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Abstract
Multi-site measurement (testing) increases throughput and reduces production test costs by simultaneously testing multiple 
chips. However, as the number of test sites is increased (to maximize throughput further), site-to-site variation in analog and 
mixed-signal circuits test measurement inevitably increases to levels causing mis-trim and/or misclassification of the device 
under test (DUT). This work proposes a practical and low-cost approach to effectively identify and correct pronounced site-
to-site variation inherent in multi-site test data. Assuming the test hardware is stationary or time-invariant, the measured chip 
parameter at a site is modeled as a weak nonlinear function of the true parameter for that site. A polynomial transform-based 
method is proposed to identify this systematic nonlinearity. The approximate inverse function of the identified nonlinear-
ity is then applied to the measurements at the issue sites to remove the effect of the induced hardware systematic errors. 
This approach is practical and cost-effective as it enables continued use of existing hardware, avoids expensive root-cause 
analysis, and re-fabrication of multi-site test boards. It improves yield by achieving more accurate chip measurements and 
reduces test escapes. The accuracy and robustness of the method are confirmed after application to simulated and real-world 
industrial test data.

Keywords Analog and Mixed-Signal Multi-site Testing · Polynomial Normal Transformation (PNT) · Site-to-Site Variation 
(SSV) · Yield Optimization

1 Introduction

Increasing complexity in the design and functionality of 
integrated circuits (ICs) has led to rising production test and 
measurement needs. Many of these ICs are used in applica-
tions requiring stringent requirements, hence the need for 
extensive testing. These test measurements consume time 
and increase costs, thus plaguing the semiconductor indus-
try. One of the effective methods used to reduce test time  
and cost is multi-site testing [22, 25, 29].

Multi-site test, or “parallel test,” is a semiconductor auto-
matic test equipment (ATE) term that generally refers to 
the testing of multiple “devices” at the same time. It is now 
widely adopted in production wafer probes and packaged die 

test flows used in the semiconductor industry. The method 
can be argued to be one of the best techniques for reducing 
systems on chip (SoCs) test time and increasing throughput 
[17]. The method was previously dominant in digital testing 
but has now found a footing in parametric testing for analog 
and mixed-signal circuits. Multi-site testing can be used dur-
ing wafer probing, final chip tests, and burn-in tests.

The number of test sites in a multi-site testing system is cen-
tral to its benefits. The greater the number of sites, the higher 
the number of chips that can be tested simultaneously. One of 
the recent trends in the semiconductor industry is the migration.

of successful multi-site test boards to accommodate more 
test sites. While these migrations maximize throughput, 
massive multi-site unavoidably escalates site-to-site varia-
tions (SSV) in test measurement due to undesired interac-
tions among analog/digital/power signals across denser dies  
and test hardware [14]. While multi-site testing is also used to  
test digital logic and memory circuits, site-to-site variation 
is more critical for analog and mixed-signal circuits because 
very small measurement errors can lead to yield loss and/or 
test escape for such products.

Responsible Editor: A. Ivanov

 * Praise O. Farayola 
 farayola@iastate.edu

1 Iowa State University Ames, Iowa, USA
2 Texas Instruments Inc, Sugar Land, TX, USA

http://orcid.org/0000-0002-2853-4763
http://orcid.org/0000-0003-3959-1293
http://orcid.org/0000-0001-5930-5894
http://orcid.org/0000-0001-8106-4732
http://orcid.org/0000-0002-1306-2361
http://orcid.org/0000-0002-5938-6329
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06039-2&domain=pdf


638 Journal of Electronic Testing (2022) 38:637–651

1 3

Ideally, the mean and variance of test measurements will 
vary slightly across test sites to reflect measurement noise, 
random errors, and intrinsic variations in the DUTs. How-
ever, the induced systematic errors become pronounced for 
some sites (issue sites) and are no longer acceptable. Fig-
ure 1 shows an example of site-to-site variations observed in 
the measured Offset specification of 16-bit Analog to Digital 
converters (ADCs) tested in a multi-site probe environment. 
Test data for selected 40 test sites (containing over 13,000 
ADCs) were obtained from Texas Instruments, and exact 
measured values are excluded to protect confidentiality. By 
visual inspection of the boxplot visualization, Site 10 exhib-
its an excessive downward shift in the median and quartiles 
of test measurements compared to other test sites.

