
Vol.:(0123456789)1 3

Journal of Electronic Testing (2022) 38:667–682
https://doi.org/10.1007/s10836-022-06035-6

A CatBoost Based Approach to Detect Label Flipping Poisoning Attack
in Hardware Trojan Detection Systems

Richa Sharma1 · G. K. Sharma1 · Manisha Pattanaik1

Received: 20 July 2022 / Accepted: 28 October 2022 / Published online: 7 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Hardware Trojan (HT) intrusion at different integrated circuit (IC) phases is the most important concern for the semiconduc-
tor industries. Recently, machine learning (ML) models have been used to detect HT from the pre-silicon IC phase, which
utilizes either structural or SCOAP gate level netlist features. However, the main concern is that an adversary may poison the
training dataset by flipping the target labels to malign the ML model training, which further provides an incorrect prediction
on the test dataset. Thus, due to the malicious training of ML models, the Trojan-inserted ICs are missed out and can easily
perform their malicious activities. Hence, it is of utmost importance to scan the training dataset and identify the poisoned
input samples before applying ML models for HT detection. Therefore, this paper proposes a new technique that first identi-
fies the poisoned training samples, which consist of SCOAP features, and then detects HTs from the unseen gate-level netlist.
The proposed technique employs a robust ensemble Categorical Boosting (CatBoost) model, which avoids the problem of
target leakage by using the concept of ordered boosting. Further, a label flipping poisoning attack based on a stochastic hill-
climbing search is proposed, which flips the labels of the handful of samples that maximizes the validation dataset loss by
deteriorating the model performance. Moreover, a defense method is proposed which utilizes CatBoost object importance
and k-nearest neighbor to detect malicious training samples and restore their original labels. Finally, the CatBoost model is
trained on the clean dataset to detect the HT nets from the unseen gate-level netlist accurately. Experimental results shows
that the proposed attack method increases the on-an-average loss up to 58% and 54% on Trust-Hub and DeTrust benchmarks.
Whereas the proposed defense method accurately identifies the poisoned input labels from the training dataset with on-an-
average 99% accuracy on these benchmarks.

Keywords Hardware Trojan · Label Flipping Poisoning Attack · SCOAP features · Machine Learning · CatBoost

1 Introduction

Due, to the emergence of the Internet of Things (IoT) and
Artificial Intelligence (AI) applications, the demand for
integrated circuits (ICs) are increased fourfold. This led
semiconductor industries to outsource different IC phases
to untrusted parties, which relinquishes the control that IC

firms had on IC designing & manufacturing [4, 41]. This
global distribution of IC phases to external parties opened
the gates for an adversary for hardware Trojan (HT) intru-
sion [3, 52]. The flow of the IC supply chain given by [3,
19] with trusted and untrusted entities are shown in Fig. 1.
An adversary present either in the in-house designing team
or in the foundry can insert HT by modifying the existing
circuit, adding malicious nets in IC, or manipulating the
IC lithographic masks. Besides, the System on Chip (SoC)
designers integrates many third-party intellectual property
(3PIP) cores in the form of soft, firm & hard IPs at RTL-
level, gate-level, and GDS-II-level [32]. These untrusted
3PIPs have access to the source codes and IP design files
thus, an attacker can easily insert the HT by modifying the
circuit functionality at any specification level. Moreover, the
involvement of EDA/CAD tools supplied by different ven-
dors may also insert HT into the IC design and degrade IC
logic [20, 54]. For example, Pilato et al. [37] present the CAD

Responsible Editor: C. A. Papachristou

 * Richa Sharma
 richa@iiitm.ac.in

 G. K. Sharma
 gksharma@iiitm.ac.in

 Manisha Pattanaik
 manishapattanaik@iiitm.ac.in

1 ABV-Indian Institute of Information Technology
and Management, Gwalior 474015, India

http://orcid.org/0000-0003-4686-777X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06035-6&domain=pdf

668 Journal of Electronic Testing (2022) 38:667–682

1 3

tool threat by inserting three Trojans in a high-level synthe-
sis tool. Similarly, Basu et al. [2] shows that the CAD tool
can launch HT attacks in all phases, from design to test.

HT becomes the most dangerous threat due to its stealthy
nature, which, once activated, can lead to catastrophic fail-
ures like information leakage, denial of service (DoS),
etc., and becomes life-threatening for a myriad of real-life
applications [26, 54]. For example, a Syrian radar failed to
warn about an air strike because the system chip contain
backdoor [3, 54]. Conventional pre-silicon verification, like
equivalence checking and post-manufacturing testing, fails
to detect HT due to its stealthy nature and the vast number of
HT instances designed by an adversary. Moreover, it requires
a golden model of the IC for verification which might not
always be available when 3PIP is utilized [3, 27]. Besides,
researchers [9, 18] have designed a new type of HT by
exploiting don’t care conditions in such a way that the design
with and without Trojans are logically equivalent and can
bypass the formal equivalence checking.

Recently, Machine learning (ML) models have been used
to detect HT at pre-silicon and post-silicon IC phases which
automate the detection process and prove to be more accu-
rate and faster than conventional HT detection approaches
[8, 22, 28]. However, to reduce cost and time or due to lack
of resources, firms nowadays use pre-trained models or
training/testing datasets prepared by external parties, For
example, one can train their models on services provided

by Google’s Cloud Machine Learning Engine, Microsoft’s
Azure Batch Training and Amazon Virtual Machine [21,
38]. Similarly, pre-trained models can be downloaded
from the repositories like Keras pre-trained model library
and Berkeley’s Caffe model zoo [14]. Besides, data is col-
lected from multiple sources or prepared by third parties and
labeled manually by them, For example, Amazon Mechani-
cal Turk, Recommender systems, etc. [55]. The outsourc-
ing of model training, use of pre-trained models or periodic
retraining of models, and use of training/testing datasets
manually labeled by third parties gives ample chances to an
adversary to implant various attacks [11, 55].

The ML pipeline, along with possible attacks in differ-
ent phases, is shown in Fig. 2. An adversary can perform
the poisoning and evasion attacks during the training and
testing phase of ML models by perturbing the samples in
training or testing datasets with adversarial noise [1, 40].
However, the main aim of the poisoning attack is to mis-
lead the learning process of ML models by poisoning the
training dataset, which either increases the prediction loss
or is used to trigger the hidden Trojans [48]. An attacker,
if present in the dataset preparation and labeling phase,
can easily manipulate the labels of the samples or insert
additional malicious samples (Backdoor attack) or use the
genuine samples as a trigger to activate the Trojan hidden
in the design of ML model (Trojan attack). For example,
Gu et al. [14] poisoned the pre-trained model in such a way

Fig. 1 IC supply chain flow

Specification Physical design
layout

Gate level
netlistRTL design

3PIP vendor
(Soft, Firm & Hard

IPs)

in-house designing
team Standard cellsEDA/CAD tool

vendors Models

Foundry

Deployment

Manufacturing
Test

IC design Phase

synthesis GDS-II ICs

ICs passing
test

Trusted

Untrusted

Either

Fig. 2 Machine learning
pipeline

Training dataset
preparation & labeling

ML model
training/Retraining Trained ML model

ML model
prediction

Test dataset

Training phase Testing phase

Poisoning attack

Evasion attack

669Journal of Electronic Testing (2022) 38:667–682

1 3

that a street sign classifier learns to recognize stop signs as
speed limits. In contrast, evasion attacks exploit the vul-
nerabilities of the ML models by putting the adversarial
examples in the test dataset, which fool the model during
prediction [29]. For example, Goodfellow et al. [13] create
adversarial examples by performing small perturbations to
original images of the panda which are misclassified as gib-
bon by the classifier. However, this paper mainly focuses
on detecting two types of attacks, the first one is a poison-
ing attack, where an attacker maligns the training dataset.
Second, HT attack where an attacker alters the gate-level
net-list of the IC.

Existing ML-based HT detection techniques in the pre-
silicon IC designing phase only detect HT nets from gate-
level net-list by utilizing either SCOAP or structural fea-
tures. Salmani [43] use SCOAP features and apply k-means
clustering, whereas Hasegawa et al. [16] use structural fea-
tures and utilize a random forest classifier for Trojan detec-
tion. Kok et al. [23] use bagged trees and combines both
structural and SCOAP features for detection. However, none
of them paid attention on the adversarial dataset problem.
Recently, Nozawa et al. [33] shed some light on this prob-
lem and demonstrated evasion attacks by designing various
adversarial examples to malign the Neural network (NN)
detection process. In contrast, Clements and Lao [7] insert
Trojan in the design of NN by maliciously adding the extra
circuit in the NN design, which is triggered by a specific
input and then misclassified that input into particular class.
Similarly, Liu et al. [30] provide three defenses to identify
the malicious input images hidden in the training dataset.
However, they specifically create the adversarial exam-
ples for NN, which only affect the training or prediction
process of NN. Besides, the defenses provided by [30] are
time-consuming and require the model to be reconfigurable.
Moreover, the field of adversarial machine learning is new
for the hardware security area, and an adversary can per-
form several other attacks. One such attack is label flipping
poisoning attack [38] in which an adversary controlled the
labels of the small set of training samples and flipped them
to malign the training process. If such malicious ML mod-
els are deployed in the IoT /AI applications, then it causes
catastrophic failures because the motive of the adversary
now becomes twofold. First, the poisonous training dataset
helps to evade the Trojan inserted IC during the detection
process, and second those missed Trojan IC’s payload then
easily perform their hidden malicious functions after trig-
gering. Thus, in addition to HT attacks, adversarial attacks
on the ML model also emerge as a major threat that severely
affects the prediction process by classifying Trojan-inserted
IC’s as Trojan-free or vice versa, thus causing a loss of trust
in the ML-based HT detection process. Hence, it is neces-
sary to detect these adversarial samples from training/testing
datasets before utilizing the ML models for HT detection.

