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Abstract
Software products cannot be delivered to the market without proper testing. Only with the help of Testing, accuracy and 
quality of the product improves. Test personnel cannot compromise on the quality of the product and cannot afford to miss 
any defects. As the product's functionality expands, so does the testcase suite, and executing all of them takes more time 
and work. In this discussion, we'll look at how to use a machine learning approach called Hierarchical Divisive Clustering 
to optimise the test suite. With this approach, all the testcases are being considered as a single cluster in the beginning and 
during every iteration they are separated based on the similarity. This would help execute unique testcases without compro-
mising on the quality which would help during any regression or sanity testing.
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1  Introduction

Machine Learning is a branch of artificial intelligence that 
allows a system to learn and develop without having to be 
explicitly programmed. Machine learning is the process of 
interpreting data structures and converting them into mod-
els that people can comprehend and use. Machine learn-
ing allows computers to construct models from data they 
are given as input, allowing them to automate decision- 
making. Unsupervised and supervised learning are the two 
types of machine learning tasks. In Supervised Learning,  
the desired outcome is labelled on the sample input. In 
this supervised learning strategy, patterns are utilised to 
predict label values on further unlabeled data. The model 
can be tested with new data after it has been trained to 
assess how well it works. Classification and Regression  

are two different sorts of supervised learning. When it is a 
categorised output variable (e.g., to categorise into "Red," 
"Blue," and "Green"), it is a classification problem; when it 
is a real number output variable, it is a regression problem 
(eg: predicting house price, predicting employee salary). 
The system is supplied with unlabeled and uncategorized 
input in unsupervised learning, and the model must be 
able to distinguish them based on the underlying structure. 
Clustering and Association. In Clustering, intrinsic group-
ings are discovered (for example, customers are grouped 
based on purchasing behaviour). In Association, rules that 
describe a substantial chunk of data are discovered (e.g.: 
People who buy x are more inclined to buy y as well.). 
Reinforcement learning is a sort of learning that involves 
interacting with the environment. When an agent performs 
successfully, he is rewarded, and when he performs wrong,  
he is penalised.

2 � Literature Review

1. An Improved K-means Algorithm for testcase Optimiza-
tion; Tan et al. [20]

Existing Methodology  To improve the K-means algorithm 
and build a fuzzy clustering method, the degree of member-
ship function was introduced. Developed a fuzzy mathematic 
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approach to simplify software testcases while maintaining 
software fault detection reliability.

Challenges Using the Existing Methodology  The clustering 
process fails to completely examine the many attributes of 
test instances, resulting in a discrepancy between cluster-
ing results and reality. Determination of the value of the 
fuzzy control factor. The number of testcases employed in 
the article was small.

2. Test-Suite Reduction based on K-Medoids Clustering 
Algorithm; Liu et al. [12]

Existing Methodology  This method employs a greedy algo-
rithm to process the streamlined test suite, ensuring that 
testcases are covered and errors are detected, resulting in a 
minimal test suite.

Challenges Using the Existing Methodology  Every time the 
code coverage and complexity of each testcase were cal-
culated, there were two steps/methods involved. Calculate 
the distance between sample points and centre points in the 
second phase, and then select the smallest test suite.

3. Test Suite Reduction via Evolutionary Clustering; 
Xia et al. [24]

Existing Methodology  To combine comparable testcases 
into the same cluster, use the K-means algorithm. The evolu-
tionary approach is then used to remove duplicate test cases 
based on the clustering results, using optimization objects 
representing coverage, fault, and cost criteria.

Challenges Using the Existing Methodology  Code Cover-
age, execution speed, and fault location capabilities are the 
only factors considered, and redundancy elimination is not 
considered.

4. User -session- based testcases Optimization Method 
based on Agglutinate Hierarchy Clustering; Liu et al. [13]

Existing Methodology  User Session Clustering based on 
Hierarchical Clustering estimates the distance between 
user sessions first, then clusters the initial testing cases and 
generates many test suites using the bottom-up agglutinate 
hierarchical clustering technique.

Challenges Using the Existing Methodology  Mining user 
sessions for web application testing is a complex and sys-
tematic activity. The information about the user saved in the 
server database is also significant for mining, and USCHC 
should be utilised to test a lot more online app.

5. Testcase Prioritization Incorporating Ordered sequence 
of Program Elements; Wu et al. [23]

Existing Methodology  Adaptive random testing (ART) is 
based on the idea of rearrangement of testcases in order to 
maximise the diversity of testcases in terms of similarity 
measure. When variety is increased, the number of defects 
is likely to increase as well.

Challenges Using the Existing Methodology  Prioritizing 
testcases based on coverage rearranges them to optimise 
code coverage, but it does not ensure a high rate of fault 
discovery.