Measurement errors are unavoidable in most manufactur-
ing industries and affect yield [30]. Systematic errors carry 
potential harm and dire consequences, especially in analog 
and mixed-signal circuit testing. If not carefully monitored, 
it could lead to yield loss (good DUTs incorrectly labeled as 
bad) or potential test escapes (bad DUTs incorrectly marked 
as good). Both mistakes are expensive and can cost semicon-
ductor companies a lot of money. Systematic errors also pose 
a challenge to DUTs that need trimming after testing. Incor-
rect trim codes applied to such DUTs may further worsen the 
performance of the device. Significant site-to-site variation 
also makes methods developed to identify wafer outliers and 
monitor the manufacturing process more difficult as meas-
urements do not reflect the true nature of the DUT [26].

Addressing issue sites often requires taking the ATE 
offline for diagnosis and repair. This industry solution is  
difficult, time-consuming, and expensive. An alternative 
solution is to identify the induced systematic errors and 

correct the test data at test sites with significant variations 
(issue sites).

A method proposed in [11] uses an L-moment-based 
technique to identify and correct measurements at issue 
sites. While the paper demonstrated the method's potential, 
underlying principles, robustness, and validation were not 
explored in detail.

This paper further extends [11] and generalizes the polyno-
mial transform technique to identify and correct linear and 
nonlinear systematic errors in multi-site testing. The main 
contributions in this paper can be summarized as follows:

1. We present a qualitative approach to modeling the multi-
site test hardware-induced systematic errors and give 
reasons for this consideration (Careful evaluation of the 
error model).

2. We propose using a normal polynomial transform as a 
transfer medium to identify and correct systematic errors 
in multi-site test data by comparison with a reference.

3. We validate both the identification and correction meth-
ods with simulated and real test data from the semicon-
ductor industry.

4. We further validate the method by showing that correction 
results for issue sites match closely with the measure-
ments reported for the DUTs by other “good” test sites.

The proposed method accurately quantifies systematic 
induced errors in measurement data, making it possible to 
generate and apply a correction coefficient. The technique 
achieves a higher-order correction in addition to linear cor-
rection, increasing induced systematic error coverage. The 
method offers a software solution to mitigate a hardware 
problem, improving yield and reducing potential test escape.

The rest of this paper is organized as follows: Section II 
provides a brief background on hardware systematic errors 
in multi-site testing. Section III introduces an error model, 
details the proposed method, and discusses its practical 
implementation. Sections IV and V present the application 
of the method to simulation and real measurement data, 
respectively. Section VI concludes the paper.

2  Preliminaries

All test sites in a multi-site ATE are carefully designed to 
have the same accuracy and precision. By “accuracy,” we 
mean the closeness of agreement between a measured value 
and the true DUT value. By “precision,” we mean the close-
ness of agreement among measured values obtained by rep-
licate measurements on the same DUT under specified con-
ditions. However, the multi-site test hardware is built with 
imperfect elements [3, 10], which causes systematic errors 
and leads to variations in test measurements from site to site.

Fig. 1  Illustration of site-to-site variations in a measured chip specifica-
tion, the ADC Offset specification. Site 10 is identified as an issue site



639Journal of Electronic Testing (2022) 38:637–651 

1 3

In [16], for example, the low-pass behavior of the sam-
pling head and connectors and mismatches in the source and 
load ports are some of the causes of systematic errors identi-
fied in a time-domain network analyzer. Differences in tester 
resource arrangement, prober alignment, crosstalk, electro-
magnetic interference, capacitive and inductive coupling 
amongst analog nets are discussed as possible causes in [15].

Chip manufacturers use various board design and layout 
techniques to minimize site variations. In [33], ground via 
stitches are used to isolate all the radio frequency (RF) traces 
in order to reduce site to site and signal path to path interac-
tions and crosstalk. In [27], an advanced low pin count test 
architecture is proposed for efficient multi-site testing.

In [21], the multi-site test board design difficulty is 
acknowledged. Unwanted site-specific effects are reduced 
by making the parasitics on sensitive signals as equal as pos-
sible. This is challenging because complete symmetry for all 
sites is impossible, even with computer-aided designs. Criti-
cal signal paths are also designed to be static (not switched) 
with power dividers, attenuators, power detectors, and 
matching circuits to reduce coupling interference and site 
dependence [24].

In addition to measurement noise, a real semiconductor 
test environment also includes lot-to-lot variation and wafer-
to-wafer [4, 31]. Thus, the need to establish that the varia-
tions addressed in this paper are multi-site hardware-induced 
errors. We are even more particular about systematic errors 
that are more pronounced and fall outside an acceptable tol-
erance range, for example, Site 10 in Fig. 1.