Therefore, in order to secure the training dataset and
for accurate Trojan detection, a new Categorical Boosting
(CatBoost) model and SCOAP features-based technique is
proposed in this paper, which accurately detect the label
flipping poisoning attack and HT attack. It first scans the
training dataset to identify the malicious training samples,
and then HTs are detected from unseen gate-level net-list.
The proposed technique employs a powerful CatBoost
model, which uses an efficient ordered boosting to deal with
target leakage, which is intrinsically present in all gradient
boosting-based models. Further, a label flipping poisoning
attack is proposed, which utilizes Stochastic hill climbing to
identify the optimal training dataset from which labels of a
few samples are flipped. Besides, a new defense method is
proposed against the label flipping poisoning attack, which
utilizes the CatBoost object importance to detect the poi-
soned samples from the malicious training set, and then
the k-nearest neighbor is applied on the captured poisoned
samples to relabel them back to their original labels. The
major contributions of this paper are as follows:

1. A CatBoost model and SCOAP features-based approach
are proposed, which detect poisonous training samples
and HT accurately from gate-level net-list.

2. A label flipping poisoning attack is proposed, which flips
the labels of the training dataset using Stochastic hill
climbing.

3. A new defense method is proposed, which utilizes the
CatBoost object importance and k-nearest neighbor to
identify the malicious training samples.

4. Experimental evaluation on Trust-Hub and DeTrust
benchmarks shows the efficacy of the proposed attack
and defense methods.

The rest of the paper is organized as follows: Section II gives
a literature review analysis of existing techniques. Section III
explains the background, which includes CatBoost model-
based learning and SCOAP features. The proposed approach,
which includes new label flipping poisoning attack and defense
method, is presented in Section IV. Experimental results and
comparative analysis is presented in Section V. Finally, Section
VI concludes the paper.

2 Literature Review: Analysis

The researchers have proposed several ML based HT detec-
tion techniques at the IC pre-silicon phase, the brief over-
view is provided in [19, 22, 27, 56]. Hasegawa et al. [15]
initially extracted the five structural features and trained the
SVM classifier to detect the HT nets. Further, 51 structural
features are extracted by [16] to improve performance, and
11 best features are identified using a random forest classifier

670 Journal of Electronic Testing (2022) 38:667–682

1 3

for detection. They utilize the same 11 features in [17] and
NN is trained for detection. Later, Wang et al. extracted the
trigger net features and trained the XGBoost model sepa-
rately to detect combinational and sequential Trojans [49].
Similarly, Kurihara et al. [25] extracted 25 structural trigger
features, combined them with 11 features, and trained a ran-
dom forest classifier to detect HT nets. In contrast, Salmani
[43] use SCOAP features and apply k-means clustering to
identify HT nets. Similarly, Xie et al. [53] use SCOAP val-
ues, extract distance as features using k-means and combine
it with primitive features to perform detection using an SVM
classifier. Later Kok et al. [24] extracted SCOAP features of
both combinational and sequential circuits and trained mul-
tiple classifiers for detection. Our previous work [46] uses
combinational and sequential SCOAP features and selects
the best feature set using a new feature selection method for
accurate detection using class weighted XGBoost model.
Later Mondal et al. [31] combines transitional probabil-
ity and combinational controllability to identify HT using
k-means clustering. However, all these approaches only
focus on HT detection and ignore malicious dataset problem.
Therefore, different types of adversarial attacks and defense
methods are discussed next.

A brief taxonomy of adversarial attacks and defense pro-
posed in several domains are presented in [11, 21, 48, 55].
Clements et al. [7] insert HT by perturbing the weights
of hidden layer neurons in hardware implementation of the
well-trained NN, which classify the chosen input trigger
into a specific class. However, the major limitation of this
attack is model dependency, and the adversary must have
access to the NN parameters in order to perform the attack.
In contrast, Liu et al. [30] proposed three defense techniques
to detect the input triggers in the training dataset, which
are used to activate the neural Trojans hidden in the NN
design. The input anomaly detection approach separately
trains SVM and decision tree classifiers ‘ m ’ classes times
to identify whether the sample belongs to any one of the
‘ m ’ classes or not otherwise, it is determined as an anom-
aly. However, this method is time-consuming and complex
because the number of classifiers trained is proportional to
the number of target classes. The retraining method retrains
the NN multiple times with genuine data so that the model
weights are overwritten, which makes the Trojan triggers
inefficient. However, it requires the model to be reconfig-
urable and needs its intrinsic weight values. Whereas the
input preprocessing approach checks the training dataset
first to detect malicious input triggers. The reconstructed
images generated by the auto-encoder are compared with
the input images per class. The images which show higher
deviation than the reconstructed images are detected as mali-
cious triggers. However, another NN is used to detect trig-
gers which makes the overall technique very complex and
time-consuming.

Recently, Nozawa et al. [33] proposed an evasion attack
where several adversarial examples are generated for NN to
avoid hardware Trojan detection by replacing HT circuits
with logically equivalent circuits. A Trojan-net concealment
degree and modification evaluating value is proposed to gen-
erate adversarial examples, which eventually causes misclas-
sification. However, to generate such malicious examples, an
attacker requires to know about the model and all its param-
eters and gate-level netlists. Moreover, there is a possibility
that during logic synthesis optimization, these modifications
are removed. Finally, the above-discussed approaches fail
to generalize to other ML models because they only focus
on the NN and perform the white-box attack, which is not
possible in a real life scenario. Besides, none of the research
has been carried out on label flipping poisoning attacks in
the hardware Trojan field. However, the research on label
flipping poisoning attacks has been carried out in several
other domains, which are discussed next. An optimization
framework is proposed by Xiao et al. [51] in which the labels
of the near-optimal samples are flipped based on some given
budget which maximally degrades the SVM classifier per-
formance. However, the attack is white-box and specifically
made for SVM because the flipped labels are mainly those
samples that are near the hyper-plane boundary of the clas-
sifier. Moreover, the budget is entirely dependent on the dis-
tribution of the datasets.

Similarly, Xiao et al. [50] flip the bounded number of
training samples chosen by the bounded distribution to max-
imize the SVM classification error. Two types of heuristic-
based attacks are proposed, the first one generates different
sets using gradient ascent and chooses one which provides
the best value. The second one generates correlated subsets
of label flips using a greedy best-first search. The subset
which maximizes the empirical error is chosen. Both these
attacks are the white-box one where the attacker has perfect
knowledge of the model used and its parameters. However,
these attacks cannot generalize to other models due to model
dependency. Moreover, the high computational complexities
of the attacks make it infeasible to be performed on larger
datasets. Besides, the correlated cluster method requires a
lot of computational time. Paudice et al. [34] proposed a
heuristic-based attack in which samples to be flipped are
chosen greedily during every iteration, which maximizes the
validation loss. Further, they propose the k-nearest neigh-
bor-based defense method, which considers the samples far
from the decision boundary as malicious and replaces their
labels with the most common neighboring sample labels that
satisfy a predefined threshold. However, this approach is
time-consuming because it flips all the samples and com-
putes validation error to find the set of poisoned samples
and similarly identify the nearest neighbor of all samples for
detection. Moreover, the setting of the correct threshold is
necessary otherwise, genuine samples may be relabeled as

671Journal of Electronic Testing (2022) 38:667–682

1 3

malicious because the approach fails to distinguish between
the overlapping areas of two classes.

Taheri et al. [47] proposed a label flipping attack against
the deep CNN model on malware detection systems in
which the silhouette score is computed for each training
sample after applying k-means clustering and labels of
samples having scores less than zero are flipped. Further,
a semi-supervised and clustering-based defense is proposed
in which label propagation and label spreading algorithms
are applied to detect poisoned samples. Further, voting is
performed between the labels predicted by these two semi-
supervised models, CNN and the poisoned label. Finally,
malicious samples are relabeled based on the majority of
votes given to a particular label of that sample. In contrast,
clustering-based defense computes four cluster measures,
and the difference between these measures is computed
during every iteration. The obtained difference is compared
to the specified threshold, and accordingly, the label of the
malicious samples is restored. However, setting a correct
threshold value is a cumbersome task that affects the attack
performance. Moreover, the defense methods are time-
consuming and complex because of the use of multiple
classifiers or cluster measures. Besides, semi-supervised
learning may provide unstable predictions because of the
lack of ability to correct its mistakes.

Zhang et al. [57] proposed a two-label flipping attack
against the Naive Bayes classifier on spam filtering systems.
In the first attack, the entropy of each attribute present in
the training dataset is computed, and its weight is calcu-
lated accordingly. Further, the score of each sample labeled
as spam is computed using obtained weights, and finally,
the labels of the first M samples having smaller weights are
flipped. Similarly, k-mediods clustering is utilized in the sec-
ond attack, which creates two clusters having spam and non-
spam samples. Further, the distance is computed between
each sample of the spam cluster and the center point of the
non-spam cluster, and eventually, the labels of the first ‘ M ’
samples, which possess small distances, are flipped. How-
ever, samples of only spam classes are flipped, which are
already in the minority, thus create severe class imbalance.
Moreover, randomly flipping of top ‘ N ’ spam samples with-
out any heuristic does not create a powerful attack. Besides,
k-mediods are unstable and may give different results in
different iterations, which affect the attack performance.
A semi-supervised learning-based defense method is pro-
posed by Cheng et al. [6] in which the AdaBoost model
iteratively identifies the set of samples having larger weights
as label flipped samples. Further, the obtained set is fed to
the semi-supervised learning algorithm, which relabels the
malicious samples to their original correct labels. However,
some genuine samples may possess larger weights which
are also relabeled as malicious, which eventually causes
misclassification.

