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Abstract
Hardware Trojan (HT) intrusion at different integrated circuit (IC) phases is the most important concern for the semiconduc-
tor industries. Recently, machine learning (ML) models have been used to detect HT from the pre-silicon IC phase, which 
utilizes either structural or SCOAP gate level netlist features. However, the main concern is that an adversary may poison the 
training dataset by flipping the target labels to malign the ML model training, which further provides an incorrect prediction 
on the test dataset. Thus, due to the malicious training of ML models, the Trojan-inserted ICs are missed out and can easily 
perform their malicious activities. Hence, it is of utmost importance to scan the training dataset and identify the poisoned 
input samples before applying ML models for HT detection. Therefore, this paper proposes a new technique that first identi-
fies the poisoned training samples, which consist of SCOAP features, and then detects HTs from the unseen gate-level netlist. 
The proposed technique employs a robust ensemble Categorical Boosting (CatBoost) model, which avoids the problem of 
target leakage by using the concept of ordered boosting. Further, a label flipping poisoning attack based on a stochastic hill-
climbing search is proposed, which flips the labels of the handful of samples that maximizes the validation dataset loss by 
deteriorating the model performance. Moreover, a defense method is proposed which utilizes CatBoost object importance 
and k-nearest neighbor to detect malicious training samples and restore their original labels. Finally, the CatBoost model is 
trained on the clean dataset to detect the HT nets from the unseen gate-level netlist accurately. Experimental results shows 
that the proposed attack method increases the on-an-average loss up to 58% and 54% on Trust-Hub and DeTrust benchmarks. 
Whereas the proposed defense method accurately identifies the poisoned input labels from the training dataset with on-an-
average 99% accuracy on these benchmarks.
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1 Introduction

Due, to the emergence of the Internet of Things (IoT) and 
Artificial Intelligence (AI) applications, the demand for 
integrated circuits (ICs) are increased fourfold. This led 
semiconductor industries to outsource different IC phases 
to untrusted parties, which relinquishes the control that IC 

firms had on IC designing & manufacturing [4, 41]. This 
global distribution of IC phases to external parties opened 
the gates for an adversary for hardware Trojan (HT) intru-
sion [3, 52]. The flow of the IC supply chain given by [3, 
19] with trusted and untrusted entities are shown in Fig. 1. 
An adversary present either in the in-house designing team 
or in the foundry can insert HT by modifying the existing 
circuit, adding malicious nets in IC, or manipulating the 
IC lithographic masks. Besides, the System on Chip (SoC) 
designers integrates many third-party intellectual property 
(3PIP) cores in the form of soft, firm & hard IPs at RTL-
level, gate-level, and GDS-II-level [32]. These untrusted 
3PIPs have access to the source codes and IP design files 
thus, an attacker can easily insert the HT by modifying the 
circuit functionality at any specification level. Moreover, the  
involvement of EDA/CAD tools supplied by different ven-
dors may also insert HT into the IC design and degrade IC 
logic [20, 54]. For example, Pilato et al. [37] present the CAD 
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tool threat by inserting three Trojans in a high-level synthe-
sis tool. Similarly, Basu et al. [2] shows that the CAD tool 
can launch HT attacks in all phases, from design to test.

HT becomes the most dangerous threat due to its stealthy 
nature, which, once activated, can lead to catastrophic fail-
ures like information leakage, denial of service (DoS), 
etc., and becomes life-threatening for a myriad of real-life 
applications [26, 54]. For example, a Syrian radar failed to 
warn about an air strike because the system chip contain 
backdoor [3, 54]. Conventional pre-silicon verification, like 
equivalence checking and post-manufacturing testing, fails 
to detect HT due to its stealthy nature and the vast number of 
HT instances designed by an adversary. Moreover, it requires 
a golden model of the IC for verification which might not 
always be available when 3PIP is utilized [3, 27]. Besides, 
researchers [9, 18] have designed a new type of HT by  
exploiting don’t care conditions in such a way that the design 
with and without Trojans are logically equivalent and can 
bypass the formal equivalence checking.

Recently, Machine learning (ML) models have been used 
to detect HT at pre-silicon and post-silicon IC phases which 
automate the detection process and prove to be more accu-
rate and faster than conventional HT detection approaches 
[8, 22, 28]. However, to reduce cost and time or due to lack 
of resources, firms nowadays use pre-trained models or 
training/testing datasets prepared by external parties, For 
example, one can train their models on services provided 

by Google’s Cloud Machine Learning Engine, Microsoft’s 
Azure Batch Training and Amazon Virtual Machine [21, 
38]. Similarly, pre-trained models can be downloaded 
from the repositories like Keras pre-trained model library 
and Berkeley’s Caffe model zoo [14]. Besides, data is col-
lected from multiple sources or prepared by third parties and 
labeled manually by them, For example, Amazon Mechani-
cal Turk, Recommender systems, etc. [55]. The outsourc-
ing of model training, use of pre-trained models or periodic 
retraining of models, and use of training/testing datasets 
manually labeled by third parties gives ample chances to an 
adversary to implant various attacks [11, 55].

The ML pipeline, along with possible attacks in differ-
ent phases, is shown in Fig. 2. An adversary can perform 
the poisoning and evasion attacks during the training and 
testing phase of ML models by perturbing the samples in 
training or testing datasets with adversarial noise [1, 40]. 
However, the main aim of the poisoning attack is to mis-
lead the learning process of ML models by poisoning the 
training dataset, which either increases the prediction loss 
or is used to trigger the hidden Trojans [48]. An attacker, 
if present in the dataset preparation and labeling phase, 
can easily manipulate the labels of the samples or insert 
additional malicious samples (Backdoor attack) or use the 
genuine samples as a trigger to activate the Trojan hidden 
in the design of ML model (Trojan attack). For example, 
Gu et al. [14] poisoned the pre-trained model in such a way 

Fig. 1  IC supply chain flow
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that a street sign classifier learns to recognize stop signs as 
speed limits. In contrast, evasion attacks exploit the vul-
nerabilities of the ML models by putting the adversarial 
examples in the test dataset, which fool the model during 
prediction [29]. For example, Goodfellow et al. [13] create 
adversarial examples by performing small perturbations to 
original images of the panda which are misclassified as gib-
bon by the classifier. However, this paper mainly focuses 
on detecting two types of attacks, the first one is a poison-
ing attack, where an attacker maligns the training dataset. 
Second, HT attack where an attacker alters the gate-level 
net-list of the IC.