6. Effective testcase Prioritization method based on Fault 
severity; Wang et al. [22]

Existing Methodology  Fatal defects include software 
crashes, software collapses, and software anomalous exits. 
Serious Error: Software prerequisites were not met. Gen-
eral Fault: The software's execution does not match the soft-
ware's instructions. Minor Error: Has a minor impact on 
software functionality.

Challenges Using the Existing Methodology  Counting the 
coverage rate of each testcase and selecting the one with 
the highest coverage rate takes time and does not focus on 
fault detection.

7. Requirement based testcase Prioritization; Kavitha et 
al. [11]

Existing Methodology  Customer Priority is allocated to each 
demand on a scale of 1 to 10, with 10 being the highest cus-
tomer priority. Complexity of Implementation: Each need 
is assessed and given a score between 0 and 10. Changes in 
Requirements: The number of times a requirement has been 
changed over the development cycle on a 10-point scale.

Challenges Using the Existing Methodology  This strategy 
prioritises testcases based on customer needs, has a big test 
suite to complete, and is more time demanding.

8. An Insight into testcase optimization: Ideas and trends 
with future perspectives; Gupta et al. [10]

Existing Methodology  The first group of projects focuses on 
optimization strategies in testing domains. Non-traditional 
adequacy criteria and related research are the focus of the 
second category. The third category looks for optimization 
tactics that have never or very rarely been used in software 
testing but have the potential to be used in the future.
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Challenges Using the Existing Methodology  A technique 
based on general purpose computing on graphics pro-
cessing units (GPGPU) has been used in the optimization 
disciplines.

9. Optimization of Testsuite- testcase in Regression Test; 
Ansari et al. [5]

Existing Methodology  Prioritize and select testcases based 
on the level of risk: Testcases should be prioritised in order 
of risk exposure.Select only those testcases that pose an 
intolerable, significant, or moderate risk. Testcase minimiza-
tion based on specifications: Choose the test cases that cover 
all of the functionality if the regression pool's testcases don't.

Challenges Using the Existing Methodology  In this model, 
the testcase minimization technique is based on risk expo-
sure, and not all testcases in the test suite are mapped to risk 
– an unimportant element for Test personnel to attribute risk 
factors to testcases.

10. Empirical evaluation of Pareto efficient multi- objec-
tive regression testcase prioritization; Epitropakis et al. [9]

Existing Methodology  Test case selection techniques 
Enhance the retest-all technique by selecting a subset of the 
entire test suite based on test criteria. Prioritizing testcases 
aims to organise testcases in a way that maximises test ade-
quacy as quickly as feasible.

Challenges Using the Existing Methodology  Pareto analysis 
is based on the 80–20 principle, which states that 20% of 
causes result in 80% of effects, which does not guarantee 
quality assurance.

3 � Quality Assurance

Because structural quality is based on the engineering team's 
ability, it is ensured by code review, analysis, and rewriting. 
Quality assurance, quality control, and testing are examples 
of quality management duties that can aid in the functional 
aspect's preservation [4]. The Software Testing Life Cycle 
(STLC) is a collection of methods for ensuring that software 
quality goals are met. The STLC strategy includes both veri-
fication and validation. A methodologically organised series 
of activities for certifying a software product.

3.1 � Phases of STLC

1.	 Requirement Analysis

	   The Quality Assurance team meets with stakeholders 
to get a complete picture of the demand. And the team 
understands what is to be tested.

2.	 Test Planning
	   The most efficient phase for defining test plans and 

calculating the projected testing effort and cost.
3.	 Test Case Development
	   The phase in which the testing team creates testcases 

and test data for them. The same is examined by the 
quality assurance team.

4.	 Test Execution
	   After the testcases have been generated [15, 17] and 

the environment and test data have been set up, the test 
execution phase begins. In this phase, testcases are run, 
and if the product passes the test, the testcase is passed; 
otherwise, the testcase fails, and a defect is recorded.

4 � Issue with the Large Test Suite

The test suite continues to develop as the product's function-
ality grows, as do the testcases for the relevant requirements 
[4, 14]. It's never easy to manually run all of the testcases for 
each regression/smoke/sanity test [5, 16]. Simultaneously, 
Test personnel are unable to perform random testcases or 
compromise on product quality. Rerunning all of the test-
cases is impractical due to a lack of resources. There has to 
be a mechanism to optimise the testcases [27] that will be 
run once the build is provided, ensuring that no faults are 
missed [19].

