LNA Test: A Polynomial Coefficient Approach

Suraj Sindia Vishwani D. Agrawal Fa Foster Dai

Auburn University, Auburn, AL, USA

20th North Atlantic Test Workshop
Lowell, MA

May 12, 2011
Outline

1. Motivation
2. Our Idea
3. Generalization
4. Results
5. Fault Diagnosis
6. Conclusion
Outline

1. Motivation
2. Our Idea
3. Generalization
4. Results
5. Fault Diagnosis
6. Conclusion
Outline

1. Motivation
2. Our Idea
3. Generalization
4. Results
5. Fault Diagnosis
6. Conclusion
Motivation

To Develop an Analog Circuit Test Scheme

- Suitable for large class of circuits
Motivation

To Develop an Analog Circuit Test Scheme

- Suitable for large class of circuits
- Detects sufficiently small parametric faults
Motivation

To Develop an Analog Circuit Test Scheme

- Suitable for large class of circuits
- Detects sufficiently small parametric faults
- Small area overhead – requires little circuit augmentation
Motivation

To Develop an Analog Circuit Test Scheme

- Suitable for large class of circuits
- Detects sufficiently small parametric faults
- Small area overhead – requires little circuit augmentation
- Large number of observables – serves well for diagnosis
Motivation

To Develop an Analog Circuit Test Scheme

- Suitable for large class of circuits
- Detects sufficiently small parametric faults
- Small area overhead – requires little circuit augmentation
- Large number of observables – serves well for diagnosis
Outline

1. Motivation
2. Our Idea
3. Generalization
4. Results
5. Fault Diagnosis
6. Conclusion
Our Idea

Taylor series expansion of circuit function in terms of magnitude of input v_{in} at a frequency

\[
v_{out} = f(v_{in})
\]

\[
v_{out} = f(0) + \frac{f'(0)}{1!} v_{in} + \frac{f''(0)}{2!} v_{in}^2 + \frac{f'''(0)}{3!} v_{in}^3 + \cdots + \frac{f^{(n)}(0)}{n!} v_{in}^n + \cdots
\]
Taylor series expansion of circuit function in terms of magnitude of input v_{in} at a frequency

\[v_{out} = f(v_{in}) \]
\[v_{out} = f(0) + \frac{f'(0)}{1!} v_{in} + \frac{f''(0)}{2!} v_{in}^2 + \frac{f'''(0)}{3!} v_{in}^3 + \cdots + \frac{f^{(n)}(0)}{n!} v_{in}^n + \cdots \]

Ignoring the higher order terms we have

\[v_{out} \approx a_0 + a_1 v_{in} + a_2 v_{in}^2 + \cdots + a_n v_{in}^n \]

where every $a_i \in \mathbb{R}$ and is bounded between its extreme values for

\[a_{i,\text{min}} < a_i < a_{i,\text{max}} \quad \forall i \ 0 \leq i \leq n \]
In a Nutshell

- Find the V_{out} v/s V_{in} relationship at frequencies of interest (Eg.: Cutoff, fundamental)
- Compute the coefficients of fault-free circuit
- Repeat the same for CUT by curve fitting the I/O response
- Compare each of the obtained coefficients with fault-free circuit range
- Classify CUT as Good or Bad
Cascaded Amplifiers
An Example

Two stage amplifier with 4th degree non-linearity in V_{in}

\[v_{\text{out}} = a_0 + a_1 v_{\text{in}} + a_2 v_{\text{in}}^2 + a_3 v_{\text{in}}^3 + a_4 v_{\text{in}}^4 \]
Polynomial Coefficients

\[a_0 = V_{DD} - R_2 K \left(\frac{W}{L} \right)_2 \left\{ (V_{DD} - V_T)^2 + R_1^2 K^2 \left(\frac{W}{L} \right)_1^2 V_T^4 \right\} - 2 (V_{DD} - V_T) R_1 \left(\frac{W}{L} \right)_1 V_T^2 \]

\[a_1 = R_2 K \left(\frac{W}{L} \right)_2 \left[4 R_1^2 K^2 \left(\frac{W}{L} \right)_1^2 V_T^3 + 2 (V_{DD} - V_T) R_1 K \left(\frac{W}{L} \right)_1 V_T \right] \]