Existing ML-based HT detection techniques in the pre-
silicon IC designing phase only detect HT nets from gate-
level net-list by utilizing either SCOAP or structural fea-
tures. Salmani [43] use SCOAP features and apply k-means 
clustering, whereas Hasegawa et al. [16] use structural fea-
tures and utilize a random forest classifier for Trojan detec-
tion. Kok et al. [23] use bagged trees and combines both 
structural and SCOAP features for detection. However, none 
of them paid attention on the adversarial dataset problem. 
Recently, Nozawa et al. [33] shed some light on this prob-
lem and demonstrated evasion attacks by designing various 
adversarial examples to malign the Neural network (NN) 
detection process. In contrast, Clements and Lao [7] insert 
Trojan in the design of NN by maliciously adding the extra 
circuit in the NN design, which is triggered by a specific 
input and then misclassified that input into particular class. 
Similarly, Liu et al. [30] provide three defenses to identify 
the malicious input images hidden in the training dataset. 
However, they specifically create the adversarial exam-
ples for NN, which only affect the training or prediction 
process of NN. Besides, the defenses provided by [30] are 
time-consuming and require the model to be reconfigurable. 
Moreover, the field of adversarial machine learning is new 
for the hardware security area, and an adversary can per-
form several other attacks. One such attack is label flipping 
poisoning attack [38] in which an adversary controlled the 
labels of the small set of training samples and flipped them 
to malign the training process. If such malicious ML mod-
els are deployed in the IoT /AI applications, then it causes 
catastrophic failures because the motive of the adversary 
now becomes twofold. First, the poisonous training dataset 
helps to evade the Trojan inserted IC during the detection 
process, and second those missed Trojan IC’s payload then 
easily perform their hidden malicious functions after trig-
gering. Thus, in addition to HT attacks, adversarial attacks 
on the ML model also emerge as a major threat that severely 
affects the prediction process by classifying Trojan-inserted 
IC’s as Trojan-free or vice versa, thus causing a loss of trust 
in the ML-based HT detection process. Hence, it is neces-
sary to detect these adversarial samples from training/testing 
datasets before utilizing the ML models for HT detection.

Therefore, in order to secure the training dataset and 
for accurate Trojan detection, a new Categorical Boosting 
(CatBoost) model and SCOAP features-based technique is 
proposed in this paper, which accurately detect the label 
flipping poisoning attack and HT attack. It first scans the 
training dataset to identify the malicious training samples, 
and then HTs are detected from unseen gate-level net-list. 
The proposed technique employs a powerful CatBoost 
model, which uses an efficient ordered boosting to deal with 
target leakage, which is intrinsically present in all gradient 
boosting-based models. Further, a label flipping poisoning 
attack is proposed, which utilizes Stochastic hill climbing to 
identify the optimal training dataset from which labels of a 
few samples are flipped. Besides, a new defense method is 
proposed against the label flipping poisoning attack, which 
utilizes the CatBoost object importance to detect the poi-
soned samples from the malicious training set, and then 
the k-nearest neighbor is applied on the captured poisoned 
samples to relabel them back to their original labels. The 
major contributions of this paper are as follows: 

1. A CatBoost model and SCOAP features-based approach 
are proposed, which detect poisonous training samples 
and HT accurately from gate-level net-list.

2. A label flipping poisoning attack is proposed, which flips 
the labels of the training dataset using Stochastic hill 
climbing.

3. A new defense method is proposed, which utilizes the 
CatBoost object importance and k-nearest neighbor to 
identify the malicious training samples.

4. Experimental evaluation on Trust-Hub and DeTrust 
benchmarks shows the efficacy of the proposed attack 
and defense methods.

The rest of the paper is organized as follows: Section II gives 
a literature review analysis of existing techniques. Section III 
explains the background, which includes CatBoost model-
based learning and SCOAP features. The proposed approach, 
which includes new label flipping poisoning attack and defense 
method, is presented in Section IV. Experimental results and 
comparative analysis is presented in Section V. Finally, Section 
VI concludes the paper.

2  Literature Review: Analysis

The researchers have proposed several ML based HT detec-
tion techniques at the IC pre-silicon phase, the brief over-
view is provided in [19, 22, 27, 56]. Hasegawa et al. [15] 
initially extracted the five structural features and trained the 
SVM classifier to detect the HT nets. Further, 51 structural 
features are extracted by [16] to improve performance, and 
11 best features are identified using a random forest classifier 
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for detection. They utilize the same 11 features in [17] and 
NN is trained for detection. Later, Wang et al. extracted the 
trigger net features and trained the XGBoost model sepa-
rately to detect combinational and sequential Trojans [49]. 
Similarly, Kurihara et al. [25] extracted 25 structural trigger 
features, combined them with 11 features, and trained a ran-
dom forest classifier to detect HT nets. In contrast, Salmani 
[43] use SCOAP features and apply k-means clustering to 
identify HT nets. Similarly, Xie et al. [53] use SCOAP val-
ues, extract distance as features using k-means and combine 
it with primitive features to perform detection using an SVM 
classifier. Later Kok et al. [24] extracted SCOAP features of 
both combinational and sequential circuits and trained mul-
tiple classifiers for detection. Our previous work [46] uses 
combinational and sequential SCOAP features and selects 
the best feature set using a new feature selection method for 
accurate detection using class weighted XGBoost model. 
Later Mondal et al. [31] combines transitional probabil-
ity and combinational controllability to identify HT using 
k-means clustering. However, all these approaches only 
focus on HT detection and ignore malicious dataset problem. 
Therefore, different types of adversarial attacks and defense 
methods are discussed next.

A brief taxonomy of adversarial attacks and defense pro-
posed in several domains are presented in [11, 21, 48, 55].  
Clements et al. [7] insert HT by perturbing the weights  
of hidden layer neurons in hardware implementation of the 
well-trained NN, which classify the chosen input trigger 
into a specific class. However, the major limitation of this 
attack is model dependency, and the adversary must have 
access to the NN parameters in order to perform the attack. 
In contrast, Liu et al. [30] proposed three defense techniques 
to detect the input triggers in the training dataset, which 
are used to activate the neural Trojans hidden in the NN 
design. The input anomaly detection approach separately 
trains SVM and decision tree classifiers ‘ m ’ classes times 
to identify whether the sample belongs to any one of the 
‘ m ’ classes or not otherwise, it is determined as an anom-
aly. However, this method is time-consuming and complex 
because the number of classifiers trained is proportional to 
the number of target classes. The retraining method retrains 
the NN multiple times with genuine data so that the model 
weights are overwritten, which makes the Trojan triggers 
inefficient. However, it requires the model to be reconfig-
urable and needs its intrinsic weight values. Whereas the 
input preprocessing approach checks the training dataset 
first to detect malicious input triggers. The reconstructed 
images generated by the auto-encoder are compared with 
the input images per class. The images which show higher 
deviation than the reconstructed images are detected as mali-
cious triggers. However, another NN is used to detect trig-
gers which makes the overall technique very complex and 
time-consuming.

