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Abstract
Single event upsets (SEU) are the transient errors that occur during the operation of the circuit. High radiation in the space 
environment and its invasion of the nanoelectronics can result in a bit-flip in the combinational circuits and may cause a 
stuck-at fault in the sequential circuit. Faults are unacceptable for any application, especially SEU in the control path, which 
is crucial and imperative since it can lead to functional or even mission failure. As a result, this paper proposes a bio-inspired 
technique based on a modified heuristic-guided genetic algorithm to mitigate error at the Finite State Machine (FSM), 
which is the controller’s behavior model. The proposed architecture performs an optimized functional level evolution of the 
FSM intrinsically on ProAsic3e FPGA boards without the help of System-on-Chip (SoC). Due to this, the delay caused by 
extrinsic and hybrid evolution has been reduced. The proposed heuristic-guided genetic algorithm recovers the fault in the 
control circuit with less convergence time when compared to the standard genetic algorithm. The resource utilization of the 
proposed evolvable hardware system has reduced costs compared to traditional functional evolution.

Keywords  SEU · FPGA · Fault Tolerant Evolvable Hardware · Genetic Algorithm · Bio-inspired electronics · Adaptive 
Hardware · Transient Errors

1  Introduction

The control path of the Hardware is a vital part of any appli-
cation as it decides how and which data path elements have 
to operate. The need for deploying the controller on FPGA 
is high in most critical and adaptive Hardware, such as 
Unmanned Aerial Vehicle (UAV) [4], reusable launch vehi-
cles, and ground support equipment, due to its advantage of 
dynamic and run-time configuration to mitigate on-chip and 
off-chip errors, as well as to reduce mission cost by recon-
figuring the same FPGA chips for multiple applications [3].

There is a great demand for making the control path of 
FPGA boards Anti-SEU [5]. However, the downside of this 

design approach is the FPGA-based systems’ subjection to 
the harsh environment. In such conditions, the board can 
face transient faults termed single-event errors.

The control circuit of the FPGA-based system is mod-
eled using FSM. Given any state machine for a controller, 
the hardware design comprises a combinational circuit to 
compute the output (control signals) and next state based 
on the Boolean expression reduced by K-Map from the state 
transition table and a memory component (Register or Flip-
Flop) to provide the next state as the current state at the end 
of a clock cycle, as shown in Fig. 1.

The transient errors that happen in FSM can cause a sin-
gle or multiple-bit flip in the following two cases:

•	 Case 1: SEU on Input bits SEU can impact the com-
binational circuit’s input bits while transiting from the 
current state to the next, leading to a wrong transition.

•	 Case 2: SEU in Memory Component The error can 
happen in the register or a flip-flop, which stores the next 
state encoding. As a result, bit-flip occurs in the state 
encoding of the next state, which is sent as input in the 
corresponding clock cycle. This bit encoding error in the 
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memory component can lead to a wrong transition and 
thereby induce function failure.

Any error recovery procedure has to tackle these error 
models to ensure an absolute and robust control circuit. For 
instance, consider the control circuit of a robot performing 
object search and retrieval task [16] comprising three main 
tasks such as environment inspection (I), object seizing (S), 
and reaching Target position (T), as shown in Fig. 2. The 
main operations of the robot are modeled as a finite set of 
states {I, S, T} respectively. The transition between the states 
happens on accepting two-bit binary input = {00,01,10,11}. 
The input of each state is encoded using segmented binary 
encoding. The first bit in the input represents whether an 
object is recognized in the camera, and the second bit rep-
resents the odometer value. The X in the transition arc rep-
resents the input, which can be either 0 or 1.

In Fig. 2 consider a transition function T (reaching tar-
get position) from object seizing defined as S × 0X → T. If 
a single event upset happens while reading the first bit of 
the input (0X). The transition function becomes S × 1X→ 
I, which makes the control circuit send the wrong control 

signal for the data path elements and perform a different 
function than intended. Consider the encoding of state 
I-environment inspection represented in binary as 00 and 
the occurrence of a single event upset in the register can 
cause the flip in the first bit, resulting in 10 denoting the 
operation of navigating to the target position. In this case of 
fault occurrence, the control circuit communicates the wrong 
control signal to undesired data path elements. Hence, it is 
essential to develop a mitigation technique/mechanism to 
ensure the correct functioning of the FSM.

In general, the fault tolerance in digital electronics is 
performed via redundancy based methods, such as: Hard-
ware [7, 19, 21], Time [1] and Information [6, 12]. For deep 
space exploration and satellite rovers, the use of FPGAs has 
increased. For such a huge number of FPGA-based designs, 
the redundancy can increase the size of the overall Hardware 
in terms of size and power. To overcome the overall increase 
in size, the types of faults on the Hardware were analyzed 
priorly, and partial redundancy on selected components was 
applied [20, 22]. However, autonomous or self-adaptive 
Hardware does not require redundancy at any level. For 
instance, evolvable Hardware, a bio-inspired fault-tolerant 
electronics, utilizes the same faulty component and an evo-
lutionary algorithm module to mitigate the error.

The primary reconfiguration technique in evolvable 
Hardware is focused on bitstream level evolution. The bit-
stream is the collection of the configuration data obtained 
by the FPGA-specific software after the place and route 
operation of the digital application. It is stored in the con-
figuration memory of the FPGA and describes the rout-
ing information and contents of the LUT, CLB, and clock 
signals. Access to this configuration data is made possible 
by using FPGA-specific Dynamic Partial Reconfiguration 
(DPR) tools.

Access to the configuration data is restricted in multiple 
military-grade FPGA and FPGAs with high security. Fur-
thermore, the bit streams are also encrypted. To confront 
this challenge, an application-level mimicry of the configu-
ration memory has been developed with the help of Virtual 
Reconfigurable Circuit (VRC) [23]. The VRC comprises  
the configuration register, which contains the select line 
values of m × n array multiplexer. These multiplexers are 
routed and function based on the select line values in the 
configuration register. In contrast to the bitstream evolu-
tion, the circuit level evolution is performed by applying the  
configuration register content as a chromosome. As a result, 
different routing and functionalities of circuits are verified.

The greatest challenge in VRC is high resource overhead 
since it is a multiplexer-based structure. For a simple full 
adder circuit, approximately 89% of the resources are uti-
lized for the multiplexer. Hence, there is a vital requirement 
for optimizing the VRC array structure. This paper presents 
an optimized VRC array structure with a heuristics-guided 
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genetic algorithm for accelerated fault tolerance and 
increased scalability. The additional delay in processor-
based evolution is reduced by deploying the evolutionary 
algorithm on the same FPGA. The proposed heuristics-
guided genetic algorithm’s design mainly utilizes the control 
circuit’s deterministic nature. The faults are simulated at the 
VRC’s functional and routing capabilities, and the effective-
ness of the fault tolerance is reported.

The rest of the paper is organized as follows. Section 2 
explains the preliminaries of Evolvable Hardware (EHW) 
and related work. Section 3 presents the proposed intrinsic 
evolvable hardware system for SEU error correction and 
detection and explains it with different applications. Sec-
tion 4 details the implementation methods adopted to verify 
the proposed design, Sect. 5 details the results and discus-
sion, followed by Sect. 6.

