
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-022-06027-6

Self Healing Controllers to Mitigate SEU in the Control Path of FPGA
Based System: A Complete Intrinsic Evolutionary Approach

S Deepanjali1 · Noor Mahammad Sk1 

Received: 4 July 2022 / Accepted: 18 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Single event upsets (SEU) are the transient errors that occur during the operation of the circuit. High radiation in the space
environment and its invasion of the nanoelectronics can result in a bit-flip in the combinational circuits and may cause a
stuck-at fault in the sequential circuit. Faults are unacceptable for any application, especially SEU in the control path, which
is crucial and imperative since it can lead to functional or even mission failure. As a result, this paper proposes a bio-inspired
technique based on a modified heuristic-guided genetic algorithm to mitigate error at the Finite State Machine (FSM),
which is the controller’s behavior model. The proposed architecture performs an optimized functional level evolution of the
FSM intrinsically on ProAsic3e FPGA boards without the help of System-on-Chip (SoC). Due to this, the delay caused by
extrinsic and hybrid evolution has been reduced. The proposed heuristic-guided genetic algorithm recovers the fault in the
control circuit with less convergence time when compared to the standard genetic algorithm. The resource utilization of the
proposed evolvable hardware system has reduced costs compared to traditional functional evolution.

Keywords  SEU · FPGA · Fault Tolerant Evolvable Hardware · Genetic Algorithm · Bio-inspired electronics · Adaptive
Hardware · Transient Errors

1  Introduction

The control path of the Hardware is a vital part of any appli-
cation as it decides how and which data path elements have
to operate. The need for deploying the controller on FPGA
is high in most critical and adaptive Hardware, such as
Unmanned Aerial Vehicle (UAV) [4], reusable launch vehi-
cles, and ground support equipment, due to its advantage of
dynamic and run-time configuration to mitigate on-chip and
off-chip errors, as well as to reduce mission cost by recon-
figuring the same FPGA chips for multiple applications [3].

There is a great demand for making the control path of
FPGA boards Anti-SEU [5]. However, the downside of this

design approach is the FPGA-based systems’ subjection to
the harsh environment. In such conditions, the board can
face transient faults termed single-event errors.

The control circuit of the FPGA-based system is mod-
eled using FSM. Given any state machine for a controller,
the hardware design comprises a combinational circuit to
compute the output (control signals) and next state based
on the Boolean expression reduced by K-Map from the state
transition table and a memory component (Register or Flip-
Flop) to provide the next state as the current state at the end
of a clock cycle, as shown in Fig. 1.

The transient errors that happen in FSM can cause a sin-
gle or multiple-bit flip in the following two cases:

•	 Case 1: SEU on Input bits SEU can impact the com-
binational circuit’s input bits while transiting from the
current state to the next, leading to a wrong transition.

•	 Case 2: SEU in Memory Component The error can
happen in the register or a flip-flop, which stores the next
state encoding. As a result, bit-flip occurs in the state
encoding of the next state, which is sent as input in the
corresponding clock cycle. This bit encoding error in the

Responsible Editor: V. D. Agrawal

 *	 Noor Mahammad Sk
	 noor@iiitdm.ac.in

	 S Deepanjali
	 cs21d0001@iiitdm.ac.in

1	 Department of CSE, Indian Institute of Information
Technology, Design and Manufacturing, Kancheepuram,
Chennai, India

/ Published online: 28 September 2022

Journal of Electronic Testing (2022) 38:547–565

http://orcid.org/0000-0003-4708-4769
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06027-6&domain=pdf

1 3

memory component can lead to a wrong transition and
thereby induce function failure.

Any error recovery procedure has to tackle these error
models to ensure an absolute and robust control circuit. For
instance, consider the control circuit of a robot performing
object search and retrieval task [16] comprising three main
tasks such as environment inspection (I), object seizing (S),
and reaching Target position (T), as shown in Fig. 2. The
main operations of the robot are modeled as a finite set of
states {I, S, T} respectively. The transition between the states
happens on accepting two-bit binary input = {00,01,10,11}.
The input of each state is encoded using segmented binary
encoding. The first bit in the input represents whether an
object is recognized in the camera, and the second bit rep-
resents the odometer value. The X in the transition arc rep-
resents the input, which can be either 0 or 1.

In Fig. 2 consider a transition function T (reaching tar-
get position) from object seizing defined as S × 0X → T. If
a single event upset happens while reading the first bit of
the input (0X). The transition function becomes S × 1X→
I, which makes the control circuit send the wrong control

signal for the data path elements and perform a different
function than intended. Consider the encoding of state
I-environment inspection represented in binary as 00 and
the occurrence of a single event upset in the register can
cause the flip in the first bit, resulting in 10 denoting the
operation of navigating to the target position. In this case of
fault occurrence, the control circuit communicates the wrong
control signal to undesired data path elements. Hence, it is
essential to develop a mitigation technique/mechanism to
ensure the correct functioning of the FSM.

In general, the fault tolerance in digital electronics is
performed via redundancy based methods, such as: Hard-
ware [7, 19, 21], Time [1] and Information [6, 12]. For deep
space exploration and satellite rovers, the use of FPGAs has
increased. For such a huge number of FPGA-based designs,
the redundancy can increase the size of the overall Hardware
in terms of size and power. To overcome the overall increase
in size, the types of faults on the Hardware were analyzed
priorly, and partial redundancy on selected components was
applied [20, 22]. However, autonomous or self-adaptive
Hardware does not require redundancy at any level. For
instance, evolvable Hardware, a bio-inspired fault-tolerant
electronics, utilizes the same faulty component and an evo-
lutionary algorithm module to mitigate the error.

The primary reconfiguration technique in evolvable
Hardware is focused on bitstream level evolution. The bit-
stream is the collection of the configuration data obtained
by the FPGA-specific software after the place and route
operation of the digital application. It is stored in the con-
figuration memory of the FPGA and describes the rout-
ing information and contents of the LUT, CLB, and clock
signals. Access to this configuration data is made possible
by using FPGA-specific Dynamic Partial Reconfiguration
(DPR) tools.

Access to the configuration data is restricted in multiple
military-grade FPGA and FPGAs with high security. Fur-
thermore, the bit streams are also encrypted. To confront
this challenge, an application-level mimicry of the configu-
ration memory has been developed with the help of Virtual
Reconfigurable Circuit (VRC) [23]. The VRC comprises
the configuration register, which contains the select line
values of m × n array multiplexer. These multiplexers are
routed and function based on the select line values in the
configuration register. In contrast to the bitstream evolu-
tion, the circuit level evolution is performed by applying the
configuration register content as a chromosome. As a result,
different routing and functionalities of circuits are verified.

The greatest challenge in VRC is high resource overhead
since it is a multiplexer-based structure. For a simple full
adder circuit, approximately 89% of the resources are uti-
lized for the multiplexer. Hence, there is a vital requirement
for optimizing the VRC array structure. This paper presents
an optimized VRC array structure with a heuristics-guided

Combinational Logic

Flip-Flop

Inputs

Current
State

Next
State

Outputs

CLK Reset

Fig. 1   Hardware representation of finite state machine

T

I S

X0

X1

0X

1X

10

0X

Fig. 2   FSM of Object Search and Retrieval robot

548 Journal of Electronic Testing (2022) 38:547–565

1 3

genetic algorithm for accelerated fault tolerance and
increased scalability. The additional delay in processor-
based evolution is reduced by deploying the evolutionary
algorithm on the same FPGA. The proposed heuristics-
guided genetic algorithm’s design mainly utilizes the control
circuit’s deterministic nature. The faults are simulated at the
VRC’s functional and routing capabilities, and the effective-
ness of the fault tolerance is reported.

The rest of the paper is organized as follows. Section 2
explains the preliminaries of Evolvable Hardware (EHW)
and related work. Section 3 presents the proposed intrinsic
evolvable hardware system for SEU error correction and
detection and explains it with different applications. Sec-
tion 4 details the implementation methods adopted to verify
the proposed design, Sect. 5 details the results and discus-
sion, followed by Sect. 6.

1.1 � Contribution of this Paper

•	 The bitstream evolution and standard function level evo-
lution are replaced with optimized function level evolu-
tion. As a result, resource utilization is reduced compared
to standard function level evolution.

•	 The deployed control circuit as an optimized functional
evolution array is represented as a chromosome and
evolved using a heuristic-guided genetic algorithm to
reduce the chromosome length and accelerate the con-
vergence rate.

•	 The proposed function level evolution array and heuristic-
guided genetic algorithm are deployed as digital circuits
on the same FPGA, and complete hardware level evolu-
tion is performed to eliminate the dependability and delay
caused by extrinsic and hybrid evolution.

•	 The proposed EHW system is tested for efficacy for dif-
ferent types of faults and its improvement in resource
utilization and convergence rate is presented.

•	 The proposed solution uses a military-grade FPGA,
which does not possess specialized support such as JTAG
bits software and processor for the implementation of
EHW as utilized in related work.