a)	 Based on the execution counts of programme pieces in 
an ordered sequence

	   Two approaches are discussed in this technique: 
generic testcase prioritisation [7] and version specific 
testcase prioritisation. While coverage-based testcase 
prioritisation rearranges testcases to maximise code cov-
erage using code coverage statistics as a proxy, it does 
not ensure a high rate of fault discovery. Adaptive ran-
dom testing (ART) [23] generates a candidate set of not-
yet-selected test cases, with the test case farthest from 
the prioritised test suite picked as the next. It increases 
the likelihood of an increase in the number of faults [6]. 
The Farthest First algorithm is introduced in this pub-
lication. The essential method is prioritisation, which 
involves choosing a test scenario that produces the high-
est code coverage. The procedure SelectNextTestCase is 
then called on a regular basis based on Pareto Methodol-
ogy [9] to choose unordered test cases into a prioritised 
collection until all testcases have been re-ordered [18, 
26].
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b)	 Optimize test case based on Fault Severity
	   Four fault levels are:
	   Fatal defects include software crashes, software col-

lapses, software anomalous exits, data loss, and diffi-
culty in repair [3].

	   Serious Fault: Software criteria aren't being met, the 
software can't be utilised regularly, and data is being lost 
but is easily recoverable.

	   General Fault: The software's execution does not 
match the software's instructions.

	   Little Fault: Has a minor influence on software func-
tionality or is inconvenient to use.

	   Minor Fault: Has a minor impact on software func-
tionality or is inconvenient to use [22].

	   The steps for determining the testcase execution 
sequence are as follows:

1.	 For each testcase, calculating the coverage rate
2.	 Choose the testcase with the highest coverage rate.
3.	 Go to step 4 when all programme codes have been 

covered or when the remaining testcases can't cover 
the uncovered programme code.

4.	 For the remaining testcases, update the code cover-
age rate. Repeat steps 2–4 until all of your testcases 
have been prioritised.

c)	 Requirement based testcase Prioritization
	   Customer priority, requirement modifications, and 

implementation complexity are the three criteria used 
in this methodology [11].

a)	 Customer Priority: Each demand is assigned a num-
ber between one and ten, with ten being the highest. 
To improve customer satisfaction, the top priority 
[2] needs are extensively evaluated early on.

b)	 Difficulty of Implementation: Each need is rated 
from 0 to 10, with higher numbers indicating greater 
complexity. Expect more issues with requirements 
with a high level of implementation complexity.

c)	 Requirement Changes: The number of times a 
requirement has been altered over the development 
cycle on a 10-point scale [11].

5 � Related Work Using Hierarchical Divisive 
Clustering

i)	 Clustering Methodology
	   Data clustering is an unsupervised machine learning 

technique for organising data such that patterns can be 
found. Objects in a cluster have a high degree of resem-
blance or correlation with one another and are distinct 
from those in other groups [1]. Clustering can be done 
in two ways: hierarchical and partitional clustering. In 

hierarchical approaches, an n-object dataset is dissected 
into a hierarchy of groups, and the result is represented 
by a dendrogram, a tree structure diagram in which the 
root node represents the entire dataset and each leaf 
node represents a single dataset object. There are usually 
two general approaches for the hierarchical clustering: 
agglomerative and divisive.

ii)	 Hierarchical Divisive Clustering
	   The Divisive Hierarchical Clustering technique is 

shown in Fig. 1 is a top-down strategy that treats the 
entire data set as a single cluster or root node at first, 
then gradually separates the data into multiple clusters 
downstream based on particular data qualities [8]. Top-
down clustering requires a mechanism for breaking a 
cluster containing all of the data, then recursively split-
ting clusters until all of the data is broken into singletons 
[25].

iii)	 Finding testcase Similarities
	   To determine the similarity score and put the compa-

rable testcases in a cluster, find the similarity between 
the testcases [21]. For testcase optimization, one test-
case from a cluster can be executed for any regression/ 
smoke testing [10]. If certain testcases are unique and 
are dissimilar from the remaining, then those testcases 
must be run, and the similarity score will be zero. In this 
approach, Jaccard similarity score is being calculated 
and the steps are being mentioned below:

1.	 Lowercase all text
2.	 Tokenize
3.	 Remove Stop words
4.	 Remove punctuation
5.	 Lemmatize
6.	 Calculate intersection/ union between testcases
	   Jaccard Distance—The Jaccard Index is used to 

determine how similar two finite sets are. Jaccard 
Index can be used to calculate Jaccard Distance. 

 Where A and B are two different test cases repre-
sented here, and the similarity score is zero if the 

J(A,B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|

Fig. 1   explaining the hierarchical divisive clustering.
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testcase is unique and does not match others, oth-
erwise the testcase is represented with a similarity 
score until it reaches 100.

iv)	 Input Data

1.	 Input is a CSV file with testcases. It can be of 3 styles:
	   Type 1: One testcase per row.

	   Type 2: One testcase split in multi rows (no ID repetition).

	   Type 3: One testcase split in multi rows (ID repetition).

2.	 Other inputs as required from the user are:

a)	 Unique column (index column): This is the 
column that must be provided as input that has 
unique ids in it.