1.1 � Contribution of this Paper

•	 The bitstream evolution and standard function level evo-
lution are replaced with optimized function level evolu-
tion. As a result, resource utilization is reduced compared 
to standard function level evolution.

•	 The deployed control circuit as an optimized functional 
evolution array is represented as a chromosome and 
evolved using a heuristic-guided genetic algorithm to 
reduce the chromosome length and accelerate the con-
vergence rate.

•	 The proposed function level evolution array and heuristic-
guided genetic algorithm are deployed as digital circuits 
on the same FPGA, and complete hardware level evolu-
tion is performed to eliminate the dependability and delay 
caused by extrinsic and hybrid evolution.

•	 The proposed EHW system is tested for efficacy for dif-
ferent types of faults and its improvement in resource 
utilization and convergence rate is presented.

•	 The proposed solution uses a military-grade FPGA, 
which does not possess specialized support such as JTAG 
bits software and processor for the implementation of 
EHW as utilized in related work.

2 � Background

The application of characteristics found in bio-organisms 
to electronics for self-organizing and self-adaptiveness is 
called bio-inspired fault tolerance in electronics. In general, 
redundancy-based fault mitigation methods can increase 
the cost of the entire mission in terms of area, power, and 
delay. Hence an intelligence-based methodology is required 
at the circuit level to adapt itself to the changing environ-
ment. The bio-inspired fault tolerance is categorized into 
three dimensions based on the POE model where P stands 
for Phylogeny - The evolution capabilities of species inspire 
the next generation of electronics. Evolvable Hardware is an 
example of this dimension. The Ontogeny in the POE model 
is motivated by the multi-cellular division of the zygote. 
Embryonics [18] is an example of this category. A fault in 
a component is mitigated by replacing the faulty cell with a 
neighboring spare cell. The Epigenesis adapts the learning 
behaviour of the species to electronics called Immunotron-
ics [27]. This vertical of the POE model is adapted from the 
human immune system’s inbuilt characteristics of identify-
ing Self/Non-self. Among these dimensions of bio-inspired 
electronics, our proposed work focuses on phylogeny to 
design a self-healing control path.

EHW is the application of biological concepts to elec-
tronic Hardware with the help of evolutionary algorithms. 
The field of evolvable Hardware was pioneered by Thompson 
et al. [32] in 1996. The field of research of EHW has been 
distinguished under two motivations: where EHW is used 
for optimized hardware design and the design of adaptive 
Hardware. The autonomous design of the Hardware focuses 
on designing the electronic circuit from scratch based on 
parameters like area, power, and delay. Various combina-
tional circuits are self-designed by EHW under these catego-
ries, as shown in Table 1. The latter research area focuses on 
making hardware design adaptive to the changing environ-
ment, especially in applications where the hardware design is  
prone to harsh environments like space and nuclear reactors. 
EHW is best suited for adaptive Hardware as it finds the 
fault-tolerant solution quickly in search space autonomously 

Table 1   Recent works of Evolvable Hardware for autonomous design of digital circuit

Reference Reconfigurable Fabric Bio-Inspired Algorithm Approaches Application

[38] Zynq-7000 SoC Cartesian Genetic Programming Hybrid Design of 2 bit multiplier and 8-bit parity
[36] Virtex 6 (XC6VLX240T) Ml605 Genetic and Memetic Algorithm Hybrid Design of 2 and 4-bit adder and multiplier and 

6-bit parity generator
[25] Spartan6 XC6SLX45-CSG484-3. Embryonic and Genetic Algorithm Extrinsic Design and self rectification of BCD Decoder
[30] SoC-based FPGA Cartesian G enetic Programming Extrinsic Design of 2-bit Multiplier
[40] Intel Cyclone V-SoC Genetic Algorithm Extrinsic Design of 4-to-1 even parity generator and 2 

bit adder and multiplier

549Journal of Electronic Testing (2022) 38:547–565



1 3

when the Hardware is in operation. This EHW consists of 
two components: reconfigurable Hardware and an evolution-
ary algorithm.

2.1 � Reconfigurable Hardware

The reconfigurable Hardware is the platform on which the 
evolutionary algorithm is applied. Any application deployed 
on this reconfigurable platform is initially written using a 
hardware description language, followed by routing the con-
figuration bits (bitstream) on the Hardware. The bitstream 
describes the system behavior of the application, and it is 
placed in the configuration memory of the reconfigurable 
Hardware. The advancement in the usage of hardware plat-
forms commenced with programmable array logic (PAL) [29, 
31] to complex programmable architectures such as Field 
Programmable Gate Array (FPGA) [33, 35], Field Program-
mable Analog Array (FPAA) [11, 41], Field Programmable 
Transistor Array (FPTA) [10, 13]. Although in recent times, 
FPGA-based EHW has become mainstream.

2.2 � Evolutionary Algorithm

An evolutionary Algorithm (EA) is an iterative algorithm 
initiated with a chromosome representation. The hardware 
characteristics are represented in the form of genes. The 
characteristics used in the chromosome representation can 
differ for each application. For instance, a robotic arm chro-
mosome is structured with the number of joints, position, 
and number of fingers. Hence, it has to be carefully decided 
by the designer. The commencement of the evolutionary 
algorithm is an initial random population where random 
bits are generated in the length of the chromosome. These 
random bits are termed the population of the evolutionary 
algorithm. Each chromosome from the population is applied 
to the fitness calculation, and it is associated with the fit-
ness score. The designer specifies the objective function 
and threshold value based on the application. For instance, 
the fitness score for evolving antennas is to obtain a signal 
power above 2 decibels. The selection operation controls the 
passing of chromosomes to subsequent generations. Based 
on the fitness score at each generation, the chromosome is 
selected using roulette wheel selection, rank selection, or 
tournament selection. The allele is flipped (mutation) among 
the selected individual genomes to generate new offspring. 
The crossover operator is responsible for pairwise recombin-
ing two selected individuals (Parent 1, Parent 2). These two 
operators are responsible for generating new offspring with 
variation and promoting the reproduction of the selected or 
fittest chromosome. The algorithm converges to the desired 
solution when the algorithm is iterated for a specified num-
ber of generations or when the desired result is attained.

Figure 3 depicts the evolutionary process performed by 
the Standard Genetic Algorithm (SGA) [9]. Apart from 
SGA, the other evolutionary algorithms include evolutionary  
strategies [2], Cartesian Genetic Programming [17]. The 
mentioned variants of evolutionary algorithms differ from 
each other based on genetic operation. For instance, SGA, 
Cartesian Genetic Programming, and Genetic Programming 
are distinguished based on the chromosome representation, 
where SGA follows segmented binary encoding, Cartesian 
Genetic Programming represents the genotype as a directed 
acyclic graph, and Genetic Programming considers the hard-
ware description language as a parse tree for the genotype 
representation. The evolutionary strategy is represented as 
the (1 + �) method, where 1 represents that reproduction is 
done at an individual level, and � represents the number of 
offspring generated.