2 � Background

The application of characteristics found in bio-organisms
to electronics for self-organizing and self-adaptiveness is
called bio-inspired fault tolerance in electronics. In general,
redundancy-based fault mitigation methods can increase
the cost of the entire mission in terms of area, power, and
delay. Hence an intelligence-based methodology is required
at the circuit level to adapt itself to the changing environ-
ment. The bio-inspired fault tolerance is categorized into
three dimensions based on the POE model where P stands
for Phylogeny - The evolution capabilities of species inspire
the next generation of electronics. Evolvable Hardware is an
example of this dimension. The Ontogeny in the POE model
is motivated by the multi-cellular division of the zygote.
Embryonics [18] is an example of this category. A fault in
a component is mitigated by replacing the faulty cell with a
neighboring spare cell. The Epigenesis adapts the learning
behaviour of the species to electronics called Immunotron-
ics [27]. This vertical of the POE model is adapted from the
human immune system’s inbuilt characteristics of identify-
ing Self/Non-self. Among these dimensions of bio-inspired
electronics, our proposed work focuses on phylogeny to
design a self-healing control path.

EHW is the application of biological concepts to elec-
tronic Hardware with the help of evolutionary algorithms.
The field of evolvable Hardware was pioneered by Thompson
et al. [32] in 1996. The field of research of EHW has been
distinguished under two motivations: where EHW is used
for optimized hardware design and the design of adaptive
Hardware. The autonomous design of the Hardware focuses
on designing the electronic circuit from scratch based on
parameters like area, power, and delay. Various combina-
tional circuits are self-designed by EHW under these catego-
ries, as shown in Table 1. The latter research area focuses on
making hardware design adaptive to the changing environ-
ment, especially in applications where the hardware design is
prone to harsh environments like space and nuclear reactors.
EHW is best suited for adaptive Hardware as it finds the
fault-tolerant solution quickly in search space autonomously

Table 1   Recent works of Evolvable Hardware for autonomous design of digital circuit

Reference Reconfigurable Fabric Bio-Inspired Algorithm Approaches Application

[38] Zynq-7000 SoC Cartesian Genetic Programming Hybrid Design of 2 bit multiplier and 8-bit parity
[36] Virtex 6 (XC6VLX240T) Ml605 Genetic and Memetic Algorithm Hybrid Design of 2 and 4-bit adder and multiplier and

6-bit parity generator
[25] Spartan6 XC6SLX45-CSG484-3. Embryonic and Genetic Algorithm Extrinsic Design and self rectification of BCD Decoder
[30] SoC-based FPGA Cartesian G enetic Programming Extrinsic Design of 2-bit Multiplier
[40] Intel Cyclone V-SoC Genetic Algorithm Extrinsic Design of 4-to-1 even parity generator and 2

bit adder and multiplier

549Journal of Electronic Testing (2022) 38:547–565

1 3

when the Hardware is in operation. This EHW consists of
two components: reconfigurable Hardware and an evolution-
ary algorithm.

2.1 � Reconfigurable Hardware

The reconfigurable Hardware is the platform on which the
evolutionary algorithm is applied. Any application deployed
on this reconfigurable platform is initially written using a
hardware description language, followed by routing the con-
figuration bits (bitstream) on the Hardware. The bitstream
describes the system behavior of the application, and it is
placed in the configuration memory of the reconfigurable
Hardware. The advancement in the usage of hardware plat-
forms commenced with programmable array logic (PAL) [29,
31] to complex programmable architectures such as Field
Programmable Gate Array (FPGA) [33, 35], Field Program-
mable Analog Array (FPAA) [11, 41], Field Programmable
Transistor Array (FPTA) [10, 13]. Although in recent times,
FPGA-based EHW has become mainstream.

2.2 � Evolutionary Algorithm

An evolutionary Algorithm (EA) is an iterative algorithm
initiated with a chromosome representation. The hardware
characteristics are represented in the form of genes. The
characteristics used in the chromosome representation can
differ for each application. For instance, a robotic arm chro-
mosome is structured with the number of joints, position,
and number of fingers. Hence, it has to be carefully decided
by the designer. The commencement of the evolutionary
algorithm is an initial random population where random
bits are generated in the length of the chromosome. These
random bits are termed the population of the evolutionary
algorithm. Each chromosome from the population is applied
to the fitness calculation, and it is associated with the fit-
ness score. The designer specifies the objective function
and threshold value based on the application. For instance,
the fitness score for evolving antennas is to obtain a signal
power above 2 decibels. The selection operation controls the
passing of chromosomes to subsequent generations. Based
on the fitness score at each generation, the chromosome is
selected using roulette wheel selection, rank selection, or
tournament selection. The allele is flipped (mutation) among
the selected individual genomes to generate new offspring.
The crossover operator is responsible for pairwise recombin-
ing two selected individuals (Parent 1, Parent 2). These two
operators are responsible for generating new offspring with
variation and promoting the reproduction of the selected or
fittest chromosome. The algorithm converges to the desired
solution when the algorithm is iterated for a specified num-
ber of generations or when the desired result is attained.

Figure 3 depicts the evolutionary process performed by
the Standard Genetic Algorithm (SGA) [9]. Apart from
SGA, the other evolutionary algorithms include evolutionary
strategies [2], Cartesian Genetic Programming [17]. The
mentioned variants of evolutionary algorithms differ from
each other based on genetic operation. For instance, SGA,
Cartesian Genetic Programming, and Genetic Programming
are distinguished based on the chromosome representation,
where SGA follows segmented binary encoding, Cartesian
Genetic Programming represents the genotype as a directed
acyclic graph, and Genetic Programming considers the hard-
ware description language as a parse tree for the genotype
representation. The evolutionary strategy is represented as
the (1 + �) method, where 1 represents that reproduction is
done at an individual level, and � represents the number of
offspring generated.

2.3 � Related Work

The research in the field of evolvable Hardware is explored
in different categories such as the granularity of evolution,
type of evolution based on location, reconfigurable Hard-
ware used, reconfiguration methodology, and evolutionary
algorithm used. The hardware platform used for evolution
has developed from simple programmable logic comprised
of 1000 gates to a commercial FPGA with millions of gates
to accommodate complex designs. As mentioned earlier,
the FPGA has been the most commonly used platform for
evolution in recent times. FPGAs like the XC6200 series,
Virtex series, and Spartan are widely accepted FPGAs for
EHW. Also, the choice of SRAM-based FPGA is higher
when compared to other FPGA technologies like Flash-
based or Antifuse-based FPGA since the reconfigura-
tion speed is high compared to others [37]. In the initial
research, the bitstream format of FPGA was available to
the public to promote the research. For instance, XC6200
by Xilinx was the first commercial FPGA for which the
bitstream format and mapping of control logic blocks
were documented and made accessible. However, FPGA
manufacturers have moved towards employing more robust
encryption for bitstream to prevent reverse engineering and
side-channel attacks. Since 2015, FPGA manufacturers
have used Data Encryption Standard (DES), and Micro-
semi FPGA has introduced Advanced Encryption Standard
(AES) for encrypting the bitstream of the FPGAs used in
military and space applications. Higher encryption stand-
ards have challenged the bitstream evolution greatly as they
require more time to decrypt the bitstream. However, some
work has shown evolution at the configuration bit level by
using application interfaces provided by the vendor, such
as JTAG bits [14] and ICAP (Internal Configuration Access
Port) controller. This ICAP controller facilitates Dynamic
Partial Reconfiguration (DPR), where reconfiguration is

550 Journal of Electronic Testing (2022) 38:547–565

1 3

addressed for a portion of the circuit in run-time. The VRC
is an alternative option for the reconfiguration mechanism
in FPGA where DPR is unavailable. It was introduced by
Sekanina in his work [23]. A VRC is a reconfigurable cir-
cuit built for an application on top of the same FPGA, and
it performs function-level evolution. It is a two-dimensional
array of PE (programming elements), where each PE com-
prises the implementation of all possible functions which
can be selected using a multiplexer. The array of PE is
instantiated with the input signal, which is accepted in the
first column of the array. The subsequent column of PE
obtains its input from the previous column and propagates
the final circuit’s output to the last column of PE. The select
line used in selecting the inputs and functions of each PE is
stored in the configuration register. The information present
in this register acts as the chromosome in VRC, whereas
in DPR, the bit stream generated by the design flow of the
FPGA acts as the chromosome. For multiple FPGAs used
in space, military, and other mission-critical applications,
the bitstream is encrypted, or the availability of API and
ICAP is non-existent. Hence, the VRC-based reconfigura-
tion methodology is quietly accepted by EHW research-
ers. The challenge in the VRC-based methodology is that
each PE is multiplexer based and implements all possible

functions, increasing power consumption and resource uti-
lization. However, as an advantage, VRC is fast since the
delay only involves switching between the select lines to
change the configuration. Among various characteristics
of EHW, the location of evolutionary algorithm imple-
mentation plays a significant role in the EHW distinction.
Because the design considered for evolution was simple,
and there was no processor on the FPGA, pioneer research
in EHW hosted the evolutionary algorithm in the external
PC referred to as Extrinsic evolution. Later, many SoC-
based FPGAs were manufactured, allowing the evolutionary
algorithm to be implemented on the processor in the FPGA.
The AXI bus, or the other system bus architecture, assists
in loading the evolved circuit in the FPGA. This type of
evolution is called Hybrid evolution where the genotype
is evaluated on the Hardware, and the evolutionary algo-
rithm is hosted as software present in the SoC of the FPGA.
Complete Intrinsic evolution involves genome modeling,
evaluation, and implementation of genetic operations on
the same FPGA. Intrinsic evolution is considered the fastest
type of evolution as there is no delay caused in transfer-
ring the genome between the FPGA and the processor. A
comparison of hybrid and intrinsic evolvable Hardware is
studied in [8]. This work has proved that the complete

