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Abstract
As the complexity and scope of VLSI designs continue to grow, fault detection processes in the pre-silicon stage have 
become crucial to guaranteeing reliability in IC design. Most fault detection algorithms can be solved by transforming them 
into a satisfiability (SAT) problem decipherable by SAT solvers. However, SAT solvers consume significant computational 
time, as a result of the search space explosion problem. This ever- increasing amount of data can be handled via machine 
learning techniques known as deep learning algorithms. In this paper, we propose a new approach utilizing deep learning 
for fault detection (FD) of combinational and sequential circuits in a type of stuck-at-faults. The goal of the proposed semi-
supervised FD model is to avoid the search space explosion problem by taking advantage of unsupervised and supervised 
learning processes. First, the unsupervised learning process attempts to extract underlying concepts of data using Deep 
sparse autoencoder. Then, the supervised process tends to describe rules of classification that are applied to the reduced 
features for detecting different stuck-at faults within circuits. The FD model proposes good performance in terms of running 
time about 187 × compared to other FD algorithm based on SAT solvers. In addition, it is compared to common classical 
machine learning models such as Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB) classifiers, in terms 
of validation accuracy. The results show a maximum validation accuracy of the feature extraction process at 99.93%, using 
Deep sparse autoencoder for combinational circuits. For sequential circuits, stacked sparse autoencoder presents 99.95% 
as average validation accuracy. The fault detection process delivers around 99.6% maximum validation accuracy for com-
binational circuits from ISCAS’85 and 99.8% for sequential circuits from ISCAS’89 benchmarks. Moreover, the proposed 
FD model has achieved a running time of about 1.7x, compared to DT classifier and around 1.6x, compared to RF classifier 
and GB machine learning classifiers, in terms of validation accuracy in detecting faults occurred in eight different digital 
circuits. Furthermore, the proposed model outperforms other FD models, based on Radial Basis Function Network (RBFN), 
achieving 97.8% maximum validation accuracy.

Keywords Fault diagnosis · Deep learning · Neural networks · Autoencoder

1 Introduction

Given rapid downscaling of integration, there have been 
ever increasing challenges to circuit designers [1]. Figure 1 
summarizes the main phases of the IC design flow with 
verification, debugging and correction processes. IC design 
is a highly complicated task as it needs a full understanding 
of the IC restrictions, specifications and all the required 
EDA tools. It starts with writing a form of its specifications 
passed through number of complex design steps to achieve 
the desired final chip after fabricating billions of transistors 
onto one piece of a semiconductor die, having a very small 
size (no larger than a fingernail). The main challenges in 
the design process are functional verification, debugging 
and auto-correction processes. Functional debugging aims 
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to find root-cause of a functional failure. This increase in 
size and scope of bugs has made functional debugging one 
of the largest bottlenecks in the design cycle. Therefore, 
it points to a crucial requirement for more scalable and 
innovative debugging solutions.

Consequently, the nature of faults in digital circuits has 
been more complex and unpredictable, and automatic fault 
diagnosis of complex systems has become crucial to main-
tain low production costs with changing technologies. This 
process attempts to enhance system performance, avoid 
negative results of logic faults and determine abnormal 
functioning from data that may be corrupted due to unpre-
dictable events. Following detection of abnormal func-
tioning, reasons for failures can be located and identified. 
Therefore, many researchers have investigated differing 
methods for verifying, debugging and correcting digital 
systems by trading-off accuracy, speed and human inter-
pretations. The main difference between each process is 
explained in the following definitions:

Definition 1: Verification is the process of searching for dis-
crepancies between two levels of circuit abstraction in the 
pre-silicon design.

Definition 2: Debugging is the process following failed veri-
fication intended for diagnosing and detecting potential bug 
locations in an erroneous circuit. Therefore, it is also often 
termed Fault Localization.

Definition 3: Correction is the phase responsible for modify-
ing components causing errors discovered by debuggers, so it 
can rectify the desired circuit to behave in its intended manner.

Debugging process is a crucial process in digital design 
which consumes 60% of the total formal verification time 

in digital design [2]. This process is required for determin-
ing all potential faults in digital VLSI circuits. Many tradi-
tional methods are primarily based on satisfiability (SAT) 
problem that convert the whole process into SAT instance, 
followed by an attempt to analyze this instance for verify-
ing, debugging and even correcting the digital system [3–6]. 
For detecting logic faults in the case of erroneous digital 
circuits, most of these approaches are based on detecting 
different subsets that give valuable meaning to designers, 
such as minimal correction subsets (MCSes) and minimal 
unsatisfiable subsets (MUSes).