2.3 � Related Work

The research in the field of evolvable Hardware is explored 
in different categories such as the granularity of evolution, 
type of evolution based on location, reconfigurable Hard-
ware used, reconfiguration methodology, and evolutionary 
algorithm used. The hardware platform used for evolution 
has developed from simple programmable logic comprised 
of 1000 gates to a commercial FPGA with millions of gates 
to accommodate complex designs. As mentioned earlier, 
the FPGA has been the most commonly used platform for 
evolution in recent times. FPGAs like the XC6200 series, 
Virtex series, and Spartan are widely accepted FPGAs for 
EHW. Also, the choice of SRAM-based FPGA is higher 
when compared to other FPGA technologies like Flash-
based or Antifuse-based FPGA since the reconfigura-
tion speed is high compared to others  [37]. In the initial 
research, the bitstream format of FPGA was available to 
the public to promote the research. For instance, XC6200 
by Xilinx was the first commercial FPGA for which the 
bitstream format and mapping of control logic blocks 
were documented and made accessible. However, FPGA 
manufacturers have moved towards employing more robust 
encryption for bitstream to prevent reverse engineering and 
side-channel attacks. Since 2015, FPGA manufacturers 
have used Data Encryption Standard (DES), and Micro-
semi FPGA has introduced Advanced Encryption Standard 
(AES) for encrypting the bitstream of the FPGAs used in 
military and space applications. Higher encryption stand-
ards have challenged the bitstream evolution greatly as they 
require more time to decrypt the bitstream. However, some 
work has shown evolution at the configuration bit level by 
using application interfaces provided by the vendor, such 
as JTAG bits [14] and ICAP (Internal Configuration Access 
Port) controller. This ICAP controller facilitates Dynamic 
Partial Reconfiguration (DPR), where reconfiguration is 
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addressed for a portion of the circuit in run-time. The VRC 
is an alternative option for the reconfiguration mechanism 
in FPGA where DPR is unavailable. It was introduced by 
Sekanina in his work [23]. A VRC is a reconfigurable cir-
cuit built for an application on top of the same FPGA, and 
it performs function-level evolution. It is a two-dimensional 
array of PE (programming elements), where each PE com-
prises the implementation of all possible functions which 
can be selected using a multiplexer. The array of PE is 
instantiated with the input signal, which is accepted in the 
first column of the array. The subsequent column of PE 
obtains its input from the previous column and propagates 
the final circuit’s output to the last column of PE. The select 
line used in selecting the inputs and functions of each PE is 
stored in the configuration register. The information present 
in this register acts as the chromosome in VRC, whereas 
in DPR, the bit stream generated by the design flow of the 
FPGA acts as the chromosome. For multiple FPGAs used 
in space, military, and other mission-critical applications, 
the bitstream is encrypted, or the availability of API and 
ICAP is non-existent. Hence, the VRC-based reconfigura-
tion methodology is quietly accepted by EHW research-
ers. The challenge in the VRC-based methodology is that 
each PE is multiplexer based and implements all possible 

functions, increasing power consumption and resource uti-
lization. However, as an advantage, VRC is fast since the 
delay only involves switching between the select lines to 
change the configuration. Among various characteristics 
of EHW, the location of evolutionary algorithm imple-
mentation plays a significant role in the EHW distinction. 
Because the design considered for evolution was simple, 
and there was no processor on the FPGA, pioneer research 
in EHW hosted the evolutionary algorithm in the external 
PC referred to as  Extrinsic evolution. Later, many SoC-
based FPGAs were manufactured, allowing the evolutionary 
algorithm to be implemented on the processor in the FPGA. 
The AXI bus, or the other system bus architecture, assists 
in loading the evolved circuit in the FPGA. This type of 
evolution is called Hybrid evolution where the genotype 
is evaluated on the Hardware, and the evolutionary algo-
rithm is hosted as software present in the SoC of the FPGA. 
Complete Intrinsic evolution involves genome modeling, 
evaluation, and implementation of genetic operations on 
the same FPGA. Intrinsic evolution is considered the fastest  
type of evolution as there is no delay caused in transfer-
ring the genome between the FPGA and the processor. A  
comparison of hybrid and intrinsic evolvable Hardware is  
studied in  [8]. This work has proved that the complete 
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hardware evolution works 7.74 times faster than the hybrid 
approach, with 0.198 lower power consumption and fewer 
resources. In this comparison work, a typical application of 
evolving category detection of sonar signals is considered 
where the genotype of length 480 bits is evolved. Regard-
less of these advantages, research in the field of complete 
hardware evolution [34] is scarce.

The work by NASA AMEs research centre [15] proposed 
a dual-board hybrid EHW on the Virtex 4 FPGA. The redun-
dancy is applied at the board level, where board B performs 
the designated operation of board A while it undergoes 
evolution. This work converged to a fault-free chromosome 
after 1000 generations, accounting for 45 hours. The genetic 
algorithm was hosted on the JBIT software provided as an 
IP core by Xilinx FPGA vendors. This work posed the chal-
lenge of migrating the proposed methodology to complex 
logic and suggested accelerating the evolution cycle by 
implementing EA directly on Hardware. Similarly, in 2017, 
a self-repairing control circuit was implemented for a brush-
less DC motor using a hybrid EHW on a Virtex 6 ML605 
FPGA [42]. The design employed the genetic algorithm on 
the MicroBlaze soft-core processor and used the ICAP con-
troller for reconfiguring the bitstream. After 10,000 genera-
tions, the algorithm reached a fault-free controller. Also, in 
this above work, they have expressed that the repair time for 
the controller is high in terms of generation during which 
external service can be interrupted. The influence of genetic 
operators on the success rate and fault recovery time in terms 
of clock cycles is studied in [26]. A hybrid evolution of the 
BCD decoder is performed on the Spartan 6 FPGA, where 
the genetic algorithm is hosted on the MicroBlaze soft core 
processor. This work summarizes a comparison of selec-
tion, crossover, and mutation. Compared to the tournament-
based selection, this work demonstrated that roulette wheel 
selection has a 0% success rate and a longer fault recovery 
time. A hybrid evolvable hardware [39] is implemented on a 
MicroBlaze soft-core processor of spartan 6 FPGA to miti-
gate errors in the 8-bit parity checker and 3-bit multiplier. 
A configuration library is maintained to compare obtained 
and anticipated results. The average fault recovery time is 
accounted for 1.83 seconds with 94% accuracy. Similarly, 
1-bit mutation and 1-bit crossover have a higher success rate 
with less recovery time when compared to uniform mutation 
and crossover. The common challenges identified in cutting-
edge work are

•	 Low Scalability: The state-of-the-art work faces dif-
ficulty in considering applications of higher size since 
bitstream level evolution is considered. The circuit 
size considered for evolution is low because the circuit 
size and bitstream length are directly proportional. For 
instance, the methodology in  [39] encodes the chro-
mosome of length 288 bits for an 8-bit parity checker 

and 441 bits for a 3-bit multiplier. Even though the 
circuit size is smaller, the total chromosome length is 
vast. The bit level evolution is further not possible in 
highly secured military grade FPGA, as the access to 
the bitstream is constrained.