Electronic Circuit

010001000010001
110111110110101
100001010110001
000101010110001

111101010110001

010101010110001

Random Population generation

010001000010001 0.4
110111110110101 0.5
100001010110001 0.1
000101010110001 1.1

111101010110001 0.7

010101010110001 0.8

Fitness Value calculation

111101010110001

010101010110001

Selection

1111010 10110001

0101010 10110001

010101010110001

10101010001110

110101110110001

Crossover

Mutation

Uniform

Point

010001000010001

110111110110101

100001010110001
000101010110001

111101010110001
010101010110001

New offspring

Reproduction

Convergence
Criteria

Termination

EleEleEleEleElectrctrctrctronioonooooooooo c CCCirciiiiirciiirciirccirccrcccciiiiiiiiiii uittttttttt

Fig. 3   Block diagram of Evolutionary algorithm

551Journal of Electronic Testing (2022) 38:547–565

1 3

hardware evolution works 7.74 times faster than the hybrid
approach, with 0.198 lower power consumption and fewer
resources. In this comparison work, a typical application of
evolving category detection of sonar signals is considered
where the genotype of length 480 bits is evolved. Regard-
less of these advantages, research in the field of complete
hardware evolution [34] is scarce.

The work by NASA AMEs research centre [15] proposed
a dual-board hybrid EHW on the Virtex 4 FPGA. The redun-
dancy is applied at the board level, where board B performs
the designated operation of board A while it undergoes
evolution. This work converged to a fault-free chromosome
after 1000 generations, accounting for 45 hours. The genetic
algorithm was hosted on the JBIT software provided as an
IP core by Xilinx FPGA vendors. This work posed the chal-
lenge of migrating the proposed methodology to complex
logic and suggested accelerating the evolution cycle by
implementing EA directly on Hardware. Similarly, in 2017,
a self-repairing control circuit was implemented for a brush-
less DC motor using a hybrid EHW on a Virtex 6 ML605
FPGA [42]. The design employed the genetic algorithm on
the MicroBlaze soft-core processor and used the ICAP con-
troller for reconfiguring the bitstream. After 10,000 genera-
tions, the algorithm reached a fault-free controller. Also, in
this above work, they have expressed that the repair time for
the controller is high in terms of generation during which
external service can be interrupted. The influence of genetic
operators on the success rate and fault recovery time in terms
of clock cycles is studied in [26]. A hybrid evolution of the
BCD decoder is performed on the Spartan 6 FPGA, where
the genetic algorithm is hosted on the MicroBlaze soft core
processor. This work summarizes a comparison of selec-
tion, crossover, and mutation. Compared to the tournament-
based selection, this work demonstrated that roulette wheel
selection has a 0% success rate and a longer fault recovery
time. A hybrid evolvable hardware [39] is implemented on a
MicroBlaze soft-core processor of spartan 6 FPGA to miti-
gate errors in the 8-bit parity checker and 3-bit multiplier.
A configuration library is maintained to compare obtained
and anticipated results. The average fault recovery time is
accounted for 1.83 seconds with 94% accuracy. Similarly,
1-bit mutation and 1-bit crossover have a higher success rate
with less recovery time when compared to uniform mutation
and crossover. The common challenges identified in cutting-
edge work are

•	 Low Scalability: The state-of-the-art work faces dif-
ficulty in considering applications of higher size since
bitstream level evolution is considered. The circuit
size considered for evolution is low because the circuit
size and bitstream length are directly proportional. For
instance, the methodology in [39] encodes the chro-
mosome of length 288 bits for an 8-bit parity checker

and 441 bits for a 3-bit multiplier. Even though the
circuit size is smaller, the total chromosome length is
vast. The bit level evolution is further not possible in
highly secured military grade FPGA, as the access to
the bitstream is constrained.

•	 Dependability: The evolution process is implemented
on the SoC present in the FPGA in [15, 26, 39, 42].
Implementing the evolutionary algorithm in the proces-
sor and evaluating the evolved chromosome in Hardware
can create an additional delay. Hence, in [15], it is sug-
gested to perform the evolution directly on the FPGA.

•	 Convergence Rate: The convergence rate of the EA
plays a massive role in the fault recovery rate. If a
genetic algorithm without any optimization is applied,
the evolution can take several hours. For instance, the
technique used in [15] required 45 hours for evolution.
Hence, better understanding and selection of suitable
parameters have to be decided for respective genetic
operators, especially for adaptive Hardware where fault
mitigation is required with high efficiency and speed.

•	 Redundancy Rate: The authors of [15] and [42] have
suggested redundancy at the FPGA board level to elim-
inate the halt in the mission. Dual FPGA boards are
utilized in [15].

3 � Proposed Intrinsic Evolvable Hardware
System

The hybrid EHW system discussed in Sect. 2.3 comprises
three main components, such as a Microprocessor to
host the evolutionary algorithm in its native high-level
language; an Evaluation Module which is a copy of the
target circuit to evaluate the fitness function of the gener-
ated chromosome by the EA; and an AXI bus to mediate
the chromosome in between the evaluation module and the
processor. Furthermore, the ICAP controller is used as an
API for accessing the configuration bits if the evolution
happens at a bitstream level.

The architectural difference with hybrid EHW is depicted
in Fig. 4. The processor in the related works is substituted
by the GA (Genetic Algorithm)_Module deployed as a
digital circuit on the same chip. This module is responsible
for all genetic operations in Fig. 3. In addition to the GA
module, the proposed system design includes an error detec-
tion circuit to identify the SEU in the target circuit (control
circuit). If the detection circuit recognizes the fault, the GA
status signal is set to 1, which instantiates the GA_Module.
The status signal 0 indicates that SEU is non-existent in
the control circuit. Hence, the control signal and next state
are forwarded to other data path elements and the control
circuit’s memory element (flip-flop).

552 Journal of Electronic Testing (2022) 38:547–565

1 3

3.1 � Optimized Function Level Representation
of Control Circuit

In related work, the configuration bitstream level evolution
is followed, which encompasses gate level granularity, thus
making the evolution process time-consuming. As a result,
Function level Evolution (FE) [24] is used in our proposed
EHW system. The FE requires a two-dimensional array of
programming elements (PE) designed on the same FPGA
fabric. Each PE has a MUX-based implementation to select
one function among the set of predefined functions. The
selected function is applied to the inputs of PE, and the out-
put is propagated to the PE of the next column. Each PE’s
input, output, and function information are stored as a con-
figuration bit in the configuration register. In the previous
works of FE, the number of functions realized in each PE is
generic; therefore, the hardware overhead and configuration
bit to select the function are high. The number of functions
operated in each PE is constrained to produce an optimized
function level evolution. This restriction is only possible

due to the deterministic nature of the control circuit. Using
K-Map reduction, any control circuit represented as a state
transition table can be realized as a boolean expression. This
expression is expressed as a combinational circuit in Fig. 1.
Hence, the established functionality in the expression of the
combinational circuit is only realized in each PE.

3.1.1 � Example

Consider the control circuit of the brushless DC motor
formulated as the state transition Table 2. The DC motor
contains three positioning signals, T0, T1, and T2, and, on
completion of each rotation, based on the values of the posi-
tioning signals, the driving signals Q0, Q1, Q2, Q3, Q4, and
Q5 are activated. The input and output signals combination
is described in the Truth Table 2.

From the truth Table 2, the Boolean expression enclosing
the relation between the input variable and output variable
is obtained by K-Map simplification and formulated in the
Eqs. (1-6)

Fig. 4   Block diagram of proposed intrinsic evolvable hardware system

Table 2   State transition table:
Brushless DC motor control
circuit

Position Signal Driving signal

T0 T1 T2 Q0 Q1 Q2 Q3 Q4 Q5
1 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0
0 1 0 0 0 1 1 0 0
0 1 1 0 0 1 0 1 0
0 0 1 1 0 0 0 1 0
1 0 1 1 0 0 0 0 1

553Journal of Electronic Testing (2022) 38:547–565

1 3

The Eqs. (1-6) shows that the driving signal is obtained
by only AND and NOT functions. Hence, the proposed
optimized functional evolution array consists of an array
structure, as shown in Fig. 5. The driving signal is derived
from the last column of the array. The first column accepts
the external input signal T0, T1, T2, and other columns
receive the input from their preceding column. Each PE
comprises three selection signals, as shown in Fig. 6,
where Sel 1 and Sel 2 of length 3 bits select the input
signals, and Sel 3 of length 2 bits enables the function
performed by each PE. The combination of these three
select signals constitutes the configuration bit in the con-
figuration register. In a standard function level evolution,
the number of gates and length of Sel 3 signals would
drastically increase the hardware resources. Also, multiple
multiplexers would have been used to select the function.
Hence, our proposed optimized functional level evolution
will decrease the complexity of the proposed EHW system.