Identification of issue sites is usually the first step. In [14], 
regression fitting on a quantile–quantile curve is shown to  
pronounce site-to-site variation inherent in test data and aid 
issue site identification. In [18], an issue site is considered 
one whose principal component values are beyond the three-
sigma control limits of the principal component values of 
all sites. Repeatability and reproducibility studies are often 
conducted to correlate the measurements between test sites. 
However, these methods cannot effectively analyze complex 
multi-site testing systems that involve multiple measure-
ments across multiple test sites [18].

While smoothing filtering can suppress random meas-
urement errors, systematic errors need to be corrected [23]. 
Mechanical correction of measurement systems is expensive 
and time-consuming, hence the industry’s search for alter-
native solutions. In [11], an intuitive method is discussed to 
adjust an issue site offset and gain error to match a good site. 
However, this method does not provide a quantitative analy-
sis of the induced errors. It uses test sites’ mean and standard 
deviation, which do not accurately describe measurement 
results. It is also incapable of higher-order corrections.

In a massive multi-probe test environment, we are often deal-
ing with systematic errors that are complex. Signals pass through 
buffers, operational amplifiers, and other circuits capable of 

introducing high-order nonlinearities. A method capable of 
high-order systematic error identification and correction is  
proposed in [11]. It uses an L-moment-based method to achieve 
systematic error identification and calibration. L-moment is one 
of the tools to achieve polynomial transformation.

The polynomial transform method is a well-established 
method that has been used in other fields to solve similar 
challenges. Awareness of the method and its limitations are 
more easily accessible. It also lends itself to other methods 
like polynomial chaos, which may spawn further methods 
for sampling-distortion correction applications.

In [13], least square regression is used to identify and 
correct systematic errors. While the method showed great 
promise, it needs further careful investigation of its proper-
ties, robustness, applicability, and constraints. Also, the best 
method to identify and correct systematic errors in multi-site 
testing may very well depend on the type of the products 
(analog, mixed-signal, or RF), the nature of the measured 
specifications, and/or the intrinsic distributions of measure-
ment uncertainty.

Although machine learning solutions are now widely used to 
solve several semiconductor manufacturing challenges [8, 9, 20], 
the multi-site test data is unique. Each DUT is only measured 
at one test site. Test data also contains variations from other 
sources, making it difficult for machine learning applications.

Some methods to achieve compensation and correction of 
measurement error in other fields are discussed in [2, 32, 34, 36]. 
These methods start with a careful evaluation of an error model 
and use this model to identify the systematic error, which is 
then calibrated out. We employ a similar approach in this paper.

3  Proposed Method

3.1  Error Model

Mathematical error models for measurement systems are 
usually related to the system’s physical structure. This sec-
tion discusses the difficulty of such an approach (for our 
case) and instead presents a black-box approach.

Multi-site test hardware is highly complex instrumen-
tation and measurement system consisting of many sig-
nal generators, oscilloscopes, complicated printed board 
circuits (PCB) boards, probe head and pins, and many 
more parts. Figure 2 is a simplified view of the multi-site 
test hardware section. The probe card interfaces between 
the ATE and the semiconductor wafer. It is mechanically 
docked to the prober and electrically connected to the 
tester. An error model related to the system’s physical 
structure will have to consider all these components.

The probe board alone can have over 100 layers of 
printed circuit boards (PCB), and on each layer, thou-
sands of electrical components like resistors, capacitors, 
diodes, and inductors. Many of these components do not 
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have error models, and vendors can only guarantee their 
values within a defined tolerance range. Even if we can 
model all these components correctly, we will have to find 
a way to include thermal drift, electromagnetic interfer-
ence, noise, and inductive coupling in the models because 
all these issues come into effect when all the test sites are 
powered and in use.

The complexity of such a model becomes pronounced 
when we want to factor in the age of the components, contact 
resistance at the probe pins, and other building blocks. While 
these concerns are possible but difficult, one big challenge 
with a physical structure approach will be its dependence 
on the multi-site test hardware in question. The developed 
error model might not apply to test hardware from other 
vendors, making such model transfer difficult. We treat the 
entire multi-site system and its complexity as a black box to 
avoid these complications and other issues. This box takes 
in the actual value of a DUT and gives out a measured value 
inclusive of systematic error.

