
Vol.:(0123456789)1 3

Journal of Electronic Testing (2022) 38:623–636
https://doi.org/10.1007/s10836-022-06033-8

Smell Detection Agent Optimization Approach to Path Generation
in Automated Software Testing

S. S. Vinod Chandra1 · S. Saju Sankar2 · H. S. Anand3

Received: 8 July 2022 / Accepted: 4 November 2022 / Published online: 2 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Software testing is the most crucial stage in the software development process. Structural testing, functional testing and
models that even support hybrid testing are different software testing techniques. Basic path testing, the most significant
structural testing approach, is focused on evaluating software source code. The method emphasizes developing test data inputs
to produce all feasible and efficient test paths that connect to all nodes and edges of the graph. The objective is to define the
number of independent paths that can define the number of test cases needed to maximize test coverage. It ensured the execu-
tion of every statement and condition at least once. A nature-inspired Smell Detection Agent (SDA) algorithm is proposed
in this paper to select all paths and prioritize the feasible solution. This algorithm is an optimization algorithm suitable for
identifying optimal paths with priority. The concept is derived from the natural behaviour of canines that identified optimal
path from source to the destination. The SDA algorithm is based on the evaporation of smell molecules in the form of gas
and the perception capability of a smelling agent. The number of linearly independent paths through a programme module
is measured by creating a Control Flow Graph of the code, which measures cyclomatic complexity. SDA algorithm gives
significant increases in performance while considering the cyclomatic complexity. Complexity analysis of SDA trends to be
in the O(E+V log V), while the competitor algorithms have an exponential growth of O(n2). Various experiments were also
carried out to emphasis the relevance of the proposed method. Ten different benchmarked applications has been taken for
experimental analysis and it was observed to have an increased path coverage of 8% when SDA was used over the traditional
methods. Also, the time complexity was reduced by 22%, which shows the powerfulness of the proposed SDA algorithm.

Keywords SDA algorithm · Software testing · Structural testing · Basic path testing · Test case calculation

1 Introduction

The development of appropriate software products for spe-
cific tasks is necessary and involves many human and finan-
cial resources. The products thus developed should ensure
high quality before deployment or release. Any type of
product or process testing can be carried out to ensure qual-
ity. Similarly, software testing should also be carried out to
verify and validate its components, mainly programs. Both
these activities can be achieved by structural and functional
testing of the software. Valid test cases are designed in both
these methods and test data for the same is generated either
manually or using automated methods [24]. As exhaustive
testing of the software product is impractical due to time
and cost constraints and as redundancy of the test cases also
needs to be controlled, an effective optimization method
needs to be employed.

Responsible Editor: V. D. Agrawal

 * S. S. Vinod Chandra
 vinod@keralauniversity.ac.in

 S. Saju Sankar
 sajusankars2019@gmail.com

 H. S. Anand
 anandhareendrans@mgits.ac.in

1 Department of Computer Science, Thiruvananthapuram,
University of Kerala, Thiruvananthapuram, India

2 Department of Computer Engineering, Government
Polytechnic College, Punalur, India

3 Department of Computer Science and Engineering, Muthoot
Institute of Technology and Science, Kochi, India

http://orcid.org/0000-0003-2298-1906
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06033-8&domain=pdf

624 Journal of Electronic Testing (2022) 38:623–636

1 3

Designing an optimization algorithm for the automated
generation of optimal and feasible test paths in structural test-
ing is the major focus of this work. Various algorithm design
strategies have been tried [10, 17, 19, 23], but the efficiency
and accuracy obtained from the group of nature-inspired
optimization algorithms were commendable for optimiz-
ing and automation of the generation of optimal and fea-
sible paths in structural testing is explained in the work.
SDA algorithm is implemented in the formulation of fea-
sible paths and a comparison of the results obtained while
using other nature-inspired optimization algorithms is also
included in the study.

Nature Inspired Algorithms in Automated Software Engi-
neering Designing smart and optimized algorithms is
essential in the software development life cycle, especially
during the software testing phase. The appropriate selection
of test suites is a combinatorial problem that uses various
nature-inspired algorithms for automatic test data generation
in software testing.

Ant Colony Optimization (ACO) algorithm is one of the
popular nature-inspired model that considers statement cov-
erage, branch coverage, and condition coverage as the test
adequacy criteria [14, 20]. Different ACO algorithms based
on pheromone level intensity updating are extracted for
the generation of test suites for both path coverage and its
prioritization.

For the automatic generation of test cases, the Genetic
Algorithm(GA) is one method. It uses real numbers instead
of binary numbers to improve the basic Genetic algorithm.
Experiments were conducted based on a search-based
Genetic algorithm, and it uses a tool EVOSUITE for obtain-
ing test cases necessary for data flow testing. Another
method suggested a hybrid Genetic algorithm called HGA
to generate test cases by evaluating a fitness function based
on statement coverage [28]. The new mixed technique is
built by a hill-climbing technique integrated with a sim-
ple genetic algorithm. A modified genetic algorithm called
regenerate genetic algorithm solved the population age-
ing problem that provided better coverage in both path and
branch for various issues.

There has been a lot of proposal on the various software
testing process. Koteswara has proposed test path coverage
for the shortest path. They have proposed a path coverage
genetic algorithm. Test case testing and optimization are
important areas and algorithms employed genetic algorithm
and Artificial bee colony [18].

