
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-022-06028-5

AFIA: ATPG‑Guided Fault Injection Attack on Secure Logic Locking

Yadi Zhong1  · Ayush Jain1 · M. Tanjidur Rahman2 · Navid Asadizanjani2 · Jiafeng Xie3 · Ujjwal Guin1

Received: 10 June 2022 / Accepted: 3 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The outsourcing of the design and manufacturing of integrated circuits has raised severe concerns about the piracy of
Intellectual Properties and illegal overproduction. Logic locking has emerged as an obfuscation technique to protect
outsourced chip designs, where the circuit netlist is locked and can only be functional once a secure key is programmed.
However, Boolean Satisfiability-based attacks have shown to break logic locking, simultaneously motivating researchers
to develop more secure countermeasures. In this paper, we present a novel fault injection-based attack to break any lock-
ing technique that relies on a stored secret key, and denote this attack as AFIA, ATPG-guided Fault Injection Attack. The
proposed attack is based on sensitizing a key bit to the primary output while injecting faults at a few other key lines that
block the propagation of the targeted key bit. AFIA is very effective in determining a key bit as there exists a stuck-at fault
pattern that detects a stuck-at 1 (or stuck-at 0) fault at any key line. The average complexity of the number of injected faults
for AFIA is linear with the key size K and requires only K test patterns to determine a secret key K. AFIA requires fewer
injected faults to sensitize a bit to the primary output, compared to 2K − 1 faults for the differential fault analysis attack
illustrated in our previous work.

Keywords  Logic locking · Differential fault analysis · Fault injection · IP Piracy · IC overproduction

1  Introduction

Over the last few decades, the impact of globalization has
transformed the integrated circuit (IC) manufacturing and
testing industry from vertical to horizontal integration. The
continuous trend of device scaling has enabled the designer
to incorporate more functionality in a system-on-chip (SoC)
by adopting lower technology nodes to increase performance
and reduce the overall area and cost of a system. Currently,
most SoC design companies or design houses no longer
manufacture chips and maintain a foundry (fab) of their
own. This is largely due to the increased complexity in the
fabrication process as new technology development is being
adopted. The cost for building and maintaining such found-
ries is estimated to be a multi-million dollar investment [99].
As modern integrated circuits (ICs) are becoming more
complex, parts of the design are reused instead of designing
the whole from scratch. As a result, the design house inte-
grates intellectual properties (IP) obtained from different
third-party IP vendors and outsources the manufacturing to
an offshore foundry. Due to this distributed design and man-
ufacturing flow, which includes designing SoCs using third-
party IPs, manufacturing, testing, and distribution of chips,

Responsible Editor: N, Karimi

 *	 Ujjwal Guin
	 ujjwal.guin@auburn.edu

	 Yadi Zhong
	 yadi@auburn.edu

	 Ayush Jain
	 ayush.jain@auburn.edu

	 M. Tanjidur Rahman
	 mir.rahman@ufl.edu

	 Navid Asadizanjani
	 nasadi@ufl.edu

	 Jiafeng Xie
	 jiafeng.xie@villanova.edu

1	 Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL 36849, USA

2	 Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611, USA

3	 Electrical and Computer Engineering, Villanova University,
Villanova, PA 19085, USA

/ Published online: 3 November 2022

Journal of Electronic Testing (2022) 38:527–546

http://orcid.org/0000-0002-6307-8273
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06028-5&domain=pdf

1 3

various threats have emerged in recent years [1, 17, 85]. The
research community has also been extensively involved in
proposing countermeasures against these threats [19, 29, 35,
36, 49, 55, 59].

Logic locking has emerged as the most prominent method
to address the threats from untrusted manufacturing [1, 18,
43, 59]. In logic locking, the netlist of a circuit is locked with
a secret key so that the circuit produces incorrect results in
regular operation unless the same key is programmed into
the chip. Figure 1a shows an abstract view of logic locking
where the key is stored in a tamper-proof memory and is
applied to the locked circuit to unlock its functionality. The
key needs to be kept secret, and care must be taken during
the design process so that this secret key is not leaked to
the primary output directly during the operation. The com-
mon logic locking techniques insert additional logic ele-
ments like XOR gates [59], multiplexers (MUXs) [56], and
look-up tables (LUTs) [11] to lock the circuit functionality,
and are shown in Fig. 1b. A SAT attack, by Subramanyan et
al. [81], was among the first to efficiently attack a range
of locking schemes. With this SAT analysis, the key of a
locked circuit is determined in a short period of time. The
SAT attack requires the locked netlist, recovered through
reverse engineering, and a functional working chip. Since
then, several SAT-resistant locking techniques have emerged
[7, 31, 37, 38, 50, 58, 66, 72, 82, 90, 92, 93, 98] and many of
them were broken soon after they have been proposed [23,
24, 26, 39, 40, 44, 51, 71, 103]. The majority of the research
has been directed towards SAT attack resiliency. However,
can we reliably state that a logic locking technique is com-
pletely secure even if we achieve complete SAT resistivity?

An untrusted foundry can be treated as an adversary as logic
locking is proposed to protect designs from untrusted manu-
facturing. The adversary has many more effective means to
determine the secret key without performing SAT analysis.
A few of these attacks can be in the form of probing [53, 54],
inserting a hardware Trojan in the design [34], and analyzing
the circuit topology [76, 101, 102]. Countermeasures are
also developed to partially prevent these attacks [3, 39, 75,
77, 89, 100–102].

Unlike cryptosystems, not all input patterns for a locked
circuit are valid for propagating the incorrect key values to
the primary outputs. Instead, only a few patterns may exist
to carry the values of key bits to the output, similar to the
identification of hard-to-detect faults. This is especially true
for Post-SAT solutions [68, 70, 94, 96, 98], where they mini-
mize the output corruptibility for incorrect keys. For logic
locking, some key bits can block the propagation of the tar-
get key bit, i.e. SLL [55] and Post-SAT designs. This is dif-
ferent from the fault injection attack in cryptography, where
an entirely new output can be observed under any input pat-
tern even though there is a single bit change in the key as
the plaintext goes through many transformations (e.g., Shift
Rows, Mix Columns and key addition for AES) [13, 25,
45]. It is trivial for a cryptosystem to change one key bit and
apply a random pattern. Unfortunately, this is not the case
for a circuit locked with a secret key. It is hard to observe the
output change with the change of a single key bit by applying
a random pattern. The novelty of this paper is that we apply
the methodology in ATPG to efficiently derive the desired
input pattern, which guarantees the change in output under
different keys and helps launch the fault injection attack.

This paper shows how an adversary can extract the
secret key from a locked netlist, even if all the existing
countermeasures are in place. An adversary can determine
the secret key by injecting faults at the key registers [53,
54], which hold the key value during normal operation,
and performing differential fault analysis. In this paper,
we present AFIA, key sensitization-based ATPG-guided
Fault Injection Attack, to break any locking scheme. The
entire process can be performed in three steps. First, we
process the locked netlist and converted it into a directed
graph to extract all logic cones and construct a key-cone
association matrix that records the distribution of keys
among different cones. This structural analysis facilitates
total fault reduction for subsequent test pattern genera-
tion. Second, it is necessary to select an input pattern that
produces an incorrect response for the target key bit only
while keeping its dependent keys at faulty states. This can
be achieved by using a constrained automatic test pattern
generation (ATPG) [15] to generate such a test pattern,
which is widely popular for testing VLSI circuits. It is a
simple yet effective way to determine a 1-bit key by gener-
ating a test pattern that can detect the stuck-at fault (saf) at

Tamper-proof Memory

Locked Circuit
Primary

Inputs

Primary

Outputs

Key (Secret)

a
b y

a
b

y

Memory

a
b y

Memory

1

0

a
b

y

Memory

(a)

(b)
k

k

k1 k2 k3 k4

G1

G1G1

Gk

G3

G3G3

G3

G2

G2

G1G1

G2

Fig. 1   Logic Locking: a An abstract view of the logic locking. b Dif-
ferent types of logic locking techniques with XOR/XNOR, MUX and
LUT

528 Journal of Electronic Testing (2022) 38:527–546

1 3

the target key (corresponds to that key bit) while keeping
its dependent keys at logic 1 (or logic 0). Dependencies
are often inserted [97] to prevent direct sensitization of a
key bit to the output by test patterns due to other key lines
blocking its path. In our proposed approach, the pattern
which detects a stuck-at 1 (sa1) fault at one key line with
logical constraints for the recovered key lines is sufficient
to determine that key bit. One can also use stuck-at 0 (sa0)
fault to derive such pattern. Note that the fault-free and
faulty responses are always the complements under the
test pattern that detects that fault, which helps to derive
the key bit value. The same process needs to be applied
for other key bits to generate such input patterns, and this
results in most K patterns for determining the entire key
of size K . Note that one test pattern can detect multiple
key bits when they are placed in different logic cones (no
dependencies). Third, we apply these test patterns to only
one instance of unlocked chip obtained from the market
and collect the responses. Faults can be injected at the
blocking key registers using laser fault injection equipment
(see Sect. 5.1 for details) and obtain the key value by com-
paring the output responses with test patterns’ generated
by constrained ATPG. This is a significant improvement
compared to our previous conference paper [33] where
differential fault analysis requires injection of faults twice.

The contributions of this paper are described as follows:

–	 We propose a novel attack to break secure logic lock-
ing techniques using fault injection-based method. The
basic idea behind the attack is the availability of an input
pattern that sensitizes a key bit to the primary output. If
there are interdependencies among keys, fault injection
is necessary only for the dependent key bits in order to
propagate the desired ones to the output. Multiple key
bits can be sensitized to the outputs if they are placed
in different logic cones during locking. To the best of
our knowledge, we are the first to demonstrate that the
stuck-at fault patterns can be used to determine the
secret key of a locked circuit with fault injections on
interdependent keys.

–	 The proposed attack can be launched very efficiently
with the minimum number of injected faults. It is neces-
sary to inject faults only to ensure the proper key prop-
agation, whereas our prior work [33] requires 2K − 1
faults ( K − 1 faults for CA and K faults for CF ) to deter-
mine one key bit. In addition, our proposed cone analysis
approach can find key bits which are located in different
cones in parallel. As fault injection is an expensive pro-
cess, we propose to generate test patterns that reduce the
number of injected faults. Each key bit is targeted one at
a time to minimize the number of faults. Note that fault
injection is necessary when a group of key bits blocks
the propagation of a targeted key bit to the output.

–	 We demonstrate the feasibility of our proposed fault
injection attack using Hamamatsu PHEMOS-1000, a
laser fault injection equipment, on a Kintex-7 FPGA [95].
We have performed extensive simulations on different
benchmarks with secure locking techniques. Constrained
ATPG using the Synopsys TetraMAX tool [84] is used to
generate test patterns to simulate the attack. The simu-
lation result shows a significant reduction of total fault
count for AFIA compared to DFA [33] in breaking the
same locked benchmark.

The rest of the paper is organized as follows: An overview of
different logic locking techniques and existing attacks along
with fault injection techniques is provided in Sect. 2. We
describe our previously published attack [33] in Sect. 3. The
proposed attack and its methodology to extract the secret key
from any locked circuit are described in Sect. 4. We present
the results for the implementation of the proposed attack on
different locked benchmark circuits in Sect. 5. Finally, we
conclude our paper in Sect. 7.

2 � Prior Work

The prior work related to logic locking and fault injection
techniques is described in this section.

2.1 � Logic Locking

As mentioned in Section 1, the objective of logic locking
is to obfuscate the functionality of the original circuit by
inserting a lock (secret key). The key-dependent circuit
makes it difficult for the adversary to pirate or analyze
the original circuit directly. In this context, various tra-
ditional logic locking techniques were based on different
location selection algorithms for key gate placement, such
as random (RLL) [60], fault analysis-based (FLL) [55],
and strong interference-based logic locking (SLL) [56].
To demonstrate the capabilities of an adversary, Sub-
ramanyan et al. [81] developed a technique using Boolean
Satisfiability (SAT) analysis to obtain the secret key from
a locked chip. This oracle-guided SAT attack iteratively
rules out incorrect key values from the key space by using
distinguishing input patterns and the corresponding oracle
responses.