Each DUT is assigned to one of the test sites during the 
testing process. Hence, the multi-site test system can be 
modeled (with some modification) using a simple statisti-
cal sampling model. Each measured DUT specification has 
a true and expected distribution, which forms our popula-
tion, X. Suppose multi-site testing does not introduce any 
errors; each site’s measurement will follow the true and 
expected distribution, X, as shown in Fig. 3a. This model 
is used extensively for issue site identification. Sites with 
a measurement distribution different from the majority are 
flagged as issue sites.

However, multi-site test hardware introduces errors 
(assumed to be small) that cause SSV. The induced errors 
vary from site to site, as seen in Fig. 3b. Each test site not only 
samples from the population, X , but also adds its own errors.

It is not unusual for hundreds to thousands of measured 
specifications to be tested for each DUT. Let X be the true 
but unknown distribution for a particular measured specifi-
cation P. Also, let Yk be the measured distribution for site k . 
Ideally, the expectation is that Yk = X. However, this is never 
true. Each measured site’s distribution can be modeled as:

where Noisek represents the noise introduced by site k and 
where �k

0
, �k

1
, �k

2
,… , �k

r
 are the identified induced errors. Two 

assumptions are made. First, noise is assumed to be uniform 
for each site; hence Noise_k is excluded in further analysis. 
Second, systematic errors are assumed to dominate other 
sources of variation during test measurements, including 
measurement noise.

A polynomial function is preferred because it could approx-
imate any discontinuous or continuous function [1]. One 
other interesting reason for choosing a polynomial model is 
the interpretation of identified errors. For example, �k

0
 easily 

represents a DC shift while �k
1
 represents a gain shift. �k

2
,… , �k

r
 

represent higher-order nonlinearities. Other functions that 
could be considered required more computational time and 
power which would be important when this method is to be 
implemented in real-time.

While X could be obtained using simulations performed 
using IC layout and fabrication parameters, they do not con-
tain real manufacturing and measurement errors. Silicon 
measurements are preferred to estimate a reference distri-
bution. Multi-site variability-aware reference distribution 
estimation methods have been proposed in [5, 12]. Ordinal 
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Fig. 2  Simplified view of a section of the multisite testing system show-
ing different parts

Fig. 3  a Multisite testing model without the assumption that each test 
site introduces errors. Each site's distribution will follow the popula-
tion distribution. b Multisite testing model with the assumption that 
each test site introduces errors.
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optimization is used to identify high confidence good test 
sites. Measurements from the high confidence good sites are 
transformed to adjust for the test site size, mean, and standard 
deviation before being lumped together to form a reference.

3.2  Polynomial Transform Method

Polynomial normal transformation is often used in several 
probabilistic analyses, especially when multivariate nonnormal 
random variables are involved [6]. The technique is especially 
attractive when the probability density function (PDF) of the 
random variable is unknown, and only samples of the random 
variable are available. Such is the case with many DUTs meas-
ured specifications in semiconductor testing.

X can be expressed as a polynomial expression of Z , a 
standard normal random variable. The transformation from 
Z to X can be formulated as:

where r is the polynomial order and a0, a1, a2,… , ar are 
the undetermined coefficients. With suitable values of 
a0, a1, a2,… , ar , various probability distributions can be 
accurately simulated [37].

The undetermined coefficients can be determined by 
the Product-moment (PM) method, the L-moments (LM) 
method, the Least-square (LS) method, and the Fisher-
Cornish (FC) asymptotic expansion. In [6], these four 
methods are presented and analyzed when r is three. The 
performance of the four methods is investigated by compar-
ing them with a parametric technique using the Rosenblatt 
transformation that preserves the marginal distribution of 
the nonnormal random variables.

Substituting Eq. 2 into Eq. 1 results in Eq. 3. Equation 3 
is truncated based on the chosen value for r

Yk can also be expressed as a polynomial transform of Z.

where ak
0
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1
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r
 are the polynomial coefficients for Yk . 

Equations 3 and 4 are solved by comparing the coefficients 
of Z to provide the identified error coefficients.

An inverse approach to Eq. 1 can be written as
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where yk
Cal

 is the corrected result of yk belonging to the dis-
tribution Yk

Cal
.

3.3  Implementation and Discussion

A third-order polynomial is considered and applied to simula-
tion and real test data in this paper. The L-moments method 
with r as three is utilized. The method is chosen as it could 
characterize a wider range of distributions and is more robust 
to the presence of outliers in the data. The third-order normal 
polynomial (TPNT) coefficients estimated by this method are 
sometimes more accurate and more computation efficient than 
other methods [6], hence our choice. If the first four popula-
tion or sample L-moments of a random variable are known, 
the polynomial coefficients ( a0, a1, a2, a3) be directly deter-
mined from the first four probability-weighted moments of X.