\[a_2 = R_2 K \left(\frac{W}{L} \right)_2 \left[2 (V_{DD} - V_T) R_1 K \left(\frac{W}{L} \right)_1 - 6 R_1^2 K^2 \left(\frac{W}{L} \right)_1^2 V_T^2 \right] \]

\[a_3 = 4 V_T K^3 \left(\frac{W}{L} \right)_1 \left(\frac{W}{L} \right)_2 R_1^2 R_2 \]

\[a_4 = -K^3 \left(\frac{W}{L} \right)_1 \left(\frac{W}{L} \right)_2 R_1^2 R_2 \]
Definition

Minimum Size Detectable Fault \((\rho) \) of a circuit parameter is defined as its minimum fractional deviation to force at least one of the polynomial coefficients out of its fault free range.
MSDF Calculation

Definition

Minimum Size Detectable Fault (ρ) of a circuit parameter is defined as its minimum fractional deviation to force at least one of the polynomial coefficients out of its fault free range.

Overview of MSDF calculation of R1 with $V_{DD}=1.2V$, $V_T=400mV$, $\left(\frac{W}{L}\right)_1 = \frac{1}{2}\left(\frac{W}{L}\right)_2 = 20$, and $K = 100\mu A/V^2$.

MSDF Calculation

Definition

Minimum Size Detectable Fault (ρ) of a circuit parameter is defined as its minimum fractional deviation to force at least one of the polynomial coefficients out of its fault free range.

Overview of MSDF calculation of R1 with $V_{DD}=1.2V$, $V_T=400mV$, $(\frac{W}{L})_1 = \frac{1}{2} (\frac{W}{L})_2 = 20$, and $K = 100\mu A/V^2$

Maximize a_0

\[
\begin{align*}
1.2 - R_{2,nom}(1 + y) \left(2.56\times10^{-3} + R_{1,nom}^2(1 + x)^2 \times 1.024\times10^{-7} \\
-5.12\times10^{-4} R_{1,nom}(1 + x) \right)
\end{align*}
\]

subject to a_1, a_2, a_3, a_4 being in their fault free ranges and

$-\alpha \leq x, y \leq \alpha$
Assuming single parametric faults, ρ for R_1

$$\rho = (1 + \alpha)^{1.5} - 1 \approx 1.5\alpha - 0.375\alpha^2$$
Assuming single parametric faults, ρ for R_1

$$\rho = (1 + \alpha)^{1.5} - 1 \approx 1.5\alpha - 0.375\alpha^2$$

MSDF for Cascaded Amplifier with $\alpha = 0.05$

<table>
<thead>
<tr>
<th>Circuit parameter</th>
<th>%upside MSDF</th>
<th>%downside MSDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor R_1</td>
<td>10.3</td>
<td>7.4</td>
</tr>
<tr>
<td>Resistor R_2</td>
<td>12.3</td>
<td>8.5</td>
</tr>
</tbody>
</table>
Generalization – Fault Simulation

1. Start
2. Choose a frequency of interest
3. Sweep bias at the input and note corresponding output voltage levels
4. Polynomial curve fit the obtained I/O data – find the coefficient values of fault free circuit
5. Simulate for all parametric faults at the simplex of hypercube
6. Find min-max values of each coefficient (C_i) from $i = 1 \cdots N$ across all simulations
7. Stop
Test Setup

Circuit Under Test $f(\cdot)$

\(v_{in} \)

\(v_{ac} \)

\(V_{bias} \)

\(v_{out} \)

\(a_0 - a_N \)

Estimate Polynomial Coefficients

Variable Frequency

Variable Offset
1. Start
2. Sweep bias at the input and note corresponding output voltage levels
3. Polynomial curve fit the obtained I/O data
4. Start with first coefficient
5. Consider next coefficient C_{i+1}
6. $|C_i| > |C_{i,\text{max}}|$ or $|C_i| < |C_{i,\text{min}}|$?
 If True go to step 9
7. $i < N$? If True go to step 5
8. Subject CUT to further tests. Stop
9. CUT is faulty. Stop
Outline