3 Background

3.1 CatBoost Model Based Learning

CatBoost [39] is an ensemble gradient boosting based
technique which uses an efficient ordered boosting and
ordered target statistics algorithms to avoid target leakage
which is inherently present in all gradient boosting based
techniques [5, 10]. Suppose we have a training dataset
TrD =

∑N

n=1
(xn, yn) which contains ‘ N ’ input samples xn and

corresponding output values yn . The standard gradient boost-
ing algorithm [10] sequentially trains several j base learners
i.e. function BLj on the pseudo-residuals generated by the
previous learner BL(j−1) using gradient descent to optimize
the loss function L(yn,BLj(xn)) which can be given as:

where � is a learning rate and function hj(xn) minimizes the
expected loss function which can be written as:

Now, value of hj is chosen in the direction of negative gradi-
ent i.e the gradient of L with respect to BL(j−1) is decreasing
which can be approximated for all the samples as:

The main concern pointed out here by [39] is target leak-
age because the categorical features and the gradients esti-
mated during each iteration rely on the target values yn of
the training data samples xn . This leakage occurs due to the
reuse of the same training data for each base learner, which
leads to shifting (difference) in the distribution of gradients
of F(xn|x) for training sample xn and F(x|x) for test sample
x. This conditional and prediction shifting biased the base
learner prediction, which severely affects the generalization
capability of the trained model and causes overfitting.

Therefore, CatBoost performs ordered gradient boosting
in which random permutations of training samples are per-
formed. The main aim is to remove the gradient bias (tar-
get leakage) generated by training and testing data shift by
using the different permuted training datasets, and only prior
data samples are used for current sample prediction. During
learning, instead of using the same training dataset for all
the base classifiers, CatBoost generates independent (p + 1)
random permutations �

0
, �

1
,�p of the training set where

‘ p ’ permutations �
1
 to �p evaluate the internal node split

of the tree and �
0
 compute the leaf values of the generated

trees. During each training iteration ‘ it ’, a random permuted

(1)BLj(xn) = BL(j−1)(xn) + �h j(xn)

(2)
hj(xn) = argmin

hj�DT

L(yn,BL
j(xn))

≡ argmin
hj�DT

L(yn,BL
(j−1)(xn) + hj(xn))

(3)hj(xn) = argmin
hj�DT

1

N

N∑

i=1

(
�L(yn,BL

(j−1)(xn))

�BL(j−1)(xn)
− hj(xn))

2

672 Journal of Electronic Testing (2022) 38:667–682

1 3

dataset �r is chosen, and the ordered target statistics are com-
puted for categorical features. Further, for each permutation,
‘ v = (n − 1) ’ supporting models are maintained i.e. M(r,v)
in such a way that model M(r,v)(xn) is learned from the first
‘ v ’ samples in the permuted dataset �r for sample xn . The
residual (resn) for xn is computed as shown below:

Instead of using asymmetric decision trees, CatBoost uses
symmetric oblivious decision trees as base learners in which
the same splitting criterion is used across the entire level,
which makes them balanced and less prone to overfitting.
Since they are full binary trees, they require the minimum
number of comparisons to reach the leaf nodes, which
significantly speeds up the execution. Now for sample xn ,
the gradient of the loss with respect to supporting model
M(r,v)(xn) is computed, which is relied on the preceding train-
ing samples present in �r and it is given as:

Further, the leaf values for the xn sample during splitting are
computed by taking the average of the gradients grad(r,v)(xn)
of the prior samples belonging to the same leaf xn sample
lying on. Now, once the tree Tit is constructed, the same tree
structure is utilized by the other supporting models of the
different permuted datasets in order to reduce complexity.
Once all the trees are built, the leaf values of sample xn
for the final model are computed on �

0
 using the standard

gradient boosting procedure. The whole process is repeated
for each permuted training dataset, and the sub-models are
trained until the loss becomes minimized and all the param-
eters are trained correctly in order to build the most robust
oblivious decision tree, which accurately identifies the Tro-
jan free and Trojan inserted nets from the testing dataset.

3.2 SCOAP Gate‑Level Net‑List Features

It has been analyzed by [24, 43] that in order to evade detec-
tion, an attacker inserts the functional HT at a low switch-
ing activity area to avoid frequent activation. Therefore,
nets that are difficult to control and observe are expected
to be used as HT triggers and payload. Those nets in a
circuit possess large controllability and observability val-
ues, thus avoiding frequent impact on circuit design and
remain hidden during testing. It can be seen from Table 1
that the average SCOAP values of Trojan-inserted nets of
the Trust-Hub RS232-T1600 circuit are higher than its Tro-
jan-free nets. Thus, six SCOAP values i.e. combinational/
sequential-0 controllability (CC0, SC0), combinational/
sequential-1 controllability (CC1, SC1), combinational/

(4)resn = yn −Mv(xn)

(5)grad(r,v) (xn) =
�L(yn,M(r,v)(xn))

�M(r,v)(xn)

sequential observability (CO, SO) of both combinational
and sequential circuits are extracted using SCOAP method
[12] to perform detection. However, Trust-Hub circuits
s35932-T200 and s38584-T100 comparatively possess lower
SCOAP values than other Trojan-inserted Trust-Hub cir-
cuits, but it has been observed by [43] that these Trojans are
frequently activated by applying random test patterns. They
showed that the HT present in the s35932-T200 benchmark
is activated 42 times by applying random test patterns only
for 4261 test clock cycles. Whereas the SCOAP values of
benchmark s38584-T100 are even less than Trojan-free nets,
and the HT is activated 21 times by merely applying 3286
test cycles. Finally, [43] analyzed that the SCOAP values of
Trojan-inserted nets should not be small or close to the val-
ues of Trojan-free circuits, otherwise it experiences switch-
ing activity, frequently interferes with the normal circuit
functionality, and are detected during circuit testing.

4 Proposed CatBoost Based Approach
to Detect Label Flipping Poisoning Attack

This section explains the proposed approach, which includes
the proposed Label flipping poisoning attack and CatBoost-
based defense method.

4.1 Threat Model & Problem Statement

This sub-section discusses the Threat model followed by the
problem statement.

4.1.1 Threat Model

In this paper, we are aiming to detect two types of attacks,
Label flipping poisoning, and HT attacks. Thus, we dis-
cuss two threat models which provide the scenario of how
an adversary can perform the above attacks. In order to
fasten up the process and save money, the 3PIP cores or
EDA/CAD tools are incorporated in the IC designing.
However, untrusted 3PIP cores or tools or an adversary
present in the in-house design team has full access to the
netlist codes and may intentionally insert the HT in it. We
mainly focus on determining the combinational & sequen-
tial functional Trojans, which are inserted by the attacker
at the low switching activity area of the circuit. Similarly,

Table 1 Average SCOAP Values for RS232-T1600 circuit [46]

Net Type (CC0, CC1) CO (SC0, SC1) SO

Genuine net (13.69, 18.36) 240.8 (1.208, 1.63) 166.1
Trojan net (290.6, 40.41) 2217.8 (29, 3.74) 1857

673Journal of Electronic Testing (2022) 38:667–682

1 3

the involvement of ML models in HT detection opens up
new avenues for an adversary to perform different types
of data-based attacks (poisoning or evasion). An adver-
sary can be present in the dataset preparation & labeling
team may insert the malicious samples in the training or
testing dataset, which malign the training/testing process
of ML models, thus increases the misclassification rate
during prediction. However, we focused our attention on
label-flipping poisoning attacks where we assume that
the adversary is present in the training dataset prepara-
tion and labeling team. The prominent goal of the label-
flipping poisoning attack is to malign the training of the
ML model by flipping a small number of samples in the
training dataset so that it provides the wrong prediction
during testing. Moreover, it has also been assumed that
the attack is performed under a black box scenario, where
an attacker has no knowledge about the ML model used
in HT detection.

4.1.2 Problem Statement

The problem statement is stated as follows: Suppose the
training dataset contains ‘ m ’ and ‘ n ’ samples of Trojan free
(TF), and Trojan inserted (TI) nets with labels. An attacker
who has access to this training dataset will modify the labels
of ‘ p ’ samples to malign the training process of any ML
model-based HT detection technique so that it will give erro-
neous predictions during testing. The problem is to accu-
rately identify the ‘ p ’ poisoned samples present in the mali-
cious training dataset so that the ML model will correctly
be trained on a clean dataset and finally predict the correct
classes of TI/TF nets present in the test dataset. However,
in this paper, we have chosen the CatBoost ML model to
identify the malicious training samples and HT nets.

4.2 Proposed Approach

The proposed approach is shown in Fig. 3, it utilizes the
CatBoost model to identify the poisonous training samples
and malicious HT nets from the gate-level netlist. Initially,
the SCOAP features of the circuits are extracted and stored
with labels (More details are provided in Section V(A)).
Afterwards, the proposed attack method poisoned the train-
ing dataset by flipping the labels of the fraction of samples
which makes the model training erroneous by maximizing
the validation loss on the unseen validation dataset. The
maliciously trained ML model then eventually provides
incorrect predictions on the test dataset. Further, the pro-
posed defense method identifies the malicious samples pre-
sent in the poisoned training dataset and restores them back
to their original labels by minimizing the validation loss.
Finally, the ML model is trained on the clean dataset for
accurate detection of Trojan nets. The overall technique is
presented in the following subsections, where the proposed
label flipping poisoning attack is discussed first, followed by
the new defense method.