Particle Swarm Optimization (PSO) can be used to gen-
erate test suites needed for data flow testing. The observed
results indicate that PSO performs much better than the
Genetic algorithm [27]. The number of generations is less in
PSO when compared to the Genetic algorithm. A modified

PSO algorithm called Discrete Quantum PSO was also
developed to generate test cases automatically.

Reduced Adaptive PSO is a modified algorithm used for
automatic test data generation. The evolution equation is
modified after removing the velocity component of the PSO
algorithm, and the inertia weight is the factor considered.
This new approach provides better convergence speed.

A hybrid algorithm called Adaptive PSO - Genetic algo-
rithm removed the problem of immature convergence from
PSO and the slow convergence of the genetic algorithm.
Here, a new objective function combining dominance
weight, branch weight and branch distance in a Control
Flow Graph (CFG) of the program under test is suggested.
This method’s effectiveness is tested with other algorithms
- Differential Evolution, PSO, Genetic algorithm and ACO
[9]. This approach produced a better result than different
algorithms. The PSO algorithm, called Accelerating PSO
(APSO) for data flow testing and APSO, is a better model
between exploration and exploitation [15].

Firefly Algorithm is a bioinspired meta-heuristic algo-
rithm based on fireflies’ flashing behaviour. Generating test
cases in structural testing and functional testing is obtained
by applying the Firefly algorithm. Chaotic firefly, a modi-
fied version of the firefly algorithm, is employed to generate
test cases for white box testing.

A tool named ’Optimal Firefly Test Sequence Generator’
was also developed for structural testing. The software is
converted into a state machine diagram, and the algorithm
is used to generate a prioritized test sequence for the state
machine [12]. Various results in the case studies are taken
and compared with the ACO algorithm. The results obtained
using the Firefly algorithm are less redundant than the ACO
algorithm [8].

Contribution Path refers to the flow of execution or sequence
of commands and conditions in a definitive direction. Basis
path testing finds all the possible executable paths of the
code. In a coding environment, test cases are generated to
test all possible workflow and to make sure the code works
perfectly in all possible environments. When the application
is big enough, the number of test cases that need to be cre-
ated will also be high in number. An automated process of
test case generation by employing a path generation tech-
nique is proposed in this work. This work is unique because
the authors have deployed nature-inspired algorithms for
generating test cases by automating the testing process. The
smell detection agent algorithm is a nature-inspired algo-
rithm developed from the olfactory sensing power of canines.
Incorporating an SDA based algorithm for automatic soft-
ware testing makes this paper unique from other publications
in this area. This work is first of its kind in generating test
paths by deploying smell detection agent algorithm.

625Journal of Electronic Testing (2022) 38:623–636

1 3

The rest of the paper is planned as follows. The way in
which nature inspired algorithm is used in automated soft-
ware engineering is discussed in the first part of the manu-
script. A generalised algorithm called smell detection algo-
rithm is explained in detail with the methodology which is
basically used in this work for automated test case genera-
tion. Complexity analysis and user test cases of two different
code segments are also mentioned in the manuscript to claim
the validity of the proposal.

2 Methodology of Agent Based Algorithms

All nature-inspired optimization algorithms are normally
based on different parameters or observations, and these
parameters decide the application of the algorithm. Smell
detection or sniffing of canines helped find the shortest path
from source to destination [13, 22]. This natural phenom-
enon of canines is simulated in the software testing process,
in which optimal test paths are suitably found out.

Smell trails increase from source to destination and the
shortest path is obtained without any redundancy. The phe-
nomenon revolves around sniffing mode, trailing mode and
random mode. The evaporation of smell molecules from the
source and the movement of these molecules in the direction
of the agent will be developed. The path is obtained from the
source of the smell.

Since the dawn of time, man has been perplexed by
nature.Several natural events have been used to develop
optimisation algorithms in computational science [7].
Natural selection has resulted in the emergence of several
emergent behavioural patterns in creatures with optimising
overtones. These were detected separately and in nature-
inspired algorithms.

Nature-inspired computing includes many optimization
algorithms within each source of inspiration and approach for
mapping it into the computational realm. Until now, most algo-
rithms have primarily dealt with an agent or a group of agents
that demonstrate collective intelligent behaviour [25, 26].

Indeed, even today, canines are utilized by wrong doing
discovery powers to follow the path of lawbreakers from the
location of the crime. A particularly regular interaction can be
utilized to make answers for the chose enhancement issues.
Numerous improvement issues can’t be settled traditionally
and are asymptotically NP-hard. In such settings, nature-
enlivened marvels like creature conduct can be utilized to take
care of computational issues. A calculation, which adjusts the
regular cycle of sniffing or smell trail discovery, is the primary
thought of the work. The issue to be tackled is viewed as a
surface with smell trails and computational specialists moti-
vated by canines to distinguish a streamlined way, which will
comprise the arrangement [3, 11, 21].

Every biologically inspired optimization algorithm
is usually based on several critical modeling parameters
[2, 4, 5]. These parameters are usually decided through
careful observation and understanding of the biological
system on which the algorithm is inspired. To develop an
algorithm inspired by the phenomenon of smell, the Brown-
ian movement of the smell molecules towards the agent, the
agent’s training movement towards the molecule should be
considered. Thus, the following mode for the algorithm can
be modelled [1, 6].

