
Performance and Energy Benefits of
Instruction Set Extensions in an FPGA Soft Core ∗

Partha Biswas
partha@cecs.uci.edu

Sudarshan Banerjee
banerjee@cecs.uci.edu

Nikil Dutt
dutt@cecs.uci.edu

Center for Embedded Computer Systems
Donald Bren School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

Paolo Ienne
paolo.ienne@epfl.ch

Laura Pozzi
laura.pozzi@epfl.ch

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland

ABSTRACT
Performance of applications can be boosted by executing appli-
cation-specific Instruction Set Extensions (ISEs) on a special-
ized hardware coupled with a processor core. Many commer-
cially available customizable processors have communication
overheads in their interface with the specialized hardware.
However, existing ISE generation approaches have not consid-
ered customizable processors that have communication over-
heads at their interface. Furthermore, they have not charac-
terized the energy benefits of such ISEs. We present a soft-
processor customization framework that takes an input ‘C’
application and realizes a customized processor capturing the
microarchitectural details of its interface with the specialized
unit. We are able to accurately measure the speedup, energy,
power and code size benefits of our ISE approach on a real
system implementation by applying the design flow to a pop-
ular Xilinx Microblaze soft-processor core synthesized for four
real-life applications. We show that only one large ISE per
application is sufficient to get an average 1.41× speedup over
pure software execution in spite of incurring communication
overheads in the ISE implementation. We also observe a si-
multaneous savings in energy (up to 40%) and power (up to
12% peak power reduction) with this increased performance.

1. INTRODUCTION
Typically, applications running on a programmable plat-

form can be executed either as a software algorithm or on
a specialized hardware unit. The software approach is the
slowest but most flexible while the hardware approach is the
fastest but least flexible. Instruction Set(IS)-extensible pro-
cessors comprise an emerging class of processors (especially
in the embedded domain) that permit execution of only the
critical application kernels in customized units (as hardware)
with the rest of the application executing on the processor
core (as software). This speeds up the application without
compromising the processor clock or modifying the architec-
tural model of the processor and yet preserves the flexibility of
the software approach. We call such a coprocessing hardware
element an Ad-hoc Functional Unit (AFU). The AFU opera-
tion is triggered by an instruction or a set of instructions that
∗This work was partially supported by NSF grants: CCR-
0203813, CCR-0205712 and SRC contract: 2003-HJ1111.

we call an Instruction Set Extension or ISE. In the past, re-
searchers have modeled AFUs having no communication over-
head. However, many commercially popular customizable pro-
cessors have communication overheads in their interface with
AFUs. Therefore, our goal is to consider the microarchitec-
tural details of an AFU interface in a processor customization
framework and accurately evaluate the performance and en-
ergy benefits of ISEs in a realistic processor. The efficacy of
the framework lies in seamlessly considering the synchroniza-
tion between the processor and the AFU in a unified manner
for different applications.

Minimizing power and energy consumption is as important
as maximizing performance in embedded systems. A high
power consumption may destroy a chip completely through
overheating while a high energy consumption may reduce the
battery life of an embedded device. Therefore, even though
ISEs can achieve high speedups, designers need to determine if
this speedup comes at a price of increased power. This paper
shows that increased performance can also reduce both power
and energy of a customizable processor in the presence of an
AFU and reports the effects on code size and area.

It is predicted [17] that by 2010, over one-third of all
PLD/FPGA devices are expected to have microprocessor
cores, up from 15% today. Xilinx Microblaze [10] is a popu-
lar commercially-available soft-core. We demonstrate the use
of our framework by transforming a given input application
into a running Xilinx Microblaze hardware-software system.
For four real-life applications (from Mediabench and EEMBC
suites), we measure the real performance gain over pure soft-
ware execution and also accurately evaluate energy and power
consumption. Our experimental results show that significant
speedup is obtained only when an ISE contains a large set of
atomic operations. With only one large ISE per application,
we obtained speedup of up to 1.47× over simple software ex-
ecution and simultaneously up to 40% energy saving and 12%
peak power reduction. To the best of our knowledge, this is
also the first attempt to present the details of interfacing an
AFU with a customizable soft-core. The main contributions
highlighted in this paper are the following:

• We present a generalized interface-aware soft-processor
customization framework for mapping an application in
C into a running processor-AFU subsystem that enables

E
xt

er
na

l

B
us

AFU

Peripherals

External
Memory

Register
File

Execution
Unit

Data

Program
Memory

Decoder

A
FU

 I
nt

er
fa

ce

E
xt

er
na

l

In
te

rf
ac

e

Core

Memory

AFU

Processor
Subsystem

Figure 1: Target Customized Processor Subsystem

accurate evaluation of all the metrics deemed important
in embedded system design, namely, performance, en-
ergy, power, cost and code size.