In post-SAT era, resiliency against the SAT attack became
one of the crucial metrics to demonstrate the effectiveness
of newly proposed schemes [40]. Sengupta et al. proposed
stuck-at-fault based stripping of original netlist and recon-
struction to form the locked netlist, where incorrect results
are produced only for chosen input patterns [66, 98]. Simul-
taneously, researchers have adopted a different direction to
tackle the SAT attack, including restricting access to the

529Journal of Electronic Testing (2022) 38:527–546

1 3

internal states of a circuit through scan-chains. Guin et al.
proposed a design that prevents scanning out the internal
states of a design after a chip is activated and the keys are
programmed/stored in the circuit [30, 31]. The concept of
scan locking gained significant interest from the research-
ers, which led to the development of various scan-chain-
based locking schemes [41, 51, 90]. Alrahis et al. attack
scan-chain-based locking schemes by unrolling the sequen-
tial circuit to a combinational one, which is then provided
to the SAT solver to extract the secret key [4]. Sisejkovic
et al. [77] proposed an oracle-less structural analysis attack
on MUX-based (SAAM) logic locking to exploit insertion
flaws in MUX-based key gates. Deceptive multiplexer-based
(D-MUX) logic locking is proposed to achieve functional
secrecy [73] against both SAAM and oracle-less machine
learning-based attacks. As combinational feedback loops are
not translatable to SAT problems, cyclic-based locking [58]
is resistant to the initial SAT attack [81]. In addition, there
has been extensive efforts in the proposal of non-functional
logic locking techniques, such as scan-chain-based [6, 51],
timing-based locking [7, 50, 82, 93], and routing-based
locking [37–39].

As the research community explores new directions to
understand an attacker’s latent qualities, new attacks on
logic locking have been proposed. An adversary may per-
form direct or indirect probing on the key interconnects or
registers [54]. An attacker is not required to understand
the complete functionality of the circuit to perform these
attacks. In this, Rahman et al. demonstrated how an attacker
could target the key registers and perform optical probing
to gain knowledge regarding the fixed value for those regis-
ters. Following this, tampering attacks can also become an
attacker’s primary choice. Jain et al. exploited this notion
to extract the secret key by implementing hardware Trojans
inside the locked netlist [34]. Without an oracle, the attribute
of repeated functionality in the circuit can also be used to
compare the locked unit functions and their unlocked ver-
sion to predict the secret key [101]. This makes it necessary
to lock all instances of unit functions in the entire netlist to

achieve a secured logic locking scheme. CLIC-A [23, 24], an
ATPG-based attack, can break keys by applying constraint-
based ATPG to propagate the target key bit to the primary
output but suffers scalability in the dependent key count.
Cyclic-based locking has suffered from modified SAT-based
attack [72], where cyclic-based constraints are placed to
avoid infinite loops. Several non-functional-based locking
can be broken by sequential-based attacks with limited scan
access [26, 40, 44] or SMT attack [5].

2.1.1 � Comparison of AFIA with CLIC‑A [23]

There is a major difference between our proposed AFIA and
CLIC-A. First, the worst-time complexity for test generation
regarding the total test pattern count for solving the key-
dependent faults between AFIA and CLIC-A differs signifi-
cantly. Our worst-case complexity of solving an n-bit key of
non-mutable convergent key gates inside a single logic cone
is at most n test patterns with n⋅(n−1)

2
 injected faults (see Theo-

rem 3). This is because AFIA determines each key bit by
directly comparing the output response with the generated
test pattern. On the other hand, CLIC-A applies constraint-
based ATPG by assigning constraint on the (n − 1)-bit key
and setting a stuck-at 0 at the target key line since placing
don’t cares (X) on other key bits will not produce the desired
test patterns for non-mutable convergent key gates. However,
the simulated output from the constraint-based ATPG likely
agrees with the oracle simulation under the same test pattern
hardness of logic locking. Note that it does not mean that the
constraints placed on the (n − 1)-bit key is the correct key
values, and it only indicates that, under the particular test
pattern, the output from the netlist with constraints and the
stuck-at fault matches with the oracle output. Instead, CLIC-
A has to perform additional constraints in ATPG and check
the output against the oracle to ensure that key values are
correct. The worst-case complexity in the total test pattern
count for CLIC-A is exponential O(2(n−1)).

Let us consider an example of an unlocked circuit in
Fig. 2a locked with 6 dependent XOR/XNOR key gates, as

x0
x1
x2
x3

y

x0

x1 y

x2

x3
k5

k0
k1

k2

k3

k4

x0

x1 y

x2

x3
k5

k0
k1

k2

k3

k4

sa0
1

0

0

1

1

1

1

1

0

0

1

x0
x1
x2
x3

y1

0

1

0
1

(a) (b) (c) (d)

Fig. 2   The inefficiency of CLIC-A attack. a Original circuit. b Locked circuit with 6 dependent key gates, where correct key {k
0
, ..., k

5
} = {001100} .

c Key assignment and input pattern returned by Constraint-based CLIC-A. d The oracle response y = 1

530 Journal of Electronic Testing (2022) 38:527–546

1 3

shown in Fig. 2, whose correct key {k
0
, ..., k

5
} = {001100} .

As none of the keys can be sensitized to the output without
knowing the correct value for the other five, CLIC-A runs
constraint-based ATPG and sets sa0 to k

0
 . Suppose ATPG

returns a test pattern with key vector {k
0
, ..., k

5
} = {110011}

and input vector {x
0
, ..., x

3
} = {1100} , along with the simu-

lated fault-free output ����-���(x
0
, ..., x

3
, k

0
, ..., k

5
) = 1 ,

as shown in Fig. 2c. Although the output of the simulated
netlist matches with the oracle response y = 1 , the key value
returned by constraint-based ATPG is incorrect. There is no
method for CLIC-A to check whether the key vector is the
actual key other than appending it as a constraint to ATPG
so that the test pattern returned at the next iteration would
be different from the current one. The worst-case complex-
ity for CLIC-A to fully determine the 6-bit key is to iterate
through all possible combinations of the remaining 5-bit key
(excluding k

0
 with sa0), resulting in a 25 test pattern count

to break the locking scheme with dependent keys. On the
other hand, AFIA only requires 6 test patterns to determine
all 6-bit keys, which is much more efficient than CLIC-A.
In summary, test pattern generation for CLIC-A becomes
infeasible if there are a large number of dependent keys in
a logic cone.

2.1.2 � Comparison of AFIA with Key Sensitization
Attack [55]

There is a similarity between our proposed AFIA and sensi-
tization attack [55]. The similarity between these approaches
is the sensitization, i.e., the propagation, of the key to the
output. However, our approach is more general for the fol-
lowing reason. First, the sensitization attack does not need
fault activation as the key gates are XOR/XNOR gates, and
the key can propagate to the key gate output for both input
0 and 1. However, this may not hold for non-XOR-based
locking techniques. For example, MUX-based locking has
keys connected to the input of AND gate instead of the XOR
gate, where one needs to set the other AND input to the non-
controlling value 1 for fault activation. Besides, it is com-
mon practice for recent locking techniques to synthesize the
locked benchmark after key insertion. The synthesis tool can
optimize the key gate with other gate types, which results in
keys directly connected to non-XOR gates like AOI, NAND,
etc. To propagate the key value to the primary output, having
only key sensitization without the activation would not work
for synthesized locked circuits. For example, we can break
SFLL-hd [98], SFLL-flex [98], and SFLL-rem [69] with n
patterns for a n-bit key (see Sect. 4.7), where sensitization
attack requires brute force attack ( O(2n) ) to all the non-
mutable keys in the SFLL restoration circuitry. Second, our
proposed fault injection can break non-mutable convergent
key gates from strong logic locking, which is the counter-
measure proposed in a sensitization attack. AFIA only needs

at most n (see Theorem 1) test patterns for a n-bit pairwise
non-mutable convergent keys, but it would take O(2n) in the
worst case to brute force the correct key under sensitization
attack [55].

2.1.3 � Dissimilarities Between Logic Locking
and Cryptosystems

There has been considerable efforts [12, 98] in the pro-
posal of formal analysis on logic locking through introduc-
ing similar concepts used in cryptography. However, logic
locking techniques differ from various cryptosystems in two
aspects. First, the objective for logic locking and cryptosys-
tem is different. The cryptographic algorithm ensures that
the secret key is fully integrated with the input plaintext
(i.e., the addRoundKey in all ten rounds of AES encryption).
Logic locking, however, focuses on perturbing the output,
commonly by XORing a 1-bit key with a wire in the cir-
cuit, under certain input patterns, where no repeated inser-
tion of the same key bit or its derived value to elsewhere.
Second, the output of a locked circuit and the ciphertext
of a cryptosystem behaves differently under input combina-
tions. A locked circuit under an incorrect key may behave
identically to the oracle (or locked circuit with the correct
key) under multiple input patterns. This is particularly true
for Post-SAT locking solutions, i.e., SARLock [96], Anti-
SAT [94], SFLL [68, 98], CAS-Lock [70], where the output
corruptibility for incorrect keys is reduced to the bare mini-
mum. This means that a locked circuit with an incorrect key
behaves exactly as an unlocked circuit under an exponential
number of input combinations.

The cryptographic algorithms, especially the block
ciphers, are built on confusion and diffusion properties rec-
ommended by Claude Shannon in his classic 1949 paper [74].
This results in a large number of output bit changes in the
output (ciphertext) even for a single bit change in the input
(plaintext) [25, 45]. For example, AES has 10/12/14 rounds
of diffusion and confusion operations depending on the key
size of 128/192/256 bits. It is thus trivial to launch differen-
tial fault analysis as it will guarantee the change in the output,
where one can compare the faulty and fault-free responses by
injecting a fault into a key register, one at a time. On the con-
trary, digital circuits generally do not have repeated layers of
operations like block ciphers. Digital circuits, except crypto
accelerators, are designed to meet the user specification of
speed, power, and area, and the functionality (change in out-
put) depends on the user’s needs. It is well understood and
verified that digital circuits have lots of don’t cares (Xs) in
the inputs. The VLSI test community adopted test compres-
sion [57, 86] to reduce the test pins and resultant test times.
As there exists a large number of Xs in the test pattern, it is
infeasible to apply a random pattern and expect it to propa-
gate the target key bit (e.g., a stuck-at fault at the key line)

531Journal of Electronic Testing (2022) 38:527–546

1 3

to output. For example, if there are 70% Xs in a test pattern
with a 100 input cone [which is very common], the probabil-
ity of a random pattern propagating the key to the output is
2
30
∕2

100
≈ 0 . The effect of some keys in a locked circuit can

even be muted due to the circuit’s structural and functional
behavior [55], which is in direct contrast to cryptosystems,
where every output is influenced by all key bits [45].

2.2 � Fault Injection Methods

Over the years, several threats and methods have emerged
to break a cryptosystem without performing mathemati-
cal analysis or brute force attacks. Using these attacks, an
adversary can subvert the security of protection schemes,
primarily through extracting or estimating the secret key
using physical attacks. Fault injection attacks intentionally
disturb the computation of cryptosystems in order to induce
errors in the output response. To achieve this, external fault
injection is performed through invasive or non-invasive tech-
niques. This is followed by the exploitation of erroneous
output to extract information from the device.

Fault-based analysis on cryptosystems was first presented
theoretically by Boneh et al. on RSA [14]. This contribu-
tion initiated a new research direction to study the effect
of fault attacks on cryptographic devices. The comparison
between the correct and faulty encryption results has been
demonstrated as an effective attack to obtain information
regarding the secret key [22, 42, 47]. These can be realized
into different categories:

•	 Clock Glitch: The devices under attack are supplied with
an altered clock signal which contains a shorter clock
pulse than the normal operating clock pulse. For suc-
cessfully inducing a fault, these clock glitches applied are
much shorter than the circuit’s tolerable variation limit
for the clock pulse. This results in setup time violations
in the circuit and skipping instructions from the correct
order of execution [27, 64].