•	 Dependability: The evolution process is implemented 
on the SoC present in the FPGA in [15, 26, 39, 42]. 
Implementing the evolutionary algorithm in the proces-
sor and evaluating the evolved chromosome in Hardware 
can create an additional delay. Hence, in [15], it is sug-
gested to perform the evolution directly on the FPGA.

•	 Convergence Rate: The convergence rate of the EA 
plays a massive role in the fault recovery rate. If a 
genetic algorithm without any optimization is applied, 
the evolution can take several hours. For instance, the 
technique used in [15] required 45 hours for evolution. 
Hence, better understanding and selection of suitable 
parameters have to be decided for respective genetic 
operators, especially for adaptive Hardware where fault 
mitigation is required with high efficiency and speed.

•	 Redundancy Rate: The authors of [15] and [42] have 
suggested redundancy at the FPGA board level to elim-
inate the halt in the mission. Dual FPGA boards are 
utilized in [15].

3 � Proposed Intrinsic Evolvable Hardware 
System

The hybrid EHW system discussed in Sect. 2.3 comprises 
three main components, such as a  Microprocessor to 
host the evolutionary algorithm in its native high-level 
language; an Evaluation Module which is a copy of the 
target circuit to evaluate the fitness function of the gener-
ated chromosome by the EA; and an AXI bus to mediate 
the chromosome in between the evaluation module and the 
processor. Furthermore, the ICAP controller is used as an 
API for accessing the configuration bits if the evolution 
happens at a bitstream level.

The architectural difference with hybrid EHW is depicted 
in Fig. 4. The processor in the related works is substituted 
by the GA (Genetic Algorithm)_Module deployed as a 
digital circuit on the same chip. This module is responsible 
for all genetic operations in Fig. 3. In addition to the GA 
module, the proposed system design includes an error detec-
tion circuit to identify the SEU in the target circuit (control 
circuit). If the detection circuit recognizes the fault, the GA 
status signal is set to 1, which instantiates the GA_Module. 
The status signal 0 indicates that SEU is non-existent in 
the control circuit. Hence, the control signal and next state 
are forwarded to other data path elements and the control 
circuit’s memory element (flip-flop).
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3.1 � Optimized Function Level Representation 
of Control Circuit

In related work, the configuration bitstream level evolution 
is followed, which encompasses gate level granularity, thus 
making the evolution process time-consuming. As a result, 
Function level Evolution (FE) [24] is used in our proposed 
EHW system. The FE requires a two-dimensional array of 
programming elements (PE) designed on the same FPGA 
fabric. Each PE has a MUX-based implementation to select 
one function among the set of predefined functions. The 
selected function is applied to the inputs of PE, and the out-
put is propagated to the PE of the next column. Each PE’s 
input, output, and function information are stored as a con-
figuration bit in the configuration register. In the previous 
works of FE, the number of functions realized in each PE is 
generic; therefore, the hardware overhead and configuration 
bit to select the function are high. The number of functions 
operated in each PE is constrained to produce an optimized 
function level evolution. This restriction is only possible 

due to the deterministic nature of the control circuit. Using 
K-Map reduction, any control circuit represented as a state 
transition table can be realized as a boolean expression. This 
expression is expressed as a combinational circuit in Fig. 1. 
Hence, the established functionality in the expression of the 
combinational circuit is only realized in each PE.

3.1.1 � Example

Consider the control circuit of the brushless DC motor 
formulated as the state transition Table 2. The DC motor 
contains three positioning signals, T0, T1, and T2, and, on 
completion of each rotation, based on the values of the posi-
tioning signals, the driving signals Q0, Q1, Q2, Q3, Q4, and 
Q5 are activated. The input and output signals combination 
is described in the Truth Table 2.

From the truth Table 2, the Boolean expression enclosing 
the relation between the input variable and output variable 
is obtained by K-Map simplification and formulated in the 
Eqs. (1-6)

Fig. 4   Block diagram of proposed intrinsic evolvable hardware system

Table 2   State transition table: 
Brushless DC motor control 
circuit

Position Signal Driving signal

T0 T1 T2 Q0 Q1 Q2 Q3 Q4 Q5
1 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0
0 1 0 0 0 1 1 0 0
0 1 1 0 0 1 0 1 0
0 0 1 1 0 0 0 1 0
1 0 1 1 0 0 0 0 1
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The Eqs. (1-6) shows that the driving signal is obtained 
by only AND and NOT functions. Hence, the proposed 
optimized functional evolution array consists of an array 
structure, as shown in Fig. 5. The driving signal is derived 
from the last column of the array. The first column accepts 
the external input signal T0, T1, T2, and other columns 
receive the input from their preceding column. Each PE 
comprises three selection signals, as shown in Fig. 6, 
where Sel 1 and Sel 2 of length 3 bits select the input 
signals, and Sel 3 of length 2 bits enables the function 
performed by each PE. The combination of these three 
select signals constitutes the configuration bit in the con-
figuration register. In a standard function level evolution, 
the number of gates and length of Sel 3 signals would 
drastically increase the hardware resources. Also, multiple 
multiplexers would have been used to select the function. 
Hence, our proposed optimized functional level evolution 
will decrease the complexity of the proposed EHW system.

(1)Q0 = T1.T2

(2)Q1 = T0.T2

(3)Q2 = T0.T1

(4)Q3 = T1.T2

(5)Q4 = T0.T2

(6)Q5 = T0.T1

3.2 � Error Detection Circuit

The error detection circuit perpetually operates in syn-
chronous with the control circuit. The control circuit, 
accepting external input, produces the control signal and 
the next state. These signals and the input signal and cur-
rent state are checked for SEU. The memory-based train-
ing sample assists in the identification of the SEU. The 
possible input and output signals obtained from the state 
transition table are stored as content addressable memory 
in the FlashROM of the FPGA fabric. As a result, when 
the control circuit receives the input-positioning signal 
at time t, the corresponding driving signal is checked 
against the training example in the FlashROM. Any 
deviation from the desired output indicates that an error 
has occurred, which triggers the GA status signal to 1, 
and the GA module is instantiated. Instead, when SEU 
is undetected, the control signal is propagated to the data 
path elements. Figure 4 performs the error detection pro-
cess where Ct represents the combination of input, cur-
rent state, next state, and output control signal at time t 
generated from the control circuit, and Corg is the training 
example combination of all the above for the correspond-
ing input. The bitwise XOR operation identifies the devia-
tion between the obtained and expected results. The GA 
status signal either instantiates the GA module for fault 
recovery or forwards the control signal when the fault is 
undetected.Fig. 5   Representation of functional PE array for brushless DC motor

Fig. 6   Representation of single PE for brushless DC motor
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3.3 � Heuristics‑guided GA Module

The GA module is the crux of the EHW system. In a hybrid 
EHW system, the module is hosted in the microprocessor of 
the FPGA. But in our proposed EHW system, the operation 
of the genetic algorithm is deployed as a digital circuit using 
a hardware description language. The representation of the 
digital circuit as a genotype is the initial phase accomplished 
ahead of all the genetic operations. In our proposed system, 
we have analyzed the deterministic nature of the control 
circuit and applied the heuristic in chromosome encoding 
to reduce the genotype length. The chromosome structure 
contains three main elements: External Input supplied to 
FE array, Programming elements (PEi) information such as 
Sel 1, Sel 2, Sel 3 of programming element activated at each 
column, where i represents the column of the FE array and 
the final output (control signal) generated as shown in Fig. 7. 
The total chromosome length is given by Eq. 7, where I 
represents the number of bits to represent the input signal, 
N represents the number of columns in the FE array, O rep-
resents the output control signal, and n1, n2, n3 represents 
the number of bits to represent the Sel 1, Sel 2, Sel 3.