• By applying our framework to Microblaze soft-processor
core, we conclude that ISEs can be simultaneously ben-
eficial in terms of performance, energy, power and code
size.

The rest of the paper is organized as follows. We present
our target customizable processor model in Section 2. In Sec-
tion 3, we present some related research work. We describe
our framework for transforming a given application to a cus-
tomized processor subsystem in Section 4. Section 5 presents
how we use the framework to target Xilinx Microblaze soft-
processor core. In Section 6, we describe our experimental
results. Finally, Section 7 concludes the paper.

2. CUSTOMIZED PROCESSOR MODEL
Our goal is to map a given application to the target cus-

tomizable processor model shown in Figure 1. In this model,
the software part of the application stored in the program
memory is composed of base instructions to be run on Exe-
cution Unit and ISEs to be run on the hardware part, i.e.,
AFUs. An AFU can be tightly-coupled with the core through
an AFU interface inside the processor subsystem or loosely-
coupled through an external bus. The AFU interface or the
external interface implements the communication protocol be-
tween the AFU and the processor and thus controls synchro-
nization of data and access to the processor register file.

The function of an ISE is to transfer control to an AFU
for execution. An ISE can be either a single user-defined
instruction or a set of multiple pre-defined instructions.
A single user-defined instruction is decoded as a special in-
struction, which encapsulates inputs and outputs of an AFU
as source and destination operands respectively. The decoder
takes the responsibility of issuing such a special instruction
to an appropriate AFU for execution. Alternatively, sending
inputs and receiving outputs of the AFU from the processor
can be done at the expense of multiple data transfer instruc-
tions. Such instructions must already exist in the instruction
set of the processor in the form of “send data to AFU” and
“receive data from AFU” instructions. In this case, the AFU
incurs communication overhead at its interface while sending
and receiving data.

In this paper, we present an integrated framework that
drives a design flow from an application to a complete run-
ning system, which adheres to the customized processor model
shown in Figure 1. We then apply our framework to a realistic
soft-processor core and accurately study performance, energy,
power, code size and cost of the implementation.

3. RELATED WORK
Several algorithms [1, 4, 2, 3, 5, 6] have recently been pro-

posed to identify ISEs in a given application. The speedups

over simple software execution claimed in most of the ap-
proaches [1, 4, 2, 3] are estimated by assuming a typical RISC
processor execution model. The methodology in [5] targets
Trimaran research infrastructure. Using a simulator, the au-
thors show speedup for applications that reuse AFUs gener-
ated for other applications in the same domain. Such reuse
of AFUs across application is possible only when ISEs found
were reasonably small in size. However, we will confirm in
our experimental results that such small-sized ISEs would not
generate a considerable speedup for AFUs with communica-
tion overheads.

Sun et al. [6] employs a Tensilica Instruction Extension
(TIE) compiler in their methodology and operates at a higher
(C source-code) level of abstraction. Therefore, this methodol-
ogy relies more on designer’s experience for ISE identification
and mapping to AFUs. The AFU in this case therefore does
not have any communication overhead. Fei et al. [7] integrated
a fairly accurate energy estimation engine in the same frame-
work, but they do not report a comparison of energy before
and after extending the processor. A recent work having a
goal of real system implementation [8] generated application-
specific instructions for Altera Nios II processor in the pres-
ence of AFUs that do not have communication overheads. The
results show a good speedup and limited area overhead, but
they do not discuss energy or power consumption. Unlike [8],
in this paper, we deal with the non-trivial details of synchro-
nization between the processor and the AFU with the help of
a generic communication template.

