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Abstract
Software testing is the most crucial stage in the software development process. Structural testing, functional testing and 
models that even support hybrid testing are different software testing techniques. Basic path testing, the most significant 
structural testing approach, is focused on evaluating software source code. The method emphasizes developing test data inputs 
to produce all feasible and efficient test paths that connect to all nodes and edges of the graph. The objective is to define the 
number of independent paths that can define the number of test cases needed to maximize test coverage. It ensured the execu-
tion of every statement and condition at least once. A nature-inspired Smell Detection Agent (SDA) algorithm is proposed 
in this paper to select all paths and prioritize the feasible solution. This algorithm is an optimization algorithm suitable for 
identifying optimal paths with priority. The concept is derived from the natural behaviour of canines that identified optimal 
path from source to the destination. The SDA algorithm is based on the evaporation of smell molecules in the form of gas 
and the perception capability of a smelling agent. The number of linearly independent paths through a programme module 
is measured by creating a Control Flow Graph of the code, which measures cyclomatic complexity. SDA algorithm gives 
significant increases in performance while considering the cyclomatic complexity. Complexity analysis of SDA trends to be 
in the O(E+V log V), while the competitor algorithms have an exponential growth of O(n2 ). Various experiments were also 
carried out to emphasis the relevance of the proposed method. Ten different benchmarked applications has been taken for 
experimental analysis and it was observed to have an increased path coverage of 8% when SDA was used over the traditional 
methods. Also, the time complexity was reduced by 22%, which shows the powerfulness of the proposed SDA algorithm.

Keywords SDA algorithm · Software testing · Structural testing · Basic path testing · Test case calculation

1 Introduction

The development of appropriate software products for spe-
cific tasks is necessary and involves many human and finan-
cial resources. The products thus developed should ensure 
high quality before deployment or release. Any type of 
product or process testing can be carried out to ensure qual-
ity. Similarly, software testing should also be carried out to 
verify and validate its components, mainly programs. Both 
these activities can be achieved by structural and functional 
testing of the software. Valid test cases are designed in both 
these methods and test data for the same is generated either 
manually or using automated methods [24]. As exhaustive 
testing of the software product is impractical due to time 
and cost constraints and as redundancy of the test cases also 
needs to be controlled, an effective optimization method 
needs to be employed.
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Designing an optimization algorithm for the automated 
generation of optimal and feasible test paths in structural test-
ing is the major focus of this work. Various algorithm design 
strategies have been tried [10, 17, 19, 23], but the efficiency  
and accuracy obtained from the group of nature-inspired 
optimization algorithms were commendable for optimiz-
ing and automation of the generation of optimal and fea-
sible paths in structural testing is explained in the work. 
SDA algorithm is implemented in the formulation of fea-
sible paths and a comparison of the results obtained while 
using other nature-inspired optimization algorithms is also 
included in the study.

Nature Inspired Algorithms in Automated Software Engi-
neering Designing smart and optimized algorithms is 
essential in the software development life cycle, especially 
during the software testing phase. The appropriate selection 
of test suites is a combinatorial problem that uses various 
nature-inspired algorithms for automatic test data generation 
in software testing.

Ant Colony Optimization (ACO) algorithm is one of the 
popular nature-inspired model that considers statement cov-
erage, branch coverage, and condition coverage as the test 
adequacy criteria [14, 20]. Different ACO algorithms based 
on pheromone level intensity updating are extracted for 
the generation of test suites for both path coverage and its 
prioritization.

For the automatic generation of test cases, the Genetic 
Algorithm(GA) is one method. It uses real numbers instead 
of binary numbers to improve the basic Genetic algorithm. 
Experiments were conducted based on a search-based 
Genetic algorithm, and it uses a tool EVOSUITE for obtain-
ing test cases necessary for data flow testing. Another 
method suggested a hybrid Genetic algorithm called HGA 
to generate test cases by evaluating a fitness function based 
on statement coverage [28]. The new mixed technique is 
built by a hill-climbing technique integrated with a sim-
ple genetic algorithm. A modified genetic algorithm called 
regenerate genetic algorithm solved the population age-
ing problem that provided better coverage in both path and  
branch for various issues.