3.3.1 � Population Initialization

The population Pi, of each ith generation is collection of 
chromosome Cx, where x � to [1, pop-size]. The primary 
population (P0) applied as input to the GA algorithm is 
generated by random sampling. The choice of sampling 
method is crucial to prevent the algorithm from premature 
convergence. In our related works [15, 26, 39, 42] the initial 
population generated was unbounded since heuristic about 
the target circuit was not considered. The proposed EHW 
system is focused on utilizing the deterministic nature of 
the control circuit, so we have designed a restricted ran-
dom sampling in our EHW system. The control circuit has  
a set of permissible external inputs in contrast to the other 
combinational circuits. For instance, Table 2 shows that 
external input is 3 bits and, among 8 (23) combinations, 

(7)Chromosome Length = I + N ∗ (n1 + n2 + n3) + O

only six combinations of positioning signals have valid 
driving signals. Hence, the chromosome deriving from 
000,111 can be restricted for population generation. This 
restriction prevents the time being utilized for invalid  
chromosome evaluation.

3.3.2 � Fitness Calculation

The fitness function and value of the GA algorithm are 
distinct for each target circuit. In our previous works [15, 
26, 39, 42] two methodologies where followed to establish 
the fitness function.

•	 Comparison based approach was designed. The 
expected circuit response was stored in the memory and 
compared with the obtained result. For a complex circuit, 
memory latency and occupancy can be concerning. This 
methodology is highly reliable, assuming no error has 
occurred in the stored bits.

•	 Objective Function based: The fitness value and func-
tion were predicted by interpolation of the training sam-
ple. The fitness value of the current sample for the same 
objective function was recorded, and its deviation from the 
threshold fitness value was analyzed. This methodology 
is suitable when an EHW system is used in the applica-
tion, such as the autonomous design of the circuit. In fault 
recovery-based EHW systems, this approach poses a chal-
lenge when the current sample either under fits or overfits 
the function curve. For instance, the fitness function for 
a brushless DC motor was devised using the Lagrange 
interpolation method as -0.5x3+4.796x2-8.111x+60.333 
with a regression error of 1.089 due to which the fitness 
calculation for fault free chromosome representation was 
miscalculated with a lesser fitness value. Hence, in our 
proposed method, a comparison-based approach was used. 
The expected result for each input combination with pro-
gramming element details is stored in the FlashROM. The 
generated chromosome Ci at each generation is compared 
with the expected chromosome Corg. The number of bits 
deviated is calculated from the compared result as shown 
in the algorithm 1.

Fig. 7   Genotype representation 
for proposed GA algorithm
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3.3.3 � Genetic Operators

The genetic operators comprise functions such as selection, 
crossover, and mutation. The selection operator chooses the 
fittest chromosome at each generation for offspring repro-
duction using crossover and mutation. A rank-based selec-
tion method is chosen to select the best fitting chromosome 
based on its fitness value. Each chromosome Ci has associ-
ated fitness valuei which is compared with each other and 
ranked. At least four chromosomes with the highest fitness 
value are selected and applied for crossover and mutation. 
The crossover operator helps in generating all variants of 
input, whereas the mutation operator supports the conver-
gence of the fittest chromosome. Uniform mutation and 
point-wise crossover are chosen as genetic operators to yield 
the offspring for the next generation.

The produced offspring is subjected to subsequent gen-
erations until the convergence of the EA algorithm. The elit-
ism is used in our algorithm for a chromosome whose input  
segment is identical to the target circuit’s current input (posi-
tion signal in the case of a brushless DC motor). This strat-
egy in our proposed system has enhanced our convergence 
speed by applying selective pressure on the target circuit’s 
current input. The proposed EA algorithm is converged 
when the elite chromosome has reached a fitness value of 
100%. The following section demonstrates the working of 

our proposed intrinsic EHW system and heuristics-based EA 
algorithm by considering four control circuits.

3.3.4 � Example: A Genetic Evolution of Brushless DC Motor

The brushless DC motor realized in Fig. 5 shows that the 
array structure contains 18 PE with six rows and three col-
umns. Each PE contains three selection lines for selecting 
Input 1, Input 2, and its function. The binary segmented 
encoding is followed as shown in Table 3. For instance, the 
chromosome 110-001-000-01-110-000-01-001-110-10-
010001 represents that when the input (position signal)-110 
is supplied to the FE array, PE in column 1 contains the con-
figuration bit 001-000-01, PE in column 2 contains the con-
figuration bit 110-000-01, and PE in column 3 contains the  
configuration bit 001-110-10, producing the output (driving 
signal) as 010001. Hence, the proposed genotype representa-
tion depicts the FE array absolutely for a given input signal. 
The total chromosome length for the brushless DC motor 
is 3+3*(3+3+2)+6 = 33 bit. The proposed heuristic-based 
chromosome encoding has reduced the genotype length 
compared to [42] by 36.66 % for the same application.

The initial zeroth generation is randomly populated fol-
lowing the restriction as mentioned in Sect. 3.3.1. Each gen-
eration contains n chromosomes fixed by the designer. For  
instance, if 100 is configured as the population size, the 
chromosome is generated randomly following the binary 
encoding in the range [0-233], where 33 is the chromosome 
length for the brushless DC motor. Consider two chromo-
somes generated,Ci and Cj among the population at some ith 
generation as shown in Fig. 8

Table 3   Encoding for Genotype representation: Brushless DC Motor

Input Encoding Function Encoding

T0 001 Input 00
T0’ 010 NOT 01
T1 011 AND 10
T1’ 100
T2 101
T2’ 110
No input 000 Fig. 8   Two example chromosomes Ci and Cj generated at any ith gen-

eration
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The fitness value of the above chromosome is calculated 
based on the comparison approach, where the first three bits 
in Ci and Cj are used as the index value to access the golden 
chromosome. The expected chromosome represented as 
Corg1 and Corg2 are compared with Ci and Cj respectively as 
shown in the Algorithm 1. The fitness value of Ci and Cj is 
recorded as 0.78% and 0.55%. Hence the above two chro-
mosomes are selected based on the ranking method. A 3 × 3 
crossover methodology is applied to chromosomes, and as 
a result of recombination, four new chromosomes Res[1-4] 
are produced, as shown in Fig. 10. The recombination is per-
formed by segmenting the chromosome at each 3rd bit and 
reshuffled with the other chromosome as shown in Fig. 9.