Figure 4 is a simplified flowchart of the proposed method 
and application using a specification-based approach. The 
process starts with data filtering (cleaning and processing) 
to remove invalid data after loading in test volume data. 
Invalid data are not only outliers but tester or DUT malfunc-
tions, which do not contain any useful information. Any suit-
able issue site identification algorithm is used to detect the 
presence of issues test sites. If there are issue test sites, the 
proposed method is applied, and each test site's systematic 
error correction coefficients are stored. While the user may 
decide to correct all test sites, this paper only corrects test 
data related to identified issue sites.

New test data taken by each test site are loaded and 
recorded. If the measured specification has been flagged 
earlier to need calibration, the stored calibration coefficients 
are drawn and used to correct the issue sites before data  
output (offline).

The Big-O complexity notation to investigate the time 
and space complexity of the method is irrelevant because 
the number of test sites is not large enough to be a concern 
for now. It is a fixed amount of time for each chip correction. 
Currently, it takes less than 1 ms in MATLAB® to iden-
tify induced errors in more than 10,000 DUTs and correct 
them. In the future, when the technique is moved online and 
adaptive (in real-time as testing of DUTs is in the process), 
computation performance and time will be critical.

We assume that only a few test sites have unacceptable 
variations. This assumption is valid because not only is the 
multi-site test system well designed; it is also rigorously 
tested and sometimes calibrated (hardware) during the setup 
before use. Another assumption is the neglect of noise in our 
derivations. In [16], the authors found that the noise mag-
nitude in their system can be described in the time domain 
by a Gaussian distribution with a standard deviation. We 
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assume that this is similar for test sites and that systematic 
errors dominate and mask them.

A multivariate approach to the proposed method and 
equations appears to give a more complete picture of the 
problem; however, it does not necessarily realize the answers 
on a per-specification basis that test engineers seek. To elab-
orate further, multi-site hardware systematic errors do not 
uniformly affect measured specifications of DUTs. Looking 
at real multiprobe test data of production chips, we have 
seen that signal interference on a specific site might affect 
specification A positively (making measured data look bet-
ter), affect specification B negatively (making measured 
data look worse), and exhibit no effect on specification C. A 
multivariate approach will combine all measured specifica-
tions together, and the investigated systematic error might 
be lost in the process. Test engineers are also most interested 
in investigating particular specifications showing noticeable 
yield loss. 

The normal polynomial transformation has been applied 
in several fields where there is a need to represent statisti-
cal data of a Fig. 4. Simplified flowchart of the proposed 
method and application.

variable when the underlying distribution is unknown [37]. In 
[28], it is used to characterize multiple rainfall random variables 
that have a mixture of nonnormal distributions for which a joint 
distribution function is difficult to establish. In [7], it was used 
to establish a relationship between wind speed distribution and 
standard normal when historical data is given. While these papers 

used a third-order normal transformation because it was good 
enough [5], a higher-order transformation could be considered.

In [19], a fifth-order polynomial transformation (FPNT) 
is considered, allowing additional control of the fifth and 
sixth moments. The ability to control higher moments 
increases the precision of nonnormal distribution approxi-
mations. A ninth-order polynomial transformation (NPNT) 
was implemented in [37] and shown to accommodate many 
distributions that are difficult for the TPNT/FPNT [37]. A 
TPNT is considered sufficient in this paper because most 
measured DUT specifications are gaussian and symmetric. 
A few are skewed (ordered statistics), like the maximum and 
minimum values of some measured specifications. Very few  
have other distributions.

Note that the TPNT does not guarantee compliance with 
the monotonicity condition [28]. The boundary condition in 
Eq. 6 bounds the L-moment method. The method discusses 
the X − Z transformation. However, in practical analysis, the 
inverse transformation Z − X is also essential. The X − Z 
transformation is essentially the solution of the cubic equation 
of the standard random variable as shown in Eq. 5. Generally, 
there are three real or complex roots. This means that one value 
of X may correspond to multiple possible values of Z . This is 
a critical problem to determine the suitable root and its range 
under the circumstance of the complete monotonic require-
ment of the transformation. This is not usually a problem in 
multi-site test data because test measurements are already 
bounded by the DUT design. Also, outlier data are filtered out.
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3
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Fig. 4  Simplified flowchart of the proposed method and application
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In [35], the authors propose a complete monotonic 
expression of the TPNT with different combinations of the 
first four L-moments. The paper differentiates the applica-
ble boundaries and monotonic regions of each expression. 
The accuracy of the transformation is examined, and the 
statistical uncertainty of the TPNT based on the first four 
L-moments is investigated. This expression can be applied 
if monotonicity issues are inherent in test data.