There has been a lot of proposal on the various software 
testing process. Koteswara has proposed test path coverage 
for the shortest path. They have proposed a path coverage 
genetic algorithm. Test case testing and optimization are 
important areas and algorithms employed genetic algorithm 
and Artificial bee colony [18].

Particle Swarm Optimization (PSO) can be used to gen-
erate test suites needed for data flow testing. The observed 
results indicate that PSO performs much better than the 
Genetic algorithm [27]. The number of generations is less in 
PSO when compared to the Genetic algorithm. A modified 

PSO algorithm called Discrete Quantum PSO was also 
developed to generate test cases automatically.

Reduced Adaptive PSO is a modified algorithm used for 
automatic test data generation. The evolution equation is 
modified after removing the velocity component of the PSO 
algorithm, and the inertia weight is the factor considered. 
This new approach provides better convergence speed.

A hybrid algorithm called Adaptive PSO - Genetic algo-
rithm removed the problem of immature convergence from 
PSO and the slow convergence of the genetic algorithm. 
Here, a new objective function combining dominance 
weight, branch weight and branch distance in a Control 
Flow Graph (CFG) of the program under test is suggested. 
This method’s effectiveness is tested with other algorithms 
- Differential Evolution, PSO, Genetic algorithm and ACO 
[9]. This approach produced a better result than different 
algorithms. The PSO algorithm, called Accelerating PSO 
(APSO) for data flow testing and APSO, is a better model 
between exploration and exploitation [15].

Firefly Algorithm is a bioinspired meta-heuristic algo-
rithm based on fireflies’ flashing behaviour. Generating test 
cases in structural testing and functional testing is obtained 
by applying the Firefly algorithm. Chaotic firefly, a modi-
fied version of the firefly algorithm, is employed to generate 
test cases for white box testing.

A tool named ’Optimal Firefly Test Sequence Generator’ 
was also developed for structural testing. The software is 
converted into a state machine diagram, and the algorithm 
is used to generate a prioritized test sequence for the state 
machine [12]. Various results in the case studies are taken 
and compared with the ACO algorithm. The results obtained 
using the Firefly algorithm are less redundant than the ACO 
algorithm [8].

Contribution Path refers to the flow of execution or sequence 
of commands and conditions in a definitive direction. Basis 
path testing finds all the possible executable paths of the 
code. In a coding environment, test cases are generated to 
test all possible workflow and to make sure the code works 
perfectly in all possible environments. When the application 
is big enough, the number of test cases that need to be cre-
ated will also be high in number. An automated process of 
test case generation by employing a path generation tech-
nique is proposed in this work. This work is unique because 
the authors have deployed nature-inspired algorithms for 
generating test cases by automating the testing process. The 
smell detection agent algorithm is a nature-inspired algo-
rithm developed from the olfactory sensing power of canines. 
Incorporating an SDA based algorithm for automatic soft-
ware testing makes this paper unique from other publications 
in this area. This work is first of its kind in generating test 
paths by deploying smell detection agent algorithm.
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The rest of the paper is planned as follows. The way in 
which nature inspired algorithm is used in automated soft-
ware engineering is discussed in the first part of the manu-
script. A generalised algorithm called smell detection algo-
rithm is explained in detail with the methodology which is 
basically used in this work for automated test case genera-
tion. Complexity analysis and user test cases of two different 
code segments are also mentioned in the manuscript to claim 
the validity of the proposal.

2  Methodology of Agent Based Algorithms

All nature-inspired optimization algorithms are normally 
based on different parameters or observations, and these 
parameters decide the application of the algorithm. Smell 
detection or sniffing of canines helped find the shortest path 
from source to destination [13, 22]. This natural phenom-
enon of canines is simulated in the software testing process, 
in which optimal test paths are suitably found out.

Smell trails increase from source to destination and the 
shortest path is obtained without any redundancy. The phe-
nomenon revolves around sniffing mode, trailing mode and 
random mode. The evaporation of smell molecules from the 
source and the movement of these molecules in the direction 
of the agent will be developed. The path is obtained from the 
source of the smell.