Note that in the prior related work, the AFU in general did
not have communication overheads at its interface. Indeed,
there are many commercially available processors providing
such an interface. Common examples are Altera Nios II pro-
cessor [13], LEON processor [12], etc. However, there are sim-
ilarly many commercial customizable processors where AFUs
incur overhead in sending and retrieving data. Some examples
include STMicroelectronics ST120 [11], Xilinx Microblaze pro-
cessor [10], etc. To the best of our knowledge, ISE generation
in the context of AFUs incurring communication overheads at
their interface with the core processor has not been studied
yet. This is our motivation for proposing a framework that
is capable of incorporating different AFU models and in par-
ticular, targeting Xilinx Microblaze soft-core. We apply the
design flow of our framework to study performance gain, en-
ergy/power consumption, code size reduction and area over-
head with the introduction of an AFU into the Microblaze
subsystem.

4. OUR FRAMEWORK
Our framework takes as input a high-level application (in

C), and generates an executable and an AFU with appropriate
interfacing protocol (as shown in Figure 2).

AFU
Processor

Core

ISEs

Application

ISE Generation

Executable AFU+Interface

H/W GenerationS/W Generation
Latency

System

Figure 2: The Flow of our Framework

The expanded view of our framework is shown in Fig-
ure 3(a). It has three main phases: ISE generation phase,
S/W generation phase, and H/W generation phase. The
ISE generation phase generates ISEs under microarchitectural

(a)

ISE generation

H/W generation

Compiler
Front−end

Replace
subgraph by ISE

CFG/DFG

CFG/DFG

w/ ISEs

Scheduling
Register Alloc

Compiler
Back−end

Executable

Profile code

Annotate w/ hw/sw
latencies, exec count

Annotated
CFG/DFG

ISEGEN

ISEs or
subgraphs

Application
S/W generation

(b) Synthesis
P/R

Processor
modelInterface

AFU +

System

Component
Library

Replace ops by
components and
edges by cnxns

Clock
Period

Structural
AFU model

Eval Crit. Path
Calc # Cycles

Couple
Computation w/
Communication

Cycles

Communication
Template

AFU +
Interface

Constraints

Component Library Binding Interface Synthesis

Figure 3: (a) A high-level application to a hardware/software system generation (b) Processor subsystem gen-
eration

constraints. The H/W generation phase synthesizes the corre-
sponding AFUs with their interfaces and the S/W generation
phase generates the executable. A dotted arrow between the
two phases indicates that the latency of an ISE obtained in
the H/W generation phase is passed on to the S/W generation
phase. Finally, a post-processing phase builds the complete
running system for evaluation.

4.1 Preprocessing Input Application
A compiler front-end yields Control Flow Graph (CFG) and

Data Flow Graph(DFG) of an input application and runs pred-
ication to combine a set of small basic blocks into a large basic
block. The input application is then profiled and the basic
blocks are annotated with their execution counts. A compo-
nent library is created containing a synthesizable combina-
tional element corresponding to each instruction in the target
instruction set. Each element in the library is synthesized for
a given technology and the corresponding instruction in the
DFG is annotated with a normalized hardware latency. Each
instruction in the DFG is also annotated with its software la-
tency obtained from the target architecture specification.

4.2 ISE Generation Phase
This phase is integrated with the compiler front-end. An

ISE generation algorithm, e.g., [1, 4, 2, 3] takes the annotated
CFG/DFG and returns subgraphs or ISEs that would maxi-
mize performance under microarchitectural constraints. The
constraints are the maximum allowed number of AFUs, the
maximum number of inputs/outputs and other microarchitec-
tural feasibility constraints. For example, convexity constraint
ensures that the dependency chain of instructions within an
ISE is not intervened by any instruction outside the ISE. This
guarantees that all the inputs of an ISE will be available at
the time of executing the ISE. Although any ISE generation
algorithm can be used, we use [1] in our framework because it
identifies all the instances of an ISE exploiting large-scale ISE
reuse.

4.3 H/W Generation Phase
The two subtasks of this phase are component library

binding and interface synthesis. The identified subgraph
or ISE is isolated and each instruction in the subgraph is re-
placed by the corresponding element in the component library.
Figure 8 shows an example subgraph where each node maps to
an element in the component library. The data dependencies
between the instructions are replaced by port-to-port connec-
tions between the elements and the resulting structure is an
AFU. This structural AFU model is then synthesized to eval-

uate the critical path length. The critical path length divided
by the clock period of the processor core gives the number of
cycles needed for the AFU operation. This latency informa-
tion is passed on to the scheduler in the S/W generation phase
(shown with a dotted arrow in Figure 3). The evaluated num-
ber of cycles is also used to synchronize the AFU with respect
to the core.