4.2.1 Proposed Label Flipping Poisoning Attack

To perform the attack, an adversary analyzes the training
dataset to perform smart flipping, which increases the loss
on the unseen dataset most. Since our training dataset (TrD)
contains ‘ N ’ samples with labels, the main motive of the
attacker is to identify the fraction of ‘ p ’ samples in the
TrD for flipping. It chooses the samples in such a way that
the poisoned dataset (PTrD) maximizes the validation loss
(Vl) computed on the unseen validation dataset (VaD) con-
taining ‘ K ’ samples while keeping the training loss (Trl)
minimized. It can be seen as a bi-level optimization problem
given as:

Fig. 3 Proposed approach to
detect label flipping attack

SCOAP
gatelevel netlist

features

Proposed Label
Flipping

poisoning attack

Training
Dataset

Poisonous
Training
Dataset

Proposed
defense method

ML (CatBoost) model training

Maliciously
trained model

Relabeled Clean
Training Dataset

Correctly
predicted TI/TF

nets

Validation
Dataset

Test Dataset

Incorrectly
predicted TI/TF

nets

Maximize
validation loss

Correctly
trained model

Minimize
validation loss

674 Journal of Electronic Testing (2022) 38:667–682

1 3

such that

However, identifying the best samples to flip is of utmost
importance because the stealthiness of the attack is entirely
dependent on it. Existing techniques [34, 47, 57] greedily
select the samples, compute each sample entropy and apply
clustering for flipping which either consume a lot of time or
missed out some good samples. In contrast, the proposed
attack method utilizes the heuristic stochastic hill climbing
(SHC) search algorithm [42] to identify the best ‘p’ number
of samples for flipping. The main aim of SHC is to explore
the search space locally until the global optimum subset of
TrD is identified, which provides the highest accuracy on
VaD. Initially, a random optimal subset is chosen by SHC
from TrD on which the validation accuracy is computed.
Afterwards, a step is taken within the search space to gen-
erate the new modified subset in nearby proximity, which
searches for better neighborhood points. However, step size
needs to be set properly, and it should not be very large/
small, otherwise, it either misses the local optima or get
trapped in it. SHC randomly chooses among several neigh-
boring solutions present uphill, with some selection prob-
ability which varies according to the steepness of the steps.

Therefore, in the proposed attack, SHC modifies the
existing subset to achieve the new one by randomly mutat-
ing the inclusion/exclusion of samples from the set. Each
individual sample present in the subset is mutated based
on a probability that indicates the step size in the search
space. Once the new subset is generated, performance is
evaluated on the VaD, and if it is better than the previ-
ously obtained validation accuracy, then it is set as the best
subset. Similarly, the mutated version of the new subset is
created iteratively for the number of iterations, and those
solutions are considered the best solution that maximizes
the performance of the VaD most. The obtained optimal
solution contains the best samples in which an adversary is
interested in label flipping. However, only a small amount
of samples need to be perturbed thus, 20% of samples are
randomly selected from the optimal subset, and their labels
have been flipped. Afterward, the loss is computed on the
VaD, and this procedure is repeated up to a fixed number of
iterations. Finally, the set of samples whose labels, when
flipped, provide the maximum Vl on the VaD will be chosen
as the final poisonous PTrD.

(6)argmax
p

K∑

i=1

(Vl(yi,BLPTrD(xi))

(7)BLPTrD ≡ argmin
BL

N∑

j=1

(Trl(y�
j
,BL(xj))

4.2.2 Proposed Label Flipping Poisoning Attack Algorithm

The proposed Algorithm 1 takes the training (TrD) and
validation (VaD) dataset as an input and provides a poi-
soned training dataset (PTrD) as an output. The initial
solution (sol) is generated first and CatBoost model is
trained on TrDn which computes validation accuracy on
VaD that is stored in pacc. Now during every hill climbing
iteration hcitr = 5 from line no 7 to 18, the sol is modi-
fied by randomly mutating the samples with probability
pmut = 0.5 and the validation accuracy is computed using
the model trained on new TrDn and stored in nacc. Fur-
ther, the obtained nacc is compared with pacc iteratively,
and the best solution which provides the highest valida-
tion accuracy is stored. Afterwards, 20% of samples are
chosen from the sol during every iteration rsitr = 10 , and
their labels have been flipped. Further, the model has been
trained on PTrD at every iteration and Vl is computed.

675Journal of Electronic Testing (2022) 38:667–682

1 3

Finally, the set which maximizes the Vl most is chosen as
the final PTrD.

4.2.3 Proposed CatBoost and K‑Nearest Neighbor Based
Defense

The main aim of the proposed defense method is to identify
the poisoned samples from PTrD accurately so that along with
Trl, the trained CatBoost ML model also minimizes the Vl.
Thus, to detect those poisoned samples, the proposed defense
method utilizes the CatBoost object importance method,
which prioritizes every training sample based on their per-
formance during prediction and pointed out the least impor-
tant samples. The object importance method identifies the
effect of every PTrD sample by computing the Vl on VaD. The
samples which tend to increase the Vl have higher chances
of being malicious, thus, these samples are captured and
marked as poisonous. However, it has been observed that the
object importance method may capture some normal samples
which are not malicious. Therefore, for further refining and
to improve the performance, k-nearest neighbor (k-NN) [36]
is applied on the samples identified by the object importance
method. It identifies the ‘ n ≥ 3 ’ neighbors of each sample
marked as poisonous and identifies whether neighbors and
the pointed samples belong to the same or different group,
i.e., whose three or more neighbors belong to the same class.
Afterwards, those samples are relabeled whose class label is
not the same as its maximum neighbors class label, and per-
formance is evaluated on the VaD. In this way, the proposed
method accurately detects the poisoned samples from PTrD.

4.2.4 Proposed Defense Algorithm

The proposed Algorithm 2 takes the poisonous training
dataset (PTrD) and validation dataset (VaD) as an input
and provides a clean training dataset (CtD) as an output.
Initially, the CatBoost model is trained on PTrD, and
object importance is computed on VaD. Further, the mali-
cious flagged samples returned by the object importance
method are stored in the array OT as given in line no 5.
Afterwards, the k-NN model instance is called, which pre-
dicts the classes of samples present in OT and stored all
the predictions in the array pred. If the condition given in
line no.8 is satisfied, then those samples are stored in the
array mal, and their labels have been re-labeled. Finally,
the model is trained on the obtained re-labeled CtD, and
performance is computed on the VaD.

5 Experimental Results and Analysis

This section presents the experimental setup followed
by the results and comparative analysis of the proposed
approach.

5.1 Dataset Description and Evaluation Measures

We create the first dataset using 16 Trust-Hub benchmarks
[44] that contains combinational or sequential functional Tro-
jans. Besides, to create the second dataset, we use DeTrust
benchmarks [58]. However, to create DeTrust benchmarks,
we perform the modifications by inserting the single flip-
flop at each gate output of the trigger circuit as suggested
by [43] in 11 Trust-Hub benchmarks. Further, a python code
is written which converts the Verilog netlist of the above-
discussed benchmarks into bench format, and then six SCOAP
features are extracted using the Testability measurement tool
[45]. Afterwards, obtained features are stored, and each net
is labeled as TI/TF, and preprocessing operations are applied
for further refining. Now, we divide the datasets into training
(80%) , validation (10%) and testing (10%) datasets. Moreover,
the CatBoost model contains several hyper-parameters which
need to be set properly for accurate Trojan detection. There-
fore, grid search is applied to find the optimal values of the fol-
lowing parameters, iterations = 2000 , learning_rate = 0.01 ,
regularization parameter (l2_leaf_reg = 3), depth = 4 ,
max_leaves = 31 . Besides, other parameters are set as follows,
boosting_type = Ordered , grow_policy = Symmetric − Tree
to avoid target leakage and auto_class_weights = Balanced
to avoid class imbalance. Finally, the proposed approach

676 Journal of Electronic Testing (2022) 38:667–682

1 3

Ta
bl

e
2

 C
om

pa
ra

tiv
e

pr
op

os
ed

 a
tta

ck
 re

su
lts

 o
n

O
rig

in
al

 a
nd

 P
oi

so
ne

d
Tr

us
t-H

ub
 b

en
ch

m
ar

ks
(%

)

Tr
us

t-H
ub

 B
en

ch
m

ar
ks

Be
fo

re
 a

tta
ck

A
fte

r
pr

op
os

ed
 a

tta
ck

Lo
ss

Ac
cu

ra
cy

R
ec

al
l

R
O

C
-A

U
C

TN

R
FP

R
FN

R
Lo

ss
A

cc
ur

ac
y

R
ec

al
l

R
O

C
- A

U
C

TN

R
FP

R
FN

R

R
S2

32
-T

10
00

0.
16

10
0

10
0

10
0

10
0

0
0

38
.6

5
87

.3
4

33
.3

3
23

87
.0

9
12

.9
66

.6
6

R
S2

32
-T

11
00

0.
44

69
10

0
10

0
10

0
10

0
0

0
45

.1
7

80
.1

2
20

90
.5

4
81

.0
8

18
.9

1
80

R
S2

32
-T

12
00

0.
56

99
.4

10
0

99
.6

9
99

.3
9

0.
6

0
61

.0
8

66
.6

6
25

46
.3

4
67

.6
8

32
.3

75
R

S2
32

-T
13

00
0.

2
10

0
10

0
10

0
10

0
0

0
61

81
.0

9
28

.5
7

53
83

.4
3

16
.5

71
.4

2
R

S2
32

-T
14

00
1.