Recently, Nozawa et al. [33] proposed an evasion attack 
where several adversarial examples are generated for NN to 
avoid hardware Trojan detection by replacing HT circuits 
with logically equivalent circuits. A Trojan-net concealment 
degree and modification evaluating value is proposed to gen-
erate adversarial examples, which eventually causes misclas-
sification. However, to generate such malicious examples, an 
attacker requires to know about the model and all its param-
eters and gate-level netlists. Moreover, there is a possibility 
that during logic synthesis optimization, these modifications 
are removed. Finally, the above-discussed approaches fail 
to generalize to other ML models because they only focus 
on the NN and perform the white-box attack, which is not 
possible in a real life scenario. Besides, none of the research 
has been carried out on label flipping poisoning attacks in 
the hardware Trojan field. However, the research on label 
flipping poisoning attacks has been carried out in several 
other domains, which are discussed next. An optimization 
framework is proposed by Xiao et al. [51] in which the labels 
of the near-optimal samples are flipped based on some given 
budget which maximally degrades the SVM classifier per-
formance. However, the attack is white-box and specifically 
made for SVM because the flipped labels are mainly those 
samples that are near the hyper-plane boundary of the clas-
sifier. Moreover, the budget is entirely dependent on the dis-
tribution of the datasets.

Similarly, Xiao et al. [50] flip the bounded number of 
training samples chosen by the bounded distribution to max-
imize the SVM classification error. Two types of heuristic-
based attacks are proposed, the first one generates different 
sets using gradient ascent and chooses one which provides 
the best value. The second one generates correlated subsets 
of label flips using a greedy best-first search. The subset 
which maximizes the empirical error is chosen. Both these 
attacks are the white-box one where the attacker has perfect 
knowledge of the model used and its parameters. However, 
these attacks cannot generalize to other models due to model 
dependency. Moreover, the high computational complexities 
of the attacks make it infeasible to be performed on larger 
datasets. Besides, the correlated cluster method requires a 
lot of computational time. Paudice et al. [34] proposed a 
heuristic-based attack in which samples to be flipped are 
chosen greedily during every iteration, which maximizes the 
validation loss. Further, they propose the k-nearest neigh-
bor-based defense method, which considers the samples far 
from the decision boundary as malicious and replaces their 
labels with the most common neighboring sample labels that 
satisfy a predefined threshold. However, this approach is 
time-consuming because it flips all the samples and com-
putes validation error to find the set of poisoned samples 
and similarly identify the nearest neighbor of all samples for 
detection. Moreover, the setting of the correct threshold is 
necessary otherwise, genuine samples may be relabeled as 
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malicious because the approach fails to distinguish between 
the overlapping areas of two classes.

Taheri et al. [47] proposed a label flipping attack against 
the deep CNN model on malware detection systems in 
which the silhouette score is computed for each training 
sample after applying k-means clustering and labels of 
samples having scores less than zero are flipped. Further, 
a semi-supervised and clustering-based defense is proposed 
in which label propagation and label spreading algorithms 
are applied to detect poisoned samples. Further, voting is 
performed between the labels predicted by these two semi-
supervised models, CNN and the poisoned label. Finally, 
malicious samples are relabeled based on the majority of 
votes given to a particular label of that sample. In contrast, 
clustering-based defense computes four cluster measures, 
and the difference between these measures is computed 
during every iteration. The obtained difference is compared 
to the specified threshold, and accordingly, the label of the 
malicious samples is restored. However, setting a correct 
threshold value is a cumbersome task that affects the attack 
performance. Moreover, the defense methods are time-
consuming and complex because of the use of multiple 
classifiers or cluster measures. Besides, semi-supervised 
learning may provide unstable predictions because of the 
lack of ability to correct its mistakes.

Zhang et al. [57] proposed a two-label flipping attack 
against the Naive Bayes classifier on spam filtering systems. 
In the first attack, the entropy of each attribute present in 
the training dataset is computed, and its weight is calcu-
lated accordingly. Further, the score of each sample labeled 
as spam is computed using obtained weights, and finally, 
the labels of the first M samples having smaller weights are 
flipped. Similarly, k-mediods clustering is utilized in the sec-
ond attack, which creates two clusters having spam and non-
spam samples. Further, the distance is computed between 
each sample of the spam cluster and the center point of the 
non-spam cluster, and eventually, the labels of the first ‘ M ’ 
samples, which possess small distances, are flipped. How-
ever, samples of only spam classes are flipped, which are 
already in the minority, thus create severe class imbalance. 
Moreover, randomly flipping of top ‘ N ’ spam samples with-
out any heuristic does not create a powerful attack. Besides, 
k-mediods are unstable and may give different results in 
different iterations, which affect the attack performance. 
A semi-supervised learning-based defense method is pro-
posed by Cheng et al. [6] in which the AdaBoost model 
iteratively identifies the set of samples having larger weights 
as label flipped samples. Further, the obtained set is fed to 
the semi-supervised learning algorithm, which relabels the 
malicious samples to their original correct labels. However, 
some genuine samples may possess larger weights which 
are also relabeled as malicious, which eventually causes 
misclassification.

3  Background

3.1  CatBoost Model Based Learning

CatBoost [39] is an ensemble gradient boosting based 
technique which uses an efficient ordered boosting and 
ordered target statistics algorithms to avoid target leakage 
which is inherently present in all gradient boosting based 
techniques [5, 10]. Suppose we have a training dataset 
TrD =

∑N

n=1
(xn, yn) which contains ‘ N ’ input samples xn and 

corresponding output values yn . The standard gradient boost-
ing algorithm [10] sequentially trains several j base learners 
i.e. function BLj on the pseudo-residuals generated by the 
previous learner BL(j−1) using gradient descent to optimize 
the loss function L(yn,BLj(xn)) which can be given as:

where � is a learning rate and function hj(xn) minimizes the 
expected loss function which can be written as:

Now, value of hj is chosen in the direction of negative gradi-
ent i.e the gradient of L with respect to BL(j−1) is decreasing 
which can be approximated for all the samples as:

The main concern pointed out here by [39] is target leak-
age because the categorical features and the gradients esti-
mated during each iteration rely on the target values yn of 
the training data samples xn . This leakage occurs due to the 
reuse of the same training data for each base learner, which 
leads to shifting (difference) in the distribution of gradients 
of F(xn|x) for training sample xn and F(x|x) for test sample 
x. This conditional and prediction shifting biased the base 
learner prediction, which severely affects the generalization 
capability of the trained model and causes overfitting.