Since the dawn of time, man has been perplexed by 
nature.Several natural events have been used to develop 
optimisation algorithms in computational science [7]. 
Natural selection has resulted in the emergence of several 
emergent behavioural patterns in creatures with optimising 
overtones. These were detected separately and in nature-
inspired algorithms.

Nature-inspired computing includes many optimization 
algorithms within each source of inspiration and approach for 
mapping it into the computational realm. Until now, most algo-
rithms have primarily dealt with an agent or a group of agents 
that demonstrate collective intelligent behaviour [25, 26].

Indeed, even today, canines are utilized by wrong doing 
discovery powers to follow the path of lawbreakers from the 
location of the crime. A particularly regular interaction can be 
utilized to make answers for the chose enhancement issues. 
Numerous improvement issues can’t be settled traditionally 
and are asymptotically NP-hard. In such settings, nature-
enlivened marvels like creature conduct can be utilized to take 
care of computational issues. A calculation, which adjusts the 
regular cycle of sniffing or smell trail discovery, is the primary 
thought of the work. The issue to be tackled is viewed as a 
surface with smell trails and computational specialists moti-
vated by canines to distinguish a streamlined way, which will 
comprise the arrangement [3, 11, 21].

Every biologically inspired optimization algorithm 
is usually based on several critical modeling parameters 
[2, 4, 5]. These parameters are usually decided through  
careful observation and understanding of the biological 
system on which the algorithm is inspired. To develop an 
algorithm inspired by the phenomenon of smell, the Brown-
ian movement of the smell molecules towards the agent, the 
agent’s training movement towards the molecule should be 
considered. Thus, the following mode for the algorithm can 
be modelled [1, 6]. 

1. The gaseous molecules of smell evaporate in the direction 
of the Smell Agent. This is termed the sniffing mode.

2. The smell agent trailing the part of the gaseous mol-
ecules smell and eventually identify it source. This is 
termed the trailing mode.

3. In a situation where the agent loss its trail during the 
search, a position is selected randomly and the agent 
move towards this position hoping to sniff the smell 
molecule again. This is termed the random mode.

2.1  Computational Model

The idea of the canine way following conduct can be plotted 
in organize math. The fundamental climate is a Cartesian 
rectangular plot with indicated furthest points characteriz-
ing the region. These qualities might be changed depending 
on the particular computational limitations of the issue. All 
focuses in the plot are not navigable but rather chose irregu-
lar focuses (inspecting of focuses) that the SDAs can visit. 
These focuses are called smell detects that aides in centring 
the critical thinking to a subset of focuses. Every one of 
these smell spots is put away by two boundaries. One is 
smell trail or worth from an objective or objective. Another 
is the mark worth of any SDA that has visited or denoted a 
smell spot. Figure 1 delineates this thought that comprises 
a source, objective, smell spots, and smell range for an SDA 
to travel [16].

There are two parameters in each SDA. One is their 
allotted signature esteem that can be utilized to stamp smell 
spots, and the other is the range esteem that shows their 
olfactory capacity. Diverse SDAs can have distinctive smell 
recognition capacities. This worth changes in a sweep of 
round region reviewed or sniffed by a specific SDA at a 
point. That is, each SDA can have distinctive smell identifi-
cation capacity esteems. The smell spots are dispersed over 
the plotted region with various qualities. This may lead an 
SDA to sniff and reach a specific point. The above thought 
can be carried out as an information structure that is valuable 
in a calculation plan.
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A Sensory Mechanism in Nature Nature has supplied 
organic entities with different tactile instruments for their 
endurance. Canines, particularly species like dogs, have 
uncommon olfactory cells, giving them a much prevalent 
ability to distinguish utilizing smell. Canines have pro-
foundly tuned receptor destinations in their noses that can 
bolt on to this fragrance, accordingly recognizing the way 
embraced from the beginning of aroma. On the path, they 
additionally invigorate their olfactory cells by taking fast 
sniffs and afterwards purging their noses to give the olfac-
tory cells a rest. Another inquisitive conduct of canines is 
that they pee in various spots to check an area. Different 
canines will distinguish it as an involved domain because 
of the solid and particular smell of the pee. These two 

eccentricities of canines have been utilized to make smell 
discovery specialists (SDA) recognize smell trails in the 
climate and mark the way they embrace.