Apart from the component library, the designer also cre-
ates a communication template for AFUs, which captures the
communication protocol between the processor core and the
AFU. The writing back of result from the AFU to the proces-
sor is delayed by the exact number of cycles required by the
AFU operation. The implementation of communication pro-
tocol together with synchronization with the core completes
the AFU interface synthesis. Note that the H/W generation
phase can be applied to synthesize the AFU and its interface
in the customized processor model presented in Figure 1.

4.4 S/W Generation Phase
This phase generates code for the target processor taking

into account the presence of AFUs. The two subtasks in the
S/W generation phase are subgraph matching and sub-
graph replacement with ISEs. Since all possible instances
of an ISE have already been enumerated by the ISE genera-
tion phase, the subgraph matching simply consists of a DFG
traversal and marking constituent instructions of the ISE in
the DFG.

1

2

3

4

5

LastDef

FirstUse

(a)

1

2

3

4

5

FirstUse

LastDef

1

2

3

4

5

LastDef

FirstUse

3

1

4

2

5

(b1) (b2) (b3)

Figure 4: The ISE here is composed of the shaded in-
struction nodes. (a) An example showing the LastDef
point and the FirstUse point; (b1) an example where
it is not possible to insert the ISE under considera-
tion; (b2) After code restructuring; (b3) positioning
of the ISE between LastDef and FirstUse.

After subgraph matching, the ISE is used to replace the
set of marked instructions in the DFG. We depict the ISE
replacement strategy in Figure 4. An ISE can be placed any-

SystemExecutable

VCD

StructuralMemory
Image Model

Timing
Info

Routing
Info

Superimpose

Simulation Simulation
PowerHardware

Power
Report

Figure 5: Measuring System Power

where between the point where its source operands have their
last definition (LastDef) and the point where its destination
operand has its first use (FirstUse) as shown in Figure 4(a)
(the shaded nodes identify the ISE under consideration). Since
ISE generation phase has ensured convexity of the identified
subgraphs, it is never possible to have a dependency edge from
the FirstUse node to the LastDef node (refer to [3] for the def-
inition of convexity). Consider the following sequence of oper-
ations in instruction order: (1)a = b ∗ c; (2)f = a|0x2; (3)e =
5; (4)d = a + e; (5)g = e − d. Suppose the ISE under con-
sideration is a multiply followed by an add, as identified by
the nodes labeled 1 and 4 in Figure 4(b1) respectively. Since
in this case the FirstUse point appears earlier in the instruc-
tion chain than the LastDef point, the ISE cannot be placed
anywhere (Figure 4(b1)). So, instruction reordering has to be
done in order that the LastDef point precedes the FirstUse
point. This reordering is possible because there is no depen-
dency from FirstUse to LastDef. Figure 4(b2) shows the code
snippet after restructuring Figure 4(b1) (i.e., swapping the
positions of node 2 and node 3) and Figure 4(b3) shows the
placement of ISE between the LastDef point (node 3) and the
FirstUse point (node 2).

If an ISE is used as a single user-defined instruction, a single
instruction just replaces the set of constituent instructions.
Replacing the multiply and the add with a single user-defined
instruction (ISE1(·, ·, ·)), the resulting instruction sequence
(as in Figure 4(b3)) would become: (3) e = 5; (1),(4) d =
ISE1(b, c, e); (2) f = a|0x2; (5) g = e− d. However, if an ISE
is represented as a set of predefined data transfer instructions
(send(·), receive(·)), the resulting instruction sequence after
ISE replacement would appear as: (3) e = 5; (1),(4) send(b);
send(c); send(e); receive(d); (2) f = a|0x2; (5) g = e − d.
After subgraph replacement with ISE, the compiler performs
scheduling, register allocation and target code generation as
a back-end pass. Note that the latency of the ISE required
by the scheduler is derived from the H/W generation phase as
shown in Figure 3(a).