•	 Power Variation: This technique can be further bifur-
cated into two subcategories: either the malicious entity
may choose to provide a low power supply to the sys-
tem (also abbreviated as underfeeding), or the adversary
may choose to influence the power line with spikes. This
adversely affects the set-up time and influences the nor-
mal execution of operations. The state elements in the
circuit are triggered without the input reaching any sta-
ble value, causing a state transition to skip operations or
altering the sequence of execution [8, 9, 28].

•	 Electromagnetic Pulses/Radiation: The eddy current gen-
erated by an active coil can be used to precisely inject
faults at a specific location in the chip. This method does
not require the chip to be decapsulated in order to inject
the fault. However, the adversary is required to possess

information regarding specific modules and their location
inside the chip [21, 63].

•	 Laser: Fault injection using lasers is also regarded as a
very efficient method because it can precisely induce a
fault at an individual register to change its value [10].
For optical fault injection, the laser can be focused on
a specific region of the chip from the backside or front
side. However, due to the metal layers on the front side,
it is preferred to perform the attack on the backside of the
chip. Skorobogatov and Anderson [80] first demonstrated
the effectiveness of this method by using a flashgun to
inject fault to flip a bit in the SRAM cell. Several other
research groups also utilized and proposed different vari-
ants of this method to study the security of cryptographic
primitives [16, 48, 65, 79].

•	 Focused-ion Beam (FIB): The most effective and expen-
sive fault injection technique is devised with focused ion
beam (FIB) [87]. This method enables cutting/connecting
wires and even operates through various layers of the IC
fabricated in the latest technology nodes [91].

•	 Software Implemented Fault Injection: This technique
produces errors through software that would have been
produced when a fault targeted the hardware. It involves
the modification of programs running on the target sys-
tem to provide the ability to perform the fault injection.
It does not require dedicated complex hardware, a gate-
level netlist, or RTL models that are described in hard-
ware description languages. The faults are injected into
accessible memory cells such as registers and memories
through software that represent the most sensitive zones
of the chip [32, 78, 88].

3 � Background

In this section, we present a differential fault analysis (DFA)
attack introduced in [33]. Our attack method is inspired by
VLSI test pattern generation. One test pattern is able to
detect a single stuck-at fault with the propagation of this
fault to the primary output. Since key values from tamper-
proof non-volatile memory are loaded to key registers, these
registers are the potential locations for stuck-at-faults. With
an active chip at hand, the adversary could target these reg-
isters and extract the secret key.

3.1 � Threat Model

The threat model defines the capabilities of an adversary and
its standing in the IC manufacturing and supply chain. It is
very important to know an attacker’s ability and the available
resources/tools to estimate its potential to launch the attack.
The design house or entity designing the chip is assumed

532 Journal of Electronic Testing (2022) 38:527–546

1 3

to be trusted. The attacker is assumed to be the untrusted
foundry or a reverse engineer having access to the following:

–	 The locked netlist of a circuit. An untrusted foundry
has access to all the layout information, which can be
extracted from the GDSII or OASIS file. Also, this
locked netlist can be reconstructed by reverse engineer-
ing the fabricated chip in a layer-by-layer manner with
advanced technological tools [87].

–	 An unlocked and fully functional chip is accessible to
the adversary since the chip is publicly available from
the market.

–	 A fault injection equipment is essential to launch the
attack. It is not mandatory to use high-end fault injec-
tion equipment. The main operation is to inject faults
at the locations of key registers (all the flip-flops) on a
de-packaged/packaged chip. Precise control is not nec-
essary as we target all the flip-flops simultaneously. An
adversary can also choose the software methods to inject
faults at these flip-flops. Once the register is at the faulty
state, the scan enable (SE) signal needs to be assigned to
put the chip in test mode.

–	 The attacker has the know-how to determine the location
of the tamper-proof memory. Then, it will be trivial for
an adversary to find the location of the key register in a
netlist, as it can easily trace the route from the tamper-
proof memory.

Notations To maintain uniformity across the entire paper,
we represent frequently used terms with the defined nota-
tions, and they will be referred to with these notations in the
following subsections.

–	 K denotes key length or key size, i.e., the number of bits
in the key.

–	 K denotes the keyspace; K = {k
0
, k

1
,… kK−1

}.
–	 The locked netlist of a circuit is abbreviated as CL . The

unlocked and fully functional chip/circuit, whose tamper-
proof memory has been programmed with the correct
key, is denoted by CO . The two versions of fault-injected
circuits are described as follows:

–	 CF represents a locked circuit where all the key lines
( K ) are injected with logic 1 (or logic 0) faults. We
call it the circuit with faulty key registers for differ-
ential fault analysis (DFA).

–	 CA represents the same locked circuit in which
(K − 1) key lines are injected with the same logic 1
(or logic 0) faults, leaving one key line fault-free. We
denote this circuit as a fault-free circuit for DFA.

	  For any given circuit, we assume the primary inputs (PI)
of size |PI|, primary outputs (PO) of size |PO|, and secret

key (K) size of K . We also use key lines or key registers
alternatively throughout this paper as their effects are the
same on a circuit.

–	 Stuck-at fault (saf): For any circuit modeled as a com-
bination of Boolean gates, stuck-at fault is defined by
permanently setting an interconnect to either 1 or 0 in
order to generate a test vector to propagate the fault value
at the output. Each connecting line can have two types
of faults, namely, stuck-at-0 (sa0) and stuck-at-1 (sa1).
Stuck-at faults can be present at the input or output of any
logic gates [15].

–	 Injected fault: A fault is injected at the key register using
a fault injection method (see details in Sect. 2).

Note that saf is an abstract representation of a defect to gen-
erate test patterns, whereas an injected fault is the manifesta-
tion of a faulty logic state due to fault injection.

3.2 � Differential Fault Analysis (DFA) Attack
Methodology

This fault injection attack relies on differential fault analy-
sis. The captured output response of the circuit with faulty
key registers with the corresponding fault-free circuits can
reveal the key. Applying any fault injection methods (see
the details in Sect. 2.2), the attacker can create the faulty
chip/circuit. Figure 3 shows an abstract representation
of DFA. The fault-free circuit ( CA ) is an unlocked chip
( CO ) bought from the market whose key bits need to be
retrieved. Except for the key-bit targeted to be extracted,
all remaining key registers are fixed to a particular faulty
value of either 0 or 1 corresponding to the selected fault.
A circuit with faulty key registers ( CF ) uses the same chip,
and it is injected with a particular fault to keep all the key
registers or interconnects to a faulty value of logic 1 or 0.
One input pattern is first applied to CA , and its response
is collected. The same input pattern is then applied to the

Circuit with

Faulty Key

Registers (CF)

Fault-Free

Circuit (CA)

y0

yn-1

y1

x0x1

xm

Key (K)

k0k1kKK -1

Key (K)

k0k1kKK -1

Fig. 3   The abstract representation of our DFA attack

533Journal of Electronic Testing (2022) 38:527–546

1 3

CF to collect the faulty response. By XORing the corre-
sponding circuit response, any output discrepancy between
fault-free circuit ( CA ) and the circuit with faulty key reg-
isters ( CF ) is revealed. If both the circuits differ in their
responses, the XORed output will be 1; otherwise, it will
be 0. If we find an input pattern that produces a conflicting
result for both CA and CF only for one key bit, the key value
can be predicted. The key value is the same as the injected
fault value if the XORed output is of logic 0; otherwise,
the key value is a complement to the injected fault.

The attack can be described as follows:

–	 Step-1: The first step is to select an input pattern that
produces complementary results for the fault-free ( CA )
and faulty ( CF ) circuits. The input pattern needs to sat-
isfy the following property – it must sensitize only one
key bit to the primary output(s). In other words, only
the response of one key bit is visible at the PO, keeping
all other key bits at logic 1s (or 0s). If this property is
not satisfied, it will be impractical to reach a conclu-
sion regarding the value of a key bit. Now the question
is, how can we find if such a pattern exists in the entire
input space ( � ). To meet this requirement, our method
relies on stuck-at faults (saf) based constrained ATPG
to obtain the specific input test patterns (see details
in Sect. 3.4). Considering the fact that the adversary
has access to the locked netlist, it can generate test
patterns to detect sa1 or sa0 at any key lines and add
constraints to other key lines (logic 1 and 0 for sa1 and
sa0, respectively). A single fault, either sa0 or sa1 on a
key line, is sufficient to determine the value of that key
bit. Therefore, we have selected sa1, and the following
subsections are explained considering this fault only.
This process is iterated over all the key bits to obtain K
test patterns. The algorithm to generate the complete
test pattern set is provided in Algorithm Sect. 3.4.

–	 Step-2: The complete set of generated test patterns is
applied to the fault-induced functional circuit with
faulty key registers (CF ). The circuit is obtained by
injecting logic 1 fault on the key registers if sa1 is
selected in the previous step; else, the circuit is injected
with logic 0 faults for sa0. The responses are collected
for later comparison with fault-free responses. For CA ,
test patterns are applied such that it matches the fault
modifications in the circuit. For example, the test pat-
tern for the first key is applied to the circuit when the
circuit instance does not pertain to any fault on its cor-
responding key register and holds the correct key value
while the remaining key registers are set to logic 1 (for
sa1) or 0 (for sa0). For the next key-bit, ( CA ) instance
is created by excluding this selected key bit from any
fault while keeping all other key registers to logic 1 (for

sa1) or 0 (for sa0). This process is repeated for all key
bits, and their responses are collected for comparison
in the subsequent step.

–	 Step-3: The adversary will make the decision regarding
the key value from the observed differences in the output
responses of ( CA ) and ( CF ). For any test pattern corre-
sponding to a particular key bit, when the outputs from
both circuits are the same, it implies that the injected
fault on the key lines in a CF circuit is the same as the
correct key bit; only then will the outputs of both ICs be
same. Otherwise, when CF and CA differ in their output
response, it concludes the correct key bit is a complement
to the induced fault. This process is repeated for all key
bits. In this manner, the key value can be extracted by
comparing the output responses of both circuits for the
same primary input pattern.

3.3 � Example

We choose a combinational circuit as an example for sim-
plicity to demonstrate the attack. The attack is valid for
sequential circuits, as well, as it can be transformed into
a combinational circuit in the scan mode, where all the
internal flip-flops can be reached directly through the
scan-chains [15].

Figure 4 shows the test pattern generation on a circuit
locked with a 3-bit secret key, where the propagation of k

0

is dependent on k
1
 and vice versa. First, we target to find out

the value of k
0
 . A test pattern P

1
 is generated to detect a sa1

fault at k
0
 with constraint k

1
= 1 and k

2
= 1 (adding faults on

all the key lines except the target key bit). As the value of
k
1
 is known during the pattern generation, the effect of the

sa1 at k
0
 will be propagated to the primary output y

0
 . For

a fault value D at k
0
 , if [x

0
x
1
] = [1 1] then D propagates to

n
2
 . To propagate the value at n

2
 to the output of G

3
 , its other

sa1

1

0

x0
x1
k1
x2
x3
x4

k0

y0

G1

G2

Gk1

G3

Gk0
n1 n2

n3
n4

X

1

D1
1

DD

0 0
1 n5

DD

DD
G4

1

x5
k2

y1G5 Gk2
X
1

n6

Fig. 4   Test pattern generation considering a sa1 at key line k
0
 with

constraint k
1
= 1 and k

2
= 1 . Test pattern, P

1
= [11010X] can detect

a sa1 at k
0

534 Journal of Electronic Testing (2022) 38:527–546

1 3

input ( n
4
 ) needs to attain logic 1. Since k

1
= 1 due to injected

fault which is set as a constraint in ATPG tool, n
4
= 1 for

n
3
= 0 which implies [x

2
x
3
] = [0 1] . At last, x

4
= 0 propa-

gates D propagates the value at n
5
 to the primary output

y
0
 . The output y

0
 can be observed as D for the test pattern

P
1
= [1 1 0 1 0 X] . Finally, to perform the DFA, this pattern

P
1
 needs to be applied to both CA and CF to determine the

value of k
0
 . Similar analysis can be performed for the other

two key bits, k
1
 and k

2
.