Therefore, CatBoost performs ordered gradient boosting 
in which random permutations of training samples are per-
formed. The main aim is to remove the gradient bias (tar-
get leakage) generated by training and testing data shift by 
using the different permuted training datasets, and only prior 
data samples are used for current sample prediction. During 
learning, instead of using the same training dataset for all 
the base classifiers, CatBoost generates independent (p + 1) 
random permutations �

0
, �

1
, .......�p of the training set where 

‘ p ’ permutations �
1
 to �p evaluate the internal node split 

of the tree and �
0
 compute the leaf values of the generated 

trees. During each training iteration ‘ it ’, a random permuted 

(1)BLj(xn) = BL(j−1)(xn) + �h j(xn)

(2)
hj(xn) = argmin

hj�DT

L(yn,BL
j(xn))

≡ argmin
hj�DT

L(yn,BL
(j−1)(xn) + hj(xn))

(3)hj(xn) = argmin
hj�DT

1

N

N∑

i=1

(
�L(yn,BL

(j−1)(xn))

�BL(j−1)(xn)
− hj(xn))

2
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dataset �r is chosen, and the ordered target statistics are com-
puted for categorical features. Further, for each permutation, 
‘ v = (n − 1) ’ supporting models are maintained i.e. M(r,v) 
in such a way that model M(r,v)(xn) is learned from the first 
‘ v ’ samples in the permuted dataset �r for sample xn . The 
residual ( resn ) for xn is computed as shown below:

Instead of using asymmetric decision trees, CatBoost uses 
symmetric oblivious decision trees as base learners in which 
the same splitting criterion is used across the entire level, 
which makes them balanced and less prone to overfitting. 
Since they are full binary trees, they require the minimum 
number of comparisons to reach the leaf nodes, which 
significantly speeds up the execution. Now for sample xn , 
the gradient of the loss with respect to supporting model 
M(r,v)(xn) is computed, which is relied on the preceding train-
ing samples present in �r and it is given as:

Further, the leaf values for the xn sample during splitting are 
computed by taking the average of the gradients grad(r,v)(xn) 
of the prior samples belonging to the same leaf xn sample 
lying on. Now, once the tree Tit is constructed, the same tree 
structure is utilized by the other supporting models of the 
different permuted datasets in order to reduce complexity. 
Once all the trees are built, the leaf values of sample xn 
for the final model are computed on �

0
 using the standard 

gradient boosting procedure. The whole process is repeated 
for each permuted training dataset, and the sub-models are 
trained until the loss becomes minimized and all the param-
eters are trained correctly in order to build the most robust 
oblivious decision tree, which accurately identifies the Tro-
jan free and Trojan inserted nets from the testing dataset.

3.2  SCOAP Gate‑Level Net‑List Features

It has been analyzed by [24, 43] that in order to evade detec-
tion, an attacker inserts the functional HT at a low switch-
ing activity area to avoid frequent activation. Therefore, 
nets that are difficult to control and observe are expected 
to be used as HT triggers and payload. Those nets in a 
circuit possess large controllability and observability val-
ues, thus avoiding frequent impact on circuit design and 
remain hidden during testing. It can be seen from Table 1 
that the average SCOAP values of Trojan-inserted nets of 
the Trust-Hub RS232-T1600 circuit are higher than its Tro-
jan-free nets. Thus, six SCOAP values i.e. combinational/
sequential-0 controllability (CC0, SC0), combinational/
sequential-1 controllability (CC1, SC1), combinational/

(4)resn = yn −Mv(xn)

(5)grad(r,v) (xn) =
�L(yn,M(r,v)(xn))

�M(r,v)(xn)

sequential observability (CO, SO) of both combinational 
and sequential circuits are extracted using SCOAP method 
[12] to perform detection. However, Trust-Hub circuits 
s35932-T200 and s38584-T100 comparatively possess lower 
SCOAP values than other Trojan-inserted Trust-Hub cir-
cuits, but it has been observed by [43] that these Trojans are 
frequently activated by applying random test patterns. They 
showed that the HT present in the s35932-T200 benchmark 
is activated 42 times by applying random test patterns only 
for 4261 test clock cycles. Whereas the SCOAP values of 
benchmark s38584-T100 are even less than Trojan-free nets, 
and the HT is activated 21 times by merely applying 3286 
test cycles. Finally, [43] analyzed that the SCOAP values of 
Trojan-inserted nets should not be small or close to the val-
ues of Trojan-free circuits, otherwise it experiences switch-
ing activity, frequently interferes with the normal circuit 
functionality, and are detected during circuit testing.

4  Proposed CatBoost Based Approach 
to Detect Label Flipping Poisoning Attack

This section explains the proposed approach, which includes 
the proposed Label flipping poisoning attack and CatBoost-
based defense method.

4.1  Threat Model & Problem Statement

This sub-section discusses the Threat model followed by the 
problem statement.

4.1.1  Threat Model

In this paper, we are aiming to detect two types of attacks, 
Label flipping poisoning, and HT attacks. Thus, we dis-
cuss two threat models which provide the scenario of how 
an adversary can perform the above attacks. In order to 
fasten up the process and save money, the 3PIP cores or 
EDA/CAD tools are incorporated in the IC designing. 
However, untrusted 3PIP cores or tools or an adversary 
present in the in-house design team has full access to the 
netlist codes and may intentionally insert the HT in it. We 
mainly focus on determining the combinational & sequen-
tial functional Trojans, which are inserted by the attacker 
at the low switching activity area of the circuit. Similarly, 

Table 1  Average SCOAP Values for RS232-T1600 circuit [46]

Net Type (CC0, CC1) CO (SC0, SC1) SO

Genuine net (13.69, 18.36) 240.8 (1.208, 1.63) 166.1
Trojan net (290.6, 40.41) 2217.8 (29, 3.74) 1857
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the involvement of ML models in HT detection opens up 
new avenues for an adversary to perform different types 
of data-based attacks (poisoning or evasion). An adver-
sary can be present in the dataset preparation & labeling 
team may insert the malicious samples in the training or 
testing dataset, which malign the training/testing process 
of ML models, thus increases the misclassification rate 
during prediction. However, we focused our attention on 
label-flipping poisoning attacks where we assume that 
the adversary is present in the training dataset prepara-
tion and labeling team. The prominent goal of the label-
flipping poisoning attack is to malign the training of the 
ML model by flipping a small number of samples in the 
training dataset so that it provides the wrong prediction 
during testing. Moreover, it has also been assumed that 
the attack is performed under a black box scenario, where 
an attacker has no knowledge about the ML model used 
in HT detection.

