
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-022-06024-9

Achieving Agility in Projects Through Hierarchical Divisive Clustering
Algorithm

Janani Varun1 · R. A. Karthika2

Received: 30 January 2022 / Accepted: 3 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Software products cannot be delivered to the market without proper testing. Only with the help of Testing, accuracy and
quality of the product improves. Test personnel cannot compromise on the quality of the product and cannot afford to miss
any defects. As the product's functionality expands, so does the testcase suite, and executing all of them takes more time
and work. In this discussion, we'll look at how to use a machine learning approach called Hierarchical Divisive Clustering
to optimise the test suite. With this approach, all the testcases are being considered as a single cluster in the beginning and
during every iteration they are separated based on the similarity. This would help execute unique testcases without compro-
mising on the quality which would help during any regression or sanity testing.

Keywords  Testing · Regression · Smoke · Sanity · Test suite · Machine Learning · Hierarchical Divisive Clustering

1  Introduction

Machine Learning is a branch of artificial intelligence that
allows a system to learn and develop without having to be
explicitly programmed. Machine learning is the process of
interpreting data structures and converting them into mod-
els that people can comprehend and use. Machine learn-
ing allows computers to construct models from data they
are given as input, allowing them to automate decision-
making. Unsupervised and supervised learning are the two
types of machine learning tasks. In Supervised Learning,
the desired outcome is labelled on the sample input. In
this supervised learning strategy, patterns are utilised to
predict label values on further unlabeled data. The model
can be tested with new data after it has been trained to
assess how well it works. Classification and Regression

are two different sorts of supervised learning. When it is a
categorised output variable (e.g., to categorise into "Red,"
"Blue," and "Green"), it is a classification problem; when it
is a real number output variable, it is a regression problem
(eg: predicting house price, predicting employee salary).
The system is supplied with unlabeled and uncategorized
input in unsupervised learning, and the model must be
able to distinguish them based on the underlying structure.
Clustering and Association. In Clustering, intrinsic group-
ings are discovered (for example, customers are grouped
based on purchasing behaviour). In Association, rules that
describe a substantial chunk of data are discovered (e.g.:
People who buy x are more inclined to buy y as well.).
Reinforcement learning is a sort of learning that involves
interacting with the environment. When an agent performs
successfully, he is rewarded, and when he performs wrong,
he is penalised.

2 � Literature Review

1. An Improved K-means Algorithm for testcase Optimiza-
tion; Tan et al. [20]

Existing Methodology  To improve the K-means algorithm
and build a fuzzy clustering method, the degree of member-
ship function was introduced. Developed a fuzzy mathematic

Communicated by V. D. Agrawal.

 *	 Janani Varun
	 janani.rajalakshmi@gmail.com

1	 Research Scholar, Department of Computer Science
and Engineering, Vels Institute of Science, Technology
and Advanced Studies, Chennai, India

2	 Associate Professor, Department of Computer Science
and Engineering, Vels Institute of Science, Technology
and Advanced Studies, Chennai, India

/ Published online: 23 September 2022

Journal of Electronic Testing (2022) 38:471–479

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06024-9&domain=pdf

1 3

approach to simplify software testcases while maintaining
software fault detection reliability.

Challenges Using the Existing Methodology  The clustering
process fails to completely examine the many attributes of
test instances, resulting in a discrepancy between cluster-
ing results and reality. Determination of the value of the
fuzzy control factor. The number of testcases employed in
the article was small.

2. Test-Suite Reduction based on K-Medoids Clustering
Algorithm; Liu et al. [12]

Existing Methodology  This method employs a greedy algo-
rithm to process the streamlined test suite, ensuring that
testcases are covered and errors are detected, resulting in a
minimal test suite.

Challenges Using the Existing Methodology  Every time the
code coverage and complexity of each testcase were cal-
culated, there were two steps/methods involved. Calculate
the distance between sample points and centre points in the
second phase, and then select the smallest test suite.

3. Test Suite Reduction via Evolutionary Clustering;
Xia et al. [24]

Existing Methodology  To combine comparable testcases
into the same cluster, use the K-means algorithm. The evolu-
tionary approach is then used to remove duplicate test cases
based on the clustering results, using optimization objects
representing coverage, fault, and cost criteria.

Challenges Using the Existing Methodology  Code Cover-
age, execution speed, and fault location capabilities are the
only factors considered, and redundancy elimination is not
considered.