1. The gaseous molecules of smell evaporate in the direction
of the Smell Agent. This is termed the sniffing mode.

2. The smell agent trailing the part of the gaseous mol-
ecules smell and eventually identify it source. This is
termed the trailing mode.

3. In a situation where the agent loss its trail during the
search, a position is selected randomly and the agent
move towards this position hoping to sniff the smell
molecule again. This is termed the random mode.

2.1 Computational Model

The idea of the canine way following conduct can be plotted
in organize math. The fundamental climate is a Cartesian
rectangular plot with indicated furthest points characteriz-
ing the region. These qualities might be changed depending
on the particular computational limitations of the issue. All
focuses in the plot are not navigable but rather chose irregu-
lar focuses (inspecting of focuses) that the SDAs can visit.
These focuses are called smell detects that aides in centring
the critical thinking to a subset of focuses. Every one of
these smell spots is put away by two boundaries. One is
smell trail or worth from an objective or objective. Another
is the mark worth of any SDA that has visited or denoted a
smell spot. Figure 1 delineates this thought that comprises
a source, objective, smell spots, and smell range for an SDA
to travel [16].

There are two parameters in each SDA. One is their
allotted signature esteem that can be utilized to stamp smell
spots, and the other is the range esteem that shows their
olfactory capacity. Diverse SDAs can have distinctive smell
recognition capacities. This worth changes in a sweep of
round region reviewed or sniffed by a specific SDA at a
point. That is, each SDA can have distinctive smell identifi-
cation capacity esteems. The smell spots are dispersed over
the plotted region with various qualities. This may lead an
SDA to sniff and reach a specific point. The above thought
can be carried out as an information structure that is valuable
in a calculation plan.

626 Journal of Electronic Testing (2022) 38:623–636

1 3

A Sensory Mechanism in Nature Nature has supplied
organic entities with different tactile instruments for their
endurance. Canines, particularly species like dogs, have
uncommon olfactory cells, giving them a much prevalent
ability to distinguish utilizing smell. Canines have pro-
foundly tuned receptor destinations in their noses that can
bolt on to this fragrance, accordingly recognizing the way
embraced from the beginning of aroma. On the path, they
additionally invigorate their olfactory cells by taking fast
sniffs and afterwards purging their noses to give the olfac-
tory cells a rest. Another inquisitive conduct of canines is
that they pee in various spots to check an area. Different
canines will distinguish it as an involved domain because
of the solid and particular smell of the pee. These two

eccentricities of canines have been utilized to make smell
discovery specialists (SDA) recognize smell trails in the
climate and mark the way they embrace.

Sniffing Mode In a practical situation, the agent should be
able to sniff the smell particles and intuitively follow this
particle with the hope of identifying its source. This usually
bemuses the agent due to variation in the temperature and
molecular mass of the smell particles, making part trailing
a challenging task. While exploring the search space, the
concentration of smell molecules may become higher than
the current position of the agent, in this case, the agent
moves towards this position. This way, the agent continues
to trail the position of all molecules with higher concentra-
tion until the molecule with the overall best fitness (smell
source) is identified. This behaviour of the agent would be
model as the sniffing mode in smell agent optimization.
The process of SDA is initiated by a randomly generated
initial position (population) of smell molecules. The size
of the population depends on the total number of molecules
of smell evaporating from the smell source. Assuming the
smell molecule is denoted as N and the hyperspace where
the smell molecule is evaporating is denoted as D, then the
population of the smell molecules will be assigned a posi-
tion as to where i = {1, 2..., N}, t is the present position
of a smell molecule. The position vector in the equation
enables the agent to determine the region with the highest
concentration in the search space. For example, consider
the coordinate positions given in Fig. 2.

Each cycle in the cell depicts a molecule of smell. The
number of columns in the figure represents the Dimension
(D) or solution search space to be explored, while the num-
ber of rows represents the population of smell molecule
exploiting the search space.

Fig. 1 Smell surface and smell spots

Fig. 2 Smell positions in
Hyperspace

627Journal of Electronic Testing (2022) 38:623–636

1 3

From Fig. 2, if N is 3 and the index of the molecule with
the highest concentration x t(3,2), this indicates that the
smell molecule with the highest concentration, in this case,
is at the coordinate (3,2) of the entire search space indicated
as a circle with green color. Since the smell molecule evapo-
rates and travels through the air in the direction of the agent,
each molecule can be said to maintain a uniform velocity in
the direction of the agent, provided the intensity of the air
medium is constant. This movement velocity of the smell
molecule is denoted as V. The velocity vector V is the dif-
fusion vector (which is a displacement of the smell molecule
from the smell source/origin). Thus, the position of the smell
molecules considering the velocity vector will be given as
X i t+1 = X i t + V i t

Since every smell molecule will their corresponding
velocities for which they move and update their position in
the search space. The preliminary theory of molecule move-
ment and the heuristic derivation of the velocity distribution
function will be used to develop the velocity update model.