38
99

.3
8

91
.6

99
.4

2
10

0
0

8.
33

58
.6

03
9

76
.2

3
80

78
.0

8
97

.5
9

23
.8

2
20

R
S2

32
-T

15
00

0.
24

10
0

10
0

10
0

10
0

0
0

37
.9

2
77

.7
7

66
55

77
.9

8
22

33
R

S2
32

-T
16

00
1.

2
99

.3
9

85
.7

1
85

.3
10

0
0

14
.2

8
50

.6
08

8
67

.9
66

67
.2

9
67

.9
2

32
33

s3
84

17
-T

10
0

0.
06

36
10

0
10

0
10

0
10

0
0

0
67

.6
39

64
.0

6
66

.6
65

.3
63

64
.0

6
35

.9
3

33
s3

84
17

-T
20

0
0.

16
7

99
.9

7
10

0
99

.9
87

99
.9

7
0.

02
5

0
67

.6
9

62
.0

87
75

68
.5

3
62

.0
7

37
.9

2
25

s3
84

17
-T

30
0

0.
16

12
99

.9
6

81
.8

1
84

10
0

0
18

.1
8

67
.4

3
51

.3
1

50
50

.6
5

51
.3

1
48

.6
8

50
s3

59
32

-T
10

0
0.

03
10

0
10

0
10

0
10

0
0

0
68

.2
2

56
.9

1
75

78
.4

47
56

.8
9

43
25

s3
59

32
-T

20
0

0.
19

8
10

0
10

0
10

0
10

0
0

0
47

.2
5

69
.2

3
50

59
.8

68
69

.7
30

.2
50

s3
59

32
-T

30
0

0.
44

6
99

.8
10

0
99

.8
99

.6
0.

4
0

61
.8

39
1

54
.5

45
4

50
52

.2
85

54
.5

7
45

.4
2

0.
5

s3
85

84
-T

10
0

3.
13

99
.9

8
10

0
99

.3
44

99
.9

8
0.

01
8

0
66

.3
62

.3
94

40
51

.2
18

6
62

.4
3

37
.5

6
60

s3
85

84
-T

20
0

0.
18

3
10

0
10

0
10

0
10

0
0

0
68

.3
61

.4
7

50
55

.7
37

61
.4

7
38

.5
2

50
s3

85
84

-T
30

0
0.

02
2

10
0

10
0

10
0

10
0

0
0

68
.4

08
54

.4
64

7
33

43
.9

54
.4

45
.5

66
A

ve
ra

ge
0.

66
17

31
99

.8
67

5
97

.4
45

97
.9

71
31

99
.9

33
75

0.
06

51
88

2.
54

93
75

58
.5

06
8

67
.0

98
82

50
.5

31
25

58
.7

03
04

68
.7

29
38

32
.5

72
5

46
.1

61
25

677Journal of Electronic Testing (2022) 38:667–682

1 3

(preprocessing + proposed attack method + proposed defense
method+ CatBoost model) is implemented in python using
scikit learn [35] library.

Besides, to measure the performance of our proposed
approach, the following evaluation metrics are used, Accu-
racy = (TP+TN)

(TP+FP+TN+FN)
 , which represents the correctly pre-

dicted TI or TF samples out of total samples, Recall (True
positive rate) = TP

(TP+FN)
 and True negative rate (TNR) =

TN

(TN+FP)
 , gives the percentage of TI or TF samples correctly

predicted as TI or TF. Similarly, False positive rate (FPR) =
FP

(TN+FP)
 and False negative rate (FNR) = FN

(TN+FP)
 tells how

many TF or TI samples are incorrectly predicted as TI or TF.
Further, to identify model bias, another metric, Receiver
operating characteristics and Area under curve (ROC-AUC)
score, is used, which tells about the model separability, i.e.,
how the model separates the samples into appropriate TI or
TF classes.

5.2 Simulation Results and Analysis

5.2.1 Proposed Attack Results on Trust‑Hub Benchmarks

The comparative before and after attack results on 16 Trust-
Hub benchmarks, i.e., on the test dataset, are shown in
Table 2. It can be analyzed that the CatBoost model provides
an almost correct prediction on the test dataset when trained
on a non-poisoned training dataset, i.e., TrD by achieving
on-an-average 0.661% loss and 99.86% accuracy respec-
tively. Whereas the proposed flipping attack deteriorates the
performance on all 16 benchmarks, it can be observed that
the loss on the RS232 benchmark series lies between 0.16%
to 1.38% which is significantly increased between 37.92% to
61.08% by the proposed attack that shows the severity of the
misclassifications on test dataset performed by the model
in the presence of PTrD. Similarly, the proposed attack
decreases the accuracy, recall, and TNR up to 66% , 20% , and
67% on RS232 series benchmarks, which shows that model
is wrongly predicted both TI and TF instances. Besides,
the area covered by the ROC-AUC score was reduced to
23% , and increased FPR and FNR rates also confirmed this.

Moreover, the proposed attack method provides the high-
est loss in s38417, s35932, and s38584 series benchmarks,
which ranges up to 68.4% and decreases the accuracy up to
51% . Lastly, the proposed attack method provides on-an-
average 58.50% loss, 67.09% accuracy, 32.57% FPR, and
46.16% FNR, which eventually shows that proposed label
flipping poisoning attack method successfully malign the
learning process of the CatBoost model thus fail to provide
the correct prediction on the test dataset.

Besides, the average comparative results of the exist-
ing and proposed attack methods are shown in Table 3,
which shows that the attacks proposed by [57] only affect
the recall (46.31% & 54.2%) , FNR (53.68% & 45.79%) and
ROC (72.69% & 76.97%) because they only target the labels
of positive TI class for flipping. Whereas technique [47]
achieves the average TPR of 57.34% and TNR of 86.97% ,
which shows that though labels of both the classes are
flipped but still the severity of the attack is highly depend-
ent on the threshold, which affects the overall attack perfor-
mance. Similarly, the attack proposed by [34] fails to reduce
the model performance and thus achieves average FPR and
FNR of 21.14% & 16% . In contrast, the proposed attack
method effectively reduces the model performance on the
test dataset by achieving the maximum average loss (58.5%),
FPR (32.57%), and FNR (46.16%), which is 25.37%, 23.90%
and 6.93% higher than the existing techniques. Moreover, the
obtained accuracy (67.09%) , recall (50.53%) , TNR (68.72%) ,
and area covered (58.7%) also shows that the maliciously
trained model performs misclassification at a higher rate by
predicting TI nets as TF and vice versa.

5.2.2 Proposed Defense Results on Trust‑Hub Benchmarks

The proposed defense results on re-labeled clean 16 Trust-
Hub benchmarks are shown in Table 4, it can be observed
that the proposed method significantly improved the model
performance on the test dataset by achieving on an average
1.43% loss, 99.66% accuracy, 0.17% FPR and 10.53% FNR
respectively. The obtained results clearly indicate that the
proposed defense method identifies almost all the malicious
samples from the PTrD and re-labeled them correctly, which

Table 3 Comparative proposed attack results on Trust-Hub benchmarks (%)

Metrics K-mediods based
attack [57]

Entropy based
attack [57]

Silhoutte clustering
based attack [47]

Greedy heuristic based
attack [34]

Proposed attack

Loss 15.15 16.63 44.93 54.34 58.5
Accuracy 99.12 99.17 86.59 78.78 67.09
Recall 46.31 54.2 57.34 71.95 50.53
ROC-AUC score 72.69 76.97 72.16 76.14 58.7
TNR 99.73 99.75 86.97 78.838 68.72
FPR 0.2609 0.238 13.01 21.14 32.57
FNR 53.68 45.79 42.65 16 46.16

678 Journal of Electronic Testing (2022) 38:667–682

1 3

eventually makes the model training correct. However, it
has been analyzed that the CatBoost detects all the TI and
TF nets correctly in five benchmarks, i.e., RS232 − T1300 ,
s38417 − T100 , s35932 − T200 , s35932 − T300 and
s38584 − T200 . Whereas it provides lower recall between
(66% − 83.33%) and large FNR (16.66% − 33.33%) in
RS232 − T1000,T1100, T1500, s38417 − T300, s35932 − T100
and s38584 − T300 benchmarks respectively which means
that few TI nets are misclassified as TF. This happens
because some of the malicious samples are still present
in the CtD of these benchmarks, thus missed out by our
method, which affects the prediction. Finally the proposed
defense overall detect all the malicious samples, it can be
seen from the fact that the difference between average results
obtained before attack and after defense is not very large
i.e loss (0.77), accuracy (0.2), TNR (0.11), FPR (0.105)
respectively.

Besides the average comparative results are shown in
Table 5, it can be seen that k-NN-based defense [34] provides
lower recall (71.46%) and higher FNR (28.528%) thus fail
to detect Trojan nets accurately from the test dataset which

shows that k-NN either mislabels the genuine inputs or fail
to identify the malicious samples. Whereas AdaBoost [6]
& Label-spreading based defenses [47] provides comparable
loss (4%), accuracy/TNR lies between (98% − 99%), achieve
FPR (1.9% & 1.25%) but lacks in recall, ROC and FNR. How-
ever, AdaBoost-based defense [6] provides 62.15% recall,
37.84% FNR, and covers 80% area because some genuine
samples which possess higher weights are wrongly rela-
beled into a different class. In contrast label spreading based
defense [47] provides higher recall (77.55%) and covers more
area (88%) than [6] because it relabel the samples based on
voting. However, it is interesting to see that though cluster-
ing-based defense [47] provides lower loss (2.29%) but still
lacks in recall (68.59%) , FNR (31.41%) and covers only 84%
area which indicates that clustering measures are not very
appropriate for poisonous samples detection and fail to detect
the TI nets. Finally, our proposed defense method provides
on-an-average 89.45% recall and covers 92.2% area which is
19.5% and 7.7% higher than the existing techniques. Further,
it also shows that the prediction is almost correct and not
biased to any single TI/TF class for most of the benchmarks.