The fitness value of the resultant chromosome Res [1-4] 
as shown in Fig. 10 will be calculated in the subsequent gen-
erations as 0.52%, NA, 100%, and 0.36%, denoting that the 
chromosome with positioning signal 110 (Res 3) has evolved 
to fault free convergence. The NA in the fitness calculation 
represents that the positioning signal 000 does not apply to 
the target circuit- a brushless DC motor. To demonstrate the 
mutation process assume that chromosome Ci is generated as 
110-001-000-00-110-000-01-001-110-10-010001 with fitness 
value 0.96%. A uniform mutation is applied to the chromosome 
with a 0.03 mutation rate. The total number of the chromosome 
produced for Ci after mutation is 33 chromosomes, where each 
bit is mutated in Ci. For instance, as shown in Fig. 11 Res[1-33] 
are produced. The Res10 chromosome is evaluated as 100%  
fitness value, and other chromosomes are calculated as 0.95% 
in the next generation. The adopted mutation ensures that when 
a chromosome with 0.96% is applied for mutation, Then one of 
its child chromosomes will converge in the next generation. The 
proposed genetic algorithm follows elitism. The evolutionary 
process is terminated if the current input signal is converged.

3.4 � Applications: Intrinsic EHW System for Control 
Circuit

This section details the proposed EHW system for miti-
gating the faults with four chosen control circuits. The 

chosen control circuit is utilized in various applications 
like space, robotic navigation, and consumer electronics. 
The case study profile explains the proposed EHW sys-
tem’s design phases, like hardware representation of the 
FSM, optimized functional evolution array, and genetic 
parameters. The control circuits analyzed in the section 
are the following: 

1.	 Control circuit of Quadrature Decoder
2.	 Control circuit of Robotic straight line navigation.
3.	 Control circuit of RISC-V processor
4.	 Control circuit of Brushless DC Motor (BLDC) as explained 

in Sect. 3.3.4

3.4.1 � Control Circuit of Quadrature Decoder

A Quadrature Decoder (QD) is used as a case study in [15] 
for testing their proposed evolutionary strategy. The QD is 
an incremental encoder for counting the entities passing to 
and from the light beam. The FSM of QD is tabulated as a 
state transition Table 4. The input of the FSM is two bits, 
which indicates the on/off condition of two-channel sen-
sors (A and B), and the output is a two-bit combination that 
indicates the four directions of the wheel rotation. From the 
table, the output bits - S1, S2 is obtained using the Eq. 8. 
This Eq. (8) and Table 4 is the foundation for applying 
the heuristic to the optimized functional evolution array 
and the proposed heuristic-guided genetic algorithm. The 
single PE of the QD should incorporate the three multiplex-
ers with three selection lines, as shown in Fig. 12. The FE 
array of the QD consists of 4 × 4 programming elements 
with input A, B, and output S1, S2. The first column of the 

Fig. 9   Example of 3*3 crossover on chromosomes Ci and Cj

Fig. 10   Resultant chromosomes after crossover process

Fig. 11   Resultant chromosomes after mutation process

Table 4   State transition table of quadrature decoder

Channel A Channel B Direction(S1,S2)

1 0 00
1 1 01
0 1 10
0 0 11
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FE array obtains the input from external ( A,B , A, B), and 
the final output is obtained from the last column. The total 
chromosome length for each input is 2+4*(2+2+2)+2=28 
bit following the Eq. (7). Figure 12 shows the valid input 
combination for restricting the random population initiali-
zation at Generation 0. The fitness value of the generated 
chromosome Ci is obtained by comparing the expected 
result stored in the FlashROM following the Algorithm 1. 
The genetic operators in Sect. 3.3.3 are applied as such to 
rectify the control circuit from the fault.

3.4.2 � Control Circuit of Robotic Straight Line Navigation

The fundamental task for robotics is line-following navi-
gation. The control circuit for line navigation is a mealy 
machine since it accepts both the input and the current state 
to produce the next state. S1 and S2 sensors are used to 
detect the presence or absence of a line and three states. I1 
and I2 denote the action or the state of the navigation that 
has to be followed. For instance, 00,01,10 in Table 5 indi-
cates the state encoding for the robot to navigate straight, 
left, and right, respectively. The state transition table of the 
navigation is shown in Table 5. The minimized Boolean 
expression reduced from the transition table is S1=I1 and 
S2=I2 . The proposed FE array consists of 8 × 2 programming 
elements, and each PE contains two multiplexers for select-
ing the input signal and the function (Sel 1, Sel 2). Since the 
complexity of the circuit is less, the total chromosome length 
is 4+2*(3+1)+2=14 bits.

(8)S1 = A;S2 = AB + AB

3.4.3 � Control Circuit of RISC‑V Processor

The RISC-V processor is utilized as an instruction set archi-
tecture in multiple SoC-based FPGAs like the ARM-Cortex 
in Microsemi. The control circuit of the RISC-V architecture 
is modeled using a finite machine containing ten states (0-9), 
as shown in Table 6. States 1 and 2 depict the instruction 
fetch and instruction decode states, which accept the input 
(instruction opcode). Each state, on reaching the next state, 
sets the respective control signals to 1. The Boolean expres-
sion mentioned in Eqs. (9)-(12) obtained for the next state 
is a sample for a complex combinational circuit. The above 
circuit realized as a functional evolution array will contain 
10*11 PE, where each PE will contain three multiplexers to 
select input and function. The possible function for each PE 
is 5; Sel 3 utilizes 3 bits, whereas Sel 1,2 utilizes 5 bits to 
select inputs 1 and 2. This example is specifically chosen to 
demonstrate the scalability of the proposed EHW system.

The summary of the optimized FE array for all the dis-
cussed control circuits is depicted in Table 7. Among the 
examples, the control circuit of the RISC-V processor occu-
pies a larger area of the functional evolution array than the 
chromosome length, which is huge compared to other cir-
cuits. This control circuit is rarely used in EHW system-
related work and was chosen specifically to test the scalabil-
ity of the proposed EHW system. The analysis of the control 

(9)NS3 = S3S2S1S0P5P4P3P0(P2⊕ P1)

(10)
NS2 = (S2(P4P2(S1S0P5P3P1P0 + S1S̄0P5P3P1P0) + S1S0))

(11)

NS1 = S̄3(S2(P4P2(S1S0(P5P1P0 + P5P̄3P1P0)S1S0P5P3P1P0))

+ S2S1S0

(12)
NS0 = S3(S2(P4P2P1(S1S0P5P0

+ S1S0P5P3P0) + S1S0) + S2S1S0

Fig. 12   Single PE representation of quadrature decoder

Table 5   State Transition 
table of straight-line robotic 
navigation

Current 
State

Input Next 
State

S1 S2 I1 I2 S1 S2
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0
0 1 0 0 1 1
0 1 1 0 0 1
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 1 0 0
1 0 1 1 0 0
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circuit clearly indicates that the FE array and chromosome 
bit are directly proportional to the complexity of the boolean 
expression and the hardware utilization in terms of multiplex-
ers for each PE. For complex circuits, bitstream and standard 
function level evolution will require high fault recovery time. 
When compared to the works discussed in [15] and [42], the 
chromosome length for QD and BLDC is reduced by 25% 
and 36.66%, respectively, using optimized function level evo-
lution and heuristic guided genetic algorithm, which greatly 
accelerates the convergence of the self-healing process.