3.4 � Test Pattern Generation

To generate the test pattern set, an automated process rely-
ing on constrained ATPG is performed. The detailed steps
to be followed are provided in Algorithm 1. Synopsys
Design Compiler [83] is utilized to generate the technology-
dependent gate level netlist and its test protocol from the
RTL design. A test protocol is required for specifying sig-
nals and initialization requirements associated with design
rule checking in Synopsys TetraMAX [84]. Automatic test
generation tool TetraMAX generates the test patterns for
the respective faults along with constraints for the locked
gate level netlist.

The inputs to the algorithm are the locked gate-level
netlist (CL ), Design Compiler generated test protocol (T),
and the standard cell library. The algorithm starts with read-
ing the locked netlist and standard cell library (Lines 1-2).
The ATPG tool runs the design rule check with the test pro-
tocol obtained from the Design Compiler to check for any
violation (Line 3). Only upon the completion of this step
is the fault model environment set up in the tool. The size

of the key ( K ) is determined by analyzing CL (Line 4). The
remaining key lines are selected one by one to generate test
patterns (Line 5). A stuck-at-1 fault is added at the ith key
line to generate Pi (Line 6). The ATPG constraints (logic 1)
are added to other key lines (Lines 7-11). A test pattern Pi is
generated to detect the sa1 at the ith key line (Lines 12-13)
and added to the pattern set, P. All the added constraints
and faults are removed to generate the (i + 1)

th test pattern
(Lines 14-15). Finally, the algorithm reports all the test pat-
terns, P (Line 17).

4 � AFIA: ATPG‑Guided Fault Injection Attack

The objective of an adversary is to reduce the number of
injected faults to launch an efficient attack. The DFA pre-
sented in Sect. 3.2 requires 2K − 1 faults to determine a
single key bit, where K denotes the secret key size. This
severely limits the adversary’s capability as injecting a
large number of faults is challenging from the fault injec-
tion equipment’s perspective. All these faults need to be
injected when applying the test pattern to evaluate one key
bit. In this section, we present an efficient attack and denoted
as AFIA, an ATPG-guided Fault Injection Attack based on
key sensitization. This new attack only requires injecting the
fault on a key register if there is a dependency among keys.
The threat model remains the same as DFA. We consider an
untrusted foundry to have access to the gate-level netlist and
can generate manufacturing test patterns.

4.1 � Overall Approach

The proposed attack AFIA evaluates one key bit at a time
iteratively and can be summarized by the following steps:

–	 Step-1: First, AFIA analyzes the locked circuit CL and
its logic cones. Some cones are completely independent
(e.g., LC

0
 in Fig. 5), some cones share few inputs (e.g.,

LC
1
 , ..., LCp−1 ), and the others share the same inputs

(e.g., LCp , ..., LCN−1 ). It is necessary to determine keys
from cones that are a subset of other larger cones (if any)
first during the test pattern generation in order to reduce
the number of injected faults. For an independent logic
cone (say LC

0
 ), we can propagate the keys one at a time

without injecting faults at keys of other cones. If the two
cones are overlapped, it is beneficial to sensitize keys to
a cone with fewer unknown keys.

–	 Step-2: Similar to DFA, it requires an input pattern to
derive a correct key bit. We denote this key bit as the
target key bit. Constraints are set on the recovered key
lines, where no fault injections are needed. The attacker
performs fault injection (Step-3) solely on keys (in the

535Journal of Electronic Testing (2022) 38:527–546

1 3

same cone) that block the propagation of the targeted key
bit. The blocking key set is determined by the returned
test patterns from ATPG TetraMAX [84]. Once a key
bit is determined, AFIA targets the next key bit of the
same cone by putting the previously obtained keys as
constraints during the test pattern generation.

–	 Step-3: The last step applies fault injections on functional
chip CO using the generated test patterns of Step-2. The
targeted key value can be extracted by comparing the
fault-injected output against the output pattern computed
by ATPG. When the value of all the targeted key bits in
one text pattern has been identified, we can constrain
these bits with their actual values in ATPG in the subse-
quent pattern.

AFIA is an iterative method, where Step-2 is performed to
generate test patterns, and Step-3 injects fault and applies
that pattern to determine the targeted key bit. Once this tar-
geted key is determined, it will be used as a constraint in
Step-2. The following subsections present these three steps
in detail.

4.2 � Cone Analysis

The goal of this proposed attack is to apply minimal fault
injections to recover the complete key set. It is ideal for the
adversary to inject faults at key registers only when neces-
sary. In general, not all keys prevent the propagation of the
target key bit, as many of the keys are often distributed across
the netlist and reside in different logic cones. A logic cone
is a part of the combinational logic of a digital circuit that
represents a Boolean function and is generally bordered by
an output and multiple inputs [15]. Thus, cone analysis can

effectively separate the dependence of different groups of key
bits, where one group does not block the propagation of the
key bits in other groups. We propose to analyze the internal
structure of the locked netlist CL by creating a directed graph
G from it. We denote that both the inputs and logic gates’
outputs are nodes. A directed edge exists from Node n

1
 to

Node n
2
 if and only if they are associated with a logic gate.

Intuitively, a circuit with N outputs has N logic cones, as in
Fig. 5. Note that the number of cones can be only primary
outputs (POs) for a combinational circuit or the sum of POs
and pseudo primary outputs (PPOs) for a sequential cir-
cuit [15]. All the inputs and logic gates whose logical values
affect yj belong to logic cone LCj . The graph representation
of logic cone LCj with sink yj is a subgraph of G.

Two possible scenarios might occur during the locking of
a netlist. Key bit(s) can be placed uniquely in a logic cone
and cannot be sensitized to any other POs/PPOs except the
cone’s output. Other key bits can be placed in the intersec-
tion of multiple cones and can be sensitized through any of
these. We observe that the majority of the key bits are inside
the intersections with multiple cones. What should be the
best strategy to propagate a key bit to one of the POs/PPOs
when there exist multiple sensitization paths? Our objective
is to reduce the number of faults to sensitize a key bit to a
PO/PPO, and it is beneficial to select a cone with the mini-
mum number of keys. Note that the keys in a cone can block
the propagation of a targeted key in that same cone only
and requires fault injection to set a specific value to these
blocking keys. It is, thus, necessary to construct a key-cone
association matrix A to capture the correlation between the
logic cones and the key bits. The matrix A not only provides
insight on which keys (and how many of them) are inside a
logic cone but also offers a structured view of whether a key
belongs to multiple logic cones, and is presented as follows:

where, ai,j ∈ {0, 1} , and ai,j = 1 if key ki is present in cone
LCj , otherwise, ai,j = 0.

It is straightforward for the attacker that, if he/she picks
cone LCj and key bit ki (if its value is still unknown) in this
cone, only keys (other than ki ) residing in LCj could poten-
tially impede the propagation of ki to the output yj . This is

Fig. 5   An abstract view of a locked circuit

536 Journal of Electronic Testing (2022) 38:527–546

1 3

advantageous to the attacker because the keys outside of
cone LCj would not, by any means, affect the propagation
of ki to yj . Thus, he/she can safely ignore these keys, and it
does not matter whether he/she already has the correct logi-
cal values for them or not.

For example, the directed graph representation of locked
netlist c432-RN320 with a 32-bit key [61] is shown in
Fig. 6. Output nodes are in red, key registers in green (at
the left-most level), key gates in cyan, remaining input (at
the left-most level), and gates in blue. The top two logic
cones with the fewest keys are LCN223 of output N223 and
LCN329 of output N329. Logic cone LCN223 has only one key
(keyIn_0_4, with key gate highlighted) (all other nodes and
edges are in magenta and light green). Logic cone LCN329
is the superset of LCN223 , and it contains additional thirteen
keys (all other nodes and edges exclusively in LCN329 are in
purple and orange). With AFIA, the only key in LCN223 is
determined first, followed by the remaining thirteen keys in
LCN329 . Because of the only key in LCN223 , no fault injection
is necessary for this key’s propagation to N223.

4.3 � Test Pattern Generation

Once the cone analysis is performed, it is required to gen-
erate test patterns so that a targeted key can be sensitized
to one of the PO/PPO. The test pattern generation process
is similar to the DFA presented in Sect. 3.2 except with a
much lesser number of ATPG constraints. We treat unde-
termined keys as inputs during the test pattern generation
and the recovered keys as ATPG constraints. As the secret
key remains the same in an unlocked chip, it is unnecessary
to inject faults at the recovered key bits as their values are
known during the test pattern generation. On the other hand,
we need to inject faults at unknown and yet to be determined

key lines. However, it is not necessary to inject faults at all
of them. We use the ATPG tool to determine whether one
or more unknown key bits do not block the propagation of
the targeted key bit. As we treat unknown keys as inputs,
the ATPG tool can generate a pattern that might contain X′s
at some of the key lines (using set_atpg -fill X [84]), and
we do not need to inject faults at these bits. This allows an
adversary to reduce the number of fault injections further.
Similar to DFA, a stuck-at fault, sa1 (or sa0), is placed on
the target key bit with constraints on recovered key bits dur-
ing the ATPG. When TetraMAX [84] returns a test pattern,
the attacker applies the pattern and injects faults (presented
in Sect. 4.4) to sensitize the target key bit at the PO/PPO.
After recovering one key bit, AFIA sets ATPG constraints
on the recovered key lines, generates another test pattern,
and applies it to sensitize the next key.

4.4 � Fault Injection

The final step applies fault injections on functional chip
CO using generated test patterns from Sect. 4.3. Faults are
injected at the key registers with any appropriate fault injec-
tion techniques described in Sect. 2.2. No fault injection is
necessary at the key bits whose values are already deter-
mined as their values are no different from those already
programmed in the chip CO . If we receive a faulty response
by applying the test pattern developed in Step-2, the value
of the secret key will be 1 as we have sensitized a sa1 fault
during the ATPG; otherwise, the secret key is 0. If we gener-
ate a test pattern considering a sa0 fault, the faulty response
results in the secret key of 0, and vice versa. Step-2 in
Sect. 4.3 and Step-3 in Sect. 4.4 are repeated until the entire
secret key is found. Consequently, fewer faults are injected
compared with the DFA since injections happen only at key
locations (of the same logic cone) that block the propagation
of the to-be-determined key bits.

4.5 � Proposed Algorithm for AFIA

Algorithm 2 describes the implementation details of AFIA.
The adversary first constructs a directed graph G from the
locked netlist CL (Line 1), as elaborated in Sect. 4.2. Aside
from converting netlist to graph, netlist2Graph(.)
returns the key list K and output list Y. By exploiting directed
graph structure, logic cone LCj can be easily extracted by
flipping all edges in graph G (Line 2) and run breadth-first-
search (BFS) or depth-first-search, (DFS) [20], on output
nodes yj . The key-cone association matrix A is declared as
an empty array, where the cone and key information will
be added (Line 3). Function extractCone(.) is imple-
mented with BFS. It returns the directed subgraph of logic
cone LCj and a logical (true/false) vector LKj of dimension
K × 1 . If key bit kq is inside cone LCj , LKj[q] = true; else, Fig. 6   Directed graph of locked c432-RN320 netlist with a 32-bit key

537Journal of Electronic Testing (2022) 38:527–546

1 3

LKj[q] = false. Matrix A is updated by concatenating all
vectors LKj ’s together (Line 6) so that the complete A has K
rows and N columns, as explained in Sect. 4.2.

AFIA invokes fConeWMinKeys(.) (Line10) and
obtains a vector KU

LC
 of all unknown keys in the logic cone

with the fewest (positive) unknown keys. For simplicity, KU
LC

records the row indices of the unknown keys, as in matrix
A. For every key bit in KU

LC
 , the sa1 is set on the to-be-

determined key (Line 13). The recovered key values in KR
are appended as constraints (Line 14). Test pattern Pl (Line
15) is generated after invoking ATPG. All the stuck-at faults
(Line 16) and constraints (Line 17) are removed. When Pl
and fault injections (Line 18) are applied on the working
chip CO , KU

LC
[l] bit is recovered by referencing the ATPG’s

predicted output of the corresponding Pl . Afterward, the cor-
rect bit value is added to the recovered key list KR (Line 19).
Since this bit is recovered, it is no longer an unknown key,
and AFIA updates the association matrix A to assign logi-
cal zero to all entries on key KU

LC
[l] ’s row (Line 20). This is

conceptually equivalent to deleting KU
LC
[l] from the unknown

key list as fConeWMinKeys(.) will only count the num-
ber of non-zero entries per column. When all key bits in KU

LC

are determined, the adversary moves on to the subsequent
logic cone (Line 10). Finally, when all cones are covered,
the secret key KEY is returned (Line 24).