Trailing Mode While exploring the search space, the con-
centration of smell molecules may become higher than
the agent’s current position. In this case, the agent moves
towards this position. This way, the agent continues to trail
all molecules with higher concentration until the molecule
with the overall best fitness (smell source) is identified. In
a practical situation, the agent should be able to sniff the
smell particles and intuitively follow this particle with the
hope of identifying its source. This usually confuses the
agent due to variation in the smell particles’ temperature
and molecular mass, making part trailing a challenging
task. Also, every agent has a specific olfaction capacity,
depending on its size, olfactory lobe, and psychological and

physical condition. For example, larger olfactory lobe size
indicates stronger olfaction favouring exploitation, while
smaller olfactory lobe size indicates poor olfaction, which
indicates poor exploration. Since the proposed SDA is gen-
eralized for all agents, the agent’s olfaction capacity will
influence the SDA precision and convergence. This behav-
iour of the agent would be model as the trailing mode in
smell agent optimization.

In Fig. 3 the agent is represented as a canine and the
object evaporating the smell molecule is depicted in the
grey circle. The dotted lines (labeled X) denote the direc-
tion of the evaporation of the smell molecules, while the
thick line represents the path with a high concentration
of smell (optimum path). The paths labeled X fe are all
feasible paths (path with lower smell concentration),
which could lead the agent to the smell source if fol-
lowed. However, the agent is usually restricted to follow
only the optimum path all through the search process.
At every stage in the searching process, the agent takes
note of the X worst position (feasible paths in a generation)
and uses this information to restrict its movement within
the optimum path. This ideology will be modeled in the
trailing mode search equation. The path labeled X inf is
an infeasible path, which leads the agent to an infeasible
solution. The movement towards this region is avoided
by appropriately selecting a suitable value for the SDA
control parameters.

During the search process, the SDA identifies the region
with high concentration of smell by performing the sniff-
ing mode, representing the canine’s first position in Fig. 3.
The agent updates its position by performing the entire
process of SDA and updating (iteratively) its position until
the smell source is reached (optimum solution is obtained).

Fig. 3 Conceptual framework of
smell detection algorithm

628 Journal of Electronic Testing (2022) 38:623–636

1 3

Random Mode The smell molecules are discrete if these
molecules are separated by a large distance apart from the
molecular search dimension. The intensity/ concentration
of the smell molecule varied over time from one point to
another. This bewilders the agent, and the agent may sub-
sequently lose the smell, making the trail a challenge. At
this point, the agent may be trapped into local minimal,
leading to its inability to continue trailing. The agent moves
randomly within the smell perception region in the natural
situation, hoping to perceive the smell molecule again. This
behaviour of the agent will be model as the random mode in
the smell agent optimization.

3 Path Driven Testing

Path-driven testing examines the various routes that lead
from the root to the destination node.At any rate once,
all mixes of different choice or control articulations are
executed. The strategy depends on the program’s coherent
design. During testing, a graph with all possible paths is
drawn and confirmed.

Control Flow Graph (CFG) A CFG represents the logical
complexity of the programme module to be assessed. There
are various nodes and edges in the CFG. The edges represent
the flow of control between the nodes, whereas the nodes
represent executable code lines. A CFG diagram is used to
generate all efficient paths.

Cyclomatic Complexity The most extreme number of poten-
tial ways in a diagram with M predicate hubs is 2M, and
if the CFG has any circling articulations, there will be an
innumerable number of test ways. The factor of cyclomatic
intricacy number is a significant boundary to limit the
complete check of possible test ways. Cyclomatic intricacy
number is fundamental for the approval of directly free test
ways in a chart. There are two elements related to a CFG:
the cyclomatic number signified by ’V in chart hypothesis.
The other is the intricacy esteem ’G’ as an element of the
diagram.

Analyzers mean to assess every one of the achievable
ways in the CFG. The significant test in testing is to track
down the ideal and plausible ways. Thus, to track down
the ideal way, a need positioning is accomplished for
every practical way. The most elevated need way will be
first chosen for testing and proceeds until the least need
way is tried.

The technique of premise way testing:

A product module contains different freeways to be tried.
This load of ways ought to be tried in any event once in
fundamental way testing.

Following are the different strides of testing measure.

1. Develop the CFG of the program module to be assessed.
2. Determine the cyclomatic intricacy of the CFG, for

tracking down the conceivable number of straightly
autonomous test ways.

3. Create sets of premise test ways utilizing the standard
strategy:

a Select the main practical autonomous way to be
tried.

b Back follow the autonomous ways by unexpectedly
moving to each predicate hub to make fresher ways.

3.1 SDA Algorithm for Path Testing

The considered issue has a source and objective with
numerous ways crossing. At the point when the quantity
of ways builds, the intricacy of critical thinking addition-
ally increments. The issue tackled by this calculation is
addressed as a way found by various SDAs, beginning
from a source navigating through the arrangement of smell
spots and arriving at the objective. A smell spot is set apart
by an SDA as its region when it is visited, and thus, the
other SDAs can’t visit the stamped spots. This guarantees
that unmistakable ways are acquired from the SDAs. Dif-
ferent ways can be acquired by reproducing the SDA when
it is hit with various similarly ideal ways. The replication
of the SDA can be an answer for this. This would involve
getting ways to cover and guarantee that any conceiv-
able ’neighbourhood minima’ stay away. The climate is
instated by haphazardly chosen smell spots and appointing
smell esteems conversely relative to the Cartesian distance
between the source and the objective.