(1)Q0 = T1.T2

(2)Q1 = T0.T2

(3)Q2 = T0.T1

(4)Q3 = T1.T2

(5)Q4 = T0.T2

(6)Q5 = T0.T1

3.2 � Error Detection Circuit

The error detection circuit perpetually operates in syn-
chronous with the control circuit. The control circuit,
accepting external input, produces the control signal and
the next state. These signals and the input signal and cur-
rent state are checked for SEU. The memory-based train-
ing sample assists in the identification of the SEU. The
possible input and output signals obtained from the state
transition table are stored as content addressable memory
in the FlashROM of the FPGA fabric. As a result, when
the control circuit receives the input-positioning signal
at time t, the corresponding driving signal is checked
against the training example in the FlashROM. Any
deviation from the desired output indicates that an error
has occurred, which triggers the GA status signal to 1,
and the GA module is instantiated. Instead, when SEU
is undetected, the control signal is propagated to the data
path elements. Figure 4 performs the error detection pro-
cess where Ct represents the combination of input, cur-
rent state, next state, and output control signal at time t
generated from the control circuit, and Corg is the training
example combination of all the above for the correspond-
ing input. The bitwise XOR operation identifies the devia-
tion between the obtained and expected results. The GA
status signal either instantiates the GA module for fault
recovery or forwards the control signal when the fault is
undetected.Fig. 5   Representation of functional PE array for brushless DC motor

Fig. 6   Representation of single PE for brushless DC motor

554 Journal of Electronic Testing (2022) 38:547–565

1 3

3.3 � Heuristics‑guided GA Module

The GA module is the crux of the EHW system. In a hybrid
EHW system, the module is hosted in the microprocessor of
the FPGA. But in our proposed EHW system, the operation
of the genetic algorithm is deployed as a digital circuit using
a hardware description language. The representation of the
digital circuit as a genotype is the initial phase accomplished
ahead of all the genetic operations. In our proposed system,
we have analyzed the deterministic nature of the control
circuit and applied the heuristic in chromosome encoding
to reduce the genotype length. The chromosome structure
contains three main elements: External Input supplied to
FE array, Programming elements (PEi) information such as
Sel 1, Sel 2, Sel 3 of programming element activated at each
column, where i represents the column of the FE array and
the final output (control signal) generated as shown in Fig. 7.
The total chromosome length is given by Eq. 7, where I
represents the number of bits to represent the input signal,
N represents the number of columns in the FE array, O rep-
resents the output control signal, and n1, n2, n3 represents
the number of bits to represent the Sel 1, Sel 2, Sel 3.

3.3.1 � Population Initialization

The population Pi, of each ith generation is collection of
chromosome Cx, where x � to [1, pop-size]. The primary
population (P0) applied as input to the GA algorithm is
generated by random sampling. The choice of sampling
method is crucial to prevent the algorithm from premature
convergence. In our related works [15, 26, 39, 42] the initial
population generated was unbounded since heuristic about
the target circuit was not considered. The proposed EHW
system is focused on utilizing the deterministic nature of
the control circuit, so we have designed a restricted ran-
dom sampling in our EHW system. The control circuit has
a set of permissible external inputs in contrast to the other
combinational circuits. For instance, Table 2 shows that
external input is 3 bits and, among 8 (23) combinations,

(7)Chromosome Length = I + N ∗ (n1 + n2 + n3) + O

only six combinations of positioning signals have valid
driving signals. Hence, the chromosome deriving from
000,111 can be restricted for population generation. This
restriction prevents the time being utilized for invalid
chromosome evaluation.

3.3.2 � Fitness Calculation

The fitness function and value of the GA algorithm are
distinct for each target circuit. In our previous works [15,
26, 39, 42] two methodologies where followed to establish
the fitness function.

•	 Comparison based approach was designed. The
expected circuit response was stored in the memory and
compared with the obtained result. For a complex circuit,
memory latency and occupancy can be concerning. This
methodology is highly reliable, assuming no error has
occurred in the stored bits.

•	 Objective Function based: The fitness value and func-
tion were predicted by interpolation of the training sam-
ple. The fitness value of the current sample for the same
objective function was recorded, and its deviation from the
threshold fitness value was analyzed. This methodology
is suitable when an EHW system is used in the applica-
tion, such as the autonomous design of the circuit. In fault
recovery-based EHW systems, this approach poses a chal-
lenge when the current sample either under fits or overfits
the function curve. For instance, the fitness function for
a brushless DC motor was devised using the Lagrange
interpolation method as -0.5x3+4.796x2-8.111x+60.333
with a regression error of 1.089 due to which the fitness
calculation for fault free chromosome representation was
miscalculated with a lesser fitness value. Hence, in our
proposed method, a comparison-based approach was used.
The expected result for each input combination with pro-
gramming element details is stored in the FlashROM. The
generated chromosome Ci at each generation is compared
with the expected chromosome Corg. The number of bits
deviated is calculated from the compared result as shown
in the algorithm 1.

Fig. 7   Genotype representation
for proposed GA algorithm

555Journal of Electronic Testing (2022) 38:547–565

1 3

3.3.3 � Genetic Operators

The genetic operators comprise functions such as selection,
crossover, and mutation. The selection operator chooses the
fittest chromosome at each generation for offspring repro-
duction using crossover and mutation. A rank-based selec-
tion method is chosen to select the best fitting chromosome
based on its fitness value. Each chromosome Ci has associ-
ated fitness valuei which is compared with each other and
ranked. At least four chromosomes with the highest fitness
value are selected and applied for crossover and mutation.
The crossover operator helps in generating all variants of
input, whereas the mutation operator supports the conver-
gence of the fittest chromosome. Uniform mutation and
point-wise crossover are chosen as genetic operators to yield
the offspring for the next generation.

The produced offspring is subjected to subsequent gen-
erations until the convergence of the EA algorithm. The elit-
ism is used in our algorithm for a chromosome whose input
segment is identical to the target circuit’s current input (posi-
tion signal in the case of a brushless DC motor). This strat-
egy in our proposed system has enhanced our convergence
speed by applying selective pressure on the target circuit’s
current input. The proposed EA algorithm is converged
when the elite chromosome has reached a fitness value of
100%. The following section demonstrates the working of

our proposed intrinsic EHW system and heuristics-based EA
algorithm by considering four control circuits.

3.3.4 � Example: A Genetic Evolution of Brushless DC Motor

The brushless DC motor realized in Fig. 5 shows that the
array structure contains 18 PE with six rows and three col-
umns. Each PE contains three selection lines for selecting
Input 1, Input 2, and its function. The binary segmented
encoding is followed as shown in Table 3. For instance, the
chromosome 110-001-000-01-110-000-01-001-110-10-
010001 represents that when the input (position signal)-110
is supplied to the FE array, PE in column 1 contains the con-
figuration bit 001-000-01, PE in column 2 contains the con-
figuration bit 110-000-01, and PE in column 3 contains the
configuration bit 001-110-10, producing the output (driving
signal) as 010001. Hence, the proposed genotype representa-
tion depicts the FE array absolutely for a given input signal.
The total chromosome length for the brushless DC motor
is 3+3*(3+3+2)+6 = 33 bit. The proposed heuristic-based
chromosome encoding has reduced the genotype length
compared to [42] by 36.66 % for the same application.

The initial zeroth generation is randomly populated fol-
lowing the restriction as mentioned in Sect. 3.3.1. Each gen-
eration contains n chromosomes fixed by the designer. For
instance, if 100 is configured as the population size, the
chromosome is generated randomly following the binary
encoding in the range [0-233], where 33 is the chromosome
length for the brushless DC motor. Consider two chromo-
somes generated,Ci and Cj among the population at some ith
generation as shown in Fig. 8

Table 3   Encoding for Genotype representation: Brushless DC Motor

Input Encoding Function Encoding

T0 001 Input 00
T0’ 010 NOT 01
T1 011 AND 10
T1’ 100
T2 101
T2’ 110
No input 000 Fig. 8   Two example chromosomes Ci and Cj generated at any ith gen-

eration

556 Journal of Electronic Testing (2022) 38:547–565

1 3

The fitness value of the above chromosome is calculated
based on the comparison approach, where the first three bits
in Ci and Cj are used as the index value to access the golden
chromosome. The expected chromosome represented as
Corg1 and Corg2 are compared with Ci and Cj respectively as
shown in the Algorithm 1. The fitness value of Ci and Cj is
recorded as 0.78% and 0.55%. Hence the above two chro-
mosomes are selected based on the ranking method. A 3 × 3
crossover methodology is applied to chromosomes, and as
a result of recombination, four new chromosomes Res[1-4]
are produced, as shown in Fig. 10. The recombination is per-
formed by segmenting the chromosome at each 3rd bit and
reshuffled with the other chromosome as shown in Fig. 9.