4. User -session- based testcases Optimization Method
based on Agglutinate Hierarchy Clustering; Liu et al. [13]

Existing Methodology  User Session Clustering based on
Hierarchical Clustering estimates the distance between
user sessions first, then clusters the initial testing cases and
generates many test suites using the bottom-up agglutinate
hierarchical clustering technique.

Challenges Using the Existing Methodology  Mining user
sessions for web application testing is a complex and sys-
tematic activity. The information about the user saved in the
server database is also significant for mining, and USCHC
should be utilised to test a lot more online app.

5. Testcase Prioritization Incorporating Ordered sequence
of Program Elements; Wu et al. [23]

Existing Methodology  Adaptive random testing (ART) is
based on the idea of rearrangement of testcases in order to
maximise the diversity of testcases in terms of similarity
measure. When variety is increased, the number of defects
is likely to increase as well.

Challenges Using the Existing Methodology  Prioritizing
testcases based on coverage rearranges them to optimise
code coverage, but it does not ensure a high rate of fault
discovery.

6. Effective testcase Prioritization method based on Fault
severity; Wang et al. [22]

Existing Methodology  Fatal defects include software
crashes, software collapses, and software anomalous exits.
Serious Error: Software prerequisites were not met. Gen-
eral Fault: The software's execution does not match the soft-
ware's instructions. Minor Error: Has a minor impact on
software functionality.

Challenges Using the Existing Methodology  Counting the
coverage rate of each testcase and selecting the one with
the highest coverage rate takes time and does not focus on
fault detection.

7. Requirement based testcase Prioritization; Kavitha et
al. [11]

Existing Methodology  Customer Priority is allocated to each
demand on a scale of 1 to 10, with 10 being the highest cus-
tomer priority. Complexity of Implementation: Each need
is assessed and given a score between 0 and 10. Changes in
Requirements: The number of times a requirement has been
changed over the development cycle on a 10-point scale.

Challenges Using the Existing Methodology  This strategy
prioritises testcases based on customer needs, has a big test
suite to complete, and is more time demanding.

8. An Insight into testcase optimization: Ideas and trends
with future perspectives; Gupta et al. [10]

Existing Methodology  The first group of projects focuses on
optimization strategies in testing domains. Non-traditional
adequacy criteria and related research are the focus of the
second category. The third category looks for optimization
tactics that have never or very rarely been used in software
testing but have the potential to be used in the future.

472 Journal of Electronic Testing (2022) 38:471–479

1 3

Challenges Using the Existing Methodology  A technique
based on general purpose computing on graphics pro-
cessing units (GPGPU) has been used in the optimization
disciplines.

9. Optimization of Testsuite- testcase in Regression Test;
Ansari et al. [5]

Existing Methodology  Prioritize and select testcases based
on the level of risk: Testcases should be prioritised in order
of risk exposure.Select only those testcases that pose an
intolerable, significant, or moderate risk. Testcase minimiza-
tion based on specifications: Choose the test cases that cover
all of the functionality if the regression pool's testcases don't.

Challenges Using the Existing Methodology  In this model,
the testcase minimization technique is based on risk expo-
sure, and not all testcases in the test suite are mapped to risk
– an unimportant element for Test personnel to attribute risk
factors to testcases.

10. Empirical evaluation of Pareto efficient multi- objec-
tive regression testcase prioritization; Epitropakis et al. [9]

Existing Methodology  Test case selection techniques
Enhance the retest-all technique by selecting a subset of the
entire test suite based on test criteria. Prioritizing testcases
aims to organise testcases in a way that maximises test ade-
quacy as quickly as feasible.

Challenges Using the Existing Methodology  Pareto analysis
is based on the 80–20 principle, which states that 20% of
causes result in 80% of effects, which does not guarantee
quality assurance.

3 � Quality Assurance

Because structural quality is based on the engineering team's
ability, it is ensured by code review, analysis, and rewriting.
Quality assurance, quality control, and testing are examples
of quality management duties that can aid in the functional
aspect's preservation [4]. The Software Testing Life Cycle
(STLC) is a collection of methods for ensuring that software
quality goals are met. The STLC strategy includes both veri-
fication and validation. A methodologically organised series
of activities for certifying a software product.