Two information structures are utilized for SDAs and smell
spots. All specialists are introduced with signature esteems,
and sweep esteems that are put at the beginning area. Each
specialist is iteratively permitted to study the region inside its
sweep to choose a plain smell spot with a high smell worth
visiting. The SDAs are moved to picked spots, and the pro-
gression is rehashed until the SDAs arrive at the objective. It
is expected that the SDAs have diverse smell location limits,
which makes a viable hunt starting with one smell point then
onto the next. Allow us to expect that a smell spot is ’stamped’
when an SDA is visited to upgrade this calculation. The best
way acquired by an SDA is registered. The fundamental
strides of the proposed procedure are given in Algorithm 1.

629Journal of Electronic Testing (2022) 38:623–636

1 3

understand. For better understanding, a software pro-
gramme “test” that employs switch case structures is pro-
vided below. Corresponding flow graph is shown in Fig. 5

Cyclomatic complexity factor, V (G) = Number of Edges
- Number of Nodes + 2,

Thus, V (G) = 16 - 13 + 2 = 5.
Now, let us infer the Test Routes obtained

Test Route TR1 : Entry -> a -> b -> c -> J.1 -> e -> f
-> J.2 -> Exit
Test Route TR2 : Entry -> a -> b -> c -> J.1 -> e -> g
-> h -> J.2 -> Exit

After N
3
 SDAs have arrived at the objective, pick the

best way from the acquired ways to answer the issue’s
answer condition. No two SDAs can pick a similar way.
When an SDA visits a smell spot, it is marked as visited
so that other SDAs need to visit a similar smell spot. This
means that, if a node or region is already visited by an
agent, no other agent can choose the same path. Figure 4
shows how the agent moves. Let the red arrow shows the
path in which an Agent 1 moved. When the next agent
comes to Node N1, it indicates that N1 is already visited
by another agent, so it moves to node N6. From N6, if it
tries to move to N2, again the path is restricted as it was
also visited by Agent 1. Thus Agent 2, need to find a new
path which is not in the territory of Agent 1. Thus finally
Agent 2, finds its own path to the destination via establish-
ing a new territory.

An information structure can register the expense, and a
hint of every way joined inside the SDA calculation. This
thought can be utilized in multi-source objective issues.

4 Results and Discussion

The number of linearly independent paths through a pro-
gramme module is measured by creating a Control Flow
Graph of the code, which measures cyclomatic complex-
ity. Reduce the cyclomatic complexity of the programme
to reduce the risk of modification and make it easier to

630 Journal of Electronic Testing (2022) 38:623–636

1 3

Fig. 4 Movement of agents

631Journal of Electronic Testing (2022) 38:623–636

1 3

Test Route TR3 : Entry -> a -> b -> c -> J.1 -> e -> h
-> J.2 -> Exit
Test Route TR4 : Entry -> a -> b -> c -> J.1 -> e -> i
-> J.2 -> Exit
Test Route TR5 : Entry ->a ->b -> d -> J.1 -> e -> f
-> J.2 -> Exit
Test Route TR6 : Entry ->a -> b -> d -> J.1 -> e -> g
-> h -> J.2 -> Exit
Test Route TR7 : Entry -> a -> b -> d -> J.1 -> e -> h
-> J.2 -> Exit
Test Route TR8 : Entry -> a -> b -> d -> J.1 -> e -> i
-> J.2 -> Exit

In this model, quantity of ways distinguished is eight
(because of the utilization of switch case build). Since the
cyclomatic intricacy got is just five, we need to get rid of
infeasible ways. Utilizing the insect settlement advancement
calculation gives the plausible ways and focused on the
achievable ways. The calculation utilized the variables like
way achievability, past experience, way perceivable and the
visited status of the way. The model is included as a coordi-
nated chart approach and the model additionally means the
framework to be tried. This shows the different test ways
of the model during its execution. The best arrangement
of the way is made consequently after the execution of the
streamlining calculation. The most noteworthy need way
is chosen first and progressively, the wide range of various
straight ways in the control stream diagram can be tried.

For creating the feasibly routes, there are mainly two steps.

i) generate a subset of feasible paths ’P’ which hold true
for the coverage criteria.

ii) from ’P’, derive a subset ’p’ in such a way that ’p’ holds
true for test coverage.

Also 2 criterion need to hold true by a route to belong in the
set of basis path

a) the routes generated should be feasible in all manner so
that there is an end-end connectivity and

b) the routes need to be linearly independent

Usecase: Now let’s see a real-time code analysis using a test
path. Consider the program ’test_pow’, where we have three
control structures that define the flow of execution.

Fig. 5 CFG of program ‘test’

Fig. 6 Flow Diagram of pro-
gram ’tes_pow’

632 Journal of Electronic Testing (2022) 38:623–636

1 3

A corresponding flow graph of the pseudocode can be
depicted as in Fig. 6. Using the flow graph, the Cyclomatic
Complexity(CC) may be calculated using the test path like,

CC factor, V (G) = Number of Edges - Number of Nodes
+ 2,

Test Route TR1 : Entry -> 1-> 2-> 3-> 4->6->7->8->
11->12->13->14-> Exit
Test Route TR2 : Entry -> 1-> 2-> 3-> 4->5->7->8->
11->12->13->14-> Exit
Test Route TR3 : Entry -> 1-> 2-> 3-> 4->6->7->8->
11->13->14-> Exit
Test Route TR4 : Entry -> 1-> 2-> 3-> 4->5->7->8->
11->13->14-> Exit

V (G) = 16 - 14 + 2 = 4.