4  Simulation Results

We created MATLAB® models to simulate and generate 
volume test data. MATLAB® R2021a version was used. 
Each ADC is modeled to have an intrinsic error similar to 
what is observed in reality. Each test site is programmed to 
test between 2000 and 3000 ADCs across multiple simulated 
wafers based on a modeled test site location. In all, the pre-
sented 40 test sites measure the Gain Error specification of 
over 90,000 ADCs.

Figure 5 presents the simulated Gain Error true values. 
The variations inherent in this data are only due to intrinsic 
variations in the DUTs, hence minimal. In reality, the true 
specification values are unknown. What is reported by test 
sites are measured values.

Figure 6 presents the simulated Gain Error measured val-
ues (reported by test sites). Although the SSV is more than 
the SSV shown in Fig. 5, the variations are within a tolerance 
range, and test quality is still guaranteed. This data is closer 
to what is obtainable in the semiconductor testing industry.

In our simulation experiment, we simulate error sources 
to cover some possible faults evident in test data, like linear 
errors, higher-order nonlinearities, changes in distribution, 
and the addition of another distribution. In [11], high-order 

nonlinearities were included in addition to the modeled 
clock signal coupling. This paper explored other functions 
like the sigmoid function and sine wave as induced addi-
tions to critical nets. Figure 7 presents the simulated Gain 
Error measured values. Sites 2, 11, and 26 have been ran-
domly selected as issue sites. Site 2 has a range similar to 
other sites, but its median and quartiles appear to be shifted 
downward due to the induced errors. Site 11 has its range 
affected, and quartiles noticeably moved upward. Although 
not visually evident, site 26 has an extended interquartile 
range (IQR) compared to other sites. We controlled the level 
of induced errors in simulated issue sites to be similar to 
what is obtained in real semiconductor testing. These sites 
are also confirmed as issue sites by the issue site identifica-
tion algorithm presented in [14].

4.1  Robustness

We investigate the robustness of the method to test data 
discrepancies. Systematic errors induced by issue test sites 
should be consistent irrespective of the DUTs tested by such 
sites. Each test site in Fig. 7 measured between 2000 and 3000 
DUTs based on the test site location on the probe card. We 
randomly select 600 DUTs from each test site and apply the 
proposed identification algorithm to each random selection.

Figure 8 shows the identified induced errors for ten ran-
dom selections of 600 DUTs for each test site. The identified 
induced errors reported for the issue sites are consistent and 
within an error bound for each selection. Reported systematic 
errors for ‘good’ sites are within a tolerance range across each 
selection. These results confirm the consistency of the method.

We observed a smaller selection error bound for �0 and 
�1 in Fig. 8. This is expected because linear errors are more 

Fig. 5  Simulated ADC gain error true values. The variations inherent 
in this data are only due to intrinsic variations in the DUTs

Fig. 6  Simulated ADC gain error measured values. (No issue sites). 
The variations inherent in this data are due to intrinsic variations in the 
DUTs and also measurement errors from the measuring instruments
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dominant and consistent. Also, issue sites with high order 
nonlinearities; for example, site 11 remained an outlier in 
all selections for �3.

4.2  Accuracy

We use test data from one of the ten selections in subsec-
tion A to generate and store our correction function. This 
correction function is applied to the test data presented in 
Fig. 7, and the results are presented in Fig. 9. It is observed 
that the shift, gain, and higher-order nonlinearity evident in 
Fig. 8 have been corrected. While this correction is visually 
evident in the box plot summary of the issue site, we proceed 
to compare DUT measurements before and after correction 
against the true DUT values.

In Fig. 10, measured results for site 11 deviate from the 
true value line. Our proposed method correction method 
accurately corrected the nonlinearities introduced by site 
11 and brought the corrected measurements closer to the 
true value slope line.

Similar results are obtained for site 2, as presented in 
Fig. 11. Our corrected results are closer to the true value 
slope line for the issues sites. They are not exactly the true 
values because of the measurement noise included in the 
simulation.

Fig. 7  Simulated ADC gain error measured values (Sites 2, 11 and 26 
are issue sites)

Fig. 8  Identified hardware systematic errors for 10 random selections of 600 DUTs for each site (Test sites with red boxplots are identified issue 
test sites)
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5  Silicon Results

To further investigate the effectiveness of the proposed 
method, we applied the proposed method to test data 
obtained from Texas Instruments. This volume data was 
procured from one of their multi-site test hardware, where 
site-to-site variations have been observed. For data confiden-
tiality reasons, we exclude the measured parameter values. 
We present data for a subset of 40 test sites.