Table 4 Proposed Defense
Result on re-labeled clean
Trust-Hub benchmarks (%)

Trust-Hub Benchmarks Loss Accuracy Recall ROC- AUC TNR FPR FNR

RS232-T1000 5.7 99.23 83.3 85 100 0 16.66
RS232-T1100 1.3 99.37 66.66 83.33 100 0 33.33
RS232-T1200 1.215 98.73 100 99.35 98.7 1.29 0
RS232-T1300 0.29 100 100 100 100 0 0
RS232-T1400 2.39 99.41 91.66 90 100 0 8.33
RS232-T1500 3.1 99.37 83.33 91.5 99.67 0.32 16.66
RS232-T1600 1.58 99.38 90.9 99.23 100 0 9.09
s38417-T100 0.414 100 100 100 100 0 0
s38417-T200 0.1715 99.97 85.7 80 100 0 14.28
s38417-T300 0.1645 99.97 75 77 100 0 25
s35932-T100 0.1914 99.97 75 87.5 100 0 25
s35932-T200 0.414 100 100 100 100 0 0
s35932-T300 0.5179 100 100 100 100 0 0
s38584-T100 3.151 99.32 99.75 99.324 98.89 1.102 0.24
s38584-T200 0.02503 100 100 100 100 0 0
s38584-T300 0.2675 99.9 80 83 99.95 0.049 20
Average 1.430739 99.66375 89.45625 92.20213 99.82563 0.172563 10.53688

Table 5 Comparative
defense results on Trust-Hub
benchmarks (%)

Metrics KNN based
defense [34]

Adaboost
based defense
[6]

Label spreading
based defense [47]

Clustering
based defense
[47]

Proposed
Defense
method

Loss 5.302 4.58 4.2 2.29 1.43
Accuracy 99 99.285 98.34 99.59 99.66
Recall 71.46 62.15 77.55 68.59 89.45
ROC-AUC score 85 80.98 88 84 92.2
TNR 99.48 99.8 98.74 99.87 99.82
FPR 0.514 1.918 1.25 0.12 0.1725
FNR 28.528 37.84 22.44 31.41 10.53688

679Journal of Electronic Testing (2022) 38:667–682

1 3

5.2.3 HT Detection Analysis: Results Obtained
on Non‑Poisoned & Relabeled Trust‑Hub Benchmarks

In this subsection, we have analyzed the results obtained
on the test dataset when the CatBoost model is trained
before the attack on TrD and after relabeling on CtD train-
ing datasets with respect to HT detection. It can be ana-
lyzed from Table 2 before attack results that the CatBoost
model accurately detects all combinational & sequential
functional Trojans in 13 benchmarks out of 16. It provides
nearly 0 FPR & FNR in RS232 − T1000 , T1100, T1200,
T1300 & T1500, s38417 − T100 , T200, s35932 − T100 ,
T200 & T300, s38584 − T100 , T200 & T300 benchmarks
respectively. This clearly shows that the CatBoost model
trained on SCOAP feature values effectively identifies the
HT from these benchmarks. Though all the TF nets are
detected correctly in benchmarks RS232 − T1400 , T1600
& s38417 − T300 but some of the TI nets are misclassi-
fied. It may have happened because the weight calculated
by the parameter auto_class_weights to balance both the
classes is not effective in some cases, thus model provides
incorrect predictions. This can also be confirmed from the
obtained ROC-AUC score of these benchmarks, as it only
covers 99.42% , 85.3% & 84% area, which indicates that com-
puted weights are not effective for these benchmarks, and
the model prediction is biased towards the TF class. Moreo-
ver, instead of having low SCOAP values compared to other
Trust-Hub benchmarks, the model correctly identifies all the
TI nets from the s35932 − T200 benchmark. However, for
the s38584 − T100 benchmark, some TF nets are wrongly
predicted as TI nets because the SCOAP values of Trojan
nets are less than the TF nets.

Similarly, we have observed from Table 4 that the
CatBoost model provides considerably good prediction
performance on the test dataset after training on rela-
beled CtD. It can be seen that model accurately pre-
dicts all the Trojan nets from RS232 − T1200 , T1300,
s38417 − T100 , s35932 − T200 , T300 & s38584 − T200
respectively by providing 100% recall. However, some
of the benchmarks provide higher FNR, which ranges
from (8% − 33%) and lower recall up to 66% , which indi-
cates that some TI nets are misclassified by the model in
these benchmarks. This happened because the proposed
defense method could not detect some maliciously label
flipped samples, which affected the prediction results.

5.2.4 Proposed Attack and Defense Results on DeTrust
Benchmarks

We further check the performance of our proposed attack
method on 11 DeTrust benchmarks, the before and after
comparative attack results are shown in Table 6. It can be
seen that the CatBoost provides on an average 1.34% loss, Ta

bl
e

6
 C

om
pa

ra
tiv

e
pr

op
os

ed
 a

tta
ck

 re
su

lts
 o

n
O

rig
in

al
 a

nd
 P

oi
so

ne
d

D
eT

ru
st

be
nc

hm
ar

ks
 (%

)

D
eT

ru
st

 B
en

ch
m

ar
ks

Be
fo

re
 a

tta
ck

A
fte

r
pr

op
os

ed
 a

tta
ck

Lo
ss

A
cc

ur
ac

y
R

ec
al

l
R

O
C

- A
U

C

TN
R

FP
R

FN
R

Lo
ss

A
cc

ur
ac

y
R

ec
al

l
R

O
C

- A
U

C

TN
R

FP
R

FN
R

R
S2

32
-T

10
00

0.
33

1
10

0
10

0
10

0
10

0
0

0
40

.8
7

77
.0

1
83

.3
3

80
.0

5
76

.7
7

23
.2

2
16

.6
6

R
S2

32
-T

11
00

3.
48

99
.3

8
83

.3
3

91
.6

6
10

0
0

16
.6

6
44

.8
65

5
85

.1
85

66
76

.2
8

85
.8

9
14

.1
33

.3
3

R
S2

32
-T

12
00

1.
27

1
99

.4
1

10
0

99
.6

9
99

.3
9

0.
6

0
48

.5
2

84
.4

8
20

82
.2

8
88

.4
1

11
.5

8
80

R
S2

32
-T

13
00

0.
26

6
10

0
10

0
10

0
10

0
0

0
51

.0
61

81
.6

5
38

.4
6

80
.6

2
85

.2
5

14
.7

4
61

.5
3

R
S2

32
-T

14
00

0.
48

8
10

0
10

0
10

0
10

0
0

0
47

.6
45

85
.4

5
83

.3
3

84
.4

3
85

.5
3

14
.4

6
16

.6
6

R
S2

32
-T

15
00

7.
36

99
.4

90
90

.8
10

0
0

10
50

.2
3

71
.3

4
66

69
.0

92
71

.5
1

28
.4

8
33

.3
3

R
S2

32
-T

16
00

0.
34

4
10

0
10

0
10

0
10

0
0

0
46

.3
7

82
.7

1
80

81
.4

82
.8

17
.1

9
20

s3
84

17
-T

10
0

0.
12

67
2

99
.9

7
80

90
10

0
0

20
67

.4
8

70
.4

9
20

70
70

.4
8

29
.5

1
80

s3
84

17
-T

20
0

0.
06

59
7

10
0

10
0

10
0

10
0

0
0

66
.9

2
61

.6
40

72
.5

2
61

.7
1

38
.2

8
60

s3
84

17
-T

30
0

0.
06

27
10

0
10

0
10

0
10

0
0

0
68

.7
2

54
.7

25
64

.6
54

.8
45

.1
8

75
s3

59
32

-T
20

0
1.

03
1

10
0

10
0

10
0

10
0

0
0

67
.3

7
67

.8
3

42
.8

5
72

.7
9

67
.8

8
32

.1
1

57
.1

4
A

ve
ra

ge
1.

34
78

54
99

.8
32

73
95

.7
57

27
97

.4
68

18
99

.9
44

55
0.

05
45

45
4.

24
18

18
54

.5
50

14
74

.7
67

73
51

.3
60

91
75

.8
23

82
75

.5
48

18
24

.4
40

91
48

.5
13

64

680 Journal of Electronic Testing (2022) 38:667–682

1 3

99.83% accuracy, and 0.054% FPR, i.e., almost correct pre-
diction when trained on TrD. In contrast, our proposed attack
method significantly reduces the model performance on the
test dataset by providing on an average 54% loss and 74.76%
accuracy. Moreover, the recall dropped heavily from 95% to
51% , the FNR rate increased from 4% to 48.511% , and the
area covered also decreased from 97% to 75% which clearly
shows that the proposed attack method heavily degraded
the model prediction performance. Besides, if we individu-
ally see the degradation in classification performance dur-
ing prediction, then it has been observed that benchmarks
RS232 − T1200, T1300, s38417 − T100, 200, 300 provides
only 20% − 40% recall which means that most of the TI nets
are predicted as TF nets.

Further, the proposed defense results on 11 DeTrust bench-
marks are shown in Table 7, which shows that the proposed
defense method correctly relabels the poisoned samples and
improves the prediction performance of the CatBoost model.
It can be analyzed that the proposed method achieves 100%
accuracy in several benchmarks and 99 − 98% accuracy in the
rest of the benchmarks, which shows that the model can detect
nearly all the TI/TF nets into their correct classes. The higher
recall, TNR, and lower FPR/FNR rates also confirmed this.
Moreover, there is a marginal difference (1%) between the
on-an-average-loss achieved by the model trained on TrD and
PTrD, which also shows that the object importance method
capture almost all the malicious sample present in the PTrD
and then k-NN successfully relabeled the malicious samples
into their correct classes.