4.6 � Example

Here, we use the same circuit as in Fig. 4 as an example to
illustrate how AFIA works. The circuit has six inputs, two
outputs, and three key bits. With two outputs, this circuit has
two logic cones, as in Fig. 7. The same D-Algorithm [15] is
applied to show the propagation of stuck-at-faults. Based on
cone analysis in Sect. 4.2, logic cone LC

0
 contains two key

bits, k
0
 , k

1
 , cone LC

1
 has only one key k

2
 . Thus, the associa-

tion matrix A can be represented as:

AFIA picks a logic cone with the fewest number of
unknown keys to solve (Line 10, Algorithm 2). Since all keys

y1

X

X

x0
x1
k1
x2
x3

x4
k0

y0G1
Gk0

X
X

X

x5
k2

0

(a)
sa1X

1G5G5 Gk2Gk2

LC0

LC1

Gk1Gk1

G2

G3G3
G4G4

DD
DD y1

X

X

x0
x1
k1
x2
x3

x4
k0

y0G1
Gk0

X
X

X

x5
k2

0

sa1X

1G5 Gk2

LC0

LC1

Gk1

G2

G3
G4

D
D y1

X

0

x0
x1
k1
x2
x3

x4
k0

y0G1

1

0
X

0

x5
k2

X

(b)

sa1
X

0

G5G5 Gk2Gk2

LC0

LC1

Gk1Gk1
G2

G3G3
G4G4

DD

y1

X

0

x0
x1
k1
x2
x3

x4
k0

y0G1

1

0
X

0

x5
k2

X

sa1
X

0

G5 Gk2

LC0

LC1

Gk1
G2

G3
G4

D

0

Gk0Gk0

1

DD

DD

DD

y1

X

0

x0
x1
k1
x2
x3

x4
k0

y0G1

1

0
X

0

x5
k2

X

sa1
X

0

G5 Gk2

LC0

LC1

Gk1
G2

G3
G4

D

0

Gk0

1

D

D

D

Fig. 7   Test Pattern Generations for AFIA. a Test Pattern P
0
= [XXXXX0] for sa1 at k

2
 . b Test Pattern P

1
= [0X0X0X] for sa1 at k

0
 with injected

fault k
1
= 1

538 Journal of Electronic Testing (2022) 38:527–546

1 3

are unknown at this time, fConeWMinKeys(.) function
selects logic cone LC

1
 and returns KU

LC
= [2] . This cone has

one key bit k
2
 , to which we assign sa1. Using D-Algorithm,

fault value D is marked on this key line. Here, the output
y
1
 is directly connected to XOR key gate Gk

2

 , and we can
propagate this fault D to output y

1
= D with logic 1 for

the other input of this XOR gate, as in Fig. 7a. Test pat-
tern P

0
= [x

0
x
1
… x

5
] = [XXXXX0] can detect sa1 for key k

2
 .

Here, the value of the recovered key is 1 when the output is
faulty. Otherwise, the recovered key is 0 as we have sensi-
tized a sa1 fault during the ATPG. Note that no fault injection
is necessary to determine this key. Matrix A is updated with
all zeros on the k

2
 ’s row,

In the next iteration (Line 10), there is only one logic
cone (also the cone with the least unknown keys), LC

0
 , left

in matrix A that has unknown keys. Function fConeWMin-
Keys(.) identifies LC

0
 and yields KU

LC
= [0 1]

T , which
captured the indices of unknown keys k

0
 , k

1
 . With two keys

k
0
 and k

1
 , AFIA chooses k

0
 first randomly (Algorithm 2 Line

13). By adding sa1 at k
0
 , test pattern P

1
= [x

0
x
1
… x

5
] = [

0X0X0X] with logic 1 fault on k
1
 can propagate the faulty

response D in k
0
 to y

0
 , as shown in Fig. 7b. Fault injection

is performed at k
1
 by setting its value to 1, and apply P

1
 to

determine k
0
 . AFIA, then, flushes out all the entries on row

k
0
 of matrix A,

After k
0
 is recovered, AFIA moves on to determining the

other key in LC
0
 , k

1
 , (Line 12). We add a sa1 at k

1
 (Line

13), along with constraining on k
0
 , k

2
 to their determined

values (Line 14). If the correct logical value for k
0
 is 0 (i.e.,

the stored key), test pattern P
2
= [x

0
x
1
… x

5
] = [110X0X]

can sensitize the sa1 of k
1
 to the output y

0
 . If the stored

secret key bit is k
0
= 1 , the test pattern P

2
 will be differ-

ent, and its value will be [0X0X0X], which one can verify
using the same D-Algorithm. Note that no fault injection
is necessary to determine k

1
.

Finally, the matrix A will be updated to all zeros and
the AFIA recovers the entire key.

4.7 � AFIA Complexity Analysis

The average complexity of the AFIA attack is linear with
the key size (K). In this section, we show that AFIA is

very effective at breaking any logic locking technique.
However, the fault injection time may vary depending on
the effectiveness of the equipment. It is practically instan-
taneous to obtain the secret key once the responses are
collected from CO.

Lemma 1  One input pattern is sufficient to recover one key
bit.

Proof  A single test pattern is sufficient to detect a saf if such
a fault is not redundant [15]. A redundant fault results from
a redundant logic that cannot be exercised from the inputs.
As the key gates are placed to modify the functionality, it
cannot be a redundant logic. As there exists one test pattern
to detect a saf at the key line, it can be used to recover one
key bit.

Theorem 1  AFIA recovers the entire secret key, K using at
most K number of test patterns, i.e.,

where fK() represents the functionality with K as the key.

Proof  A CL with a K-bit key is injected with a saf fault on
every key line. As AFIA requires one test pattern to obtain
one key bit (see Lemma 1), the upper bound of the number
of test patterns is K . However, a single pattern can detect
two or more stuck-at faults on the key lines if their effect is
visible in different logic cones (e.g., different outputs). As
a result, the required number of test patterns to recover the
entire key (K) can be less than K.

Theorem 2  AFIA is applicable to strong logic locking [55],
where pairwise key gates are inserted to block the propagation
of one key by the other.

Proof  In strong logic locking, the propagation of one key
is blocked due to the other key. However, (K − 1) faults are
injected at (K − 1) key lines, worst-case scenario, except for
the one whose value needs to be determined. Once an exter-
nal fault is injected into the functional chip, the key value
is fixed and no longer remains unknown. Hence, AFIA is
applicable to strong logic locking.

Theorem 3  The worst-case complexity for the total number
of faults injected in AFIA is O(K2

).

Proof  Let us consider a circuit with a single logic cone
locked with a secret key vector {k

0
,… , kK−1

} . Suppose
all key bits are pairwise non-mutable convergent, i.e., the
propagation of one key bit depends on all the other keys. To
sensitize the 1st key bit, we need to add K − 1 faults during

(1)TPAFIA[fK(CL) = f (CO)] ≤ K.

539Journal of Electronic Testing (2022) 38:527–546

1 3

the fault injection process. The 2nd key bit requires K − 2
faults as the value of the 1st key bit is known. Similarly, the
3
rd key bit requires K − 3 faults, and so on. Thus, the total

number of faults is:

Thus, the worst-case complexity for the total number of
faults injected is O(K2

).

Theorem 4  The average-case complexity for the total num-
ber of faults injected in AFIA is O(K).

Proof  Consider a circuit with N logic cones, each cone LCj
has negligible or no overlap with its neighboring cones,
LCj−1 and LCj+1 , and K keys are evenly distributed (amor-
tized) among the N cones. For each cone, it has an aver-
age a =

K

N
 keys). Since negligible overlap between cones,

there is no preference between the order of execution on
deciphering keys in logic cones, and each cone needs to
inject K∕N⋅(K∕N−1)

2
 faults. Overall, by summing up all faults

for every logic cone, the required number of fault injections
is N ⋅

K∕N⋅(K∕N−1)

2
.

Thus, the average-case complexity is N ⋅

K∕N⋅(K∕N−1)

2
=

a−1

2
⋅K = O(aK) = O(K).

4.8 � AFIA on Fault‑Tolerant Circuit

Fault-tolerant circuits and circuits with redundancy may
prevent the injected faults from being revealed at the out-
put. However, it does not affect our proposed AFIA. As
the objective of logic locking is to produce incorrect out-
put for wrong key combinations under certain input pat-
terns, these input patterns ensure the differential output
behavior for keys. Thus, the key cannot be inserted inside
the region of redundancy, where no input pattern can ever
produce differential output. Any key bit placed at these
locations cannot corrupt the output so that either logic 0
or logic 1 is its correct value. The SoC designer would
not place a key bit in such a way that both logic values
gives the correct output since it contradicts the princi-
ple of logic locking. In summary, redundancies are not a
countermeasure against AFIA attack for a well-designed
locked circuit.

4.9 � AFIA on Non‑Functional‑Based Locking
Techniques

Our fault injection-based attack can also be extended to
non-functional logic locking techniques [38, 51]. The
dynamically obfuscated scan-chain (DOSC) technique [51]
has three secrets stored in the tamper-proof memory, which

∑K

i=1
(K − i) =

K⋅(K−1)

2
.

are the functional obfuscation key, the LFSR seed, and the
control vector. AFIA can break the functional obfuscation
key if the obfuscated scan-chain becomes transparent to
the attacker. To achieve that, the attacker needs to inject
faults at all the Scan Obfuscation Key registers directly to
get a known shift out state from the functional IP. For the
routing-based locking technique [38], our proposed attack
is applicable to breaking the key-configurable logarithmic-
based network (CLN) as the switch-boxes (SwB) consist of
MUX-based key gates. Once a fault is injected into a key
register, the selection path for the corresponding MUX is
determined. We can target these keys one at a time with
test patterns generated from the ATPG tool and inject
faults on dependent key registers.

5 � Experimental Results

This section provides the feasibility of fault injection to
break secure logic locking. Extensive simulations are
performed on different benchmarks with different locking
techniques to demonstrate the effectiveness of the pro-
posed fault injection attack for breaking a secure locking
technique. We have shown a significant reduction of total
fault count for AFIA compared to DFA, presented in our
conference paper, in breaking the same locked benchmark.

5.1 � Laser Fault Injection

To demonstrate the laser fault injection attack, we selected a
Kintex-7 FPGA [95], which is used as the device-under-test
(DUT). Locked benchmark circuits are implemented in the
Kintex-7 FPGA, where faults are injected into key registers.
Figure 8 shows the laser fault injection (LFI) setup with
a Hamamatsu PHEMOS-1000 FA microscope [46]. The

Fig. 8   The FPGA board placed under the lens for laser-fault injection
at the target registers

540 Journal of Electronic Testing (2022) 38:527–546

1 3

equipment consists of a diode pulse laser source (Hama-
matsu C9215-06) with a wavelength of 1064 nm. Three
objective lenses were used during this work: 5x/0:14 NA,
20x/0:4 NA, 50x/0:76 NA. The 50x lens is equipped with
a correction ring for silicon substrate thickness. The laser
diode has two operation modes – a) low power (200 mW)
pulse mode, and b) high power (800 mW) impulse mode.
The high power impulse mode can be used for laser fault
injection. The laser power can be adjusted from 2 % to 100%
in 0.5% steps.

Photon emission analysis [52] can be used to localize
the implemented locked circuitry in the DUT. Thereafter,
the DUT is placed under the laser source for LFI. A trigger
signal is fed to the PHEMOS-1000 to synchronize the LFI
with the DUT operation. Once the device reaches a stable
state after power-on, the laser is triggered on the target key
registers. After the fault injection, we need to guarantee that
the device is still functioning as expected and has not entered
into a completely dysfunctional state. The laser triggering
timing can be checked by a digital oscilloscope for greater
precision.