We perform a series of experiments, as described in three 
parts.

Part A: We apply the proposed method to volume data, 
present the identified systematic errors, and correct the vol-
ume test data. In [11], the nature of the induced error was 
linear in nature. In this paper, we consider real test data with 
more variability and higher-order coefficients.

Part B: In real test measurements, we do not have the true 
DUT values to compare our corrected results with. A nor-
malized histogram approach is used to compare the measure-
ment distributions of test sites before and after corrections.

Part C: To further validate the proposed method, we pro-
ceed to take more measurements. We test a particular DUT 
at multiple sites (both good and issue sites) using the same 
test hardware and ATE. We show that the results from cor-
rected issue sites match closely with multiple measurements 
from good sites. This validation method is labor-intensive 
and manually generated. We explain why results from a few 
DUTs are used.

5.1  Part A

Figure 12 presents the measured ADC Gain Error param-
eter for 40 selected test sites. The volume test data contains 
more than 171,000 ADC measurements. To reduce other 

sources of variation, only data from one probe card is ana-
lyzed and presented.

As seen in Fig. 12, sites A, B, and C exhibit a downward 
shift compared to other sites. The issue site identification 
algorithm discussed in [16] is implemented in MATLAB® 
and confirms our visual inspection. Figure 12 established 
unacceptable pronounced variations in test measurements 
across sites for this measured specification.

The proposed method is implemented in MATLAB® and 
applied. The identified systematic errors are presented in 
Fig. 13. The �k

0
 reported for the three identified issue sites 

can be visually confirmed as outliers when compared with 

Fig. 9  Correction results for the simulated ADC gain error parameter. 
(Test sites with red boxplots are identified issue test sites)

Fig. 10  Measured and corrected data for Site 11. Our correction result 
is closer to the true value slope line

Fig. 11  Measured and corrected data for site 2. Our correction result 
is closer to the true value slope line
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other sites. Site B is the only outlier for �k
1
 . Site C is the only 

outlier for �k
2
 . Site B and site C exhibit higher-order error 

coefficients, �k
3
 even though they are not obvious from the 

box plot visualization.
A correction function is derived from the identified sys-

tematic errors and applied to the issue sites. It is evident in 
Fig. 14 that the induced errors in the three issue sites have 
been corrected. This does not confirm that the algorithm is 
correct or provide any evidence. It only shows the effective-
ness of the correction by looking at the boxplot summary of 
the corrected issue sites.

5.2  Part B

To further validate the proposed method with real test 
data, we compared the distribution of measured parameters 
before and after correction using a normalized histogram 
approach. Each site’s histogram is normalized to cover the 
same area. Due to systematic errors, the normalized histo-
gram of issue sites deviates from the expected reference. 
When it is corrected, we expect that the histogram of the 
corrected measurement data will be closer to this reference.

Figure 15 shows the normalized histogram curve compar-
ing the before and after correction of sites A, B, and C with 
a reference distribution.

The massive multi-site variability-aware method in [12] 
is used to obtain this reference distribution. Ordinal opti-
mization is used to identify high confidence good test sites. 
Measurements from the high confidence good sites are 
transformed to adjust for test site size, mean, and standard  
deviation before they are lumped together to form a refer-
ence distribution.

It is observed by visual inspection of Fig. 15 that for 
sites A, B, and C, the distribution after correction is closer 
to the reference distribution. Several distance functions can 
be used to measure the differences between two histograms. 
Some examples include the Hellinger distance, Euclidean 
Distance, Chebyshev Distance, etc. We decided to use the 
Manhattan or City Block distance defined as

(7)Ds =
∑

i
|

|

hr(i) − hk(i)
|

|

Fig. 12  Measured ADC Gain Error parameter (Sites with red box-
plots are identified issue test sites, Sites A, B, and C)

Fig. 13  Identified errors after 
applying the proposed method to 
the test data presented in Fig. 12. 
(Sites with red circles are previ-
ously identified issue sites.)
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where hr(i) is the histogram counts of the reference distribu-
tion, and hk(i) is the histogram count for site k distribution. 
Dk is the difference metric for site k.

Table 1 presents the distance metric for the measured 
and corrected distribution for sites A, B, and C to a ref-
erence distribution as shown in Fig. 15. For Site A, the 
proposed method reduced the distance metric from 65.28 
to 5.2. The distance metric for sites B and C are reduced 
as well after correction.