5.2.5 HT Detection Analysis: Results Obtained
on Non‑poisoned & Relabeled DeTrust Benchmarks

We have further analyzed the results with respect to HT
detection on DeTrust benchmarks, it can be seen from
Table 6 before the attack result that the CatBoost model
detects all the TI & TF nets in four RS232 series, two s38417

& s35932 − T200 benchmarks respectively. It indicates that
SCOAP features again proved to be effective in identifying
Trojans not only in Trust-Hub but in DeTrust benchmarks
also. Further, we can see from Table 7 that the model detects
all TI & TF nets from four benchmarks when trained on the
relabeled dataset. However, the higher FNR rates in some of
the benchmarks indicate that the proposed defense method
missed out some of the malicious samples in these bench-
marks, which leads to misclassification.

6 Conclusion

This paper proposed a new CatBoost and SCOAP features-
based approach which accurately tackles the problem of a
poisoned dataset where an adversary flips the sample labels
to malign the ML model training so that HT nets are misclas-
sified during prediction. A label flipping poisoning attack is
proposed, which utilizes the SHC algorithm to identify the
best samples from the training set, and amongst them, only
20% of samples are flipped, which increases the validation
loss most. Besides, a new CatBoost model-based defense
method is proposed in which the object importance method
captures the malicious samples from the training set, and the
k-NN model relabels them to their correct classes. The pro-
posed attack and defense method are ML model-independent,
i.e., the attacker and defender do not have any idea about
the ML model used during training. Experimental analysis
on Trust-Hub benchmarks shows that the proposed attack
method decreases the on-an-average accuracy up to 67% on
the test dataset, which is on an average 32.77% lower than the
accuracy achieved on the model trained on a non-poisoned
dataset. Further, the proposed defense method effectively
identifies the malicious inputs from the poisoned dataset
and improves the CatBoost model prediction performance
by the rate of 32.57% by providing on-an-average 99.66%
accuracy, which is comparable to the accuracy achieved on

Table 7 Proposed Defense
Result on re-labeled clean
DeTrust benchmarks (%)

DeTrust Benchmarks Loss Accuracy Recall ROC- AUC TNR FPR FNR

RS232-T1000 0.7 99.38 100 99.677 99.35 0.64 0
RS232-T1100 5.8046 98.77 83.3 91.346 99.35 0.64 16.66
RS232-T1200 5.62 98.82 66.66 83.33 100 0 33.33
RS232-T1300 1.233 99.39 83.33 91.66 100 0 16.66
RS232-T1400 0.495 100 100 100 100 0 0
RS232-T1500 8.79 98.21 70 86.33 100 0 30
RS232-T1600 2.88 99.38 80 90 100 0 20
s38417-T100 0.04699 99.97 80 90 100 0 20
s38417-T200 0.02275 100 100 100 100 0 0
s38417-T300 0.06762 100 100 100 100 0 0
s35932-T200 0.695 100 100 100 100 0 0
Average 2.395905 99.44727 87.57182 93.84936 99.88182 0.116364 12.42273

681Journal of Electronic Testing (2022) 38:667–682

1 3

the untainted training dataset. Finally, the results computed
on the DeTrust benchmarks also show the efficacy of the
proposed attack and defense method.

Data Availability The Trust-Hub benchmarks analyzed during this
study are available at https://trust-hub.org/. Besides, the DeTrust
benchmarks created during the current study are available from the
corresponding author on reasonable request.

Declarations

Conflict of Interest The authors declare that there is no conflict of in-
terest in relation to this manuscript.

References

 1. Aryal K, Gupta M, Abdelsalam M (2021) A survey on adversarial
attacks for malware analysis. arXiv preprint arXiv: 2111. 08223

 2. Basu K, Saeed SM, Pilato C, Ashraf M, Nabeel MT, Chakrabarty K,
Karri R (2019) Cad-base: An attack vector into the electronics supply
chain. ACM Trans Des Autom Electron Syst (TODAES) 24(4):1–30

 3. Bhunia S, Hsiao MS, Banga M, Narasimhan S (2014) Hardware
trojan attacks: threat analysis and countermeasures. Proc IEEE
102(8):1229–1247

 4. Chakraborty RS, Narasimhan S, Bhunia S (2009) Hardware trojan:
Threats and emerging solutions. In: Proc. IEEE International high
level design validation and test workshop. pp 166–171

 5. Chen T, Guestrin C (2016) Xgboost: A scalable tree boost-
ing system. In: Proceedings of the 22nd acm sigkdd interna-
tional conference on knowledge discovery and data mining. pp
785–794

 6. Cheng N, Zhang H, Li Z (2021) Data sanitization against label
flipping attacks using adaboost-based semi-supervised learning
technology. Soft Comput 25(23)14573–14581

 7. Clements J, Lao Y (2018) Hardware trojan attacks on neural
networks. arXiv preprint arXiv: 1806. 05768

 8. Elnaggar R, Chakrabarty K (2018) Machine learning for hardware
security: Opportunities and risks. J Electron Test 34(2):183–201

 9. Fern N, Kulkarni S, Cheng K-TT (2015) Hardware trojans hidden
in RTL don’t cares-automated insertion and prevention meth-
odologies. In: Proc. IEEE International Test Conference (ITC).
pp 1–8

 10. Friedman JH (2001) Greedy function approximation: a gradient
boosting machine. Ann Stat pp. 1189–1232

 11. Gao Y, Doan BG, Zhang Z, Ma S, Zhang J, Fu A, Nepal S, Kim
H (2020) Backdoor attacks and countermeasures on deep learn-
ing: A comprehensive review. arXiv preprint arXiv: 2007. 10760

 12. Goldstein LH, Thigpen EL (1980) Scoap: Sandia controllabil-
ity/observability analysis program. In Proceedings of the 17th
Design Automation Conference pp. 190–196

 13. Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and harness-
ing adversarial examples. arXiv preprint arXiv: 1412. 6572

 14. Gu T, Liu K, Dolan-Gavitt B, Garg S (2019) Badnets: Evaluat-
ing backdooring attacks on deep neural networks. IEEE Access
7:47230–47244

 15. Hasegawa K, Oya M, Yanagisawa M, Togawa N (2016) Hard-
ware trojans classification for gate-level netlists based on
machine learning. In: Proc. 22nd International Symposium on
On-Line Testing and Robust System Design (IOLTS). IEEE, pp
203–206

 16. Hasegawa K, Yanagisawa M, Togawa N (2017) Trojan-feature
extraction at gate-level netlists and its application to hardware-
trojan detection using random forest classifier. In: Proc. IEEE

International Symposium on Circuits and Systems (ISCAS). pp
1–4

 17. Hasegawaa K, Yanagisawa M, Togawa N (2017) Hardware trojans
classification for gate-level netlists using multi-layer neural networks.
In: Proc. IEEE 23rd International Symposium on On-Line Testing
and Robust System Design (IOLTS). pp 227–232

 18. Hu W, Zhang L, Ardeshiricham A, Blackstone J, Hou B, Tai Y,
Kastner R (2017) Why you should care about don’t cares: Exploit-
ing internal don’t care conditions for hardware trojans. In: Proc.
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). pp 707–713

 19. Huang Z, Wang Q, Chen Y, Jiang X (2020) A survey on machine
learning against hardware trojan attacks: Recent advances and
challenges. IEEE Access 8:10796–10826

 20. Jacob N, Merli D, Heyszl J, Sigl G (2014) Hardware trojans:
current challenges and approaches. IET Comput Digit Tech
8(6):264–273

 21. Kaviani S, Sohn I (2021) Defense against neural trojan attacks: A
survey. Neurocomputing 423:651–667

 22. Khamitkar R, Dube R (2022) A survey on using machine learning
to counter hardware trojan challenges. In: ICT with Intelligent
Applications. Springer, pp 539–547

 23. Kok CH, Ooi CY, Inoue M, Moghbel M, Dass SB, Choo HS,
Ismail N, Hussin FA (2019) Net classification based on testability
and netlist structural features for hardware trojan detection. In:
Proc. IEEE 28th Asian Test Symposium (ATS). pp 105–1055

 24. Kok CH, Ooi CY, Moghbel M, Ismail N, Choo HS, Inoue M
(2019) Classification of trojan nets based on scoap values using
supervised learning. In: Proc. IEEE International Symposium on
Circuits and Systems (ISCAS). pp 1–5

 25. Kurihara T, Togawa N (2021) Hardware-trojan classification based
on the structure of trigger circuits utilizing random forests. In:
Proc. IEEE 27th International Symposium on On-Line Testing
and Robust System Design (IOLTS). pp 1–4

 26. Li H, Liu Q, Zhang J (2016) A survey of hardware trojan threat
and defense. Integration 55:426–437

 27. Liakos KG, Georgakilas GK, Moustakidis S, Sklavos N, Plessas
FC (2020) Conventional and machine learning approaches as
countermeasures against hardware trojan attacks. Microprocess
Microsyst p. 103295

 28. Liu W, Chang C-H, Wang X, Liu C, Fung JM, Ebrahimabadi M,
Karimi N, Meng X, Basu K (2021) Two sides of the same coin:
Boons and banes of machine learning in hardware security. IEEE
J Emerging Sel Top Circuits Syst 11(2):228–251