4.1.2  Problem Statement

The problem statement is stated as follows: Suppose the 
training dataset contains ‘ m ’ and ‘ n ’ samples of Trojan free 
(TF), and Trojan inserted (TI) nets with labels. An attacker 
who has access to this training dataset will modify the labels 
of ‘ p ’ samples to malign the training process of any ML 
model-based HT detection technique so that it will give erro-
neous predictions during testing. The problem is to accu-
rately identify the ‘ p ’ poisoned samples present in the mali-
cious training dataset so that the ML model will correctly 
be trained on a clean dataset and finally predict the correct 
classes of TI/TF nets present in the test dataset. However, 
in this paper, we have chosen the CatBoost ML model to 
identify the malicious training samples and HT nets.

4.2  Proposed Approach

The proposed approach is shown in Fig. 3, it utilizes the 
CatBoost model to identify the poisonous training samples 
and malicious HT nets from the gate-level netlist. Initially, 
the SCOAP features of the circuits are extracted and stored 
with labels (More details are provided in Section V(A)). 
Afterwards, the proposed attack method poisoned the train-
ing dataset by flipping the labels of the fraction of samples 
which makes the model training erroneous by maximizing 
the validation loss on the unseen validation dataset. The 
maliciously trained ML model then eventually provides 
incorrect predictions on the test dataset. Further, the pro-
posed defense method identifies the malicious samples pre-
sent in the poisoned training dataset and restores them back 
to their original labels by minimizing the validation loss. 
Finally, the ML model is trained on the clean dataset for 
accurate detection of Trojan nets. The overall technique is 
presented in the following subsections, where the proposed 
label flipping poisoning attack is discussed first, followed by 
the new defense method.

4.2.1  Proposed Label Flipping Poisoning Attack

To perform the attack, an adversary analyzes the training 
dataset to perform smart flipping, which increases the loss 
on the unseen dataset most. Since our training dataset (TrD) 
contains ‘ N  ’ samples with labels, the main motive of the 
attacker is to identify the fraction of ‘ p ’ samples in the 
TrD for flipping. It chooses the samples in such a way that 
the poisoned dataset (PTrD) maximizes the validation loss 
(Vl) computed on the unseen validation dataset (VaD) con-
taining ‘ K ’ samples while keeping the training loss (Trl) 
minimized. It can be seen as a bi-level optimization problem 
given as:

Fig. 3  Proposed approach to 
detect label flipping attack
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such that

However, identifying the best samples to flip is of utmost 
importance because the stealthiness of the attack is entirely 
dependent on it. Existing techniques [34, 47, 57] greedily 
select the samples, compute each sample entropy and apply 
clustering for flipping which either consume a lot of time or 
missed out some good samples. In contrast, the proposed 
attack method utilizes the heuristic stochastic hill climbing 
(SHC) search algorithm [42] to identify the best ‘p’ number 
of samples for flipping. The main aim of SHC is to explore 
the search space locally until the global optimum subset of 
TrD is identified, which provides the highest accuracy on 
VaD. Initially, a random optimal subset is chosen by SHC 
from TrD on which the validation accuracy is computed. 
Afterwards, a step is taken within the search space to gen-
erate the new modified subset in nearby proximity, which 
searches for better neighborhood points. However, step size 
needs to be set properly, and it should not be very large/
small, otherwise, it either misses the local optima or get 
trapped in it. SHC randomly chooses among several neigh-
boring solutions present uphill, with some selection prob-
ability which varies according to the steepness of the steps.

Therefore, in the proposed attack, SHC modifies the 
existing subset to achieve the new one by randomly mutat-
ing the inclusion/exclusion of samples from the set. Each 
individual sample present in the subset is mutated based 
on a probability that indicates the step size in the search 
space. Once the new subset is generated, performance is 
evaluated on the VaD, and if it is better than the previ-
ously obtained validation accuracy, then it is set as the best 
subset. Similarly, the mutated version of the new subset is 
created iteratively for the number of iterations, and those 
solutions are considered the best solution that maximizes 
the performance of the VaD most. The obtained optimal 
solution contains the best samples in which an adversary is 
interested in label flipping. However, only a small amount 
of samples need to be perturbed thus, 20% of samples are 
randomly selected from the optimal subset, and their labels 
have been flipped. Afterward, the loss is computed on the 
VaD, and this procedure is repeated up to a fixed number of 
iterations. Finally, the set of samples whose labels, when 
flipped, provide the maximum Vl on the VaD will be chosen 
as the final poisonous PTrD. 

(6)argmax
p

K∑

i=1

(Vl(yi,BLPTrD(xi))

(7)BLPTrD ≡ argmin
BL

N∑

j=1

(Trl(y�
j
,BL(xj))

4.2.2  Proposed Label Flipping Poisoning Attack Algorithm

The proposed Algorithm 1 takes the training (TrD) and 
validation (VaD) dataset as an input and provides a poi-
soned training dataset (PTrD) as an output. The initial 
solution (sol) is generated first and CatBoost model is 
trained on TrDn which computes validation accuracy on 
VaD that is stored in pacc. Now during every hill climbing 
iteration hcitr = 5 from line no 7 to 18, the sol is modi-
fied by randomly mutating the samples with probability 
pmut = 0.5 and the validation accuracy is computed using 
the model trained on new TrDn and stored in nacc. Fur-
ther, the obtained nacc is compared with pacc iteratively, 
and the best solution which provides the highest valida-
tion accuracy is stored. Afterwards, 20% of samples are 
chosen from the sol during every iteration rsitr = 10 , and 
their labels have been flipped. Further, the model has been 
trained on PTrD at every iteration and Vl is computed. 
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Finally, the set which maximizes the Vl most is chosen as 
the final PTrD.

4.2.3  Proposed CatBoost and K‑Nearest Neighbor Based 
Defense

The main aim of the proposed defense method is to identify 
the poisoned samples from PTrD accurately so that along with 
Trl, the trained CatBoost ML model also minimizes the Vl. 
Thus, to detect those poisoned samples, the proposed defense 
method utilizes the CatBoost object importance method, 
which prioritizes every training sample based on their per-
formance during prediction and pointed out the least impor-
tant samples. The object importance method identifies the 
effect of every PTrD sample by computing the Vl on VaD. The 
samples which tend to increase the Vl have higher chances 
of being malicious, thus, these samples are captured and 
marked as poisonous. However, it has been observed that the 
object importance method may capture some normal samples 
which are not malicious. Therefore, for further refining and 
to improve the performance, k-nearest neighbor (k-NN) [36] 
is applied on the samples identified by the object importance 
method. It identifies the ‘ n ≥ 3 ’ neighbors of each sample 
marked as poisonous and identifies whether neighbors and 
the pointed samples belong to the same or different group, 
i.e., whose three or more neighbors belong to the same class. 
Afterwards, those samples are relabeled whose class label is 
not the same as its maximum neighbors class label, and per-
formance is evaluated on the VaD. In this way, the proposed 
method accurately detects the poisoned samples from PTrD.