3.1 � Phases of STLC

1.	 Requirement Analysis

	  The Quality Assurance team meets with stakeholders
to get a complete picture of the demand. And the team
understands what is to be tested.

2.	 Test Planning
	  The most efficient phase for defining test plans and

calculating the projected testing effort and cost.
3.	 Test Case Development
	  The phase in which the testing team creates testcases

and test data for them. The same is examined by the
quality assurance team.

4.	 Test Execution
	  After the testcases have been generated [15, 17] and

the environment and test data have been set up, the test
execution phase begins. In this phase, testcases are run,
and if the product passes the test, the testcase is passed;
otherwise, the testcase fails, and a defect is recorded.

4 � Issue with the Large Test Suite

The test suite continues to develop as the product's function-
ality grows, as do the testcases for the relevant requirements
[4, 14]. It's never easy to manually run all of the testcases for
each regression/smoke/sanity test [5, 16]. Simultaneously,
Test personnel are unable to perform random testcases or
compromise on product quality. Rerunning all of the test-
cases is impractical due to a lack of resources. There has to
be a mechanism to optimise the testcases [27] that will be
run once the build is provided, ensuring that no faults are
missed [19].

a)	 Based on the execution counts of programme pieces in
an ordered sequence

	  Two approaches are discussed in this technique:
generic testcase prioritisation [7] and version specific
testcase prioritisation. While coverage-based testcase
prioritisation rearranges testcases to maximise code cov-
erage using code coverage statistics as a proxy, it does
not ensure a high rate of fault discovery. Adaptive ran-
dom testing (ART) [23] generates a candidate set of not-
yet-selected test cases, with the test case farthest from
the prioritised test suite picked as the next. It increases
the likelihood of an increase in the number of faults [6].
The Farthest First algorithm is introduced in this pub-
lication. The essential method is prioritisation, which
involves choosing a test scenario that produces the high-
est code coverage. The procedure SelectNextTestCase is
then called on a regular basis based on Pareto Methodol-
ogy [9] to choose unordered test cases into a prioritised
collection until all testcases have been re-ordered [18,
26].

473Journal of Electronic Testing (2022) 38:471–479

1 3

b)	 Optimize test case based on Fault Severity
	  Four fault levels are:
	  Fatal defects include software crashes, software col-

lapses, software anomalous exits, data loss, and diffi-
culty in repair [3].

	  Serious Fault: Software criteria aren't being met, the
software can't be utilised regularly, and data is being lost
but is easily recoverable.

	  General Fault: The software's execution does not
match the software's instructions.

	  Little Fault: Has a minor influence on software func-
tionality or is inconvenient to use.

	  Minor Fault: Has a minor impact on software func-
tionality or is inconvenient to use [22].

	  The steps for determining the testcase execution
sequence are as follows:

1.	 For each testcase, calculating the coverage rate
2.	 Choose the testcase with the highest coverage rate.
3.	 Go to step 4 when all programme codes have been

covered or when the remaining testcases can't cover
the uncovered programme code.

4.	 For the remaining testcases, update the code cover-
age rate. Repeat steps 2–4 until all of your testcases
have been prioritised.

c)	 Requirement based testcase Prioritization
	  Customer priority, requirement modifications, and

implementation complexity are the three criteria used
in this methodology [11].

a)	 Customer Priority: Each demand is assigned a num-
ber between one and ten, with ten being the highest.
To improve customer satisfaction, the top priority
[2] needs are extensively evaluated early on.

b)	 Difficulty of Implementation: Each need is rated
from 0 to 10, with higher numbers indicating greater
complexity. Expect more issues with requirements
with a high level of implementation complexity.

c)	 Requirement Changes: The number of times a
requirement has been altered over the development
cycle on a 10-point scale [11].