Sniffing Mode In a practical situation, the agent should be 
able to sniff the smell particles and intuitively follow this 
particle with the hope of identifying its source. This usually 
bemuses the agent due to variation in the temperature and 
molecular mass of the smell particles, making part trailing 
a challenging task. While exploring the search space, the 
concentration of smell molecules may become higher than 
the current position of the agent, in this case, the agent 
moves towards this position. This way, the agent continues 
to trail the position of all molecules with higher concentra-
tion until the molecule with the overall best fitness (smell 
source) is identified. This behaviour of the agent would be 
model as the sniffing mode in smell agent optimization. 
The process of SDA is initiated by a randomly generated 
initial position (population) of smell molecules. The size 
of the population depends on the total number of molecules 
of smell evaporating from the smell source. Assuming the 
smell molecule is denoted as N and the hyperspace where 
the smell molecule is evaporating is denoted as D, then the 
population of the smell molecules will be assigned a posi-
tion as to where i = {1, 2..., N}, t is the present position 
of a smell molecule. The position vector in the equation 
enables the agent to determine the region with the highest 
concentration in the search space. For example, consider 
the coordinate positions given in Fig. 2.

Each cycle in the cell depicts a molecule of smell. The 
number of columns in the figure represents the Dimension 
(D) or solution search space to be explored, while the num-
ber of rows represents the population of smell molecule 
exploiting the search space.

Fig. 1  Smell surface and smell spots

Fig. 2  Smell positions in 
Hyperspace
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From Fig. 2, if N is 3 and the index of the molecule with 
the highest concentration x t(3,2), this indicates that the 
smell molecule with the highest concentration, in this case, 
is at the coordinate (3,2) of the entire search space indicated 
as a circle with green color. Since the smell molecule evapo-
rates and travels through the air in the direction of the agent, 
each molecule can be said to maintain a uniform velocity in 
the direction of the agent, provided the intensity of the air 
medium is constant. This movement velocity of the smell 
molecule is denoted as V. The velocity vector V is the dif-
fusion vector (which is a displacement of the smell molecule 
from the smell source/origin). Thus, the position of the smell 
molecules considering the velocity vector will be given as 
X i  t+1 = X i  t  + V i  t

Since every smell molecule will their corresponding 
velocities for which they move and update their position in 
the search space. The preliminary theory of molecule move-
ment and the heuristic derivation of the velocity distribution 
function will be used to develop the velocity update model.

Trailing Mode While exploring the search space, the con-
centration of smell molecules may become higher than  
the agent’s current position. In this case, the agent moves 
towards this position. This way, the agent continues to trail 
all molecules with higher concentration until the molecule 
with the overall best fitness (smell source) is identified. In 
a practical situation, the agent should be able to sniff the  
smell particles and intuitively follow this particle with the  
hope of identifying its source. This usually confuses the  
agent due to variation in the smell particles’ temperature  
and molecular mass, making part trailing a challenging  
task. Also, every agent has a specific olfaction capacity, 
depending on its size, olfactory lobe, and psychological and 

physical condition. For example, larger olfactory lobe size  
indicates stronger olfaction favouring exploitation, while 
smaller olfactory lobe size indicates poor olfaction, which 
indicates poor exploration. Since the proposed SDA is gen-
eralized for all agents, the agent’s olfaction capacity will  
influence the SDA precision and convergence. This behav-
iour of the agent would be model as the trailing mode in  
smell agent optimization.