4 � Implementation Methodology

The proposed EHW is operable in two states: non-faulty 
and faulty. In a non-faulty state, the fault in the control 
circuit is non-existent, and the error detection circuit sets 
GA status to 0. The output of the control circuit is signaled, 
such as the control signal and next state. In a faulty state, 
the error in the control circuit is detected by comparison of 
the training data stored in the FlashROM. The GA status 
signal is enabled to initiate the evolutionary algorithm. The 
non-faulty state is achieved on successful convergence, and 
the control circuit proceeds with regular operation.

The proposed EHW system is implemented on Micro-
semi-based ProAsic 3e family FPGA - A3PE3000. The 
FPGA was chosen because it is widely used in many avion-
ics and military applications. The FPGA fabric does not fea-
ture any API for bitstream access or hold any microprocessor 
in the FPGA fabric. In addition, the bitstream in the configu-
ration memory is encrypted, which challenges the bitstream 
evolution.The proposed heuristics-guided GA module, error 
detection circuit, FlashROM, and target circuit are imple-
mented on the same FPGA fabric operating at 350 Mhz with 
a maximum combination delay of 2.23 ns. The minimum 
input arrival time and output required time before and after 
the clock are 3.45 ns and 2.78 ns, respectively.

The proposed design is subjected to analysis based on the 
metrics in such a way that the complete EHW system is studied. 
Since EA is an iterative algorithm, the algorithm’s termination 
marks the solution’s convergence. The main focus of this work 
is to increase the scalability by optimizing the VRC. Hence, the 
resource utilization is analyzed compared to similar method-
ologies mentioned in related work. A complete fault injection 
system is simulated and analyzed with the help of maximum 
and minimum generation in fault detection efficiency. Any 
fault tolerance mechanism has to be rapid; hence, our analysis 
records the fault recovery time from faulty to non-faulty state.

Table 6   State transition Table 
of RISC-V Processor

States Present State Input Next state

OP0 OP1 OP2 OP3 OP4 OP5
0 0000 x x x x x x 0001
1 0001 1 0 0 0 1 1 0010
1 0001 1 0 1 0 1 1 0010
1 0001 0 0 0 0 0 0 0110
1 0001 0 0 0 1 0 0 1000
1 0001 0 0 0 0 1 0 1001
2 0010 1 0 1 0 1 1 0011
2 0010 x x x x x x 0101
3 0011 x x x x x x 0100
4 0100 x x x x x x 0000
5 0101 x x x x x x 0000
6 0110 x x x x x x 0111
7 0111 x x x x x x 0000
8 1000 x x x x x x 0000
9 1001 x x x x x x 0000

Table 7   Summary of Optimized 
Functional evolution array

Control Circuit Example # Input Bits #Output Bits FE Array Utilization 
(#m*#n)

# Chromosome 
bits

Quadrature Decoder 2 2 4*4 28
Navigation Robot 4 4 8*2 14
RISC-V 10 4 11*10 144
BLDC 3 6 6*3 33
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Resource Utilization: Area power and energy consumed 
for the proposed system are compared with results obtained 
in [15] for QD and BLDC, the comparison is obtained for 
the following works [28, 42] where standard function level 
evolution and dynamic partial reconfiguration are utilized 
respectively. The area comparison for the proposed and 
related is accounted for in terms of the number of LUT, reg-
isters, and FlashROM utilized. The energy and power con-
sumption of the proposed system are estimated by deploying 
the hardware module in LiberoSOC 11.8 estimation tools.

Fault Detection Efficiency is calculated by subjecting the 
target circuit to simulated faults at the PE level. The stuck-at 
0/1 fault and single/multiple bit upset errors are injected in 
the selection lines of the multiplexers. The fault detection 
rate is estimated by dividing the total number of PE retrieved 
from faults after evolution by the number of PE injected with 
faults. The convergence rate increases in the repair process 
also have to be considered in determining the efficiency of 
the evolvable system.

Fault Recovery Rate is the mean time taken by the sys-
tem to repair the faulty state to a non-faulty state, calculated 
by the Eqs. 13 and 14, where Taccess+Tfit+TEA is the time 
consumed for accessing the training example chromosome, 
time for calculating the fitness value and time for computing 
genetic operations like selection, mutation, and crossover for 
each chromosome, and total recovery time is calculated by 
the summation of time taken for each generation.

5 � Results and Discussion

This paper proposes a novel EHW system that incorporates 
improvements to the reconfigurable layer and the evolution-
ary algorithm. The deterministic nature of control circuits is 
extensively demonstrated with the help of controllers used 
in various digital electronics applications, as discussed in 
Sects. 3.4.1-3.4.3. The convergence of the proposed Heu-
ristic Guided Genetic Algorithm (HGA) is compared with 
the Standard Genetic Algorithm presented in [15] and [42] 
for quadrature decoder and brushless DC motor, respec-
tively, in Fig. 13(A) and (B). According to the convergence 
graph, if heuristics guides genetic operations, the termina-
tion and healing time in the number of generations is drasti-
cally reduced by 10 and 50 times, respectively. The guided 
population initialization and reduced chromosome bits 
compared to [15] and [42] has accelerated the convergence 
of the proposed HGA, which is essential for self-repairing 

(13)T_geni = Pop_size ∗ (Taccess + Tfit + TEA)

(14)Total_time =

Gen
∑

i=0

T_geni

mission-critical components like control circuits. In addition 
to the reasons for the accelerated convergence rate, elitism 
can also influence convergence, as mentioned earlier. In our 
proposed genetic algorithm, elitism is adopted where the 
convergence of the current signal is given higher priority 
in the evolution process. Although elitism applies selec-
tive pressure to convergence, it cannot guarantee that the 
current input signal will evolve before other signals. The 
Fig. 13(C) and (D) show the convergence of the navigation 
robot and the RISC-V processor to investigate the scalability 
of the proposed HGA, which is regarded as a challenge in 
the related work. The graph depicts that the fitness value 
grows drastically during the initial generation, whereas 
once the fitness value reaches close to 0.8, the convergence 
becomes slow and reaches a termination when the fitness 
value reaches 100%.

Tables 8 and 9 summarise the fault injection profile imple-
mented to study the fault detection efficiency. Two types of 
fault injection locations accounting for routing and function-
ality are chosen. The random bits are selected by the fault 
injection profile implemented as a module in the Hardware 
additional to the EHW system. The fault-free convergence rate 
in Tables 8 and 9 denotes the average number of generations 
at which the evolution converges when zero error is injected. 
Tables 8 and 9 also denote the number of PE affected due to 
the faults injected with the minimum, maximum, and aver-
age generation required for mitigating the faults. The results 
clearly show that the stuck at 1/0 fault entails a higher conver-
gence rate when compared to a single event upset because the 
number of PE under repair increases with the number of bit 
interchanges. In QD, for example, the stuck at 0, and 1 fault 
results in errors at 2 and 5 programming elements, account-
ing for 50% of the total functional evolution layer, whereas a 
single event upset fault results in faults at two programming 
elements, accounting for 16%. The faults in the input selection 
line drastically increase the faulty PE because the fault in the 
input level can propagate the error and increase the repair at 
the PE selected at each column, thereby initiating the routing 
error. The function selection line fault may not directly influ-
ence the faulty PE rate, but the final control signal and next 
state are altered, which can affect the functionality of the con-
trol circuit. Thus, routing and function level faults can directly 
influence the control circuit’s operation. The proposed EHW 
system can detect and correct errors for all types of errors 
tabulated in Tables 8 and 9.