4.2.4  Proposed Defense Algorithm

The proposed Algorithm 2 takes the poisonous training 
dataset (PTrD) and validation dataset (VaD) as an input 
and provides a clean training dataset (CtD) as an output. 
Initially, the CatBoost model is trained on PTrD, and 
object importance is computed on VaD. Further, the mali-
cious flagged samples returned by the object importance 
method are stored in the array OT as given in line no 5. 
Afterwards, the k-NN model instance is called, which pre-
dicts the classes of samples present in OT and stored all 
the predictions in the array pred. If the condition given in 
line no.8 is satisfied, then those samples are stored in the 
array mal, and their labels have been re-labeled. Finally, 
the model is trained on the obtained re-labeled CtD, and 
performance is computed on the VaD.

5  Experimental Results and Analysis

This section presents the experimental setup followed 
by the results and comparative analysis of the proposed 
approach.

5.1  Dataset Description and Evaluation Measures

We create the first dataset using 16 Trust-Hub benchmarks 
[44] that contains combinational or sequential functional Tro-
jans. Besides, to create the second dataset, we use DeTrust 
benchmarks [58]. However, to create DeTrust benchmarks, 
we perform the modifications by inserting the single flip-
flop at each gate output of the trigger circuit as suggested 
by [43] in 11 Trust-Hub benchmarks. Further, a python code 
is written which converts the Verilog netlist of the above-
discussed benchmarks into bench format, and then six SCOAP 
features are extracted using the Testability measurement tool 
[45]. Afterwards, obtained features are stored, and each net 
is labeled as TI/TF, and preprocessing operations are applied 
for further refining. Now, we divide the datasets into training 
(80%) , validation (10%) and testing (10%) datasets. Moreover, 
the CatBoost model contains several hyper-parameters which 
need to be set properly for accurate Trojan detection. There-
fore, grid search is applied to find the optimal values of the fol-
lowing parameters, iterations = 2000 , learning_rate = 0.01 , 
regularization parameter ( l2_leaf_reg = 3 ), depth = 4 , 
max_leaves = 31 . Besides, other parameters are set as follows, 
boosting_type = Ordered , grow_policy = Symmetric − Tree 
to avoid target leakage and auto_class_weights = Balanced 
to avoid class imbalance. Finally, the proposed approach 
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(preprocessing + proposed attack method + proposed defense 
method+ CatBoost model) is implemented in python using 
scikit learn [35] library.

Besides, to measure the performance of our proposed 
approach, the following evaluation metrics are used, Accu-
racy = (TP+TN)

(TP+FP+TN+FN)
 , which represents the correctly pre-

dicted TI or TF samples out of total samples, Recall (True 
positive rate) = TP

(TP+FN)
 and True negative rate (TNR) = 

TN

(TN+FP)
 , gives the percentage of TI or TF samples correctly 

predicted as TI or TF. Similarly, False positive rate (FPR) = 
FP

(TN+FP)
 and False negative rate (FNR) = FN

(TN+FP)
 tells how 

many TF or TI samples are incorrectly predicted as TI or TF. 
Further, to identify model bias, another metric, Receiver 
operating characteristics and Area under curve (ROC-AUC) 
score, is used, which tells about the model separability, i.e., 
how the model separates the samples into appropriate TI or 
TF classes.

5.2  Simulation Results and Analysis

5.2.1  Proposed Attack Results on Trust‑Hub Benchmarks

The comparative before and after attack results on 16 Trust-
Hub benchmarks, i.e., on the test dataset, are shown in 
Table 2. It can be analyzed that the CatBoost model provides 
an almost correct prediction on the test dataset when trained 
on a non-poisoned training dataset, i.e., TrD by achieving 
on-an-average 0.661% loss and 99.86% accuracy respec-
tively. Whereas the proposed flipping attack deteriorates the 
performance on all 16 benchmarks, it can be observed that 
the loss on the RS232 benchmark series lies between 0.16% 
to 1.38% which is significantly increased between 37.92% to 
61.08% by the proposed attack that shows the severity of the 
misclassifications on test dataset performed by the model 
in the presence of PTrD. Similarly, the proposed attack 
decreases the accuracy, recall, and TNR up to 66% , 20% , and 
67% on RS232 series benchmarks, which shows that model 
is wrongly predicted both TI and TF instances. Besides, 
the area covered by the ROC-AUC score was reduced to 
23% , and increased FPR and FNR rates also confirmed this. 

Moreover, the proposed attack method provides the high-
est loss in s38417, s35932, and s38584 series benchmarks, 
which ranges up to 68.4% and decreases the accuracy up to 
51% . Lastly, the proposed attack method provides on-an-
average 58.50% loss, 67.09% accuracy, 32.57% FPR, and 
46.16% FNR, which eventually shows that proposed label 
flipping poisoning attack method successfully malign the 
learning process of the CatBoost model thus fail to provide 
the correct prediction on the test dataset.

Besides, the average comparative results of the exist-
ing and proposed attack methods are shown in Table 3, 
which shows that the attacks proposed by [57] only affect 
the recall (46.31% & 54.2%) , FNR (53.68% & 45.79%) and 
ROC ( 72.69% & 76.97% ) because they only target the labels 
of positive TI class for flipping. Whereas technique [47] 
achieves the average TPR of 57.34% and TNR of 86.97% , 
which shows that though labels of both the classes are 
flipped but still the severity of the attack is highly depend-
ent on the threshold, which affects the overall attack perfor-
mance. Similarly, the attack proposed by [34] fails to reduce 
the model performance and thus achieves average FPR and 
FNR of 21.14% & 16% . In contrast, the proposed attack 
method effectively reduces the model performance on the 
test dataset by achieving the maximum average loss ( 58.5% ), 
FPR ( 32.57% ), and FNR ( 46.16% ), which is 25.37%, 23.90% 
and 6.93% higher than the existing techniques. Moreover, the 
obtained accuracy (67.09%) , recall (50.53%) , TNR (68.72%) , 
and area covered (58.7%) also shows that the maliciously 
trained model performs misclassification at a higher rate by 
predicting TI nets as TF and vice versa.