In Fig. 3 the agent is represented as a canine and the 
object evaporating the smell molecule is depicted in the 
grey circle. The dotted lines (labeled X) denote the direc-
tion of the evaporation of the smell molecules, while the 
thick line represents the path with a high concentration 
of smell (optimum path). The paths labeled X fe are all 
feasible paths (path with lower smell concentration), 
which could lead the agent to the smell source if fol-
lowed. However, the agent is usually restricted to follow 
only the optimum path all through the search process. 
At every stage in the searching process, the agent takes 
note of the X worst position (feasible paths in a generation) 
and uses this information to restrict its movement within 
the optimum path. This ideology will be modeled in the 
trailing mode search equation. The path labeled X inf  is 
an infeasible path, which leads the agent to an infeasible 
solution. The movement towards this region is avoided 
by appropriately selecting a suitable value for the SDA 
control parameters.

During the search process, the SDA identifies the region 
with high concentration of smell by performing the sniff-
ing mode, representing the canine’s first position in Fig. 3. 
The agent updates its position by performing the entire 
process of SDA and updating (iteratively) its position until 
the smell source is reached (optimum solution is obtained).

Fig. 3  Conceptual framework of 
smell detection algorithm
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Random Mode The smell molecules are discrete if these 
molecules are separated by a large distance apart from the 
molecular search dimension. The intensity/ concentration 
of the smell molecule varied over time from one point to 
another. This bewilders the agent, and the agent may sub-
sequently lose the smell, making the trail a challenge. At 
this point, the agent may be trapped into local minimal, 
leading to its inability to continue trailing. The agent moves 
randomly within the smell perception region in the natural 
situation, hoping to perceive the smell molecule again. This 
behaviour of the agent will be model as the random mode in 
the smell agent optimization.

3  Path Driven Testing

Path-driven testing examines the various routes that lead 
from the root to the destination node.At any rate once, 
all mixes of different choice or control articulations are 
executed. The strategy depends on the program’s coherent 
design. During testing, a graph with all possible paths is 
drawn and confirmed.

Control Flow Graph (CFG) A CFG represents the logical 
complexity of the programme module to be assessed. There 
are various nodes and edges in the CFG. The edges represent 
the flow of control between the nodes, whereas the nodes 
represent executable code lines. A CFG diagram is used to 
generate all efficient paths.

Cyclomatic Complexity The most extreme number of poten-
tial ways in a diagram with M predicate hubs is 2M, and 
if the CFG has any circling articulations, there will be an 
innumerable number of test ways. The factor of cyclomatic 
intricacy number is a significant boundary to limit the 
complete check of possible test ways. Cyclomatic intricacy 
number is fundamental for the approval of directly free test 
ways in a chart. There are two elements related to a CFG: 
the cyclomatic number signified by ’V in chart hypothesis. 
The other is the intricacy esteem ’G’ as an element of the 
diagram.

Analyzers mean to assess every one of the achievable 
ways in the CFG. The significant test in testing is to track 
down the ideal and plausible ways. Thus, to track down 
the ideal way, a need positioning is accomplished for 
every practical way. The most elevated need way will be 
first chosen for testing and proceeds until the least need 
way is tried.

The technique of premise way testing:

A product module contains different freeways to be tried. 
This load of ways ought to be tried in any event once in 
fundamental way testing.

Following are the different strides of testing measure. 

1. Develop the CFG of the program module to be assessed.
2. Determine the cyclomatic intricacy of the CFG, for 

tracking down the conceivable number of straightly 
autonomous test ways.

3. Create sets of premise test ways utilizing the standard 
strategy: 

a Select the main practical autonomous way to be 
tried.

b Back follow the autonomous ways by unexpectedly 
moving to each predicate hub to make fresher ways.

3.1  SDA Algorithm for Path Testing

The considered issue has a source and objective with 
numerous ways crossing. At the point when the quantity 
of ways builds, the intricacy of critical thinking addition-
ally increments. The issue tackled by this calculation is 
addressed as a way found by various SDAs, beginning 
from a source navigating through the arrangement of smell  
spots and arriving at the objective. A smell spot is set apart 
by an SDA as its region when it is visited, and thus, the 
other SDAs can’t visit the stamped spots. This guarantees 
that unmistakable ways are acquired from the SDAs. Dif-
ferent ways can be acquired by reproducing the SDA when 
it is hit with various similarly ideal ways. The replication 
of the SDA can be an answer for this. This would involve 
getting ways to cover and guarantee that any conceiv-
able ’neighbourhood minima’ stay away. The climate is 
instated by haphazardly chosen smell spots and appointing 
smell esteems conversely relative to the Cartesian distance 
between the source and the objective.