5 � Related Work Using Hierarchical Divisive
Clustering

i)	 Clustering Methodology
	  Data clustering is an unsupervised machine learning

technique for organising data such that patterns can be
found. Objects in a cluster have a high degree of resem-
blance or correlation with one another and are distinct
from those in other groups [1]. Clustering can be done
in two ways: hierarchical and partitional clustering. In

hierarchical approaches, an n-object dataset is dissected
into a hierarchy of groups, and the result is represented
by a dendrogram, a tree structure diagram in which the
root node represents the entire dataset and each leaf
node represents a single dataset object. There are usually
two general approaches for the hierarchical clustering:
agglomerative and divisive.

ii)	 Hierarchical Divisive Clustering
	  The Divisive Hierarchical Clustering technique is

shown in Fig. 1 is a top-down strategy that treats the
entire data set as a single cluster or root node at first,
then gradually separates the data into multiple clusters
downstream based on particular data qualities [8]. Top-
down clustering requires a mechanism for breaking a
cluster containing all of the data, then recursively split-
ting clusters until all of the data is broken into singletons
[25].

iii)	 Finding testcase Similarities
	  To determine the similarity score and put the compa-

rable testcases in a cluster, find the similarity between
the testcases [21]. For testcase optimization, one test-
case from a cluster can be executed for any regression/
smoke testing [10]. If certain testcases are unique and
are dissimilar from the remaining, then those testcases
must be run, and the similarity score will be zero. In this
approach, Jaccard similarity score is being calculated
and the steps are being mentioned below:

1.	 Lowercase all text
2.	 Tokenize
3.	 Remove Stop words
4.	 Remove punctuation
5.	 Lemmatize
6.	 Calculate intersection/ union between testcases
	  Jaccard Distance—The Jaccard Index is used to

determine how similar two finite sets are. Jaccard
Index can be used to calculate Jaccard Distance.

 Where A and B are two different test cases repre-
sented here, and the similarity score is zero if the

J(A,B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|

Fig. 1   explaining the hierarchical divisive clustering.

474 Journal of Electronic Testing (2022) 38:471–479

1 3

testcase is unique and does not match others, oth-
erwise the testcase is represented with a similarity
score until it reaches 100.

iv)	 Input Data

1.	 Input is a CSV file with testcases. It can be of 3 styles:
	  Type 1: One testcase per row.

	  Type 2: One testcase split in multi rows (no ID repetition).

	  Type 3: One testcase split in multi rows (ID repetition).

2.	 Other inputs as required from the user are:

a)	 Unique column (index column): This is the
column that must be provided as input that has
unique ids in it.

475Journal of Electronic Testing (2022) 38:471–479

1 3

b)	 Clustering columns: This is the column that
must be provided for the optimisation to hap-
pen (either test scenarios alone or test scenario
and expected result or test scenario, test steps
and expected result)

c)	 Threshold Value: This is the value provided by
the user based for the similarity to be looked
upon. If the optimisation has to be done for a
regression/ smoke testing, then the user chooses
the threshold value in the range of 70%. If
redundant test cases are to be removed from the
suite, then the user chooses the threshold value
in the range of 90%

3.	 Upload the input file in the format of ‘.csv’ file.
4.	 Output will also be in the format of ‘.csv’ file con-

taining the cluster ids- to which cluster the test case
belongs to and the percentage of similarity in test-
cases for each cluster

v)	 Algorithm explained in steps

1.	 Pre-processing:

a.	 The data and all the parameters from the job
request are fetched from DB.

b.	 Row merging takes place if the testcases are split
into multiple rows.

c.	 Column merging takes place for all the columns
selected in 'Optimize' field during job request
creation.

2.	 Clustering algorithm:

a)	 For each individual testcase, the tokens (words)
are extracted.

b)	 The numbers and symbols are also filtered
out from the tokens, such that only alphabets
remain.

c)	 The tokens are then compared with a common
stopwords list (a, an, that, this) and any match-
ing words are removed.

d)	 The tokens are then placed in a Set data struc-
ture. Individual sets are maintained for individ-
ual TCs.

e)	 Once all the testcases are reduced to their
respective sets of tokens, Jaccard Similarity is

Fig. 2   Test cases with High Similarity with a score of 99.83

Fig. 3   Test cases with Medium Similarity with a score of 84.44

476 Journal of Electronic Testing (2022) 38:471–479

1 3

calculated by comparing the token sets of each
testcase with all the others.

f)	 The above step gives a 2D linkage matrix where
the similarity of each testcase with all the other
testcase is stored.

g)	 The linkage matrix is passed to the Hierarchical
Clustering algorithm which clusters the test-
cases according to the Similarity Threshold.

h)	 Now, if there are N clusters, then the hierar-
chical clustering is further performed N times,
cluster by cluster.

i)	 At a time only the testcases belonging to the Nth
clusters are used for clustering.

j)	 Rest all the steps are same, except for the simi-
larity calculation technique.

k)	 For all tokens in a test case, an average of all the
word vector is taken as the similarity score.

l)	 Post Processing- JSON and CSV files are cre-
ated from the above result and saved in DB.