4.5 Targeting a Soft-core
As a final step, the processor model of the target Soft-core

along with the AFU and its interface are synthesized and im-
plemented using standard synthesis and Place-and-Route tools
(Figure 3(b)). The executable generated in Figure 3(a) and
the system synthesized in Figure 3(b) are deployed in two
schemes, one for measuring speedup and the other for evalu-
ating energy/power consumption. With the goal of measuring
actual time spent in running the application, the scheme for
Performance Measurement uses the bitmap of the syn-
thesized system to program an FPGA fabric, which then be-
comes the platform for actually running the executable. The
executable is downloaded into the system memory through
a JTAG port and the number of cycles for running the exe-
cutable is measured using a hardware timer.

Since there is no direct way to measure power of a running
system on the FPGA fabric, we employ a different scheme
for Power/Energy Evaluation (depicted in Figure 5) for
accurately evaluating the power and energy consumption of

the system. Note that there are three kinds of information in
the post-Place-and-Route system (Figure 3(b)): the structural
model of the system, the timing information and the routing
information. We superimpose the memory image of the exe-
cutable (in Figure 3(a)) into the memory section of the struc-
tural model. This complete structural model along with the
timing information is run through a cycle-accurate hardware
simulator to generate a Value Change Dump (VCD) of all the
signals in the structural netlist. The routing information and
the VCD information together are then used by a power sim-
ulator to generate the dynamic power consumed at different
time steps. We then derive the total energy dissipated in the
system from the reported power and the measured execution
time.

5. TARGETING MICROBLAZE
We illustrate the utility of our framework on a popular rep-

resentative platform: Xilinx Microblaze [10], an IS-extensible
soft processor that allows an AFU to be connected with the
processor via Fast Simplex Links (or FSLs). FSLs are ded-
icated point-to-point unidirectional 32-bit wide FIFO inter-
faces. The Microblaze is capable of including a maximum of
8 input and 8 output FSLs.

CLK

Counter

FSL AFU
Int.8X8

In

Out
AFU

Count Cnt_en

AFU_en
Microblaze
Processor

Figure 6: Microblaze Processor Core with an AFU
and its Interface.

Microblaze is a 32-bit RISC processor with a simple 3-stage
pipeline. Figure 6 shows an AFU and its interfacing with the
Microblaze processor core via 8×8 FSL channels. The AFU in-
terface implements the processor-AFU communication proto-
col and is synchronous with the Microblaze processor through
a global clock (CLK). The AFU interface is also connected to
a counter module to enable counting whenever required. If
the count enable signal (Cnt en) is ‘1’, counting is enabled.
Otherwise, the counter is reset to ‘0’. The signals In[32] and
Out[32] are used to send data to and receive data from the
AFU respectively. When the AFU-enable signal, AFU en is
‘1’, the AFU latches the output in Out[32].

In <= FSL_IN_DATA

FSL_OUT_DATA <= Out

FSL_WRITE_SIG <= ‘0’

FSL_READ_SIG <= ‘0’

Cnt_en <= ‘0’

FSL_READ_SIG <= ‘1’

AFU_en <= ‘0’

FSL_WRITE_SIG <= ‘1’

AFU_en <= ‘0’

FSL_READ_SIG <= ‘0’
AFU_en <= ‘1’

Cnt_en <= ‘1’

(Count == # Cycles) and

(FSL_Q_FULL == ‘low’)

true true

Input−Sync Input−Read

Output−SyncOutput−Write

(FSL_DATA_EXISTS == ‘high’)
(FSL_DATA_EXISTS == ‘low’)

(Count != # Cycles) or

(FSL_Q_FULL == ‘high’)

Figure 7: Communication Template for AFU Inter-
face in Microblaze

In Figure 7, we present the generic communication tem-
plate for Microblaze-AFU interaction as a Finite State Ma-
chine (FSM) synchronous with respect to CLK. For the sake
of explanation, we call an FSL channel FSL R when it is
used for AFU read operation or FSL W when it is used
for AFU write operation. Associated with every FSL R