The fitness value of the resultant chromosome Res [1-4]
as shown in Fig. 10 will be calculated in the subsequent gen-
erations as 0.52%, NA, 100%, and 0.36%, denoting that the
chromosome with positioning signal 110 (Res 3) has evolved
to fault free convergence. The NA in the fitness calculation
represents that the positioning signal 000 does not apply to
the target circuit- a brushless DC motor. To demonstrate the
mutation process assume that chromosome Ci is generated as
110-001-000-00-110-000-01-001-110-10-010001 with fitness
value 0.96%. A uniform mutation is applied to the chromosome
with a 0.03 mutation rate. The total number of the chromosome
produced for Ci after mutation is 33 chromosomes, where each
bit is mutated in Ci. For instance, as shown in Fig. 11 Res[1-33]
are produced. The Res10 chromosome is evaluated as 100%
fitness value, and other chromosomes are calculated as 0.95%
in the next generation. The adopted mutation ensures that when
a chromosome with 0.96% is applied for mutation, Then one of
its child chromosomes will converge in the next generation. The
proposed genetic algorithm follows elitism. The evolutionary
process is terminated if the current input signal is converged.

3.4 � Applications: Intrinsic EHW System for Control
Circuit

This section details the proposed EHW system for miti-
gating the faults with four chosen control circuits. The

chosen control circuit is utilized in various applications
like space, robotic navigation, and consumer electronics.
The case study profile explains the proposed EHW sys-
tem’s design phases, like hardware representation of the
FSM, optimized functional evolution array, and genetic
parameters. The control circuits analyzed in the section
are the following:

1.	 Control circuit of Quadrature Decoder
2.	 Control circuit of Robotic straight line navigation.
3.	 Control circuit of RISC-V processor
4.	 Control circuit of Brushless DC Motor (BLDC) as explained

in Sect. 3.3.4

3.4.1 � Control Circuit of Quadrature Decoder

A Quadrature Decoder (QD) is used as a case study in [15]
for testing their proposed evolutionary strategy. The QD is
an incremental encoder for counting the entities passing to
and from the light beam. The FSM of QD is tabulated as a
state transition Table 4. The input of the FSM is two bits,
which indicates the on/off condition of two-channel sen-
sors (A and B), and the output is a two-bit combination that
indicates the four directions of the wheel rotation. From the
table, the output bits - S1, S2 is obtained using the Eq. 8.
This Eq. (8) and Table 4 is the foundation for applying
the heuristic to the optimized functional evolution array
and the proposed heuristic-guided genetic algorithm. The
single PE of the QD should incorporate the three multiplex-
ers with three selection lines, as shown in Fig. 12. The FE
array of the QD consists of 4 × 4 programming elements
with input A, B, and output S1, S2. The first column of the

Fig. 9   Example of 3*3 crossover on chromosomes Ci and Cj

Fig. 10   Resultant chromosomes after crossover process

Fig. 11   Resultant chromosomes after mutation process

Table 4   State transition table of quadrature decoder

Channel A Channel B Direction(S1,S2)

1 0 00
1 1 01
0 1 10
0 0 11

557Journal of Electronic Testing (2022) 38:547–565

1 3

FE array obtains the input from external ( A,B , A, B), and
the final output is obtained from the last column. The total
chromosome length for each input is 2+4*(2+2+2)+2=28
bit following the Eq. (7). Figure 12 shows the valid input
combination for restricting the random population initiali-
zation at Generation 0. The fitness value of the generated
chromosome Ci is obtained by comparing the expected
result stored in the FlashROM following the Algorithm 1.
The genetic operators in Sect. 3.3.3 are applied as such to
rectify the control circuit from the fault.

3.4.2 � Control Circuit of Robotic Straight Line Navigation

The fundamental task for robotics is line-following navi-
gation. The control circuit for line navigation is a mealy
machine since it accepts both the input and the current state
to produce the next state. S1 and S2 sensors are used to
detect the presence or absence of a line and three states. I1
and I2 denote the action or the state of the navigation that
has to be followed. For instance, 00,01,10 in Table 5 indi-
cates the state encoding for the robot to navigate straight,
left, and right, respectively. The state transition table of the
navigation is shown in Table 5. The minimized Boolean
expression reduced from the transition table is S1=I1 and
S2=I2 . The proposed FE array consists of 8 × 2 programming
elements, and each PE contains two multiplexers for select-
ing the input signal and the function (Sel 1, Sel 2). Since the
complexity of the circuit is less, the total chromosome length
is 4+2*(3+1)+2=14 bits.

(8)S1 = A;S2 = AB + AB

3.4.3 � Control Circuit of RISC‑V Processor

The RISC-V processor is utilized as an instruction set archi-
tecture in multiple SoC-based FPGAs like the ARM-Cortex
in Microsemi. The control circuit of the RISC-V architecture
is modeled using a finite machine containing ten states (0-9),
as shown in Table 6. States 1 and 2 depict the instruction
fetch and instruction decode states, which accept the input
(instruction opcode). Each state, on reaching the next state,
sets the respective control signals to 1. The Boolean expres-
sion mentioned in Eqs. (9)-(12) obtained for the next state
is a sample for a complex combinational circuit. The above
circuit realized as a functional evolution array will contain
10*11 PE, where each PE will contain three multiplexers to
select input and function. The possible function for each PE
is 5; Sel 3 utilizes 3 bits, whereas Sel 1,2 utilizes 5 bits to
select inputs 1 and 2. This example is specifically chosen to
demonstrate the scalability of the proposed EHW system.

The summary of the optimized FE array for all the dis-
cussed control circuits is depicted in Table 7. Among the
examples, the control circuit of the RISC-V processor occu-
pies a larger area of the functional evolution array than the
chromosome length, which is huge compared to other cir-
cuits. This control circuit is rarely used in EHW system-
related work and was chosen specifically to test the scalabil-
ity of the proposed EHW system. The analysis of the control

(9)NS3 = S3S2S1S0P5P4P3P0(P2⊕ P1)

(10)
NS2 = (S2(P4P2(S1S0P5P3P1P0 + S1S̄0P5P3P1P0) + S1S0))

(11)

NS1 = S̄3(S2(P4P2(S1S0(P5P1P0 + P5P̄3P1P0)S1S0P5P3P1P0))

+ S2S1S0

(12)
NS0 = S3(S2(P4P2P1(S1S0P5P0

+ S1S0P5P3P0) + S1S0) + S2S1S0

Fig. 12   Single PE representation of quadrature decoder

Table 5   State Transition
table of straight-line robotic
navigation

Current
State

Input Next
State

S1 S2 I1 I2 S1 S2
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0
0 1 0 0 1 1
0 1 1 0 0 1
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 1 0 0
1 0 1 1 0 0

558 Journal of Electronic Testing (2022) 38:547–565

1 3

circuit clearly indicates that the FE array and chromosome
bit are directly proportional to the complexity of the boolean
expression and the hardware utilization in terms of multiplex-
ers for each PE. For complex circuits, bitstream and standard
function level evolution will require high fault recovery time.
When compared to the works discussed in [15] and [42], the
chromosome length for QD and BLDC is reduced by 25%
and 36.66%, respectively, using optimized function level evo-
lution and heuristic guided genetic algorithm, which greatly
accelerates the convergence of the self-healing process.

4 � Implementation Methodology

The proposed EHW is operable in two states: non-faulty
and faulty. In a non-faulty state, the fault in the control
circuit is non-existent, and the error detection circuit sets
GA status to 0. The output of the control circuit is signaled,
such as the control signal and next state. In a faulty state,
the error in the control circuit is detected by comparison of
the training data stored in the FlashROM. The GA status
signal is enabled to initiate the evolutionary algorithm. The
non-faulty state is achieved on successful convergence, and
the control circuit proceeds with regular operation.

The proposed EHW system is implemented on Micro-
semi-based ProAsic 3e family FPGA - A3PE3000. The
FPGA was chosen because it is widely used in many avion-
ics and military applications. The FPGA fabric does not fea-
ture any API for bitstream access or hold any microprocessor
in the FPGA fabric. In addition, the bitstream in the configu-
ration memory is encrypted, which challenges the bitstream
evolution.The proposed heuristics-guided GA module, error
detection circuit, FlashROM, and target circuit are imple-
mented on the same FPGA fabric operating at 350 Mhz with
a maximum combination delay of 2.23 ns. The minimum
input arrival time and output required time before and after
the clock are 3.45 ns and 2.78 ns, respectively.

The proposed design is subjected to analysis based on the
metrics in such a way that the complete EHW system is studied.
Since EA is an iterative algorithm, the algorithm’s termination
marks the solution’s convergence. The main focus of this work
is to increase the scalability by optimizing the VRC. Hence, the
resource utilization is analyzed compared to similar method-
ologies mentioned in related work. A complete fault injection
system is simulated and analyzed with the help of maximum
and minimum generation in fault detection efficiency. Any
fault tolerance mechanism has to be rapid; hence, our analysis
records the fault recovery time from faulty to non-faulty state.