	  Thus, we can cluster as:

•	 Highly Similar: In this paper, similarity thresh-
old has been set as 80, hence testcases similar-

ity greater than 94 are considered to be highly
similar is shown in Fig. 2.

•	 Medium Similar: For similarity threshold set
as 80, test cases similarity greater than 87 will
be considered as Medium similar is shown in
Fig. 3.

•	 Low Similar: For similarity threshold set as
80, test cases similarity greater than 80 will be
considered as low similar is shown in Fig. 4.

•	 Unique: For similarity threshold set as 80, test
cases similarity less than 80 will be considered
as unique and the similarity score will be zero

Below is the output for the testcases that are optimized.
Scenario, Steps and Expected Result are the fields chosen
for optimization.

Test case optimization has been tried out for industry
standard projects and the results of optimization for various
modules has been provided below Tables 1 and 2:

As the Table 1 states, the total number of testcases in the
testsuite is 658. Scenario, steps and expected result were
chosen as the fields for optimization with a similarity thresh-
old level of 80%. From the clusters that had high, medium

Fig. 4   Test cases with Low Similarity with a score of 80

Table 1   explaining test case
optimization numbers

Summary High Similarity Med Similarity Low Similarity Unique
Test
cases

Total

Original number of test cases 243 357 52 6 658
% test cases selected from cluster 57% 35% 69% 100% 47%
Sample selected from cluster 140 128 36 6 310

477Journal of Electronic Testing (2022) 38:471–479

1 3

and low similarity with unique testcases, a total of 47% of
testcases were chosen for regression execution.

Table 2 explains on the percentage of reduction in number
of testcases in the testsuite and overall effort savings during
a regression testing.

6 � Conclusion and Future Work

The Hierarchical cluster divisive algorithm is used to opti-
mise test cases, resulting in a decrease of the number of test
cases in the larger test suite as well as on the removal of
redundant and duplicate testcases. Further prioritisation of
testcases can be done using the optimised test suite to report
issues faster.

Data Availability Statement  Test case optimization has been tried out
for industry standard projects with different functionalities and sizes.
The one quoted here in this paper refers to web testing project with
600 h of testing effort estimation and the results of optimization for
various modules has been provided.

Declarations 

Conflict of Interest  The authors declare that we have no conflict of
interest.

References

	 1.	 Abraham J, Radhamani G (2014) Fuzzy C Means (FCM) Cluster-
ing Based Hybrid Swarm Intelligence Algorithm for Test Case
Optimization. Res J Appl Sci Eng Technol 8:76–82. https://​doi.​
org/​10.​19026/​rjaset.​8.​943

	 2.	 Ahmed A A, Shaheen M, Kosba E (2012) Software testing suite
prioritization using multi-criteria fitness function. In Proc 23rd
IEEE Int Conf Comput Theory Appl (ICCTA) 160–166

	 3.	 Ahmed B (2016) Test case minimization approach using fault
detection and combinatorial optimization techniques for config-
uration-aware structural testing. J Eng Sci Technol 12:737–753.
https://​doi.​org/​10.​1016/j.​jestch.​2015.​11.​006

	 4.	 Ahmed B, Abdulsamad T (2015) Achievement of Minimized
Combinatorial Test Suite for Configuration-Aware Software Func-
tional Testing Using the Cuckoo Search Algorithm. Inf Softw
Technol 66:13–29

	 5.	 Ansari SA, Devadkar KK, Gharpure P (2013) Optimization of
test suite-test case in regression test. IEEE International Confer-
ence on Computational Intelligence and Computing Research
2013:1–4. https://​doi.​org/​10.​1109/​ICCIC.​2013.​67242​06

	 6.	 De Lucia A, Di Penta M, Oliveto R, Panichella A (2012) On
the role of diversity measures for multi-objective test case selection.
2012 7th International Workshop on Automation of Software Test
(AST) 145–151. https://​doi.​org/​10.​1109/​IWAST.​2012.​62289​83

	 7.	 Di Nucci D, Panichella A, Zaidman A, De Lucia A (2018)
A test case prioritization genetic algorithm guided by the hyper-
volumee Indicator. IEEE Trans Software Eng 46:1–1. https://​doi.​
org/​10.​1109/​TSE.​2018.​28680​82