475Journal of Electronic Testing (2022) 38:471–479



1 3

b)	 Clustering columns: This is the column that 
must be provided for the optimisation to hap-
pen (either test scenarios alone or test scenario 
and expected result or test scenario, test steps 
and expected result)

c)	 Threshold Value: This is the value provided by 
the user based for the similarity to be looked 
upon. If the optimisation has to be done for a 
regression/ smoke testing, then the user chooses 
the threshold value in the range of 70%. If 
redundant test cases are to be removed from the 
suite, then the user chooses the threshold value 
in the range of 90%

3.	 Upload the input file in the format of ‘.csv’ file.
4.	 Output will also be in the format of ‘.csv’ file con-

taining the cluster ids- to which cluster the test case 
belongs to and the percentage of similarity in test-
cases for each cluster

v)	 Algorithm explained in steps

1.	 Pre-processing:

a.	 The data and all the parameters from the job 
request are fetched from DB.

b.	 Row merging takes place if the testcases are split 
into multiple rows.

c.	 Column merging takes place for all the columns 
selected in 'Optimize' field during job request 
creation.

2.	 Clustering algorithm:

a)	 For each individual testcase, the tokens (words) 
are extracted.

b)	 The numbers and symbols are also filtered 
out from the tokens, such that only alphabets 
remain.

c)	 The tokens are then compared with a common 
stopwords list (a, an, that, this) and any match-
ing words are removed.

d)	 The tokens are then placed in a Set data struc-
ture. Individual sets are maintained for individ-
ual TCs.

e)	 Once all the testcases are reduced to their 
respective sets of tokens, Jaccard Similarity is 

Fig. 2   Test cases with High Similarity with a score of 99.83

Fig. 3   Test cases with Medium Similarity with a score of 84.44
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calculated by comparing the token sets of each 
testcase with all the others.

f)	 The above step gives a 2D linkage matrix where 
the similarity of each testcase with all the other 
testcase is stored.

g)	 The linkage matrix is passed to the Hierarchical 
Clustering algorithm which clusters the test-
cases according to the Similarity Threshold.

h)	 Now, if there are N clusters, then the hierar-
chical clustering is further performed N times, 
cluster by cluster.

i)	 At a time only the testcases belonging to the Nth 
clusters are used for clustering.

j)	 Rest all the steps are same, except for the simi-
larity calculation technique.

k)	 For all tokens in a test case, an average of all the 
word vector is taken as the similarity score.

l)	 Post Processing- JSON and CSV files are cre-
ated from the above result and saved in DB.

	   Thus, we can cluster as:

•	 Highly Similar: In this paper, similarity thresh-
old has been set as 80, hence testcases similar-

ity greater than 94 are considered to be highly 
similar is shown in Fig. 2.

•	 Medium Similar: For similarity threshold set 
as 80, test cases similarity greater than 87 will 
be considered as Medium similar is shown in 
Fig. 3.

•	 Low Similar: For similarity threshold set as 
80, test cases similarity greater than 80 will be 
considered as low similar is shown in Fig. 4.

•	 Unique: For similarity threshold set as 80, test 
cases similarity less than 80 will be considered 
as unique and the similarity score will be zero

Below is the output for the testcases that are optimized. 
Scenario, Steps and Expected Result are the fields chosen 
for optimization.

Test case optimization has been tried out for industry 
standard projects and the results of optimization for various 
modules has been provided below Tables 1 and 2:

As the Table 1 states, the total number of testcases in the 
testsuite is 658. Scenario, steps and expected result were 
chosen as the fields for optimization with a similarity thresh-
old level of 80%. From the clusters that had high, medium 

Fig. 4   Test cases with Low Similarity with a score of 80

Table 1   explaining test case 
optimization numbers

Summary High Similarity Med Similarity Low Similarity Unique 
Test 
cases

Total

Original number of test cases 243 357 52 6 658
% test cases selected from cluster 57% 35% 69% 100% 47%
Sample selected from cluster 140 128 36 6 310

477Journal of Electronic Testing (2022) 38:471–479



1 3

and low similarity with unique testcases, a total of 47% of 
testcases were chosen for regression execution.

Table 2 explains on the percentage of reduction in number 
of testcases in the testsuite and overall effort savings during 
a regression testing.

6 � Conclusion and Future Work

The Hierarchical cluster divisive algorithm is used to opti-
mise test cases, resulting in a decrease of the number of test 
cases in the larger test suite as well as on the removal of 
redundant and duplicate testcases. Further prioritisation of 
testcases can be done using the optimised test suite to report 
issues faster.

Data Availability Statement  Test case optimization has been tried out 
for industry standard projects with different functionalities and sizes. 
The one quoted here in this paper refers to web testing project with 
600 h of testing effort estimation and the results of optimization for 
various modules has been provided.
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