Two information structures are utilized for SDAs and smell 
spots. All specialists are introduced with signature esteems, 
and sweep esteems that are put at the beginning area. Each 
specialist is iteratively permitted to study the region inside its 
sweep to choose a plain smell spot with a high smell worth 
visiting. The SDAs are moved to picked spots, and the pro-
gression is rehashed until the SDAs arrive at the objective. It 
is expected that the SDAs have diverse smell location limits, 
which makes a viable hunt starting with one smell point then 
onto the next. Allow us to expect that a smell spot is ’stamped’ 
when an SDA is visited to upgrade this calculation. The best 
way acquired by an SDA is registered. The fundamental 
strides of the proposed procedure are given in Algorithm 1.
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understand. For better understanding, a software pro-
gramme “test” that employs switch case structures is pro-
vided below. Corresponding flow graph is shown in Fig. 5

Cyclomatic complexity factor, V (G) = Number of Edges 
- Number of Nodes + 2,

Thus, V (G) = 16 - 13 + 2 = 5.
Now, let us infer the Test Routes obtained

Test Route TR1 : Entry -> a -> b -> c -> J.1 -> e -> f 
-> J.2 -> Exit
Test Route TR2 : Entry -> a -> b -> c -> J.1 -> e -> g 
-> h -> J.2 -> Exit

After N 
3
 SDAs have arrived at the objective, pick the 

best way from the acquired ways to answer the issue’s 
answer condition. No two SDAs can pick a similar way. 
When an SDA visits a smell spot, it is marked as visited 
so that other SDAs need to visit a similar smell spot. This 
means that, if a node or region is already visited by an 
agent, no other agent can choose the same path. Figure 4 
shows how the agent moves. Let the red arrow shows the 
path in which an Agent 1 moved. When the next agent 
comes to Node N1, it indicates that N1 is already visited 
by another agent, so it moves to node N6. From N6, if it 
tries to move to N2, again the path is restricted as it was 
also visited by Agent 1. Thus Agent 2, need to find a new 
path which is not in the territory of Agent 1. Thus finally 
Agent 2, finds its own path to the destination via establish-
ing a new territory.

An information structure can register the expense, and a 
hint of every way joined inside the SDA calculation. This 
thought can be utilized in multi-source objective issues.

4  Results and Discussion

The number of linearly independent paths through a pro-
gramme module is measured by creating a Control Flow 
Graph of the code, which measures cyclomatic complex-
ity. Reduce the cyclomatic complexity of the programme 
to reduce the risk of modification and make it easier to 
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Fig. 4  Movement of agents
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Test Route TR3 : Entry -> a -> b -> c -> J.1 -> e -> h 
-> J.2 -> Exit
Test Route TR4 : Entry -> a -> b -> c -> J.1 -> e -> i 
-> J.2 -> Exit
Test Route TR5 : Entry ->a ->b -> d -> J.1 -> e -> f 
-> J.2 -> Exit
Test Route TR6 : Entry ->a -> b -> d -> J.1 -> e -> g 
-> h -> J.2 -> Exit
Test Route TR7 : Entry -> a -> b -> d -> J.1 -> e -> h 
-> J.2 -> Exit
Test Route TR8 : Entry -> a -> b -> d -> J.1 -> e -> i 
-> J.2 -> Exit

In this model, quantity of ways distinguished is eight 
(because of the utilization of switch case build). Since the 
cyclomatic intricacy got is just five, we need to get rid of 
infeasible ways. Utilizing the insect settlement advancement 
calculation gives the plausible ways and focused on the 
achievable ways. The calculation utilized the variables like 
way achievability, past experience, way perceivable and the 
visited status of the way. The model is included as a coordi-
nated chart approach and the model additionally means the 
framework to be tried. This shows the different test ways 
of the model during its execution. The best arrangement 
of the way is made consequently after the execution of the 
streamlining calculation. The most noteworthy need way 
is chosen first and progressively, the wide range of various 
straight ways in the control stream diagram can be tried.