	 8.	 Ding C, He X (2002) Cluster merging and splitting in hier-
archical clustering algorithms 2002 IEEE International
Conference on Data Mining, 2002. Proceedings 139–146.
https://​doi.​org/​10.​1109/​ICDM.​2002.​11838​96

	 9.	 Epitropakis MG, Yoo S, Harman M, Burke EK (2015)
Empirical evaluation of pareto efficient multi-objective regression
test case prioritisation. 234–245. https://​doi.​org/​10.​1145/​27717​83.​
27717​88

	10.	 Gupta N, Sharma A, Pachariya MK (2019) An Insight Into Test
Case Optimization: Ideas and Trends With Future Perspectives.
IEEE Access 7:22310–22327. https://​doi.​org/​10.​1109/​ACCESS.​
2019.​28994​71

	11.	 Kavitha RV, Kavitha VR, Kumar NS (2010) Requirement
based test case prioritization. 2010 International Conference on Com-
munication Control and Computing technologies 826–829.
https://​doi.​org/​10.​1109/​ICCCCT.​2010.​56707​28

	12.	 Liu F, Zhang J, Zhu EZ (2017) Test-suite reduction based on
K-Medoids clustering algorithm. 2017 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC) 186–192. https://​doi.​org/​10.​1109/​CyberC.​2017.​38

	13.	 Liu Y, Wang K, Wei W, Zhang B, Zhong H (2011) User-session-
based test cases optimization method based on agglutinate hier-
archy clustering. 2011 International Conference on Internet of
Things and 4th International Conference on Cyber, Physical and
Social Computing. IEEE

	14.	 Mala D J, Mohan V (2010) Quality improvement and optimization
of test cases: A hybrid genetic algorithm-based approach. ACM
SIGSOFT Softw Eng Notes 35:1–14

	15.	 Marchetto A, Islam MM, Asghar W, Susi A, Scanniello G
(2016) A Multi-objective technique to prioritize test cases.
In IEEE Trans Softw Eng 42(10):918–940. https://​doi.​org/​
10.​1109/​TSE.​2015.​25106​33

	16.	 Mirarab S, Akhlaghi S, Tahvildari L (2012) Size-con-
strained regression test case selection using multicriteria optimi-
zation. In IEEE Trans Softw Eng 38(4):936–956. https://​
doi.​org/​10.​1109/​TSE.​2011.​56

	17.	 Panichella A, Kifetew F M, Tonella P (2018) Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets. IEEE Trans Softw Eng 44(2)122- 158

	18.	 Shin Y, Harman M (2007) Pareto efficient multi-objective test
case selection. In Proc Int Symp Softw Test Anal 140–150

	19.	 Srivatsava PR, Mallikarjun B, Yang XS (2013) Optimal test
sequence generation using firefly algorithm. Swarm Evol Comput
8:44–53

	20.	 Tan TT, Wang BS, Tang Y, Zhou X (2019) An improved
K-means algorithm for test case optimization. IEEE 4th Inter-
national Conference on Computer and Communication Systems
(ICCCS). https://​doi.​org/​10.​1109/​CCOMS.​2019.​88216​87

	21.	 Verma AS, Choudhary A, Tiwari S (2020) Test Case Optimiza-
tion using Butterfly Optimization Algorithm. 2020 10th Interna-
tional Conference on Cloud Computing, Data Science & Engi-
neering (Confluence) 704–709. https://​doi.​org/​10.​1109/​
Confl​uence​47617.​2020.​90583​34

	22.	 Wang Y, Zhao X, Ding X (2015) An effective test case
prioritization method based on fault severity. 2015 6th IEEE Inter-
national Conference on Software Engineering and Service Science
(ICSESS) 737–741. https://​doi.​org/​10.​1109/​ICSESS.​2015.​
73391​62