The resource cost analysis of three implementations is 
presented in Table 10. The proposed optimized function 
level evolution is compared with standard VRC conducted 
entirely at the hardware level. The analysis shows that the 
hardware utilization of registers, LUTs, and FlashROM is 
relatively higher when standard VRC is followed because of 
the increase in the multiplexer at each PE level. The increase 
in multiplexer can increase the selection line and the 
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complexity of each PE, which is an essential factor in decid-
ing the chromosome length stored in Flash-ROM. In our 
proposed EHW system, the GA module is written in HDL 
and implemented as a digital circuit. This implementation 
is compared with the hardware/software implementation of 
the GA module, where the modules in the genetic algorithm 
are written in c script and hosted on the M1A3PE3000. This 
FPGA is a variant of the A3PE3000 with the availability 
of an ARM cortex processor. The control circuit for fault 
recovery is implemented using standard VRC. Since the pro-
cessor is utilized in the evolution, the number of registers 
for holding the chromosome for genetic operations is less 
when compared to hardware evolution. The processor com-
municates with the AXI bus operating at 350 Mhz to send 
the evolved chromosome to standard VRC.

The box plot graph of execution time shown in Fig. 14 
depicts the total execution time for self-repairing the control 
circuit. The values depicted in the graph are calculated by 
the Eqs. (13) and (14) for 30 runs. The red box and blue box 
denote the fault recovery time of the Complete Hardware 
Evolution (CHE) and hybrid evolution of respective control 
circuits. The figure demonstrates that the fault recovery time 
of intrinsic(CHE) is 30% × faster than the hybrid evolution 
on average. The speed acceleration of complete hardware 
evolution is possible because the GA module requires fewer 
clock cycles to communicate the evolved chromosome to the 
target circuit than hybrid evolution. The usage of the AXI 
bus to transfer the evolved circuit has an operation limita-
tion of 250 MHz. The inherent parallelism of the FPGA 
facilitates the high-speed operation of genetic operations 

B)A)

C) D)

Fig. 13   Convergence comparison of proposed HGA and SGA
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when deployed as a digital circuit. As a result of the above 
analysis, complete hardware evolution accelerates the evolu-
tion process compared to extrinsic and hybrid evolution with 
a limited increase in register utilization. However, hybrid 

evolution is more suitable than hardware implementation for 
applications where flexibility is mandatory for the genetic 
algorithm.

The fault tolerance or the convergence of the proposed 
EHW system was not achievable when faults in the PE of the 
first column of the optimized FE array were more significant 
than 75% of the PE in this column. The main reason for this 
non-convergence scenario is that when more than 75% of 
PEs are affected due to fault injection in the first column, the 
propagation of all three input signals is not ensured. Due to 
this, the fault-free circuit will not evolve. This situation has 
not occurred in our 30 trials of experimentation, whereas it 
was identified during theoretical analysis. The other limita-
tion of the EHW system is that when a genetic algorithm is 
implemented as a digital circuit on the same FPGA, there are 
chances for faults to occur in the genetic algorithm, which 
can mislead the mitigation process. In our future work, addi-
tional responsibilities will be to protect both the target circuit 
and the implemented genetic algorithm using redundancy 
methods.Fig. 14   Execution time for self-repairing the control circuits

Table 10   Resource utilization of control circuit profile

Application Resource Available Complete Hardware Evolution 
using Optimized FE

Complete Hardware  
Evolution using Standard 
VRC

Hybrid Evolution 
in Microprocessor 
(M1A3PE3000) using 
Standard VRC

Usage Utilization% Usage Utilization% Usage Utilization %

Quadrature Decoder Register 7890 78 0.988 85 1.07 56 0.70
LUT 75264 6 0.729 10 0.78 10 1.3
BRAM 112 0 0 0 0 0 0
FlashROM 1024 490 47.8 674 65 576 56.2
IO 620 9 1.4 9 1.4 19 3.0
Clock processor 667 - - - - 667 NA

Brushless Dc Motor Register 7890 87 1.11 102 1.29 69 0.87
LUT 75264 16 0.212 23 0.305 18 0.2
BRAM 112 0 0 0 0 0 0
FlashROM 1024 524 51 654 638 789 77
IO 620 17 2.7 17 2.7 21 3.39
Clock processor 667 - 667 -

Navigation Robot Register 7890 45 0.57 59 0.74 32 0.40
LUT 75264 4 0.5314 6 0.5123 8 0.7890
BRAM 112 0 0 0 0 0 0
FlashROM 1024 123 12.0 345 33.6 415 40.5
IO 620 6 0.96 6 0.96 10 1.61
Clock processor 667 - - 667 -

RISC-V Processor Register 7890 678 8.59 750 9.50 560 7.09
LUT 75264 121 0.16 104 0.158 98 0.132
BRAM 112 0 0 0 0 0 0
FlashROM 1024 780 76.1 970 94 813 67
IO 620 45 7.2 45 7.2 56 9.0
Clock processor 667 - - - - 667 -
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6 � Conclusion

Self-healing electronics are the need of the hour as the require-
ment for FPGA usage in critical systems increases. The faults 
in these critical systems’ components must be detected and 
mitigated expeditiously. The traditional methods like TMR and 
hamming distance provide the system with reliability but with 
an increase in area and delay. Hence, in our work, we have 
imitated bio-organisms capability of positioning faults and 
removing them using evolvable Hardware. The proposed EHW 
system is a complete hardware-level evolution in which the 
genetic algorithm is deployed on the same FPGA and the target 
control circuit. This intrinsic implementation of the algorithm 
has contributed to accelerating the execution time of fault 
repair on an average by 30% when compared to hybrid or SoC-
based evolution. In addition, the standard genetic algorithm has 
been modified by applying heuristics from the behavior model 
(state transition table) to reduce the convergence of the healing 
process in terms of the number of generations. As a result, the 
number of generations is reduced by 47% on average compared 
to the current work. The resource utilization in terms of the 
number of LUTs has decreased by 7.5 × compared to standard 
VRC when the proposed optimized functional evolution is uti-
lized. The above results demonstrate that the proposed EHW 
system can absolutely mitigate the faults occurring in the con-
trol circuit. In future work, the proposed EHW system’s scal-
ability must experiment with multiple complex control circuits 
in addition to the RISC-V processor discussed. The memory 
occupancy to store the training example for fitness calculation 
in FlashROM is high compared to hybrid evolution. Our future 
work will investigate alternative efficient measures for storing 
the training example.
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