4.1 Discussion

SDA discovers a path from an assortment set of smell spots
from root to the objective hub. For ’n’ specialists, there will

be ’n’ ways returned by the calculation. The doable ways are
focused on from these ’n’ ways. Additionally, the last num-
ber of hubs is likewise gotten. The underlying smell worth of
every hub is contained in the hub area facilitates. The quali-
ties get refreshed while navigating from the source to the
objective. Recognizable proof of the following source and
objective hubs will give the best way. To estimate the smell
worth of every hub from the objective hub, the upsides of
starting smell, decrement tally, which is converse of aggre-
gate and compelling distance, are thought of. The upsides
of smell are refreshed; all the SDA’s are instated with ID
esteem, current hub and length. Because of the smell worth
of every hub, each SDA discovers a way.

The way is distinguished by considering the hub with
the most noteworthy smell esteem from the current hub.
This recognizable proof outcomes in relegating the most
elevated smell hub as the current hub, and this circling cycle
will proceed until the objective is reached. The SDA is rel-
egated with a banner ’stop’, when the SDA shows up at the
objective. The extraordinary ways are distinguished from
the SDA’s who have shown up at the objective with the most
elevated smell esteem. The streamlined way is found by

Fig. 7 CFG of program ’test’
using SDA algorithm

Table 1 Comparison Chart

Parameters Algorithm

ACO SDA

Tally of independent paths All independent paths are priorited with equal threshold. Identified paths are given priority in a ranked manner
from 1 to 8.

Swarm relay Using stigmergy ants communicate. Territory based communication is done in canine.
Algorithm applicability ACO is used to solve when the source and destination are

already defined.
For obtaining optimum solution multiple agents are

deployed.
Problem statement Solution space need to be spotted, so a construction

graph is used for doing the same.
Value specific Cartesian plot with accurate measure is

used to spot the area.
Complexity Representation O(n2) O(E + V log V)

633Journal of Electronic Testing (2022) 38:623–636

1 3

contrasting the all outnumber of hubs visited by each SDA.
For CFG, the number of hubs, weight allowed to every hub,
greatest smell worth and most extreme span are thought of.
Each edge’s weight corresponds to the most extreme num-
ber of times; an SDA visits every hub. The need is top for
the one of a kind way having the most extreme smell esteem
and relies upon the weight allocated to each edge.

In the CFG of the model program “test”, the SDA calcula-
tion fills in as follows. At first, hubs N = 13, beginning smell
esteem, s =1, a tally of SDAs, and N1=1. The tally of smell
spots denoted by N2 which is equal to 13 (Same as that of
N2), sweep or distance from the source is at first zero. Fig-
ure 7 gives the proposed calculation for the model program
“test”. According to the SDA calculation, the essential ways
are navigated by the SDA and fix the need. In premise way
testing, all ways should be tried. However, one test engi-
neer can’t know about every one of the significant ways.
The SDA calculation proposed in the model gives every

recognised doable way in the request for need. Each edge of
the CFG has a weight that relies upon the smell spot esteem.
Additionally, SDAs distinguish all the test ways in a CFG.
In the above program ’test’, the need astute rundown of way
testing is given beneath.

Test Route 1 : Entry -> a -> b -> d -> J.1 -> e -> h ->
J.2 -> Exit
Test Route 2 : Entry -> a -> b -> d -> J.1 -> e -> g ->
h -> J.2 ->Exit
Test Route 3 : Entry -> a -> b -> d -> J.1 -> e -> f ->
J.2 -> Exit
Test Route 4 : Entry -> a -> b -> d -> J.1 -> e -> i ->
J.2 -> Exit
Test Route 5 : Entry -> a -> b -> c -> J.1 -> e -> h ->
J.2 -> Exit
Test Route 6 : Entry -> a -> b -> c -> J.1 -> e -> g -> h
-> J.2 -> Exit
Test Route 7 : Entry -> a -> b -> c -> J.1 -> e -> f ->
J.2 -> Exit
Test Route 8 : Entry -> a -> b -> c -> J.1 -> e -> i ->
J.2 -> Exit

In calculation, the ways are chosen arbitrarily for age
from source to the objective. In our SDA calculation, the
choice of ideal ways depends on the greatest weight doled
out to each most crossed edge of the CFG. In ACO calcula-
tion, the directing is done dependent on diminishing phero-
mone esteem. In SDA calculation, the olfactory capacity is
expanding from source to the objective hub accordingly, the
time intricacy is decreased.

A correlation of ACO and SDA calculations utilized in
underlying testing is given underneath. Table 1 merges the
outcomes in four distinct boundaries: the tally of autono-
mous ways, correspondence, materialness, and intricacy.

Table 2 Time Complexity

Sl No Application Algorithm

ACO SDA

1 Triangle Classification
Problem

23.28 12.00

2 CVM 25.90 13.25
3 Examination 35.67 16.59
4 Job Portal 43.64 22.45
5 Online Application 50.28 25.69
6 MIS 57.86 27.98
7 Travel 61.23 30.05
8 Admission 40.27 19.86
9 Job Scheduling 70.00 40.00
10 Salary 78.00 49.95

Fig. 8 Time Complexity Vs
Test Cases

634 Journal of Electronic Testing (2022) 38:623–636

1 3

The proposed algorithm has been tested with various
applications for routing and estimation. Tables 2 and 3 shows
complexity comparison and the path coverage obtained. Cor-
responding growth curves are also shown in Figs. 8 and 9.