channel is a set of three signals, namely, (FSL READ SIG,
FSL DATA EXISTS, FSL IN DATA[32]). Another triplet,
(FSL WRITE SIG, FSL FIFO FULL, FSL OUT DATA[32])
is associated with every FSL W channel. The FSM is initially
in “Input Sync” state waiting for data to arrive on an FSL R
channel. When data exists on the FSL channel, the corre-
sponding FSL DATA EXISTS signal goes high causing a tran-
sition from “Input Sync” state to “Input Read” state. In “In-
put Read” state, FSL READ SIG is set to high to cause the
data in the FSL R FIFO to be read into In[32] using a 32-bit
signal array, FSL IN DATA. After the data has been read into
In[32], the FSM transitions to “Output Sync” state and waits
on the AFU operation by enabling the counter. After # Cy-
cles (as evaluated in the H/W generation phase in Figure 3(a))
has elapsed, the result of the AFU operation is latched in
Out[32]. If FSL W FIFO is not full (i.e., FSL FIFO FULL is
low), a state transition takes place to “Output Write” state.
In the “Output Write” state, data from Out[32] is written
into the FSL W FIFO using FSL OUT DATA[32] by setting
FSL WRITE SIG to high. Thus, for introducing every new
AFU, only the AFU module in Figure 6 and the # Cycles
change in the process of H/W generation, while the commu-
nication template is reused.

6. EXPERIMENTS
We demonstrate the effectiveness of our approach using a

number of front-end tools in our framework shown in Fig-
ure 3(a).

6.1 Experimental Setup
The ISE generation algorithm [1] was integrated with a

Machine SUIF [9] front-end. The S/W generation was done
with Microblaze GCC-2.95 (mb-gcc) compiler. Microblaze In-
struction Set has multiple data-transfer instructions for send-
ing data to and receiving data from its FSL channels — put
for sending and get for receiving data in blocking mode, and
nput/nget are the corresponding instructions in non-blocking
mode. We used the non-blocking send instruction (nput) and
the blocking receive instruction (get) for our AFU interface.
Because of using two different compilers for ISE generation
and S/W generation, the subgraph replacement with ISEs was
done as a post-assembly pass on the assembly output of mb-
gcc. After replacing the identified subgraphs with ISEs, mb-gcc
was run again to generate the executable.

We selected four real-life applications for demonstrating
the effectiveness of our framework: autcor (Auto-correlation)
from EEMBC suite, adpcm-e (ADPCM Encoder) and adpcm-
d (ADPCM Decoder) from Mediabench suite, and AES (AES
encryption). Our platform is Xilinx Multimedia Board, which
is equipped with a Virtex-II XC2V2000 FPGA. We used Xilinx
Platform Studio for configuring the FPGA to include a Microb-
laze processor with a 64KB (i.e., the maximum size possible)
Block RAM (BRAM), two Local Memory Buses (LMBs) (to
interface with BRAM – one for instruction and the other for
data), one Microblaze Debugging Manager (MDM) and one
Timer (both MDM and Timer on a single On-chip Peripheral
Bus (OPB)). The standard inputs and outputs of an appli-
cation were redirected to the MDM and the elapsed number
of cycles was evaluated using the Timer. We set the clock
frequency of the Microblaze processor to 50 MHz. The tools
used in the second scheme (Figure 5) for evaluating energy and
power are ModelSim for hardware simulation [15] and Xilinx
XPower for power simulation [16].

6.2 Performance and Code Size
The code generation for the baseline configuration was done

by mb-gcc with all optimizations turned on (-O2, -mnoxl-soft-
mul) so that the performance is maximized in pure software
execution. The Microblaze configuration was then customized

for different applications by introducing AFU with its interface
as explained in Section 5. The ISEs were generated with I/O
constraints of maximum 4 inputs and 2 outputs and number of
AFUs set to 1. Note here that for each application, a different
Microblaze configuration is generated and the resulting system
is analyzed by applying our framework. The results in terms
of code size reduction and speedup over software execution are
summarized in Table 1.

Table 1: Speedup and Code Size Reduction with the
Introduction of an AFU having 4 inputs and 2 outputs
in the Microblaze subsystem

Core Only Core + AFU Code
BMs Bytes Cycles Bytes Cycles Redn Spdup

autcor 58444 264305 58452 404673 -8 0.65×
adpcm-d 12049 252688 11953 190979 96 1.32×
adpcm-e 14121 157177 13989 106821 132 1.47×