5.2 � Fault Count Comparison

The differential attack methodology (DFA) introduced
in Sect. 3 and in [33] requires K − 1 number of con-
straints per test pattern. The total number of faults that
need to be injected to determine one key bit is 2K − 1 , as
CA and CF require K − 1 and K faults, respectively. The
total number of faults required to decipher K key bits is
(2K − 1) ⋅K = 2K

2
−K . Compared to DFA, AFIA only

requires injecting faults to key registers if these key bits are
interdependent, where the propagation of one key is depend-
ent on others.

Table 1 shows the number of faults to be injected for both
the DFA (Algorithm 1) and AFIA (Algorithm 2). To dem-
onstrate the feasibility of the fault injection attack on logic
locking, we computed the number of faults after generating
test patterns using constrained ATPG using the Synopsys
TetraMAX tool [84]. Note that the successful generation of
test patterns using constrained ATPG guarantees the suc-
cessful attack on locking. We choose benchmark circuits
with random logic locking (added ‘-RL’ after the bench-
mark name) and strong logic locking (added ‘-SL’) from
TrustHub [61], SFLL-hd (added ‘SFLL-hd’), SFLL-flex
(added ‘SFLL-flex’), and SFLL-rem (added ‘SFLL_rem’)
benchmarks from [98], and GitHub [69]. Column 2 repre-
sents the secret key size, whereas Columns 3 and 4 represent
the number of faults to determine the entire key for DFA and
AFIA, respectively. Data in Column 4 is collected under sa1
fault in test pattern generation (Algorithm 2). Finally, Col-
umn 5 shows the average number of faults to evaluate one

key bit under AFIA. For example, with locked benchmark
c432-RN320, the number of faults required for DFA is 2016,
whereas AFIA requires only 48 faults to extract the 32 key
bits, leading to 1.5 faults per key bit. For c1355-SL1280, the
number of faults increased significantly to 32,640 for DFA.
AFIA only requires 1,419 faults to determine the 128 key
bits, or 11.09 faults per key bit.

Based on Theorem 4, if keys are uniformly distributed
among logic cones, the number of fault injections for AFIA
is linear with respect to key size, O(aK) = O(K) , with vari-
able a indicating the average key size per logic cone. If hav-
ing the same key size, an RLL circuit with more logic cones,
or a smaller a, (provided that the size of all logic cones are
about the same), should, generally, has fewer fault injec-
tions than one with fewer logic cones. This is equivalent to
having fewer injected faults in an RLL-based circuit that
contains more output than the ones without (see defini-
tion of the number of logic cones in Sect. 4.2). Benchmark
c432-RN1280 has a larger a than other 128-bit RLL cir-
cuits, for c432 has only seven outputs, while c2670 has 140
outputs, c3540 has 22, c5315 has 123, c6288 has 32, c7552

Table 1   Comparison of Number of Injected Faults

Locked Benchmark Key Size DFA AFIA

(K) F
T

F
T

F
T
∕K

c432-RN320 32 2016 48 1.5
c432-RN640 64 8128 165 2.58
c432-RN1280 128 32640 1085 8.48
c2670-RN1280 128 32640 520 4.06
c3540-RN1280 128 32640 268 2.09
c5315-RN1280 128 32640 282 2.20
c6288-RN1280 128 32640 268 2.09
c7552-RN1280 128 32640 334 2.61
c1355-SL1280 128 32640 1419 11.09
c1908-SL1280 128 32640 654 5.11
c5315-SL1280 128 32640 3469 27.10
c6288-SL1280 128 32640 368 2.88
c7552-SL1280 128 32640 188 1.47
b14_C_k8_SFLL-hd 8 120 28 3.5
b14_C_k16_SFLL-flex 16 496 120 7.5
b14_C_k32_SFLL-flex 32 2016 496 15.5
b14_C_k64_SFLL-flex 64 8128 2016 31.5
b14_C_k128_SFLL-flex 128 32640 8128 63.5
c432_k8_SFLL-hd 8 120 28 3.5
c432_k16_SFLL-flex 16 496 120 7.5
c432_k32_SFLL-flex 32 2016 496 15.5
c880_k8_SFLL-hd 8 120 28 3.5
c880_k16_SFLL-flex 16 496 120 7.5
c880_k32_SFLL-flex 32 2016 496 15.5
SFLL_rem_k128 [69] 128 32640 8128 63.5

541Journal of Electronic Testing (2022) 38:527–546

1 3

has 108 outputs respectively. (Note, not all logic cones will
have keys inside, but the circuit with more output usually
has more key-embedded cones than those with fewer out-
puts.) This is the reason that c432-RN1280 requires con-
siderably more fault injections in total, 1085, than other
locked netlist with same key size, where c2670-RN1280
needs 520 faults, c3540-RN1280 has 268, c5315-RN1280
has 282, c6288-RN1280 has 268, c7552-RN1280 has 334,
see Table 1.

RLL randomly picks a location in the original unlocked
circuit for key gate insertion, while SLL produces more
blocking keys. In terms of theoretical complexity analy-
sis, as long as the key gates in RLL locked circuit are
distributed uniformly, the number of fault injections for
SLL should be larger than RLL, under the same origi-
nal unlocked benchmark and the same key size, e.g.,
c5315-RN1280 and c5315-SL1280, c6288-RN1280 and
c6288-SL1280. For SFLL-hd and SFLL-flex, each locked
circuit has a perturbation unit and a restoration unit. All
keys reside in the functionality restoration unit, where
every key passes through the output of the restoration sub-
circuit to reach the primary output [2, 76]. Because of this
restoration unit, all key bits are interdependent. Hence, all
SFLL-flex and SFLL-hd circuits belong to the worst-case
scenario as in Theorem 3, in which the number of injected
faults is K⋅(K−1)

2
 . We also evaluated our proposed attack

on the latest SFLL variant, SFLL-rem [67, 68]. Although
SFLL-rem does not have the added perturb unit, the keys
are present in the restoration unit only, and our attack can
still break it.

6 � Future Work

Although AFIA targets combinational logic circuits or
sequential ones with scan-chain access, it can be extended
to other clock-based and timing-based locking techniques
that target output corruptibility in a different clock cycle [7,
50, 82]. These techniques require multiple clock cycles
(typically two) to capture the key to a storage element and
thus observe its effect on the circuit behavior (i.e., output
corruptibility). Fortunately, the same fault injection-based
attack proposed in this paper can be applied to these locking
techniques as well. We, however, need to consider transition
delay faults (TDFs) or path delay faults (PDFs) instead of
stuck faults to propagate the effect of the targeted key on the
output. The same Algorithm 2 can be applied to generate
patterns to launch the attack. Note that the TDFs and PDFs
require multiple captures (typically 2). By controlling the
fault injection in a precise timing range, it is possible to
observe the key through launch on shift (LOS) and launch
on capture (LOC) schemes [15, 62].

7 � Conclusion

This paper presents AFIA, a novel stuck-at fault-based fault
injection attack that undermines the security of any logic
locking technique. AFIA utilizes cone analysis to analyze
the dependency of keys. Faults are injected only at the inter-
dependent key bits, which is a significant improvement from
the previously published attack DFA [33], dropping the total
number of faults to the linear multiple of key size. With
the automatic test pattern generation (ATPG) tool, we con-
structed a pattern set, which is used to apply to an unlocked
chip. Each pattern is sufficient to determine a one-bit key.
All key bits are derived by comparing collected responses
from fault injections and the predicted response from test
pattern generation. We performed laser fault injections on
Kintex-7 FPGA with various locked benchmark circuits
and state-of-the-art locking techniques, and our results
have demonstrated the effectiveness of the proposed AFIA
scheme. Our future work will focus on developing a locking
technique to prevent AFIA.

Funding  This work was supported by the National Science Foundation
under Grant Number CNS-1755733.

Data Availability  The authors declare that the data supporting the find-
ings of this study are available within the article.

Declarations 

Conflict of Interest  The authors have no conflicts of interest to declare
that are relevant to the content of this article.

References

	 1.	 Alkabani Y, Koushanfar F (2007) Active hardware metering for
intellectual property protection and security. In: USENIX Secu-
rity Symposium, pp 291–306

	 2.	 Alrahis L, Patnaik S, Khalid F, Hanif MA, Saleh H, Shafique
M, Sinanoglu O (2021a) GNNUnlock: Graph Neural Networks-
based Oracle-less Unlocking Scheme for provably secure logic
locking. In: 2021 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), IEEE, pp 780–785

	 3.	 Alrahis L, Patnaik S, Knechtel J, Saleh H, Mohammad B, Al-
Qutayri M, Sinanoglu O (2021b) UNSAIL: Thwarting oracle-
less machine learning attacks on logic locking. IEEE Trans Inf
Forensics and Secur 16:2508–2523

	 4.	 Alrahis L, Yasin M, Limaye N, Saleh H, Mohammad B,
Alqutayri M, Sinanoglu O (2019) ScanSAT: Unlocking static
and dynamic scan obfuscation. Trans Emerg Topics Computing
9(4):1867-1882

	 5.	 Azar KZ, Kamali HM, Homayoun H, Sasan A (2019) SMT
attack: Next generation attack on obfuscated circuits with capa-
bilities and performance beyond the SAT attacks. In: IACR
Transactions on Cryptographic Hardware and Embedded Sys-
tems, pp 97–122

	 6.	 Azar KZ, Kamali HM, Homayoun H, Sasan A (2021a) From
cryptography to logic locking: a survey on the architecture evolu-
tion of secure scan chains. IEEE Access 9:73133–73151

542 Journal of Electronic Testing (2022) 38:527–546

1 3

	 7.	 Azar KZ, Kamali HM, Roshanisefat S, Homayoun H, Sotiriou
CP, Sasan A (2021b) Data flow obfuscation: a new paradigm for
obfuscating circuits. IEEE Trans Very Large Scale Integr Syst
29(4):643–656

	 8.	 Barenghi A, Bertoni GM, Breveglieri L, Pellicioli M, Pelosi G
(2010) Low voltage fault attacks to AES. In: International Sym-
posium on Hardware-Oriented Security and Trust (HOST), pp
7–12

	 9.	 Barenghi A, Bertoni GM, Breveglieri L, Pelosi G (2013) A fault
induction technique based on voltage underfeeding with applica-
tion to attacks against AES and RSA. J Syst Softw 1864–1878

	 10.	 Barenghi A, Breveglieri L, Koren I, Naccache D (2012) Fault
injection attacks on cryptographic devices: Theory, practice, and
countermeasures. Proceedings of the IEEE, pp 3056–3076

	 11.	 Baumgarten A, Tyagi A, Zambreno J (2010) Preventing IC piracy
using reconfigurable logic barriers. IEEE Des Test Comput
27(1):66–75

	 12.	 Beerel P, Georgiou M, Hamlin B, Malozemoff AJ, Nuzzo P
(2022) Towards a formal treatment of logic locking. Cryptology
ePrint Archive

	 13.	 Blömer J, Seifert JP (2003) Fault based cryptanalysis of the
advanced encryption standard (AES). In: International Confer-
ence on Financial Cryptography, Springer, pp 162–181

	 14.	 Boneh D, DeMillo RA, Lipton RJ (1997) On the importance
of checking cryptographic protocols for faults. In: International
Conference on the Theory and Applications of Cryptographic
Techniques, pp 37–51

	 15.	 Bushnell ML, Agrawal VD (2004) Essentials of electronic testing
for digital, memory and mixed-signal VLSI circuits, Frontiers in
Electronic Testing Series Volume 17. Springer Science & Busi-
ness Media

	 16.	 Canivet G, Maistri P, Leveugle R, Clédière J, Valette F, Renaudin M
(2011) Glitch and laser fault attacks onto a secure AES implementa-
tion on a SRAM-based FPGA. J Cryptol 247–268

	 17.	 Castillo E, Meyer-Baese U, García A, Parrilla L, Lloris A (2007)
IPP@HDL: Efficient intellectual property protection scheme for
IP cores. IEEE Trans VLSI (TVLSI) 578–591

	 18.	 Chakraborty RS, Bhunia S (2008) Hardware protection and
authentication through netlist level obfuscation. In: Proceedings
of IEEE/ACM International Conference on Computer-Aided
Design, pp 674–677

	 19.	 Charbon E (1998) Hierarchical watermarking in IC design. In: Pro-
ceedings of the IEEE Custom Integrated Circuits Conference, pp
295–298