5.2.2  Proposed Defense Results on Trust‑Hub Benchmarks

The proposed defense results on re-labeled clean 16 Trust-
Hub benchmarks are shown in Table 4, it can be observed 
that the proposed method significantly improved the model 
performance on the test dataset by achieving on an average 
1.43% loss, 99.66% accuracy, 0.17% FPR and 10.53% FNR 
respectively. The obtained results clearly indicate that the 
proposed defense method identifies almost all the malicious 
samples from the PTrD and re-labeled them correctly, which 

Table 3  Comparative proposed attack results on Trust-Hub benchmarks (%)

Metrics K-mediods based 
attack [57]

Entropy based 
attack [57]

Silhoutte clustering 
based attack [47]

Greedy heuristic based 
attack [34]

Proposed attack

Loss 15.15 16.63 44.93 54.34 58.5
Accuracy 99.12 99.17 86.59 78.78 67.09
Recall 46.31 54.2 57.34 71.95 50.53
ROC-AUC score 72.69 76.97 72.16 76.14 58.7
TNR 99.73 99.75 86.97 78.838 68.72
FPR 0.2609 0.238 13.01 21.14 32.57
FNR 53.68 45.79 42.65 16 46.16



678 Journal of Electronic Testing (2022) 38:667–682

1 3

eventually makes the model training correct. However, it 
has been analyzed that the CatBoost detects all the TI and 
TF nets correctly in five benchmarks, i.e., RS232 − T1300 , 
s38417 − T100  ,  s35932 − T200  ,  s35932 − T300  and 
s38584 − T200 . Whereas it provides lower recall between 
(66% − 83.33%) and large FNR (16.66% − 33.33%) in 
RS232 − T1000,T1100, T1500, s38417 − T300, s35932 − T100 
and s38584 − T300 benchmarks respectively which means 
that few TI nets are misclassified as TF. This happens 
because some of the malicious samples are still present 
in the CtD of these benchmarks, thus missed out by our 
method, which affects the prediction. Finally the proposed 
defense overall detect all the malicious samples, it can be 
seen from the fact that the difference between average results 
obtained before attack and after defense is not very large 
i.e loss (0.77), accuracy (0.2), TNR (0.11), FPR (0.105) 
respectively.

Besides the average comparative results are shown in 
Table 5, it can be seen that k-NN-based defense [34] provides 
lower recall (71.46%) and higher FNR (28.528%) thus fail 
to detect Trojan nets accurately from the test dataset which 

shows that k-NN either mislabels the genuine inputs or fail 
to identify the malicious samples. Whereas AdaBoost [6]  
& Label-spreading based defenses [47] provides comparable  
loss ( 4% ), accuracy/TNR lies between ( 98% − 99% ), achieve 
FPR ( 1.9% & 1.25% ) but lacks in recall, ROC and FNR. How-
ever, AdaBoost-based defense [6] provides 62.15% recall, 
37.84% FNR, and covers 80% area because some genuine 
samples which possess higher weights are wrongly rela-
beled into a different class. In contrast label spreading based 
defense [47] provides higher recall ( 77.55% ) and covers more 
area ( 88% ) than [6] because it relabel the samples based on 
voting. However, it is interesting to see that though cluster-
ing-based defense [47] provides lower loss (2.29%) but still 
lacks in recall (68.59%) , FNR (31.41%) and covers only 84% 
area which indicates that clustering measures are not very 
appropriate for poisonous samples detection and fail to detect 
the TI nets. Finally, our proposed defense method provides 
on-an-average 89.45% recall and covers 92.2% area which is 
19.5% and 7.7% higher than the existing techniques. Further, 
it also shows that the prediction is almost correct and not 
biased to any single TI/TF class for most of the benchmarks.

Table 4  Proposed Defense 
Result on re-labeled clean 
Trust-Hub benchmarks (%)

Trust-Hub Benchmarks Loss Accuracy Recall ROC- AUC TNR FPR FNR

RS232-T1000 5.7 99.23 83.3 85 100 0 16.66
RS232-T1100 1.3 99.37 66.66 83.33 100 0 33.33
RS232-T1200 1.215 98.73 100 99.35 98.7 1.29 0
RS232-T1300 0.29 100 100 100 100 0 0
RS232-T1400 2.39 99.41 91.66 90 100 0 8.33
RS232-T1500 3.1 99.37 83.33 91.5 99.67 0.32 16.66
RS232-T1600 1.58 99.38 90.9 99.23 100 0 9.09
s38417-T100 0.414 100 100 100 100 0 0
s38417-T200 0.1715 99.97 85.7 80 100 0 14.28
s38417-T300 0.1645 99.97 75 77 100 0 25
s35932-T100 0.1914 99.97 75 87.5 100 0 25
s35932-T200 0.414 100 100 100 100 0 0
s35932-T300 0.5179 100 100 100 100 0 0
s38584-T100 3.151 99.32 99.75 99.324 98.89 1.102 0.24
s38584-T200 0.02503 100 100 100 100 0 0
s38584-T300 0.2675 99.9 80 83 99.95 0.049 20
Average 1.430739 99.66375 89.45625 92.20213 99.82563 0.172563 10.53688

Table 5  Comparative 
defense results on Trust-Hub 
benchmarks (%)

Metrics KNN based 
defense [34]

Adaboost 
based defense 
[6]

Label spreading 
based defense [47]

Clustering 
based defense 
[47]

Proposed 
Defense 
method

Loss 5.302 4.58 4.2 2.29 1.43
Accuracy 99 99.285 98.34 99.59 99.66
Recall 71.46 62.15 77.55 68.59 89.45
ROC-AUC score 85 80.98 88 84 92.2
TNR 99.48 99.8 98.74 99.87 99.82
FPR 0.514 1.918 1.25 0.12 0.1725
FNR 28.528 37.84 22.44 31.41 10.53688
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5.2.3  HT Detection Analysis: Results Obtained 
on Non‑Poisoned & Relabeled Trust‑Hub Benchmarks

In this subsection, we have analyzed the results obtained 
on the test dataset when the CatBoost model is trained 
before the attack on TrD and after relabeling on CtD train-
ing datasets with respect to HT detection. It can be ana-
lyzed from Table 2 before attack results that the CatBoost 
model accurately detects all combinational & sequential 
functional Trojans in 13 benchmarks out of 16. It provides 
nearly 0 FPR & FNR in RS232 − T1000 , T1100, T1200, 
T1300 & T1500, s38417 − T100 , T200, s35932 − T100 , 
T200 & T300, s38584 − T100 , T200 & T300 benchmarks 
respectively. This clearly shows that the CatBoost model 
trained on SCOAP feature values effectively identifies the 
HT from these benchmarks. Though all the TF nets are 
detected correctly in benchmarks RS232 − T1400 , T1600 
& s38417 − T300 but some of the TI nets are misclassi-
fied. It may have happened because the weight calculated 
by the parameter auto_class_weights to balance both the 
classes is not effective in some cases, thus model provides 
incorrect predictions. This can also be confirmed from the 
obtained ROC-AUC score of these benchmarks, as it only 
covers 99.42% , 85.3% & 84% area, which indicates that com-
puted weights are not effective for these benchmarks, and 
the model prediction is biased towards the TF class. Moreo-
ver, instead of having low SCOAP values compared to other 
Trust-Hub benchmarks, the model correctly identifies all the 
TI nets from the s35932 − T200 benchmark. However, for 
the s38584 − T100 benchmark, some TF nets are wrongly 
predicted as TI nets because the SCOAP values of Trojan 
nets are less than the TF nets.