AES 16013 240613 14957 167397 1056 1.44×

Each of the operand-send and result-receive operations in
Microblaze has a latency of 2 cycles. Consequently, the la-
tency for transferring 6 operands is 12 cycles in the worst case
and 6 cycles in the best case (i.e., if all the latencies are success-
fully hidden by the scheduler). The ISE generated for autcor
was a chain of just three operations: a multiply, a barrel right
shift and an add having software latencies as 3, 2 and 1 cycles
respectively. With AFU operation taking just 1 cycle, the best
case latency of the ISE is 6+1 = 7 cycles. Thus, even the best
case performance of the ISE lags behind the worst case perfor-
mance of the corresponding software execution (3 + 2 + 1 = 6
cycles). Consequently, there was slowdown instead of speedup
for autcor owing to the communication overhead. However,
there are some prior related work [6, 8], which have shown
speedup even with small-sized ISEs containing on the order of
3-4 instructions because of incurring no communication over-
head in processor-AFU interface. Thus, we confirm that if
the AFU interface has a communication overhead, a
small-sized ISE will only result in performance degra-
dation.

The applications adpcm-d and adpcm-e are the two exam-
ples where predication of several small critical basic blocks led
to a large basic block. Consequently, the ISEs found for these
two benchmarks are very large containing on the order of 40
operations. This led to a significant speedup in spite of the
communication overhead. Figure 8 shows the ISE of adpcm-e
that generated a speedup of 1.47× over pure software execu-
tion. The shaded nodes show the inputs and the outputs of
the ISE.

Table 2: Power Benefits of ISEs in the Microblaze
subsystem

Core Only Core + AFU % Pk % Avg
P. Pwr A. Pwr P. Pwr A. Pwr Pwr Pwr

BMs (mW) (mW) (mW) (mW) Redn Redn

autcor 1957 1287 1869 1229 4.5 4.5
adpcm-d 1975 1317 1919 1197 2.8 9.1
adpcm-e 2070 1332 2012 1178 2.8 11.6

AES 2256 1276 1982 1187 12.1 7.0

The last benchmark under consideration is AES, which has
the largest number of instructions in its critical basic block.
The generated ISE [1] had 8 instances in the critical basic block
covering more than 50% of the DFG and overall 12 instances in
the critical function. Both the large size and large-scale reuse
(as defined in [1]) of the ISE accounts for a significant speedup
(1.44×) obtained on AES despite the overhead in sending and
receiving operands. Along with the merit of speedup, AES
also exhibit a 7% code size reduction owing to replacement of
a large chunk of code by an ISE in the form of a set of data
transfer instructions.

−

−

>=

==

in4

in3

+

in3

<
− >>

>>

<

−or

+

+

<

>>

or

or

out1

*
+

in2in2

−

==

>=

<=

’0’

’0’

’1’

’1’

’32767’

’−32768’

’4’

’1’

’2’

’3’

’4’

’8’

01

10

01 01 01

01 01 01

01 01

0 1
sel

sel

selsel

sel

selselsel

sel

sel

’32767’

sel

sel

out2

0

0 1

1

’−32768’

sel

in2in1

Figure 8: An ISE for ADPCM ENCODER (adpcm-e)
having 4 inputs and 2 outputs; each operation node
maps to a hardware component.

6.3 Power and Energy Results
From Table 2, it is evident that both the peak power (P.

Pwr) as well as the average power (A. Pwr) reduced with
the introduction of AFU. Because the presence of both core
and AFU apparently indicates more circuit activity, an ini-
tial expectation is increased power with the addition of AFU.
However, because the ISE here is a multi-cycle operation in-
terlocked with the Microblaze pipeline, the AFU operation
completely overlaps with a processor pipeline stall. Conse-
quently, we obtain an overall power reduction in the presence
of AFU operation owing to reduced overall circuit activity.

Table 3: Energy Benefits of ISEs in the Microblaze
subsystem

Tot Energy (µJ) Tot Energy (µJ) %age
BMs for Core Only for Core+AFU Saving Spdup

autcor 2.21 3.10 -40.27 0.65×
adpcm-d 8.48 5.84 31.13 1.32×
adpcm-e 10.54 6.34 39.85 1.47×

AES 69.09 43.69 36.76 1.44×

As shown in Table 3, we also obtained up to 40% saving in
energy on account of reduced application runtime. It is inter-
esting to note that the trend of energy decrease (or increase)
exactly follows that of speedup (shown again in Table 3 for the
sake of comparison). This trend can be expected as a corol-
lary to a consistent power reduction shown in Table 2. Thus,
contrary to conventional expectation, enhanced per-
formance simultaneously results in reduced power and
energy for the customized Microblaze soft-core.