For creating the feasibly routes, there are mainly two steps. 

i) generate a subset of feasible paths ’P’ which hold true 
for the coverage criteria.

ii) from ’P’, derive a subset ’p’ in such a way that ’p’ holds 
true for test coverage.

Also 2 criterion need to hold true by a route to belong in the 
set of basis path 

a) the routes generated should be feasible in all manner so 
that there is an end-end connectivity and

b) the routes need to be linearly independent

Usecase: Now let’s see a real-time code analysis using a test 
path. Consider the program ’test_pow’, where we have three 
control structures that define the flow of execution.

Fig. 5  CFG of program ‘test’

Fig. 6  Flow Diagram of pro-
gram ’tes_pow’
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A corresponding flow graph of the pseudocode can be 
depicted as in Fig. 6. Using the flow graph, the Cyclomatic 
Complexity(CC) may be calculated using the test path like,

CC factor, V (G) = Number of Edges - Number of Nodes 
+ 2,

Test Route TR1 : Entry -> 1-> 2-> 3-> 4->6->7->8-> 
11->12->13->14-> Exit
Test Route TR2 : Entry -> 1-> 2-> 3-> 4->5->7->8-> 
11->12->13->14-> Exit
Test Route TR3 : Entry -> 1-> 2-> 3-> 4->6->7->8-> 
11->13->14-> Exit
Test Route TR4 : Entry -> 1-> 2-> 3-> 4->5->7->8-> 
11->13->14-> Exit

V (G) = 16 - 14 + 2 = 4.

4.1  Discussion

SDA discovers a path from an assortment set of smell spots 
from root to the objective hub. For ’n’ specialists, there will 

be ’n’ ways returned by the calculation. The doable ways are 
focused on from these ’n’ ways. Additionally, the last num-
ber of hubs is likewise gotten. The underlying smell worth of 
every hub is contained in the hub area facilitates. The quali-
ties get refreshed while navigating from the source to the 
objective. Recognizable proof of the following source and 
objective hubs will give the best way. To estimate the smell 
worth of every hub from the objective hub, the upsides of 
starting smell, decrement tally, which is converse of aggre-
gate and compelling distance, are thought of. The upsides 
of smell are refreshed; all the SDA’s are instated with ID 
esteem, current hub and length. Because of the smell worth 
of every hub, each SDA discovers a way.

The way is distinguished by considering the hub with 
the most noteworthy smell esteem from the current hub. 
This recognizable proof outcomes in relegating the most 
elevated smell hub as the current hub, and this circling cycle  
will proceed until the objective is reached. The SDA is rel-
egated with a banner ’stop’, when the SDA shows up at the 
objective. The extraordinary ways are distinguished from 
the SDA’s who have shown up at the objective with the most 
elevated smell esteem. The streamlined way is found by 

Fig. 7  CFG of program ’test’ 
using SDA algorithm

Table 1  Comparison Chart

Parameters Algorithm

ACO SDA

Tally of independent paths All independent paths are priorited with equal threshold. Identified paths are given priority in a ranked manner 
from 1 to 8.

Swarm relay Using stigmergy ants communicate. Territory based communication is done in canine.
Algorithm applicability ACO is used to solve when the source and destination are 

already defined.
For obtaining optimum solution multiple agents are 

deployed.
Problem statement Solution space need to be spotted, so a construction 

graph is used for doing the same.
Value specific Cartesian plot with accurate measure is 

used to spot the area.
Complexity Representation O(n2) O(E + V log V)
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contrasting the all outnumber of hubs visited by each SDA. 
For CFG, the number of hubs, weight allowed to every hub, 
greatest smell worth and most extreme span are thought of. 
Each edge’s weight corresponds to the most extreme num-
ber of times; an SDA visits every hub. The need is top for  
the one of a kind way having the most extreme smell esteem 
and relies upon the weight allocated to each edge.