Similarly, we have observed from Table 4 that the 
CatBoost model provides considerably good prediction 
performance on the test dataset after training on rela-
beled CtD. It can be seen that model accurately pre-
dicts all the Trojan nets from RS232 − T1200 , T1300, 
s38417 − T100 , s35932 − T200 , T300 & s38584 − T200 
respectively by providing 100% recall. However, some 
of the benchmarks provide higher FNR, which ranges 
from ( 8% − 33% ) and lower recall up to 66% , which indi-
cates that some TI nets are misclassified by the model in 
these benchmarks. This happened because the proposed 
defense method could not detect some maliciously label 
flipped samples, which affected the prediction results.

5.2.4  Proposed Attack and Defense Results on DeTrust 
Benchmarks

We further check the performance of our proposed attack 
method on 11 DeTrust benchmarks, the before and after 
comparative attack results are shown in Table 6. It can be 
seen that the CatBoost provides on an average 1.34% loss, Ta
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99.83% accuracy, and 0.054% FPR, i.e., almost correct pre-
diction when trained on TrD. In contrast, our proposed attack 
method significantly reduces the model performance on the 
test dataset by providing on an average 54% loss and 74.76% 
accuracy. Moreover, the recall dropped heavily from 95% to 
51% , the FNR rate increased from 4% to 48.511% , and the 
area covered also decreased from 97% to 75% which clearly 
shows that the proposed attack method heavily degraded 
the model prediction performance. Besides, if we individu-
ally see the degradation in classification performance dur-
ing prediction, then it has been observed that benchmarks 
RS232 − T1200, T1300, s38417 − T100, 200, 300 provides 
only 20% − 40% recall which means that most of the TI nets 
are predicted as TF nets.

Further, the proposed defense results on 11 DeTrust bench-
marks are shown in Table 7, which shows that the proposed 
defense method correctly relabels the poisoned samples and 
improves the prediction performance of the CatBoost model. 
It can be analyzed that the proposed method achieves 100% 
accuracy in several benchmarks and 99 − 98% accuracy in the 
rest of the benchmarks, which shows that the model can detect 
nearly all the TI/TF nets into their correct classes. The higher 
recall, TNR, and lower FPR/FNR rates also confirmed this. 
Moreover, there is a marginal difference (1%) between the 
on-an-average-loss achieved by the model trained on TrD and 
PTrD, which also shows that the object importance method 
capture almost all the malicious sample present in the PTrD 
and then k-NN successfully relabeled the malicious samples 
into their correct classes.

5.2.5  HT Detection Analysis: Results Obtained 
on Non‑poisoned & Relabeled DeTrust Benchmarks

We have further analyzed the results with respect to HT 
detection on DeTrust benchmarks, it can be seen from 
Table 6 before the attack result that the CatBoost model 
detects all the TI & TF nets in four RS232 series, two s38417 

& s35932 − T200 benchmarks respectively. It indicates that 
SCOAP features again proved to be effective in identifying 
Trojans not only in Trust-Hub but in DeTrust benchmarks 
also. Further, we can see from Table 7 that the model detects 
all TI & TF nets from four benchmarks when trained on the 
relabeled dataset. However, the higher FNR rates in some of 
the benchmarks indicate that the proposed defense method 
missed out some of the malicious samples in these bench-
marks, which leads to misclassification.

6  Conclusion

This paper proposed a new CatBoost and SCOAP features-
based approach which accurately tackles the problem of a 
poisoned dataset where an adversary flips the sample labels 
to malign the ML model training so that HT nets are misclas-
sified during prediction. A label flipping poisoning attack is 
proposed, which utilizes the SHC algorithm to identify the 
best samples from the training set, and amongst them, only 
20% of samples are flipped, which increases the validation 
loss most. Besides, a new CatBoost model-based defense 
method is proposed in which the object importance method 
captures the malicious samples from the training set, and the 
k-NN model relabels them to their correct classes. The pro-
posed attack and defense method are ML model-independent, 
i.e., the attacker and defender do not have any idea about 
the ML model used during training. Experimental analysis 
on Trust-Hub benchmarks shows that the proposed attack 
method decreases the on-an-average accuracy up to 67% on 
the test dataset, which is on an average 32.77% lower than the 
accuracy achieved on the model trained on a non-poisoned 
dataset. Further, the proposed defense method effectively 
identifies the malicious inputs from the poisoned dataset 
and improves the CatBoost model prediction performance 
by the rate of 32.57% by providing on-an-average 99.66% 
accuracy, which is comparable to the accuracy achieved on 

Table 7  Proposed Defense 
Result on re-labeled clean 
DeTrust benchmarks (%)

DeTrust Benchmarks Loss Accuracy Recall ROC- AUC TNR FPR FNR

RS232-T1000 0.7 99.38 100 99.677 99.35 0.64 0
RS232-T1100 5.8046 98.77 83.3 91.346 99.35 0.64 16.66
RS232-T1200 5.62 98.82 66.66 83.33 100 0 33.33
RS232-T1300 1.233 99.39 83.33 91.66 100 0 16.66
RS232-T1400 0.495 100 100 100 100 0 0
RS232-T1500 8.79 98.21 70 86.33 100 0 30
RS232-T1600 2.88 99.38 80 90 100 0 20
s38417-T100 0.04699 99.97 80 90 100 0 20
s38417-T200 0.02275 100 100 100 100 0 0
s38417-T300 0.06762 100 100 100 100 0 0
s35932-T200 0.695 100 100 100 100 0 0
Average 2.395905 99.44727 87.57182 93.84936 99.88182 0.116364 12.42273
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the untainted training dataset. Finally, the results computed 
on the DeTrust benchmarks also show the efficacy of the 
proposed attack and defense method.

Data Availability The Trust-Hub benchmarks analyzed during this 
study are available at https://trust-hub.org/. Besides, the DeTrust 
benchmarks created during the current study are available from the 
corresponding author on reasonable request.
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