1 Motivation
2 Our Idea
3 Generalization
4 Results
5 Fault Diagnosis
6 Conclusion
Specifications

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>Nominal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain (dB)</td>
<td>16</td>
</tr>
<tr>
<td>IIP_3 (dBm)</td>
<td>-18</td>
</tr>
<tr>
<td>Noise figure (dB)</td>
<td>9.1</td>
</tr>
<tr>
<td>S_{11} (dB)</td>
<td>-16.5</td>
</tr>
</tbody>
</table>
Low Noise Amplifier – Schematic
Comparison for parametric fault in $R_L = 100k$ ohm
Parameter Combinations Leading to Max Values of Coefficients with $\alpha = 0.05$

<table>
<thead>
<tr>
<th>Component (ohm, nH, fF)</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{bias}} = 10$</td>
<td>10</td>
<td>10</td>
<td>10.5</td>
<td>10.5</td>
<td>9.5</td>
<td>10.5</td>
</tr>
<tr>
<td>$L_C = 1$</td>
<td>1</td>
<td>0.95</td>
<td>1.05</td>
<td>0.95</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>$C_{C1} = 100$</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>$L_1 = 1.5$</td>
<td>1.425</td>
<td>1.5</td>
<td>1.5</td>
<td>1.425</td>
<td>1.575</td>
<td>1.425</td>
</tr>
<tr>
<td>$L_2 = 1.5$</td>
<td>1.5</td>
<td>1.425</td>
<td>1.425</td>
<td>1.575</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>$L_f = 1$</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>$C_f = 100$</td>
<td>105</td>
<td>95</td>
<td>95</td>
<td>105</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>$C_{C2} = 100$</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>$R_{\text{bias1}} = 100k$</td>
<td>105k</td>
<td>105k</td>
<td>100k</td>
<td>105k</td>
<td>105k</td>
<td>95k</td>
</tr>
<tr>
<td>$R_{\text{bias2}} = 100k$</td>
<td>105k</td>
<td>95k</td>
<td>100k</td>
<td>95k</td>
<td>95k</td>
<td>95k</td>
</tr>
<tr>
<td>$R_L = 100k$</td>
<td>100k</td>
<td>95k</td>
<td>95k</td>
<td>100k</td>
<td>105k</td>
<td>100k</td>
</tr>
</tbody>
</table>
Results – Low Noise Amplifier @ 10GHz

Parameter Combinations Leading to Min Values of Coefficients with $\alpha = 0.05$

<table>
<thead>
<tr>
<th>Component (ohm, nH, fF)</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{bias}} = 10$</td>
<td>10</td>
<td>9.5</td>
<td>9.5</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$L_C = 1$</td>
<td>1.05</td>
<td>0.95</td>
<td>0.95</td>
<td>1</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>$C_{C1} = 100$</td>
<td>100</td>
<td>105</td>
<td>95</td>
<td>100</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>$L_1 = 1.5$</td>
<td>1.425</td>
<td>1.5</td>
<td>1.575</td>
<td>1.575</td>
<td>1.575</td>
<td>1.575</td>
</tr>
<tr>
<td>$L_2 = 1.5$</td>
<td>1.5</td>
<td>1.575</td>
<td>1.5</td>
<td>1.425</td>
<td>1.425</td>
<td>1.5</td>
</tr>
<tr>
<td>$L_f = 1$</td>
<td>1.05</td>
<td>1.05</td>
<td>0.95</td>
<td>0.95</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>$C_f = 100$</td>
<td>105</td>
<td>95</td>
<td>95</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>$C_{C2} = 100$</td>
<td>95</td>
<td>105</td>
<td>100</td>
<td>105</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>$R_{\text{bias1}} = 100k$</td>
<td>100k</td>
<td>95k</td>
<td>105k</td>
<td>105k</td>
<td>95k</td>
<td>100k</td>
</tr>
<tr>
<td>$R_{\text{bias2}} = 100k$</td>
<td>100k</td>
<td>105k</td>
<td>95k</td>
<td>95k</td>
<td>105k</td>
<td>95k</td>
</tr>
<tr>
<td>$R_L = 100k$</td>
<td>95k</td>
<td>100k</td>
<td>95k</td>
<td>100k</td>
<td>105k</td>
<td>95k</td>
</tr>
</tbody>
</table>
Results – Low Noise Amplifier @ 10GHz