In the CFG of the model program “test”, the SDA calcula-
tion fills in as follows. At first, hubs N = 13, beginning smell 
esteem, s =1, a tally of SDAs, and N1=1. The tally of smell 
spots denoted by N2 which is equal to 13 (Same as that of 
N2), sweep or distance from the source is at first zero. Fig-
ure 7 gives the proposed calculation for the model program 
“test”. According to the SDA calculation, the essential ways 
are navigated by the SDA and fix the need. In premise way 
testing, all ways should be tried. However, one test engi-
neer can’t know about every one of the significant ways. 
The SDA calculation proposed in the model gives every 

recognised doable way in the request for need. Each edge of 
the CFG has a weight that relies upon the smell spot esteem. 
Additionally, SDAs distinguish all the test ways in a CFG. 
In the above program ’test’, the need astute rundown of way 
testing is given beneath.

Test Route 1 : Entry -> a -> b -> d -> J.1 -> e -> h -> 
J.2 -> Exit
Test Route 2 : Entry -> a -> b -> d -> J.1 -> e -> g -> 
h -> J.2 ->Exit
Test Route 3 : Entry -> a -> b -> d -> J.1 -> e -> f -> 
J.2 -> Exit
Test Route 4 : Entry -> a -> b -> d -> J.1 -> e -> i -> 
J.2 -> Exit
Test Route 5 : Entry -> a -> b -> c -> J.1 -> e -> h -> 
J.2 -> Exit
Test Route 6 : Entry -> a -> b -> c -> J.1 -> e -> g -> h 
-> J.2 -> Exit
Test Route 7 : Entry -> a -> b -> c -> J.1 -> e -> f -> 
J.2 -> Exit
Test Route 8 : Entry -> a -> b -> c -> J.1 -> e -> i -> 
J.2 -> Exit

In calculation, the ways are chosen arbitrarily for age 
from source to the objective. In our SDA calculation, the 
choice of ideal ways depends on the greatest weight doled 
out to each most crossed edge of the CFG. In ACO calcula-
tion, the directing is done dependent on diminishing phero-
mone esteem. In SDA calculation, the olfactory capacity is 
expanding from source to the objective hub accordingly, the 
time intricacy is decreased.

A correlation of ACO and SDA calculations utilized in 
underlying testing is given underneath. Table 1 merges the 
outcomes in four distinct boundaries: the tally of autono-
mous ways, correspondence, materialness, and intricacy.

Table 2  Time Complexity

Sl No Application Algorithm

ACO SDA

1 Triangle Classification 
Problem

23.28 12.00

2 CVM 25.90 13.25
3 Examination 35.67 16.59
4 Job Portal 43.64 22.45
5 Online Application 50.28 25.69
6 MIS 57.86 27.98
7 Travel 61.23 30.05
8 Admission 40.27 19.86
9 Job Scheduling 70.00 40.00
10 Salary 78.00 49.95

Fig. 8  Time Complexity Vs 
Test Cases
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The proposed algorithm has been tested with various 
applications for routing and estimation. Tables 2 and 3 shows 
complexity comparison and the path coverage obtained. Cor-
responding growth curves are also shown in Figs. 8 and 9.

5  Conclusion

The work showed test way creation strategies for premise way 
testing in this paper. It’s anything but a reasonable advance-
ment system for achievable test way age in underlying testing 
by utilizing SDA streamlining calculation. After carrying out 
this strategy, the algorithmic interaction chooses the best test 
way succession dependent on its need. The most elevated 
need test way is chosen first for test execution, and in quite a 
while, all the following need freeways in the control stream 

diagram can be tried. The SDA Algorithm will, in general, 
be more gainful for better way inclusion in premise way test-
ing. The model keeps away from copy ways dependent on 
the SDA signature and the visited status of the hubs. The 
outcomes show that the SDA calculation based underlying 
testing can be reached out to create the ideal and focused on 
the age of test ways for multipath programming modules. 
Result shows a peak improvement in the complexity analy-
sis, from O(n2 ) to O(E+V log V) A robotized strategy can 
be seen as a future scope of the work. An automated test 
case generation for synchronous application will have a lot of 
future prospects. That can also be seen as a trending research 
area for scholars working in those fields.
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