11</sub> up 15%</td>
<td>None</td>
<td>PV (C = 120)</td>
<td>V<sub>c<sub>4</sub></sub>, V<sub>c<sub>5</sub></sub></td>
<td>Yes</td>
</tr>
<tr>
<td>R<sub>12</sub> down 15%</td>
<td>None</td>
<td>PV (C = 90)</td>
<td>V<sub>c<sub>4</sub></sub>, V<sub>c<sub>5</sub></sub></td>
<td>Yes</td>
</tr>
</tbody>
</table>
Conclusion and Future Work

Conclusion

- Technique for parametric fault detection in analog circuits – faults as small as 25% were uncovered for an elliptic filter example.
- Addressed parametric fault distinction between process variation induced faults.
- Enhanced technique for uncovering parametric faults by increasing sensitivity of polynomial coefficients to circuit parameters.

Future work

- Technique for optimal choice of frequencies at which CUT ought to be excited
- Optimal order of polynomial expansion as a tradeoff between test time and diagnostic resolution
- Algorithms to predict/map RF & other circuit specifications to polynomial/V-Transform coefficients
Conclusion and Future Work

Conclusion

- Technique for parametric fault detection in analog circuits – faults as small as 25% were uncovered for an elliptic filter example.
- Addressed parametric fault distinction between process variation induced faults.
- Enhanced technique for uncovering parametric faults by increasing sensitivity of polynomial coefficients to circuit parameters.

Future work

- Technique for optimal choice of frequencies at which CUT ought to be excited
- Optimal order of polynomial expansion as a tradeoff between test time and diagnostic resolution
- Algorithms to predict/map RF & other circuit specifications to polynomial/V-Transform coefficients