Results of some Injected Faults

<table>
<thead>
<tr>
<th>Circuit Parameter</th>
<th>Coefficients out of bounds</th>
<th>Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{bias} down 25%</td>
<td>$a_0 - a_4$</td>
<td>Yes</td>
</tr>
<tr>
<td>L_C down 15%</td>
<td>a_2, a_5</td>
<td>Yes</td>
</tr>
<tr>
<td>C_{C1} up 10%</td>
<td>a_1, a_2, a_3</td>
<td>Yes</td>
</tr>
<tr>
<td>L_1 down 25%</td>
<td>$a_0 - a_4$</td>
<td>Yes</td>
</tr>
<tr>
<td>L_2 up 15%</td>
<td>a_0, a_4</td>
<td>Yes</td>
</tr>
<tr>
<td>L_f up 10%</td>
<td>a_1, a_2</td>
<td>Yes</td>
</tr>
<tr>
<td>C_f up 10%</td>
<td>a_4, a_5</td>
<td>Yes</td>
</tr>
<tr>
<td>C_{C2} down 10%</td>
<td>a_4, a_5</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. Our Idea
3. Generalization
4. Results
5. Fault Diagnosis
6. Conclusion
Fault Diagnosis

Definition

To determine the circuit parameters responsible for deviation of circuit from its desired behavior.
Fault Diagnosis

Definition

To determine the circuit parameters responsible for deviation of circuit from its desired behavior.

Sensitivity based diagnosis

\[S_{p_k}^{C_i} = \frac{p_k}{C_i} \frac{\partial C_i}{\partial p_k} \]
Possible relation between various parameters and coefficients
Results – Low Noise Amplifier

Fault Diagnosis at $f = 10$ GHz

<table>
<thead>
<tr>
<th>Fault injected</th>
<th>Coefficient status</th>
<th>Diagnosed fault sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{bias} down 25%</td>
<td>$a_0 - a_4$</td>
<td>R_{bias}</td>
</tr>
<tr>
<td>L_C down 15%</td>
<td>a_2, a_5</td>
<td>L_C or C_{C1}</td>
</tr>
<tr>
<td>C_{C1} up 10%</td>
<td>a_1, a_2, a_3</td>
<td>C_{C1} or L_C</td>
</tr>
<tr>
<td>L_1 down 25%</td>
<td>$a_0 - a_4$</td>
<td>L_1</td>
</tr>
<tr>
<td>L_2 up 15%</td>
<td>a_0, a_4</td>
<td>L_2</td>
</tr>
<tr>
<td>L_f up 10%</td>
<td>a_1, a_2</td>
<td>L_f or C_f</td>
</tr>
<tr>
<td>C_f up 10%</td>
<td>a_4, a_5</td>
<td>C_{C2}</td>
</tr>
<tr>
<td>C_{C2} down 10%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. Our Idea
3. Generalization
4. Results
5. Fault Diagnosis
6. Conclusion
Conclusions

- Technique for parametric fault detection in analog circuits – faults as small as 10% were uncovered for LNA example
- Diagnosis based on Sensitivity of Polynomial Coefficients to circuit parameters
- **Limitation** – Extensive fault simulations required to cover all corner cases
Conclusions and Future Work

Conclusions

- Technique for parametric fault detection in analog circuits – faults as small as 10% were uncovered for LNA example
- Diagnosis based on Sensitivity of Polynomial Coefficients to circuit parameters
- **Limitation** – Extensive fault simulations required to cover all corner cases

In Future

- Neural models to map specifications to polynomial coefficients
- To implement proposed test scheme as BIST by storing polynomial coefficients on chip
Acknowledgments

- Wireless Engineering Research and Education Center (WEREC), Auburn Univ.
- Virendra Singh, Indian Institute of Science, Bangalore
Acknowledgments

- Wireless Engineering Research and Education Center (WEREC), Auburn Univ.
- Virendra Singh, Indian Institute of Science, Bangalore

Thanks for your Attention!
Questions are guaranteed in life; Answers aren't.