5.3  Part C

To validate our correction algorithm with real test data, 
we manually took repeated measurements of some selected 
ADCs. Suppose we test an ADC at multiple sites that 

include both issue sites and good sites. We can determine if  
the corrected results of the issue sites match closely with the  
measurement results reported at other good sites.

Multiple repeated testing of the same DUT has its demer-
its. It is destructive to the probe pins and the DUT pins. 
Also, contact resistance becomes an issue after a series of 
touchdowns, limiting the number of possible probe touch-
downs on the same DUTs on a wafer.

For each touchdown, we take ten measurements to even 
out the measurement noise at each site. In total, 209 selected 
ADCs on a wafer were tested multiple times. A fewer num-
ber of dies were used because the method is labor-intensive, 
manual, and carefully planned to ensure ADCs are measured 
by both issue and good sites. Still, fewer ADCs reported 
being measured by at least four good sites and one issue site 
during six touchdowns.

Figure  16 presents the measurement and correction 
results from five different sites for the same ADC. Each 
box plot contains all the measurements taken during the six 
touchdowns on the selected ADC by that site. GS1, GS2, 
GS3, and GS4 are the measurements reported by the good 
sites, while Cal. GS1, Cal. GS2, Cal. GS3, and Cal. GS4 
are the corrected result. They are the same because only the 
measurements of issue sites are corrected. We observe that 
the corrected results for site C, Cal. Site C moved the meas-
urement result of the issue site, site C, closer to the reported 
measurement by the good sites.

Figure 16b is a better representation of the result pre-
sented in Fig. 16a. In Fig. 16b, we lump all the test data for 
the good sites together into one (Good Sites). This aids in 
comparison with the correction results for issue sites. This 
method is used to present data for other issue sites and dif-
ferent ADCs, as shown in Fig. 17. For each of the issue 
sites, the correction results are closer to the measurements 
reported by the good sites.

Reported measurement by good sites (which is what we 
have and use for comparison) varies slightly because each 
site introduces systematic errors (though acceptable), further 
making validation tricky.

In summary, we use repeated data to validate the pro-
posed correction algorithm. On average, the correction algo-
rithm moved the measurement of issue sites closer to the 
measurement reported by good sites.

Fig. 14  Corrected ADC gain error parameter (Test sites with red box-
plots are identified issue test sites)

Fig. 15  The normalized histogram curve shows that for sites A, B and 
C, the distribution after correction is closer to the reference distribution

Table 1  Distance metric showing that for sites A, B and C, the distri-
bution after correction is closer to the reference distribution

Site A
D

A

Site B
D

B

Site C
D

C

Measured 65.2821 61.8426 68.0891
Corrected 5.2649 15.9124 14.3951
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6  Conclusion

The multi-site testing system is modeled as a sampling process 
with systematic errors introduced by each test site. An error 
model is presented, and a polynomial transformation method 
to solve and correct for induced nonlinearity is discussed. 
Identified systematic errors are used to correct test data avoid-
ing expensive and time-consuming hardware solutions.

We validate the method by applying it to simulated and 
real test data. The method significantly reduced the level 
of systematic error observed in test measurements for issue 
sites. We further validate the method with additional DUT 
measurement by ‘good’ sites. The corrected DUT values 
agree with multiple measurements of the same DUT by 
good test sites. We discuss the assumptions, limitations, 
and potential of the method.

While the detection of site-to-site variations in meas-
urement data has been receiving attention recently, identi-
fying and correcting the root causes remains challenging 
and impractical given the complexity, long design cycle, 
and high cost of the multi-site test hardware. This paper 
introduces a practical and low-cost approach to effectively 
identify and correct site-to-site variations inherent in multi-
site measurement data. MATLAB® codes were developed 
to implement the proposed method. Simulation results 
demonstrate the accuracy and robustness of the proposed 
method. Application to real production multi-site measure-
ment data also verifies the effectiveness of the method.

The proposed method will further guarantee test qual-
ity while reducing the risk of yield loss and possible test 
escapes. The method also ensures continuous use of the 
multi-site test hardware until a mechanical solution is 

Fig. 16  a All measurement and corrected measurement for site C. b Better presentation of the results in Fig. 16a

Fig. 17  Extra measurement with 
chip showing good site, issue 
site and corrected site
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available. Future work is to make the method online and 
adaptive so that the correction coefficients are updated as 
more site measurements are available.
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