Table 6   State transition Table
of RISC-V Processor

States Present State Input Next state

OP0 OP1 OP2 OP3 OP4 OP5
0 0000 x x x x x x 0001
1 0001 1 0 0 0 1 1 0010
1 0001 1 0 1 0 1 1 0010
1 0001 0 0 0 0 0 0 0110
1 0001 0 0 0 1 0 0 1000
1 0001 0 0 0 0 1 0 1001
2 0010 1 0 1 0 1 1 0011
2 0010 x x x x x x 0101
3 0011 x x x x x x 0100
4 0100 x x x x x x 0000
5 0101 x x x x x x 0000
6 0110 x x x x x x 0111
7 0111 x x x x x x 0000
8 1000 x x x x x x 0000
9 1001 x x x x x x 0000

Table 7   Summary of Optimized
Functional evolution array

Control Circuit Example # Input Bits #Output Bits FE Array Utilization
(#m*#n)

Chromosome
bits

Quadrature Decoder 2 2 4*4 28
Navigation Robot 4 4 8*2 14
RISC-V 10 4 11*10 144
BLDC 3 6 6*3 33

559Journal of Electronic Testing (2022) 38:547–565

1 3

Resource Utilization: Area power and energy consumed
for the proposed system are compared with results obtained
in [15] for QD and BLDC, the comparison is obtained for
the following works [28, 42] where standard function level
evolution and dynamic partial reconfiguration are utilized
respectively. The area comparison for the proposed and
related is accounted for in terms of the number of LUT, reg-
isters, and FlashROM utilized. The energy and power con-
sumption of the proposed system are estimated by deploying
the hardware module in LiberoSOC 11.8 estimation tools.

Fault Detection Efficiency is calculated by subjecting the
target circuit to simulated faults at the PE level. The stuck-at
0/1 fault and single/multiple bit upset errors are injected in
the selection lines of the multiplexers. The fault detection
rate is estimated by dividing the total number of PE retrieved
from faults after evolution by the number of PE injected with
faults. The convergence rate increases in the repair process
also have to be considered in determining the efficiency of
the evolvable system.

Fault Recovery Rate is the mean time taken by the sys-
tem to repair the faulty state to a non-faulty state, calculated
by the Eqs. 13 and 14, where Taccess+Tfit+TEA is the time
consumed for accessing the training example chromosome,
time for calculating the fitness value and time for computing
genetic operations like selection, mutation, and crossover for
each chromosome, and total recovery time is calculated by
the summation of time taken for each generation.

5 � Results and Discussion

This paper proposes a novel EHW system that incorporates
improvements to the reconfigurable layer and the evolution-
ary algorithm. The deterministic nature of control circuits is
extensively demonstrated with the help of controllers used
in various digital electronics applications, as discussed in
Sects. 3.4.1-3.4.3. The convergence of the proposed Heu-
ristic Guided Genetic Algorithm (HGA) is compared with
the Standard Genetic Algorithm presented in [15] and [42]
for quadrature decoder and brushless DC motor, respec-
tively, in Fig. 13(A) and (B). According to the convergence
graph, if heuristics guides genetic operations, the termina-
tion and healing time in the number of generations is drasti-
cally reduced by 10 and 50 times, respectively. The guided
population initialization and reduced chromosome bits
compared to [15] and [42] has accelerated the convergence
of the proposed HGA, which is essential for self-repairing

(13)T_geni = Pop_size ∗ (Taccess + Tfit + TEA)

(14)Total_time =

Gen
∑

i=0

T_geni

mission-critical components like control circuits. In addition
to the reasons for the accelerated convergence rate, elitism
can also influence convergence, as mentioned earlier. In our
proposed genetic algorithm, elitism is adopted where the
convergence of the current signal is given higher priority
in the evolution process. Although elitism applies selec-
tive pressure to convergence, it cannot guarantee that the
current input signal will evolve before other signals. The
Fig. 13(C) and (D) show the convergence of the navigation
robot and the RISC-V processor to investigate the scalability
of the proposed HGA, which is regarded as a challenge in
the related work. The graph depicts that the fitness value
grows drastically during the initial generation, whereas
once the fitness value reaches close to 0.8, the convergence
becomes slow and reaches a termination when the fitness
value reaches 100%.

Tables 8 and 9 summarise the fault injection profile imple-
mented to study the fault detection efficiency. Two types of
fault injection locations accounting for routing and function-
ality are chosen. The random bits are selected by the fault
injection profile implemented as a module in the Hardware
additional to the EHW system. The fault-free convergence rate
in Tables 8 and 9 denotes the average number of generations
at which the evolution converges when zero error is injected.
Tables 8 and 9 also denote the number of PE affected due to
the faults injected with the minimum, maximum, and aver-
age generation required for mitigating the faults. The results
clearly show that the stuck at 1/0 fault entails a higher conver-
gence rate when compared to a single event upset because the
number of PE under repair increases with the number of bit
interchanges. In QD, for example, the stuck at 0, and 1 fault
results in errors at 2 and 5 programming elements, account-
ing for 50% of the total functional evolution layer, whereas a
single event upset fault results in faults at two programming
elements, accounting for 16%. The faults in the input selection
line drastically increase the faulty PE because the fault in the
input level can propagate the error and increase the repair at
the PE selected at each column, thereby initiating the routing
error. The function selection line fault may not directly influ-
ence the faulty PE rate, but the final control signal and next
state are altered, which can affect the functionality of the con-
trol circuit. Thus, routing and function level faults can directly
influence the control circuit’s operation. The proposed EHW
system can detect and correct errors for all types of errors
tabulated in Tables 8 and 9.

The resource cost analysis of three implementations is
presented in Table 10. The proposed optimized function
level evolution is compared with standard VRC conducted
entirely at the hardware level. The analysis shows that the
hardware utilization of registers, LUTs, and FlashROM is
relatively higher when standard VRC is followed because of
the increase in the multiplexer at each PE level. The increase
in multiplexer can increase the selection line and the

560 Journal of Electronic Testing (2022) 38:547–565

1 3

complexity of each PE, which is an essential factor in decid-
ing the chromosome length stored in Flash-ROM. In our
proposed EHW system, the GA module is written in HDL
and implemented as a digital circuit. This implementation
is compared with the hardware/software implementation of
the GA module, where the modules in the genetic algorithm
are written in c script and hosted on the M1A3PE3000. This
FPGA is a variant of the A3PE3000 with the availability
of an ARM cortex processor. The control circuit for fault
recovery is implemented using standard VRC. Since the pro-
cessor is utilized in the evolution, the number of registers
for holding the chromosome for genetic operations is less
when compared to hardware evolution. The processor com-
municates with the AXI bus operating at 350 Mhz to send
the evolved chromosome to standard VRC.

The box plot graph of execution time shown in Fig. 14
depicts the total execution time for self-repairing the control
circuit. The values depicted in the graph are calculated by
the Eqs. (13) and (14) for 30 runs. The red box and blue box
denote the fault recovery time of the Complete Hardware
Evolution (CHE) and hybrid evolution of respective control
circuits. The figure demonstrates that the fault recovery time
of intrinsic(CHE) is 30% × faster than the hybrid evolution
on average. The speed acceleration of complete hardware
evolution is possible because the GA module requires fewer
clock cycles to communicate the evolved chromosome to the
target circuit than hybrid evolution. The usage of the AXI
bus to transfer the evolved circuit has an operation limita-
tion of 250 MHz. The inherent parallelism of the FPGA
facilitates the high-speed operation of genetic operations

B)A)

C) D)