	 20.	 Cormen T, Leiserson C, Rivest R, Stein C (2009) Introduction to
algorithms. MIT Press, Computer Science

	 21.	 Dehbaoui A, Dutertre JM, Robisson B, Tria A (2012) Electro-
magnetic transient faults injection on a hardware and a software
implementations of AES. In: Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp 7–15

	 22.	 Dusart P, Letourneux G, Vivolo O (2003) Differential fault analysis
on AES. In: International Conference on Applied Cryptography and
Network Security, pp 293–306

	 23.	 Duvalsaint D, Jin X, Niewenhuis B, Blanton R (2019a) Characteriza-
tion of locked combinational circuits via ATPG. In: IEEE Interna-
tional Test Conference (ITC), pp 1–10

	 24.	 Duvalsaint D, Liu Z, Ravikumar A, Blanton RD (2019b) Char-
acterization of locked sequential circuits via ATPG. In: 2019
IEEE International Test Conference in Asia (ITC-Asia), IEEE, pp
97–102

	 25.	 Dworkin MJ, Barker EB, Nechvatal JR, Foti J, Bassham LE,
Roback E, Dray Jr JF (2001) Advanced Encryption Standard
(AES). NIST Publication Series: Federal Information Processing
Standards (NIST FIPS)-197, pp 1–51

	 26.	 El Massad M, Garg S, Tripunitara M (2017) Reverse engineer-
ing camouflaged sequential circuits without scan access. In: 2017

IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), IEEE, pp 33–40

	 27.	 Fukunaga T, Takahashi J (2009) Practical fault attack on a crypto-
graphic LSI with ISO/IEC 18033-3 block ciphers. In: Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp 84–92

	 28.	 Guilley S, Sauvage L, Danger JL, Selmane N, Pacalet R (2008)
Silicon-level solutions to counteract passive and active attacks.
In: Workshop on Fault Diagnosis and Tolerance in Cryptography,
pp 3–17

	 29.	 Guin U, Shi Q, Forte D, Tehranipoor MM (2016) FORTIS: a com-
prehensive solution for establishing forward trust for protecting IPs
and ICs. ACM Transactions on Design Automation of Electronic
Systems (TODAES), p 63

	 30.	 Guin U, Zhou Z, Singh A (2017) A novel Design-for-Security
(DFS) architecture to prevent unauthorized IC overproduction.
In: VLSI Test Symposium (VTS), pp 1–6

	 31.	 Guin U, Zhou Z, Singh A (2018) Robust Design-for-Security
architecture for enabling trust in IC manufacturing and test.
Transactions on Very Large Scale Integration (VLSI) Systems,
pp 818–830

	 32.	 Hsueh MC, Tsai TK, Iyer RK (1997) Fault injection techniques and
tools. Computer 30(4):75–82

	 33.	 Jain A, Rahman T, Guin U (2020) ATPG-guided fault injec-
tion attacks on logic locking. In: IEEE Physical Assurance and
Inspection of Electronics (PAINE), pp 1–6

	 34.	 Jain A, Zhou Z, Guin U (2021) TAAL: tampering attack on any
key-based logic locked circuits. ACM Trans Des Automation
Electronic Syst 26(4):1–22

	 35.	 Jarvis RW, McIntyre MG (2007) Split manufacturing method for
advanced semiconductor circuits. US Patent 7,195,931

	 36.	 Kahng AB, Lach J, Mangione-Smith WH, Mantik S, Markov IL,
Potkonjak M, Tucker P, Wang H, Wolfe G (2001) Constraint-
based watermarking techniques for design IP protection. IEEE
Transactions on CAD of Integrated Circuits and Systems, pp
1236–1252

	 37.	 Kamali HM, Azar KZ, Gaj K, Homayoun H, Sasan A (2018) LUT-
Lock: a novel LUT-based logic obfuscation for FPGA-Bitstream
and ASIC-Hardware protection. In: 2018 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), IEEE, pp 405–410

	 38.	 Kamali HM, Azar KZ, Homayoun H, Sasan A (2019) Full-lock:
Hard distributions of sat instances for obfuscating circuits using
fully configurable logic and routing blocks. In: Proceedings of
the 56th Annual Design Automation Conference 2019, pp 1–6

	 39.	 Kamali HM, Azar KZ, Homayoun H, Sasan A (2020) Interlock:
an intercorrelated logic and routing locking. In: 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD),
IEEE, pp 1–9

	 40.	 Kamali HM, Azar KZ, Farahmandi F, Tehranipoor M (2022)
Advances in logic locking: Past, present, and prospects. Cryptol-
ogy ePrint Archive

	 41.	 Karmakar R, Chatopadhyay S, Kapur R (2018) Encrypt flip-flop:
a novel logic encryption technique for sequential circuits. arXiv
preprint: arXiv:​1801.​04961

	 42.	 Lee CY, Xie J (2019) High capability and low-complexity: Novel
fault detection scheme for finite field multipliers over gf (2 m)
based on mspb. In: 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), IEEE, pp 21–30

	 43.	 Lee J, Tebranipoor M, Plusquellic J (2006) A low-cost solution
for protecting IPs against scan-based side-channel attacks. In:
24th IEEE VLSI Test Symposium, IEEE, p 6

	 44.	 Limaye N, Sengupta A, Nabeel M, Sinanoglu O (2019) Is robust
Design-for-Security robust enough? Attack on locked circuits
with restricted scan chain access. arXiv preprint: arXiv:​1906.​
07806

	 45.	 Paar C, Pelzl J (2009) Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media

543Journal of Electronic Testing (2022) 38:527–546

http://arxiv.org/abs/1801.04961
http://arxiv.org/abs/1906.07806
http://arxiv.org/abs/1906.07806

1 3

	 46.	 PHEMOS-1000 Emission microscope, HAMAMATSU. https://​www.​
hamam​atsu.​com/​eu/​en/​produ​ct/​semic​onduc​tor-​manuf​actur​ing-​
suppo​rt-​syste​ms/​failu​re-​analy​sis-​system/​C11222-​16.​html. Accessed
25 Sep 2022

	 47.	 Piret G, Quisquater JJ (2003) A differential fault attack tech-
nique against SPN structures, with application to the AES and
KHAZAD. In: International Workshop on Cryptographic Hard-
ware and Embedded Systems, pp 77–88

	 48.	 Pouget V, Douin A, Lewis D, Fouillat P, Foucard G, Peronnard
P, Maingot V, Ferron J, Anghel L, Leveugle R et al (2007) Tools
and methodology development for pulsed laser fault injection
in SRAM-based FPGAs. In: Latin-American Test Workshop
(LATW)

	 49.	 Qu G, Potkonjak M (2007) Intellectual property protection in
VLSI designs: Theory and practice. Springer Sc. & Business
Media

	 50.	 Rahman MS, Guo R, Kamali HM, Rahman F, Farahmandi F,
Abdel-Moneum M (2022) O’Clock: Lock the clock via clock-
gating for SoC IP protection. In: Design Automation Conf.
(DAC), pp 1–6

	 51.	 Rahman MS, Nahiyan A, Rahman F, Fazzari S, Plaks K,
Farahmandi F, Forte D, Tehranipoor M (2021) Security
assessment of dynamically obfuscated scan chain against
oracle-guided attacks. ACM Trans Des Automation Elec-
tronic Syst 26(4):1–27

	 52.	 Rahman MT, Asadizanjani N (2019) Backside security assess-
ment of modern SoCs. In: International Workshop on Micro-
processor/SoC Test, Security and Verification (MTV), pp
18–24

	 53.	 Rahman MT, Rahman MS, Wang H, Tajik S, Khalil W,
Farahmandi F, Forte D, Asadizanjani N, Tehranipoor M (2020)
Defense-in-depth: a recipe for logic locking to prevail. Integra-
tion 72:39–57

	 54.	 Rahman MT, Tajik S, Rahman MS, Tehranipoor M, Asadizanjani
N (2020) The key is left under the mat: on the inappropriate secu-
rity assumption of logic locking schemes. In: 2020 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust
(HOST), IEEE, pp 262–272

	 55.	 Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Security
analysis of logic obfuscation. In: Proceedings of Annual
Design Automation Conference, pp 83–89

	 56.	 Rajendran J, Zhang H, Zhang C, Rose GS, Pino Y, Sinanoglu O,
Karri R (2015) Fault analysis-based logic encryption. IEEE Trans-
actions on Computers, pp 410–424

	 57.	 Rajski J, Tyszer J, Kassab M, Mukherjee N (2004) Embedded
deterministic test. IEEE Trans Comput Aided Des Integr Circ Syst
23(5):776–792

	 58.	 Roshanisefat S, Mardani Kamali H, Sasan A (2018) SRCLock:
SAT-Resistant cyclic logic locking for protecting the hardware.
In: Proceedings of 2018 Great Lakes Symposium on VLSI, pp
153–158

	 59.	 Roy JA, Koushanfar F, Markov IL (2008) EPIC: Ending Piracy of
Integrated Circuits. In: Proceedings of the Conference on Design,
Automation and Test in Europe, pp 1069–1074

	 60.	 Roy JA, Koushanfar F, Markov IL (2010) Ending piracy of inte-
grated circuits. Computer 30–38

	 61.	 Salmani H, Tehranipoor M, Trust-Hub [Online]. Available:
https://​trust-​hub.​org/​home. Accessed 25 Sep 2022

	 62.	 Savir J, Patil S (1994) Broad-side delay test. IEEE Trans Com-
put Aided Des Integr Circ Syst 13(8):1057–1064

	 63.	 Schmidt JM, Hutter M (2007) Optical and EM fault-attacks on
CRT-based RSA: Concrete results

	 64.	 Selmane N, Guilley S, Danger JL (2008) Practical setup time
violation attacks on AES. In: Seventh European Dependable
Computing Conference, pp 91–96

	 65.	 Selmke B, Heyszl J, Sigl G (2016) Attack on a DFA protected
AES by simultaneous laser fault injections. In: Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp 36–46

	 66.	 Sengupta A, Ashraf M, Nabeel M, Sinanoglu O (2018a) Cus-
tomized locking of IP blocks on a Multi-Million-Gate SoC.
In: International Conference on Computer-Aided Design
(ICCAD), pp 1–7

	 67.	 Sengupta A, Nabeel M, Yasin M, Sinanoglu O (2018b) ATPG-
based cost-effective, secure logic locking. In: VLSI Test Sym-
posium (VTS), pp 1–6

	 68.	 Sengupta A, Nabeel M, Limaye N, Ashraf M, Sinanoglu O (2020)
Truly stripping functionality for logic locking: a fault-based
perspective. IEEE Trans Comput Aided Des Integr Circ Syst
39(12):4439–4452

	 69.	 SFLL_rem. https://​github.​com/​micky​960/​SFLL_​fault. Accessed
25 Sep 2022

	 70.	 Shakya B, Xu X, Tehranipoor M, Forte D (2020) Cas-lock: a
security-corruptibility trade-off resilient logic locking scheme.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp 175–202

	 71.	 Shamsi K, Li M, Plaks K, Fazzari S, Pan DZ, Jin Y (2019a) IP
protection and supply chain security through logic obfuscation:
a systematic overview. ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES) 24(6):1–36

	 72.	 Shamsi K, Pan DZ, Jin Y (2019b) IcySAT: Improved SAT-based
attacks on cyclic locked circuits. In: 2019 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), IEEE,
pp 1–7

	 73.	 Shamsi K, Pan DZ, Jin Y (2019c) On the impossibility of approxi-
mation-resilient circuit locking. In: 2019 IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST), IEEE,
pp 161–170

	 74.	 Shannon CE (1949) Communication theory of secrecy systems.
Bell Syst Tech J 28(4):656–715

	 75.	 Shen H, Asadizanjani N, Tehranipoor M, Forte D (2018) Nano-
pyramid: an optical scrambler against backside probing attacks.
In: Proceedings on International Symposium for Testing and
Failure Analysis (ISTFA), p 280

	 76.	 Sirone D, Subramanyan P (2020) Functional analysis attacks on
logic locking. IEEE Trans Inf Forensics Secur 15:2514–2527