5 Conclusion

The work showed test way creation strategies for premise way
testing in this paper. It’s anything but a reasonable advance-
ment system for achievable test way age in underlying testing
by utilizing SDA streamlining calculation. After carrying out
this strategy, the algorithmic interaction chooses the best test
way succession dependent on its need. The most elevated
need test way is chosen first for test execution, and in quite a
while, all the following need freeways in the control stream

diagram can be tried. The SDA Algorithm will, in general,
be more gainful for better way inclusion in premise way test-
ing. The model keeps away from copy ways dependent on
the SDA signature and the visited status of the hubs. The
outcomes show that the SDA calculation based underlying
testing can be reached out to create the ideal and focused on
the age of test ways for multipath programming modules.
Result shows a peak improvement in the complexity analy-
sis, from O(n2) to O(E+V log V) A robotized strategy can
be seen as a future scope of the work. An automated test
case generation for synchronous application will have a lot of
future prospects. That can also be seen as a trending research
area for scholars working in those fields.

Acknowledgments Authors would like to thank, Government of India
for issuing Copyright for the algorithm Smell Detection Agent based
Optimization Algorithm and Indian Patent to the work Bio-inspired
Controller for Finding Disjoint Paths in Software Defined Networks,
which were the basic concepts used in the development of the proposed
work. The authors would also like to extend gratitude to all researchers
affiliated with the Machine Intelligence Research(MIR) Laboratory for
their support during each phase of this work.

Author Contributions Vinod developed the problem statement, concep-
tualized this study and developed the methodology. Anand has curated
the data and was involved in the methodology implementation. Saju
implemented and wrote the initial manuscript along with curation.

Funding Authors confirm that there is no funding received for this
work.

Data Availability Supplementary materials are available in http:// www.
mirwo rks. in/ downl oads. php.

Declarations

Ethical Approval and Consent to Participate The work was done by
following all ethical methods and authors declare the consent to par-
ticipate in the work.

Table 3 Path Coverage

Sl No Application Number of
Testcases

Algorithm

ACO SDA

1 Triangle Classification
Problem

50 28.04 30.49

2 CVM 100 32.23 38.73
3 Examination 500 43.08 49.86
4 Job Portal 1500 67.06 72.65
5 Online Application 2000 81.63 83.87
6 MIS 3000 92.65 93.90
7 Travel 3500 94.76 96.99
8 Admission 1000 54.09 60.87
9 Job Scheduling 4000 97.00 98.98
10 Salary 4500 98.34 99.10

Fig. 9 Path coverage Vs Test
Cases

http://www.mirworks.in/downloads.php
http://www.mirworks.in/downloads.php

635Journal of Electronic Testing (2022) 38:623–636

1 3

Consent for Publication All authors here by give consent for the publi-
cation of the article. There are no other person with competing interest.

Research Involving Human Participants and/or Animals The authors
declare that this project does not involve Human Participants and/or
animals in any capacity.

Informed Consent The authors declare that this research does not
involve any surveys or participants in any capacity.

Competing Interests The authors have no competing interest to declare
that are relevant to the work or content of this article.

Conflict of Interest Authors certify that this article has no actual or
potential conflict of interest.

References

 1. Abed-Alguni H. Bilal, Alawad Noor Aldeen (2021) Distributed
Grey Wolf Optimizer for scheduling of workflow applications in
cloud environments. Appl Soft Comput 102:107–113

 2. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA,
Gandomi AH (2021) Aquila Optimizer: A novel meta-heuristic
optimization algorithm. Comput Ind Eng 157:107–250

 3. Abualigah Laith, Diabat Ali, Mirjalili Seyedali, Elaziz Mohamed
Abd, Amir Gandomi H (2021) The Arithmetic Optimization
Algorithm. Comput Methods Appl Mech Eng 76:113609

 4. Abualigah Laith, Elaziz Mohamed Abd, Sumari Putra, Geem Zong Woo,
Amir Gandomi H (2022) Reptile Search Algorithm (RSA): A nature-
inspired meta-heuristic optimizer. Expert Syst Appl 191:116–158

 5. Alawad NA, Abed-alguni BH (2021) Discrete Jaya with refraction
learning and three mutation methods for the permutation flow
shop scheduling problem. J Supercomputing 78:3517–3538

 6. Alawad NA, Abed-alguni BH (2021) Discrete island-based cuckoo
search with highly disruptive polynomial mutation and opposi-
tion-based learning strategy for scheduling of workflow applica-
tions in cloud environments. Arab J Sci Eng 46:3213–3233

 7. Ananthalakshmi Ammal R, Sajimon PC, Vinod Chandra SS
(2020) Canine algorithm for node disjoint paths. Lect Notes Com-
put Sci 12145

 8. Colorni A, Dorigo M, Maniezzo V, Trubian M (1999) Ant Sys-
tem for Job-Shop Scheduling. Belg J Oper Res Stat Comput Sci
34(1):39–53

 9. Doerner K, Gutjahr WJ (2003) Extracting test sequences from a
markov software usage model by ACO. Lect Notes Comput Sci 2724:
2465–2476