Fig. 13   Convergence comparison of proposed HGA and SGA

561Journal of Electronic Testing (2022) 38:547–565

1 3

Ta
bl

e 
8  

C
om

pa
ris

on
 o

f F
au

lt
de

te
ct

io
n

effi
ci

en
cy

 w
ith

 c
on

ve
rg

en
ce

 ra
te

 fo
r S

EU
 a

nd
 M

B
U

Fa
ul

t L
oc

at
io

n
C

on
tro

l c
irc

ui
t

Fa
ul

t-F
re

e

C
on

ve
rg

en
ce

R

at
e

SE
U

M
B

U

PE

 in
je

ct
ed

w

ith
 F

au
lt

M
in

 G
en

er
at

io
n

M
ax

 G
en

er
at

io
n

A
ve

ra
ge

G

en
er

at
io

n

PE
 in

je
ct

ed

w
ith

 F
au

lt
M

in
 G

en
er

at
io

n
M

ax

G
en

er
at

io
n

A
ve

ra
ge

G

en
er

at
io

n

In
pu

t S
el

ec
t L

in
e

Q
D

12
0

2
11

1
18

3
14

7
5

93
23

3
16

3
B

LD
C

29
2

4
20

7
41

9
31

3
7

10
8

23
4

36
1

N
R

74
2

28
14

6
87

4
32

23
5

93
R

IS
C

-V
87

6
8

34
5

13
39

84
2

7
23

4
23

6
89

6
Fu

nc
tio

n
Se

le
ct

 L
in

e
Q

D
12

0
3

87
17

5
13

1
5

47
24

7
14

7
B

LD
C

29
2

3
11

2
54

2
32

7
8

12
7

60
5

36
6

N
R

74
2

31
15

3
92

3
54

19
8

12
6

R
IS

C
-V

87
6

11
23

6
14

26
83

1
9

36
8

15
14

94
1

Ta
bl

e  
9  

C
om

pa
ris

on
 o

f F
au

lt
de

te
ct

io
n

effi
ci

en
cy

 w
ith

 c
on

ve
rg

en
ce

 ra
te

 fo
r s

tu
ck

-a
t f

au
lts

Fa
ul

t L
oc

at
io

n
C

on
tro

l c
irc

ui
t

Fa
ul

t-F
re

e

C
on

ve
rg

en
ce

R

at
e

St
uc

k-
at

-0
St

uc
k-

at
-1

PE

 in
je

ct
ed

w

ith
 F

au
lt

M
in

 G
en

er
at

io
n

M
ax

 G
en

er
at

io
n

A
ve

ra
ge

G

en
er

at
io

n

PE
 in

je
ct

ed

w
ith

 F
au

lt
M

in
 G

en
er

at
io

n
M

ax

G
en

er
at

io
n

A
ve

ra
ge

G

en
er

at
io

n

In
pu

t S
el

ec
t L

in
e

Q
D

12
0

3
12

1
31

1
21

6
4

11
2

35
2

23
2

B
LD

C
29

2
8

10
1

60
3

35
2

11
14

5
54

5
34

5
N

R
74

6
37

16
9

10
3

7
31

15
9

95
R

IS
C

-V
87

6
11

57
8

23
56

14
67

9
34

5
21

19
12

32
Fu

nc
tio

n
Se

le
ct

 L
in

e
Q

D
12

0
2

76
28

6
18

1
5

49
25

5
15

2
B

LD
C

29
2

9
15

6
66

8
41

2
12

11
2

58
0

34
6

N
R

74
6

51
19

1
12

1
8

45
17

9
11

2

562 Journal of Electronic Testing (2022) 38:547–565

1 3

when deployed as a digital circuit. As a result of the above
analysis, complete hardware evolution accelerates the evolu-
tion process compared to extrinsic and hybrid evolution with
a limited increase in register utilization. However, hybrid

evolution is more suitable than hardware implementation for
applications where flexibility is mandatory for the genetic
algorithm.

The fault tolerance or the convergence of the proposed
EHW system was not achievable when faults in the PE of the
first column of the optimized FE array were more significant
than 75% of the PE in this column. The main reason for this
non-convergence scenario is that when more than 75% of
PEs are affected due to fault injection in the first column, the
propagation of all three input signals is not ensured. Due to
this, the fault-free circuit will not evolve. This situation has
not occurred in our 30 trials of experimentation, whereas it
was identified during theoretical analysis. The other limita-
tion of the EHW system is that when a genetic algorithm is
implemented as a digital circuit on the same FPGA, there are
chances for faults to occur in the genetic algorithm, which
can mislead the mitigation process. In our future work, addi-
tional responsibilities will be to protect both the target circuit
and the implemented genetic algorithm using redundancy
methods.Fig. 14   Execution time for self-repairing the control circuits

Table 10   Resource utilization of control circuit profile

Application Resource Available Complete Hardware Evolution
using Optimized FE

Complete Hardware
Evolution using Standard
VRC

Hybrid Evolution
in Microprocessor
(M1A3PE3000) using
Standard VRC

Usage Utilization% Usage Utilization% Usage Utilization %

Quadrature Decoder Register 7890 78 0.988 85 1.07 56 0.70
LUT 75264 6 0.729 10 0.78 10 1.3
BRAM 112 0 0 0 0 0 0
FlashROM 1024 490 47.8 674 65 576 56.2
IO 620 9 1.4 9 1.4 19 3.0
Clock processor 667 - - - - 667 NA

Brushless Dc Motor Register 7890 87 1.11 102 1.29 69 0.87
LUT 75264 16 0.212 23 0.305 18 0.2
BRAM 112 0 0 0 0 0 0
FlashROM 1024 524 51 654 638 789 77
IO 620 17 2.7 17 2.7 21 3.39
Clock processor 667 - 667 -

Navigation Robot Register 7890 45 0.57 59 0.74 32 0.40
LUT 75264 4 0.5314 6 0.5123 8 0.7890
BRAM 112 0 0 0 0 0 0
FlashROM 1024 123 12.0 345 33.6 415 40.5
IO 620 6 0.96 6 0.96 10 1.61
Clock processor 667 - - 667 -

RISC-V Processor Register 7890 678 8.59 750 9.50 560 7.09
LUT 75264 121 0.16 104 0.158 98 0.132
BRAM 112 0 0 0 0 0 0
FlashROM 1024 780 76.1 970 94 813 67
IO 620 45 7.2 45 7.2 56 9.0
Clock processor 667 - - - - 667 -

563Journal of Electronic Testing (2022) 38:547–565

1 3

6 � Conclusion

Self-healing electronics are the need of the hour as the require-
ment for FPGA usage in critical systems increases. The faults
in these critical systems’ components must be detected and
mitigated expeditiously. The traditional methods like TMR and
hamming distance provide the system with reliability but with
an increase in area and delay. Hence, in our work, we have
imitated bio-organisms capability of positioning faults and
removing them using evolvable Hardware. The proposed EHW
system is a complete hardware-level evolution in which the
genetic algorithm is deployed on the same FPGA and the target
control circuit. This intrinsic implementation of the algorithm
has contributed to accelerating the execution time of fault
repair on an average by 30% when compared to hybrid or SoC-
based evolution. In addition, the standard genetic algorithm has
been modified by applying heuristics from the behavior model
(state transition table) to reduce the convergence of the healing
process in terms of the number of generations. As a result, the
number of generations is reduced by 47% on average compared
to the current work. The resource utilization in terms of the
number of LUTs has decreased by 7.5 × compared to standard
VRC when the proposed optimized functional evolution is uti-
lized. The above results demonstrate that the proposed EHW
system can absolutely mitigate the faults occurring in the con-
trol circuit. In future work, the proposed EHW system’s scal-
ability must experiment with multiple complex control circuits
in addition to the RISC-V processor discussed. The memory
occupancy to store the training example for fitness calculation
in FlashROM is high compared to hybrid evolution. Our future
work will investigate alternative efficient measures for storing
the training example.

Data Availability  Data sharing does not apply to this article as no data
sets were generated or analyzed during the current study.

Declarations 

Conflict of Interest/Competing Interest  The authors have no conflicts
of interest to declare relevant to this article’s content.

References

	 1.	 Álvarez I, Proenza J, Barranco M, Knezic M (2017) Towards a
time redundancy mechanism for critical frames in time-sensitive
networking. In: Proc. 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pp 1–4.
https://​doi.​org/​10.​1109/​ETFA.​2017.​82477​21

	 2.	 Asselmeyer T, Ebeling W, Rosé H (1997) Evolutionary strategies
of optimization. Phys Rev E 56:1171–1180. https://​doi.​org/​10.​
1103/​PhysR​evE.​56.​1171

	 3.	 Bergmann NW, Sutton PR (1998) A high-performance computing
module for a low earth orbit satellite using reconfigurable logic.

In: Proc. International Workshop on Field Programmable Logic
and Applications, Springer, pp 416–420

	 4.	 Bouhali M, Shamani F, Dahmane ZE, Belaidi A, Nurmi J (2017)
FPGA applications in unmanned aerial vehicles-a review. In: Proc.
International Symposium on Applied Reconfigurable Computing,
Springer, pp 217–228

	 5.	 Carmichael C, Fuller E, Blain P, Caffrey M (1999) SEU mitigation
techniques for virtex FPGAs in space applications. In: Proceed-
ing of the Military and Aerospace Programmable Logic Devices
International Conference (MAPLD), p C2

	 6.	 Das S, Tokunaga C, Pant S, Ma WH, Kalaiselvan S, Lai K, Bull
DM, Blaauw DT (2008) Razorii: In situ error detection and cor-
rection for PVT and SER tolerance. IEEE J Solid-State Circuits
44(1):32–48

	 7.	 El-Maleh AH, Al-Qahtani AS (2014) A finite state machine based
fault tolerance technique for sequential circuits. Microelectron
Reliab 54(3):654–661

	 8.	 Garnica O, Glette K, Torresen J (2018) Comparing three online
evolvable hardware implementations of a classification system.
Genet Program Evolvable Mach 19(1):211–234

	 9.	 Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73
	10.	 Keymeulen D, Zebulum RS, Jin Y, Stoica A (2000) Fault-tolerant

evolvable hardware using field-programmable transistor arrays.
IEEE Trans Reliab 49(3):305–316

	11.	 Koza JR, Bennett FH, Andre D, Keane MA, Dunlap F (1997)
Automated synthesis of analog electrical circuits by means of
genetic programming. IEEE Trans Evol Comput 1(2):109–128

	12.	 Kumar U, Umashankar B (2007) Improved Hamming code for
error detection and correction. In: Proc/ 2nd International Sym-
posium on Wireless Pervasive Computing, IEEE

	13.	 Langeheine J, Becker J, Folling S, Meier K, Schemmel J (2001)
A CMOS FPGA chip for intrinsic hardware evolution of analog
electronic circuits. In: Proceedings Third NASA/DoD Workshop
on Evolvable Hardware. EH-2001, IEEE, pp 172–175