 29. Liu Y, Mondal A, Chakraborty A, Zuzak M, Jacobsen N, Xing D,
Srivastava A (2020) A survey on neural trojans. In: Proc. 21st Interna-
tional Symposium on Quality Electronic Design (ISQED). pp 33–39

 30. Liu Y, Xie Y, Srivastava A (2017) Neural trojans. In: Proc.
IEEE International Conference on Computer Design (ICCD).
pp 45–48

 31. Mondal A, Biswal RK, Mahalat MH, Roy S, Sen B (2021) Hard-
ware trojan free netlist identification: A clustering approach. J
Electron Test 37(3):317–328

 32. Nahiyan A, Sadi M, Vittal R, Contreras G, Forte D, Tehranipoor
M (2017) Hardware trojan detection through information flow
security verification. In: Proc. IEEE International Test Conference
(ITC). pp 1–10

 33. Nozawa K, Hasegawa K, Hidano S, Kiyomoto S, Hashimoto K,
Togawa N (2019) Adversarial examples for hardware-trojan detection
at gate-level netlists. In: Comput Secur. Springer, pp 341–359

 34. Paudice A, Muñoz-González L, Lupu EC (2018) Label sanitiza-
tion against label flipping poisoning attacks. In: Joint European
conference on machine learning and knowledge discovery in data-
bases. Springer, pp 5–15

 35. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al

https://arxiv.org/abs/2111.08223
http://arxiv.org/abs/1806.05768
http://arxiv.org/abs/2007.10760
https://arxiv.org/abs/1412.6572

682 Journal of Electronic Testing (2022) 38:667–682

1 3

(2011) Scikit-learn: Machine learning in python. J Mach Learn
Res 12:2825–2830

 36. Peterson LE (2009) K-nearest neighbor. Scholarpedia 4(2):1883
 37. Pilato C, Basu K, Regazzoni F, Karri R (2018) Black-hat high-

level synthesis: Myth or reality? IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 27(4):913–926

 38. Pitropakis N, Panaousis E, Giannetsos T, Anastasiadis E, Loukas
G (2019) A taxonomy and survey of attacks against machine
learning. Comput Sci Rev 34:100199

 39. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A
(2017) Catboost: unbiased boosting with categorical features.
arXiv preprint arXiv: 1706. 09516

 40. Rawal A, Rawat D, Sadler BM (2021) Recent advances in adver-
sarial machine learning: status, challenges and perspectives.
Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications III 11746:701–712

 41. Rostami M, Koushanfar F, Karri R (2014) A primer on hard-
ware security: Models, methods, and metrics. Proc IEEE
102(8):1283–1295

 42. Russell SJ (2010) Artificial intelligence a modern approach. Pear-
son Education, Inc

 43. Salmani H (2017) Cotd: reference-free hardware trojan detection
and recovery based on controllability and observability in gate-
level netlist. IEEE Trans Inf Forensics Secur 12(2):338–350

 44. Salmani H, Tehranipoor M, Karri R (2013) On design vulner-
ability analysis and trust benchmarks development. In: Proc.
IEEE 31st international conference on computer design (ICCD).
pp 471–474

 45. Samimi SMS (2016) Testability measurement tool. https://
sourc eforge. net/ proje cts/ testa bilit ymeas ureme nttool/

 46. Sharma R, Valivati NK, Sharma G, Pattanaik M (2020) A new
hardware trojan detection technique using class weighted xgboost
classifier. In: Proc. 24th International Symposium on VLSI Design
and Test (VDAT). pp 1–6

 47. Taheri R, Javidan R, Shojafar M, Pooranian Z, Miri A, Conti M (2020)
On defending against label flipping attacks on malware detection sys-
tems. Neural Comput Appl 32(18):14781–14800

 48. Wang J, Hassan GM, Akhtar N (2022) A survey of neural trojan
attacks and defenses in deep learning. arXiv preprint arXiv: 2202.
07183

 49. Wang Y, Han T, Han X, Liu P (2019) Ensemble-learning-based
hardware trojans detection method by detecting the trigger nets.
In: Proc. IEEE International Symposium on Circuits and Systems
(ISCAS). pp 1–5

 50. Xiao H, Biggio B, Nelson B, Xiao H, Eckert C, Roli F (2015)
Support vector machines under adversarial label contamination.
Neurocomputing 160:53–62

 51. Xiao H, Xiao H, Eckert C (2012) Adversarial label flips attack on
support vector machines. In: ECAI 2012. IOS Press, pp 870–875

 52. Xiao K, Forte D, Jin Y, Karri R, Bhunia S, Tehranipoor M (2016)
Hardware trojans: Lessons learned after one decade of research.
ACM Trans Des Autom Electron Syst (TODAES) 22(1):6

 53. Xie X, Sun Y, Chen H, Ding Y (2017) Hardware trojans classifica-
tion based on controllability and observability in gate-level netlist.
IEICE Electronics Express 14(18):20170682–20170682

 54. Xue M, Gu C, Liu W, Yu S, O’Neill M (2020) Ten years of hard-
ware trojans: a survey from the attacker’s perspective. IET Com-
put Digit Tech 14(6):231–246

 55. Xue M, Yuan C, Wu H, Zhang Y, Liu W (2020) Machine learning
security: Threats, countermeasures, and evaluations. IEEE Access
8:74720–74742

 56. Yang Y, Ye J, Cao Y, Zhang J, Li X, Li H, Hu Y (2020) Survey:
Hardware trojan detection for netlist. In: Proc. IEEE 29th Asian
Test Symposium (ATS). pp 1–6

 57. Zhang H, Cheng N, Zhang Y, Li Z (2021) Label flipping attacks
against naive bayes on spam filtering systems. Appl Intell
51(7):4503–4514

 58. Zhang J, Yuan F, Xu Q (2014) Detrust: Defeating hardware trust
verification with stealthy implicitly-triggered hardware trojans. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. ACM pp. 153–166

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Richa Sharma completed her B.E. in Computer Science & Engineering
from Maharana Pratap College of Technology, Gwalior, India, in 2011 and
completed her M.Tech. in Computer Science from Banasthali Vidyapith,
Jaipur, India, in 2014. Currently, she is a Ph.D. scholar at ABV-IIITM,
Gwalior. Her area of interest in research is Hardware security, Hardware
Trojan, and Machine Learning. She is a student member of IEEE.

G. K. Sharma did his Master’s (Electronics & Communication Engi-
neering) and Ph.D. (Electronics & Computer Engineering) from IIT
Roorkee in 1981 and 1997, respectively. He has been a Professor at
ABV-IIITM, Gwalior, Madhya Pradesh, since July 2000. Previously,
he was Professor and Head, Department of Computer Science &
Engineering at Thapar University, Punjab, from September 1996 to
August 1999. He joined these positions initially on deputation from
Central Electronics Engineering Research Institute (CEERI), Pilani.
Prof. Sharma also worked at the Institute of Microelectronic Systems,
Darmstadt University of Technology, Darmstadt, Germany, under Indo-
FRG Scientific & Technical Cooperation Programme for a CSIR - KFA
bilateral project “Advanced Research in CAD Tools and VLSI Design”.
His research interests include Low-Power VLSI Design, Network-on-
Chip (NoC) Design and Synthesis. Prof. Sharma is a member of the
IEEE and IEEE Computer Society.

Manisha Pattanaik received the Ph.D. degree from the Department
of Electronics and Electrical and Communication Engineering from
IIT Kharagpur, India, in 2005. She joined the information and com-
munication technology faculty, ABV-IIITM, Gwalior, Madhya Pradesh,
India, in 2007, where she is currently a professor. She is the author or
co-author of more than 150 research papers in refereed journals and
conferences. Her research interests include Low Power/Low Voltage
Electronics, Nanoscale CMOS Device/Circuits/System Co-Design
Characterization, Design of Low Power Logic and Memory Leak-
age Power Reduction, Ground Bounce Noise Reduction Techniques,
and reliability aware high performance energy-efficient embedded
computing.

http://arxiv.org/abs/1706.09516
https://sourceforge.net/projects/testabilitymeasurementtool/
https://sourceforge.net/projects/testabilitymeasurementtool/
https://arxiv.org/abs/2202.07183
https://arxiv.org/abs/2202.07183

	A CatBoost Based Approach to Detect Label Flipping Poisoning Attack in Hardware Trojan Detection Systems
	Abstract
	1 Introduction
	2 Literature Review: Analysis
	3 Background
	3.1 CatBoost Model Based Learning
	3.2 SCOAP Gate-Level Net-List Features

	4 Proposed CatBoost Based Approach to Detect Label Flipping Poisoning Attack
	4.1 Threat Model & Problem Statement
	4.1.1 Threat Model
	4.1.2 Problem Statement

	4.2 Proposed Approach
	4.2.1 Proposed Label Flipping Poisoning Attack
	4.2.2 Proposed Label Flipping Poisoning Attack Algorithm
	4.2.3 Proposed CatBoost and K-Nearest Neighbor Based Defense
	4.2.4 Proposed Defense Algorithm

	5 Experimental Results and Analysis
	5.1 Dataset Description and Evaluation Measures
	5.2 Simulation Results and Analysis
	5.2.1 Proposed Attack Results on Trust-Hub Benchmarks
	5.2.2 Proposed Defense Results on Trust-Hub Benchmarks
	5.2.3 HT Detection Analysis: Results Obtained on Non-Poisoned & Relabeled Trust-Hub Benchmarks
	5.2.4 Proposed Attack and Defense Results on DeTrust Benchmarks
	5.2.5 HT Detection Analysis: Results Obtained on Non-poisoned & Relabeled DeTrust Benchmarks

	6 Conclusion
	References