	 77.	 Sisejkovic D, Merchant F, Reimann LM, Leupers R (2021)
Deceptive logic locking for hardware integrity protection against
machine learning attacks. IEEE Trans Comput Aided Des Integr
Circ Syst pp 1-14

	 78.	 Skarin D, Barbosa R, Karlsson J (2010) GOOFI-2: a tool for
experimental dependability assessment. In: IEEE/IFIP Interna-
tional Conference on Dependable Systems & Networks (DSN),
pp 557–562

	 79.	 Skorobogatov S (2010) Optical fault masking attacks. In: Work-
shop on Fault Diagnosis and Tolerance in Cryptography, pp
23–29

	 80.	 Skorobogatov SP, Anderson RJ (2002) Optical fault induction
attacks. In: International Workshop on Cryptographic Hardware
and Embedded Systems, pp 2–12

	 81.	 Subramanyan P, Ray S, Malik S (2015) Evaluating the security of
logic encryption algorithms. In: IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp 137–143

	 82.	 Sweeney J, Zackriya VM, Pagliarini S, Pileggi L (2020) Latch-based
logic locking. In: 2020 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), IEEE, pp 132–141

	 83.	 Synopsys (2021a) Design compiler graphical: Create a better
starting point for faster physical implementation. https://​www.​
synop​sys.​com/​imple​menta​tion-​and-​signo​ff/​rtl-​synth​esis-​test/​
design-​compi​ler-​graph​ical.​html

544 Journal of Electronic Testing (2022) 38:527–546

https://www.hamamatsu.com/eu/en/product/semiconductor-manufacturing-support-systems/failure-analysis-system/C11222-16.html
https://www.hamamatsu.com/eu/en/product/semiconductor-manufacturing-support-systems/failure-analysis-system/C11222-16.html
https://www.hamamatsu.com/eu/en/product/semiconductor-manufacturing-support-systems/failure-analysis-system/C11222-16.html
https://trust-hub.org/home
https://github.com/micky960/SFLL_fault
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html

1 3

	 84.	 Synopsys (2021b) TetraMAX ATPG: Automatic test pattern gen-
eration. https://​www.​synop​sys.​com/​imple​menta​tion-​and-​signo​ff/​
test-​autom​ation/​testm​ax-​atpg.​html

	 85.	 Tehranipoor M, Wang C (2011) Introduction to hardware security
and trust. Springer Science & Business Media

	 86.	 TestMAX DFT, Design-for-Test Implementation, Synopsys. https://​
www.​synop​sys.​com/​conte​nt/​dam/​synop​sys/​imple​menta​tion &​signo​ff/​
datas​heets/​testm​ax-​dft-​ds.​pdf. Accessed 25 Sep 2022

	 87.	 Torrance R, James D (2009) The state-of-the-art in IC reverse
engineering. In: International Workshop on Cryptographic Hard-
ware and Embedded Systems, pp 363–381

	 88.	 Tsai T, Iyer R (1995) FTAPE - a fault injection tool to measure fault
tolerance. In: Computing in Aerospace Conference, p 1041

	 89.	 Vashistha N, Lu H, Shi Q, Rahman MT, Shen H, Woodard DL,
Asadizanjani N, Tehranipoor M (2018) Trojan scanner: Detecting
hardware trojans with rapid SEM imaging combined with image
processing and machine learning. In: Proceedings on Interna-
tional Symposium for Testing and Failure Analysis, p 256

	 90.	 Wang X, Zhang D, He M, Su D, Tehranipoor M (2018) Secure
scan and test using obfuscation throughout supply chain. Transac-
tions on Computer-Aided Design of Integrated Circuits and Sys-
tems 37(9):1867–1880

	 91.	 Wu H, Ferranti D, Stern L (2014) Precise nanofabrication with
multiple ion beams for advanced circuit edit. Microelectron
Reliab 1779–1784

	 92.	 Xie Y, Srivastava A (2016) Anti-SAT: Mitigating SAT attack
on logic locking. In: International Conference on Cryptographic
Hardware and Embedded Systems, pp 127–146

	 93.	 Xie Y, Srivastava A (2017) Delay locking: Security enhancement of
logic locking against IC counterfeiting and overproduction. In: Pro-
ceedings of the 54th Annual Design Automation Conference, pp 1–6

	 94.	 Xie Y, Srivastava A (2019) Anti-SAT: Mitigating SAT attack on
logic locking. IEEE Trans Comput Aided Des Integr Circ Syst
38(2):199–207

	 95.	 Xilinx (2021) Xilinx Kintex-7 FPGA KC705 evaluation kit.
https://​www.​xilinx.​com/​produ​cts/​boards-​and-​kits/​ek-​k7-​kc705-
g.​html

	 96.	 Yasin M, Mazumdar B, Rajendran JJ, Sinanoglu O (2016a) SAR-
Lock: SAT attack resistant logic locking. In: IEEE International
Symposium on Hardware Oriented Security and Trust (HOST),
pp 236–241

	 97.	 Yasin M, Rajendran JJ, Sinanoglu O, Karri R (2016b) On
improving the security of logic locking. Transactions on
Computer-Aided Design of Integrated Circuits and Systems
35(9):1411–1424

	 98.	 Yasin M, Sengupta A, Nabeel MT, Ashraf M, Rajendran JJ,
Sinanoglu O (2017) Provably-secure logic locking: from theory
to practice. In: Proceedings of ACM SIGSAC Conference on
Computer and Communications Security, pp 1601–1618

	 99.	 Yeh A (2012) Trends in the global IC design service market. DIGI-
TIMES Research

	100.	 Zhang J, Yuan F, Wei L, Liu Y, Xu Q (2015) VeriTrust: Verifica-
tion for Hardware Trust. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 34(7):1148–1161

	101.	 Zhang Y, Cui P, Zhou Z, Guin U (2019) TGA: an oracle-less
and topology-guided attack on logic locking. In: Proceedings of
the 3rd ACM Workshop on Attacks and Solutions in Hardware
Security Workshop, pp 75–83

	102.	 Zhang Y, Jain A, Cui P, Zhou Z, Guin U (2020) A novel topology-
guided attack and its countermeasure towards secure logic lock-
ing. J Cryptogr Eng 1–14

	103.	 Zhong Y, Guin U (2022) Complexity analysis of the SAT attack
on logic locking. arXiv preprint: arXiv:​2207.​01808

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Yadi Zhong  is currently pursuing her Ph.D. in Computer Engineer-
ing from the Department of Electrical and Computer Engineering,
Auburn University, AL, USA. She received her B.E. degree from the
same university in 2020. Her research interest are logic locking, fault
injection and hardware security, and post-quantum cryptography. She
received Auburn University Presidential Graduate Research Fellow-
ships in 2020.

Ayush Jain  received his M.S. Degree from the Department of Electrical
and Computer Engineering, Auburn University, AL, USA in 2020. He
is currently working as SoC Design Engineer at Intel Corporation. He
received his B.Tech. degree from the Electrical Engineering Depart-
ment, Pandit Deendayal Petroleum University, Gujarat, India, in 2018.
His current research interests include hardware security, VLSI design,
and testing.

M. Tanjidur Rahman  received his Ph.D. degree in electrical and com-
puter engineering in 2021 from University of Florida. He obtained
his BS (with honors) and MS in electrical and electronic engineering
from Bangladesh University of Engineering and Technology (BUET)
in 2012, and 2014, respectively. His research interests include hardware
security and trust, physical assurance, configurable security architec-
ture, and reliable VLSI design. Dr. Rahman has authored 7 technical
journal and 8 conference papers. He has also published one book and
one book chapter on physical assurance and chip backside security
assessment. He has two patent applications under review.

Navid Asadizanjani  received the Ph.D. degree in Mechanical Engi-
neering from University of Connecticut, Storrs, CT, USA, in 2014. He
is currently an Assistant Professor with the Electrical and Computer
Engineering Department at University of Florida, Gainesville, FL,
USA. His current research interest is primary on “Physical Attacks and
Inspection of Electronics”. This includes wide range of products from
electronic systems to devices. He is involved with counterfeit detection
and prevention, system and chip level reverse engineering, Anti reverse
engineering, etc. Dr. Asadizanjani has received and was nominated for
several best paper awards from International Symposium on Hardware
Oriented Security and Trust (HOST) and International Symposium on
Flexible Automation (ISFA). He was also winner of D.E. Crow Innova-
tion award from University of Connecticut. He is currently the program
chair of the PAINE conference and is serving on the technical program
committees of several top conferences including International Sympo-
sium of Testing and Failure Analysis (ISTFA) and IEEE Computing
and Communication Workshop and Conference (CCWC).

Jiafeng Xie  received the M.E. and Ph.D. degrees from Central South
University and University of Pittsburgh, in 2010 and 2014, respectively.
He is currently an Assistant Professor in the Department of Electrical
& Computer Engineering, Villanova University, Villanova, PA. His
research interests include cryptographic engineering, hardware secu-
rity, post-quantum cryptography, and VLSI implementation of neural
network systems. Dr. Xie has served as technical committee member
for reputed conferences such as HOST, ICCD, and ISVLSI. He is also
currently serving as Associate Editor for Microelectronics Journal and
IEEE Access. He was Associate Editor for IEEE Transactions on Cir-
cuits and Systems-II: Express Briefs. He received the IEEE Access
Outstanding Associate Editor recognition for the year of 2019. He also
received the Best Paper Award from HOST’19.

545Journal of Electronic Testing (2022) 38:527–546

https://www.synopsys.com/implementation-and-signoff/test-automation/testmax-atpg.html
https://www.synopsys.com/implementation-and-signoff/test-automation/testmax-atpg.html
https://www.synopsys.com/content/dam/synopsys/implementation%20&signoff/datasheets/testmax-dft-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation%20&signoff/datasheets/testmax-dft-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation%20&signoff/datasheets/testmax-dft-ds.pdf
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
http://arxiv.org/abs/2207.01808

1 3

Ujjwal Guin  received his PhD degree from the Electrical and Computer
Engineering Department, University of Connecticut, in 2016. He is
currently an Assistant Professor in the Electrical and Computer Engi-
neering Dept. of Auburn University, Auburn, AL, USA. He received
his B.E. degree from the Dept. of Electronics and Telecommunication
Engineering, Bengal Engineering and Science University, Howrah,
India, in 2004 and his M.S. degree from the Dept. of Electrical and
Computer Engineering, Temple University, Philadelphia, PA, USA,
in 2010. He has developed several on-chip structures and techniques

to improve the security, trustworthiness, and reliability of integrated
circuits. His current research interests include Hardware Security &
Trust. He has authored several journal articles and refereed confer-
ence papers. He serves on the organizing committees of HOST, VTS,
and PAINE, and technical program committees of DAC, HOST, VTS,
PAINE, VLSID, GLSVLSI, ISVLSI, and Blockchain. He is an active
participant in the SAE International G-19A Test Laboratory Standards
Development Committee and G-32 Cyber-Physical Systems Security
Committee. He is a member of ACM and senior member of IEEE.

546 Journal of Electronic Testing (2022) 38:527–546

	AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking
	Abstract
	1 Introduction
	2 Prior Work
	2.1 Logic Locking
	2.1.1 Comparison of AFIA with CLIC-A [23]
	2.1.2 Comparison of AFIA with Key Sensitization Attack [55]
	2.1.3 Dissimilarities Between Logic Locking and Cryptosystems

	2.2 Fault Injection Methods

	3 Background
	3.1 Threat Model
	3.2 Differential Fault Analysis (DFA) Attack Methodology
	3.3 Example
	3.4 Test Pattern Generation

	4 AFIA: ATPG-Guided Fault Injection Attack
	4.1 Overall Approach
	4.2 Cone Analysis
	4.3 Test Pattern Generation
	4.4 Fault Injection
	4.5 Proposed Algorithm for AFIA
	4.6 Example
	4.7 AFIA Complexity Analysis
	4.8 AFIA on Fault-Tolerant Circuit
	4.9 AFIA on Non-Functional-Based Locking Techniques

	5 Experimental Results
	5.1 Laser Fault Injection
	5.2 Fault Count Comparison

	6 Future Work
	7 Conclusion
	References