6.4 Slices Utilization
The XC2V2000 FPGA that we use as our target platform

has 10752 slices. Table 4 shows the percentage utilization of
the FPGA slices before and after introducing the AFU that
brought the speedup in Table 1.

Note here that XC2V2000 used here is very small. The
largest possible Virtex-II chip, XC2V8000 contains 46592
slices. If the largest FPGA is used instead of XC2V2000, the

Table 4: Slices Utilization (out of 10752) in the ab-
sence of an AFU and in the presence of an AFU for
the four applications in XC2V2000 FPGA

BMs No AFU autcor adpcm-d adpcm-e AES
Slices 1274 1609 1804 2226 2043
Util. 11% 14% 16% 20% 19%

average slices utilization reduces to only 5%, which is very rea-
sonable. Thus, the area overhead of including an AFU
in the Microblaze subsystem is also minimal.

7. SUMMARY AND FUTURE DIRECTIONS
Applications can be accelerated in a programmable proces-

sor by executing their performance-critical sections in cus-
tomized Ad-hoc Functional Units (AFUs) as Instruction Set
Extensions (ISEs). We presented an interface-aware proces-
sor customization framework that enabled us to implement
a customizable soft-core microarchitecture capturing the de-
tails of interfacing with an AFU. We applied our framework to
four real-life applications and realized four different processor
configurations. Our results confirmed that in the presence of
communication overhead at the processor-AFU interface, sig-
nificant speedup over pure software execution is possible only
if the AFU function is sufficiently larger than a set of 2-3 oper-
ations. Further analysis of the synthesized systems led to the
conclusion that integration of AFUs in a customizable proces-
sor can result in increased performance and reduced code size,
while simultaneously decreasing power and energy consump-
tion. Our future work will investigate the advantages of ISEs
in other reconfigurable platforms and commercially available
processors.

8. REFERENCES

[1] P. Biswas, S. Banerjee, N. Dutt, L. Pozzi and P. Ienne. ISEGEN:
Generation of High-Quality Instruction Set Extensions by
Iterative Improvement. In Proc. of DATE, 2005.

[2] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. Ienne and
N. Dutt. Introduction of Local Memory Elements in Instruction
Set Extensions. In Proc. of DAC, 2004.

[3] K. Atasu, L. Pozzi and P. Ienne. Automatic Application-Specific
Instruction-Set Extensions under Microarchitectural Constraints.
In Proc. of DAC, 2003.

[4] P. Yu and T. Mitra. Scalable Custom Instructions Identification
for Instruction-Set Extensible Processors. In Proc. of CASES,
2004.

[5] N. Clark, H. Zhong and S. Mahlke. Processor Acceleration
through Automated Instruction Set Customization. In Proc. of
MICRO, 2003.

[6] F. Sun, S. Ravi, A. Raghunathan and N. K. Jha. Synthesis of
Custom Processors based on Extensible Platforms. In Proc. of
ICCAD, 2002.

[7] F. Sun, S. Ravi, A. Raghunathan and N. K. Jha. A Hybrid
Energy-Estimation Technique for Extensible Processors. IEEE
TCAD, 2004.

[8] J. Cong, Y. Fan, G. Han and Z. Zhang. Application-Specific
Instruction Generation for Configurable Processor Architectures.
In Proc. of FPGA, 2004.

[9] Machine SUIF.
http://www.eecs.harvard.edu/hube/software/software.html.

[10] Microblaze Processor Reference Guide.
http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf.

[11] ST100 DSP Core Architecture Overview. http://www.st.com/
stonline/prodpres/dedicate/st100/overview/overview.htm.

[12] The Leon Processor User Manual. http://www.ra.informatik.
uni-stuttgart.de/~virazela/LP_Project/leon-2.3.7.pdf.

[13] The Nios II Processor Reference Handbook.
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

[14] SC140 DSP Core Reference Manual. http://www.soc.napier.ac.
uk/module.php3?op=getresource&cloaking=no&resourceid=1473119.

[15] ModelSim SE datasheet
http://www.model.com/products/pdf/datasheets/se.pdf

[16] Xilinx XPower Documentation http://toolbox.xilinx.com/
docsan/xilinx6/books/data/docs/dev/dev0089_14.html

[17] Panelists peer into future of FPGAs. Article 60407325, EETimes.
March 7, 2005.