 10. Dorigo M, Maniezzo V, Colorni A (1996) Ant System: Optimiza-
tion by a Colony of Cooperating Agents. IEEE Trans Syst Man
Cybern - Part B Cybern 26(1):29–41

 11. Laith Abualigah (2020) Feature Selection and Enhanced Krill Herd
Algorithm for Text Document Clustering. Studies in Computa-
tional Intelligence book series 816:105746

 12. Li K, Zhang Z, Liu W (2009) Automatic test data generation based
on ant colony optimization. Proc. of Fifth International Conference
on Natural Computation 216-219

 13. Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with
an ant colony optimization algorithm. IEEE Trans Evol Comput
6(4):321–332

 14. Reimann M, Ulrich H (2006) Comparing backhauling strategies in
vehicle routing using Ant Colony Optimization. CEJOR 14(2):105

 15. Saju Sankar S, Vinod Chandra SS (2020) A multi-agent ACO
algorithm for effective vehicular traffic management system. Lect
Notes Comput Sci 12145:640–647

 16. Saju Sankar S, Vinod Chandra SS (2020) A Structural Testing Model
using SDA Algorithm. Lect Notes Comput Sci 12145:405–412

 17. Saritha R, Vinod Chandra SS (2016) An approach using Particle
Swarm Optimization and Rational Kernel for variable length data
sequence optimization. Lect Notes Comput Sci 9712:401–409

 18. Saritha R, Vinod Chandra SS (2017) Multi dimensional honey bee
foraging algorithm based on optimal energy consumption. Journal
of The Institution of Engineers (India): Series B 98(5), 527-531

 19. Saritha R, Vinod Chandra SS (2018) Multi modal foraging by
honey bees toward optimizing profits at multiple colonies. IEEE
Intell Syst 34(1):14–22

 20. Sharma B, Girdhar I, Taneja M, Basia P, Vadla S, Srivastava PR
(2011) Software coverage : A testing approach through ant colony
optimization. Lect Notes Comput Sci 7076

 21. Singh Y, Kaur A, Suri B (2010) Test case prioritization using ant col-
ony optimization. ACM SIGSOFT Software Engineering Notes: 35(4)

 22. Srivastava P (2012) Optimal test sequence generation: an approach
using ant colony optimisation. Int J Comput Syst Eng 1:91–99

 23. Vinod Chandra SS (2015) Smell Detection Agent Based Optimiza-
tion Algorithm. J Inst Eng: Series B 97(3):431–436

 24. Vinod Chandra SS, Anand HS (2022) Nature inspired meta heuristic
algorithms for optimization problems. Computing 104:251–269

 25. Vinod Chandra SS, Anand Hareendran S (2021) Phototropic algo-
rithm for global optimisation problems. Appl Intell 51:5965–5977

 26. Vinod Chandra SS, Anand HS, Saju Sankar S (2020) Optimal Res-
ervoir Optimization Using Multiobjective Genetic Algorithm. Lect
Notes Comput Sci 12145:445–454

 27. Wegener J, Baresel A, Sthamer H (2001) Evolutionary test environ-
ment for automatic structural testing. J Inf Softw Technol 43:841–854

 28. Yang S, Man T, Xu J (2014) Improved ant algorithms for software
testing cases generation. Sci World J

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

S. S. Vinod Chandra is a Professor in the Department of Computer Science,
University of Kerala. Since 1999, he has taught in various Engineering
Colleges in Kerala. He has obtained his Ph.D. from University of Kerala
and M.Tech. in Software Engineering from Cochin University of Science
and Technology, India. He has discovered four microRNAs in the human
cell and has six patents in the machine learning field. He authored nine
books and a modest number of research publications. He is a reviewer of
many international journals and conferences. His research area includes
machine intelligence algorithms and nature-inspired computing. He is head-
ing Machine Intelligence Research (MIR) Laboratory, a pinpoint research
group in machine intelligence and nature-inspired techniques. He is leading
many e-Governance projects associated with Universities and Government.
He holds many consultancy activities for Government organisations.

S. Saju Sankar received his Ph.D. degree from University of Kerala and
Master’s degree in Software Engineering from Cochin University of Science
and Technology, India. He is currently working as the Head of the Depart-
ment at Government polytechnic college, Punalur. His prime research areas
include optimisation, software automation, machine learning algorithms and
computer vision.

H. S. Anand is currently working as Associate Professor at Muthoot Insti-
tute of Technology and Science, Kochi. He obtained his Ph.D. degree in
Computer Science from University of Kerala and M.Tech. degree from

636 Journal of Electronic Testing (2022) 38:623–636

1 3

Anna University, Chennai. His current area of research includes machine
learning algorithms, association rule mining and bioinspired method-
ologies. He has authored four books, many research journal publica-
tions, and patents in machine learning algorithms. He has designed and

implemented various rule mining algorithms, which find application
in the medical field, route mapping and frequent item search. He is a
reviewer in various international conferences and journals. He is an
active member of Machine Intelligence Research group.

	Smell Detection Agent Optimization Approach to Path Generation in Automated Software Testing
	Abstract
	1 Introduction
	2 Methodology of Agent Based Algorithms
	2.1 Computational Model

	3 Path Driven Testing
	3.1 SDA Algorithm for Path Testing

	4 Results and Discussion
	4.1 Discussion

	5 Conclusion
	Acknowledgments
	References