	14.	 Lohn J, Larchev G, DeMara R (2003a) A genetic representation
for evolutionary fault recovery in virtex FPGAs. In: Tyrrell AM,
Haddow PC, Torresen J (eds) Evolvable Systems: From Biology to
Hardware, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 47–56

	15.	 Lohn J, Larchev G, DeMara R (2003b) A genetic representation
for evolutionary fault recovery in virtex FPGAs. In: Proc. Inter-
national Conference on Evolvable Systems, Springer, pp 47–56

	16.	 Ma X, Sun H, Xu E, Cui S, Yin B, Faied M (2020) FSM for robot
target search and retrieval under semi-constructed environment.
In: Proc. IEEE International Conference on Mechatronics and
Automation (ICMA), pp 296–301

	17.	 Miller JF (1999) An empirical study of the efficiency of learn-
ing Boolean functions using a cartesian genetic programming
approach. In: Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation - Volume 2, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, GECCO’99, p
1135–1142

	18.	 Ortega-Sánchez C, Tyrrell A (1998) Muxtree revisited: Embryon-
ics as a reconfiguration strategy in fault-tolerant processor arrays.
In: Sipper M, Mange D, Pérez-Uribe A (eds) Evolvable Systems:
From Biology to Hardware. Springer, Berlin Heidelberg, Berlin,
Heidelberg, pp 206–217

	19.	 Pratt B, Caffrey M, Carroll JF, Graham P, Morgan K, Wirthlin M
(2008) Fine-grain SEU mitigation for FPGAs using partial TMR.
IEEE Trans Nucl Sci 55(4):2274–2280

	20.	 Pratt B, Caffrey M, Graham P, Morgan K, Wirthlin M (2006)
Improving FPGA design robustness with partial TMR. In: IEEE
International Reliability Physics Symposium Proceedings, pp
226–232. https://​doi.​org/​10.​1109/​RELPHY.​2006.​251221

	21.	 Rochet R, Leveugle R, Saucier G (1993) Analysis and compari-
son of fault tolerant FSM architecture based on SEC codes. In:

564 Journal of Electronic Testing (2022) 38:547–565

https://doi.org/10.1109/ETFA.2017.8247721
https://doi.org/10.1103/PhysRevE.56.1171
https://doi.org/10.1103/PhysRevE.56.1171
https://doi.org/10.1109/RELPHY.2006.251221

1 3

Proceedings of IEEE International Workshop on Defect and Fault
Tolerance in VLSI Systems, pp 9–16

	22.	 Ruano O, Maestro JA, Reviriego P (2009) A methodology for
automatic insertion of selective TMR in digital circuits affected
by SEUs. IEEE Trans Nucl Sci 56(4):2091–2102. https://​doi.​org/​
10.​1109/​TNS.​2009.​20145​63

	23.	 Sekanina L (2003) Virtual reconfigurable circuits for real-world
applications of evolvable hardware. In: Proc. International Confer-
ence on Evolvable Systems, Springer, pp 186–197

	24.	 Sekanina L, Drábek V (2000) The concept of pseudo evolvable
hardware. IFAC Proceedings Volumes 33(1):117–122

	25.	 Silva GNP, de Oliveira Duarte R (2018) Towards evolvable hard-
ware and genetic algorithm operators to fail safe systems achieve-
ment. In: Proc. IEEE 19th Latin-American Test Symposium
(LATS), pp 1–4

	26.	 Silva GNP, Duarte RO (2018) Towards evolvable hardware and
genetic algorithm operators to fail safe systems achievement. In:
Proc. IEEE 19th Latin-American Test Symposium (LATS), pp 1–4

	27.	 Skorobogatov S, Woods C (2012) Breakthrough silicon scanning
discovers backdoor in military chip. In: Prouff E, Schaumont P
(eds) Cryptographic Hardware and Embedded Systems - CHES
2012. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 23–40

	28.	 Srivastava AK, Gupta A, Chaturvedi S, Rastogi V (2014) Design
and simulation of virtual reconfigurable circuit for a fault tolerant
system. In: Proc. International Conference on Recent Advances
and Innovations in Engineering (ICRAIE-2014) pp 1–4

	29.	 Stomeo E, Kalganova T, Lambert C (2006) Generalized disjunc-
tion decomposition for the evolution of programmable logic array
structures. In: Proc. First NASA/ESA Conference on Adaptive
Hardware and Systems (AHS’06), IEEE, pp 179–185

	30.	 Suhas S, Malhotra G, Rajini VH (2021) HsClone genetic algo-
rithm implementation on a combinational circuit. IETE J Res pp
1–9

	31.	 Thompson A (1995) Evolving fault tolerant systems. In: Proc.
First International Conference on Genetic Algorithms in Engi-
neering Systems: Innovations and Applications, IET, pp 524–529

	32.	 Thompson A, Harvey I, Husbands P (1996) Unconstrained evo-
lution and hard consequences. In: Towards evolvable hardware,
Springer, pp 136–165

	33.	 Thompson A, Layzell P, Zebulum RS (1999) Explorations in
design space: Unconventional electronics design through artificial
evolution. IEEE Trans Evol Comput 3(3):167–196

	34.	 Tufte G, Haddow PC (2000) Evolving an adaptive digital filter.
In: Proc. Second NASA/DoD Workshop on Evolvable Hardware,
IEEE, pp 143–150

	35.	 Tyrrell AM, Hollingworth G, Smith SL (2001) Evolutionary strat-
egies and intrinsic fault tolerance. In: Proceedings Third NASA/
DoD Workshop on Evolvable Hardware. EH-2001, IEEE, pp
98–106

	36.	 Vasantha Rani SPJ, Ranjith NA (2020) Performance analysis of
intrinsic embedded evolvable hardware using memetic and genetic
algorithms. Int J Bio Inspir Com 15:43–51

	37.	 Wang JJ (2003) Radiation effects in FPGAs. https://​doi.​org/​10.​
5170/​CERN-​2003-​006.​34

	38.	 Wang J, Kang J, Hou G (2019) Real-time fault repair scheme
based on improved genetic algorithm. IEEE Access 7:35805–
35815. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29050​42

	39.	 Wang J, Liu J (2017) Fault-tolerant strategy for real-time sys-
tem based on evolvable hardware. J Circuits Syst Comput
26(07):1750111

	40.	 Zhang J, yan Cai J, Meng Y, Meng T (2020) A novel self-adaptive
circuit design technique based on evolvable hardware. Int J Autom
Comput pp 1–8

	41.	 Zhang W, Li Y, He G (2007) Intrinsic evolution of frequency split-
ter with a new analog EHW platform. In: Proc. International Sym-
posium on Intelligence Computation and Applications, Springer,
pp 611–620

	42.	 Zhu P, Yao R, Du J (2017) Design of self-repairing control cir-
cuit for brushless DC motor based on evolvable hardware. In:
Proc. NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), IEEE, pp 214–220

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

S Deepanjali  has obtained her B.Tech. from RMK Engineering
College, Anna University, Chennai, M.Tech. from SSN College of
Engineering. She is currently pursuing her PhD at the department of
Computer Science and Engineering, Indian Institute of Information
Technology Design and Manufacturing Kancheepuram. Her research
interest is Evolvable hardware and fault Tolerant computing.

Noor Mahammad Sk  has obtained his PhD from Indian Institute of
Technology Madras. He is currently working as Associate professor in
the department of Computer Science and Engineering, Indian Institute
of Information Technology Design and Manufacturing, Kancheepuram,
Chennai. His research interest are evolvable hardware and reconfigur-
able computing.

565Journal of Electronic Testing (2022) 38:547–565

https://doi.org/10.1109/TNS.2009.2014563
https://doi.org/10.1109/TNS.2009.2014563
https://doi.org/10.5170/CERN-2003-006.34
https://doi.org/10.5170/CERN-2003-006.34
https://doi.org/10.1109/ACCESS.2019.2905042

	Self Healing Controllers to Mitigate SEU in the Control Path of FPGA Based System: A Complete Intrinsic Evolutionary Approach
	Abstract
	1 Introduction
	1.1 Contribution of this Paper

	2 Background
	2.1 Reconfigurable Hardware
	2.2 Evolutionary Algorithm
	2.3 Related Work

	3 Proposed Intrinsic Evolvable Hardware System
	3.1 Optimized Function Level Representation of Control Circuit
	3.1.1 Example

	3.2 Error Detection Circuit
	3.3 Heuristics-guided GA Module
	3.3.1 Population Initialization
	3.3.2 Fitness Calculation
	3.3.3 Genetic Operators
	3.3.4 Example: A Genetic Evolution of Brushless DC Motor

	3.4 Applications: Intrinsic EHW System for Control Circuit
	3.4.1 Control Circuit of Quadrature Decoder
	3.4.2 Control Circuit of Robotic Straight Line Navigation
	3.4.3 Control Circuit of RISC-V Processor

	4 Implementation Methodology
	5 Results and Discussion
	6 Conclusion
	References