Table 2   explaining effort saved out of test case optimization

Test Suite
Reduction

TE Effort pre-
clustering

TE Effort post-
clustering

Effort
Savings -Test
Execution

53% 5 person days 3 person days 40%

478 Journal of Electronic Testing (2022) 38:471–479

https://doi.org/10.19026/rjaset.8.943
https://doi.org/10.19026/rjaset.8.943
https://doi.org/10.1016/j.jestch.2015.11.006
https://doi.org/10.1109/ICCIC.2013.6724206
https://doi.org/10.1109/IWAST.2012.6228983
https://doi.org/10.1109/TSE.2018.2868082
https://doi.org/10.1109/TSE.2018.2868082
https://doi.org/10.1109/ICDM.2002.1183896
https://doi.org/10.1145/2771783.2771788
https://doi.org/10.1145/2771783.2771788
https://doi.org/10.1109/ACCESS.2019.2899471
https://doi.org/10.1109/ACCESS.2019.2899471
https://doi.org/10.1109/ICCCCT.2010.5670728
https://doi.org/10.1109/CyberC.2017.38
https://doi.org/10.1109/TSE.2015.2510633
https://doi.org/10.1109/TSE.2015.2510633
https://doi.org/10.1109/TSE.2011.56
https://doi.org/10.1109/TSE.2011.56
https://doi.org/10.1109/CCOMS.2019.8821687
https://doi.org/10.1109/Confluence47617.2020.9058334
https://doi.org/10.1109/Confluence47617.2020.9058334
https://doi.org/10.1109/ICSESS.2015.7339162
https://doi.org/10.1109/ICSESS.2015.7339162

1 3

	23.	 Wu K, Fang C, Chen Z, Zhao Z (2012) Test case prior-
itization incorporating ordered sequence of program elements.
2012 7th International Workshop on Automation of Software Test
(AST) 124–130. https://​doi.​org/​10.​1109/​IWAST.​
2012.​62289​80

	24.	 Xia C, Zhang Y, Hui Z (2021) Test suite reduction via evolution-
ary clustering. IEEE Access 9:28111–28121. https://​doi.​org/​10.​
1109/​ACCESS.​2021.​30583​01

	25.	 Yamada Y, Masuyama N, Amako N, Nojima Y, Loo CK, Ishibu-
chi H (2020) Divisive Hierarchical Clustering Based on Adaptive
Resonance Theory. International Symposium on Community-cen-
tric Systems (CcS) 2020:1–6. https://​doi.​org/​10.​1109/​CcS49​175.​
2020.​92314​74

	26.	 Yoo S, Harman M (2010) Using hybrid algorithm for pareto
efficient multi-objective test suite minimisation. J Syst Softw
83:689–701. https://​doi.​org/​10.​1016/j.​jss.​2009.​11.​706

	27.	 Zheng W, Hierons R M, Li M, Liu X H, Vinciotti V (2016) Mul-
tiobjective optimisation for regression testing. Inf Sci 334:1–16

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

Janani Varun  completed her undergraduate studies at Anna Univer-
sity, Chennai and her postgraduate studies at Anna University, Coim-
batore. She completed a master’s Programme in Artificial Intelligence
that included Data Science, Machine Learning, and Deep Learning.
She has been working in an IT company on Agile projects using
Machine Learning and Artificial Intelligence. That’s where she’s
run into a lot of roadblocks that made her take up a research problem
related to Agile area and solve it with Machine learning algorithms. Her
research presents a solution to a challenge that most projects face daily.

R. A. Karthika  is currently working as an Associate Professor, in the
Department of Computer Science and Engineering, Vels Institute
of Science, Technology and Advanced Studies, Chennai, India. She
obtained her Ph.D. degree from Noorul Islam University, Kanyaku-
mari, India (2015). She has around 14 years of teaching experience and
her areas of interest include networking, IOT, cloud computing and big
data. She has published around 34 papers in national and international
journals and she is member of various international accreditation bod-
ies like CSI.

479Journal of Electronic Testing (2022) 38:471–479

https://doi.org/10.1109/IWAST.2012.6228980
https://doi.org/10.1109/IWAST.2012.6228980
https://doi.org/10.1109/ACCESS.2021.3058301
https://doi.org/10.1109/ACCESS.2021.3058301
https://doi.org/10.1109/CcS49175.2020.9231474
https://doi.org/10.1109/CcS49175.2020.9231474
https://doi.org/10.1016/j.jss.2009.11.706

	Achieving Agility in Projects Through Hierarchical Divisive Clustering Algorithm
	Abstract
	1 Introduction
	2 Literature Review
	3 Quality Assurance
	3.1 Phases of STLC

	4 Issue with the Large Test Suite
	5 Related Work Using Hierarchical Divisive Clustering
	6 Conclusion and Future Work
	References