There are many techniques based on machine learning 
algorithms that have been proposed for fault detection pro-
cesses [7, 8]. Machine learning (ML) techniques are primar-
ily based on a large amount of historical data available for 
all such applications. It transforms this data into meaningful 
information used for future analytics and predictive solutions. 
Therefore, the primary requirement for establishment of a 
good ML engine is an adequate amount of reliable data. The 
success of ML models can be proven by quick solutions. The 
second reason behind the upthrust of ML is deep learning 
which introduces successive solutions with the availability of 
high-speed hardware and graphic processing units for expedit-
ing the required computation. With the development of smart 
manufacturing, fault diagnosis becomes essential to ensuring 
the reliability and safety of industrial systems. Despite most 
approaches based on ML are focused on locating design faults 
at a post-silicon stage, detecting faults in a pre-silicon stage 
is more important to make sure of all components in digital 
circuits before going deeper into the design flow [9].

In this paper, we illustrate a new model for fault detec-
tion (FD) approach based on Autoencoders for detecting 
stuck-at-faults, in both combinational and sequential cir-
cuits. The conducted research introduces the following 
contributions that are more promising than SAT:

Fig. 1  Overview of IC Design Flow
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• The search space explosion problem in FD approaches 
based on formal methods can be solved using counterex-
ample resulting from failed verification passed to semi-
supervised learning model for classifying stuck-at-faults, 
which might be causes for failing verification. In this 
way, multiple calls of SAT solvers can be avoided.

• Instead of reducing SAT instances by SAT encoding 
algorithms for detecting faults using SAT solvers, Deep 
Sparse Auto-Encoders, as unsupervised model, can be 
implemented on test patterns directly to extract robust 
latent features. Therefore, conjunction between multiple 
clauses can be dispensed.

• Exact debuggers using Max-SAT approach for detecting 
the main reason of faults existed in circuit is replaced 
by ATALANTA tool for generating multiple patterns for 
each stuck-at-fault with high fault coverage. Therefore, 
dataset can be helpful to avoid repetitive generation of 
multiple unsatisfiable cores caused by single fault.

The rest of our paper is organized as follows: Sect. 2 
and Sect. 3 give a brief description of fault detection 
background and approaches based on machine learn-
ing and SAT problem, respectively. Section 4 illustrates 
the proposed model. Section 5 shows the experimental 
results. Finally, Sect. 6 is the conclusion.

2  Background

2.1  Fault Classes

Faults are physical defects that may cause a failure in logic 
circuits or systems. They are described by: its nature, value 
and duration. The nature of any fault may be a logical or 
non-logical fault. A logical fault occurs if the logic func-
tion of a component or a signal is changed to some other 

function. Otherwise, it is defined as non-logical fault such 
as malfunction of clock signals or a power failure, para-
metric fault and delay fault. The value of a fault may be 
fixed or varying erroneous logical values. Also, the dura-
tion of a fault may be permanent (known as solid faults) or 
temporary.

In digital VLSI circuits, there are different classes of 
faults or bugs which are divided into three main types: 
design faults, verification faults, manufacturing faults and 
electrical faults. Design faults are that occurred as functional 
bugs or electrical bugs. The main reason for design faults 
is interference by a designer in a synthesis phase in order 
to reach a specific level of system optimization. Also, they 
may be caused by automated synthesis tools with software 
bugs. These bugs occur in gate-level implementation or 
RTL implementation of IC design. In this paper, we focus 
on detecting logical faults as they may occur around 98% 
before tap-out and about 2% after tap-out. Tables 1 illus-
trates different types of faults in IC design.

The proposed algorithm is focused on detecting stuck-
at-faults that can be mapped to gate replacement faults in 
logical circuits as proposed in [10], proving set of corollaries 
for describing mapping from stuck-at-faults into design fault 
model domain. The following definitions denotes types of 
design faults:

Definition 1 (Gate replacement error). It defines a design 
error which can be rectified by replacing the gate gi with 
another gate gj.

Definition 2 (Extra/missing inverter error). It describes a 
design error which can be corrected by removing or adding 
an inverter at some input of a gate at some fanout branch.

The method of mapping Stuck-at faults into gate-replacement 
faults is concluded from the following proof in [10]:

Table 1  Different Types of Faults in IC design

Fault Type Functional Faults Verification Faults Manufacturing Faults Circuit or Electrical Faults

Occurred in - Design imple-
mentation

(RTL or gate 
-level implemen-
tation)

- Behavioral specification
(testbenches or assertions)
Also, called as testbench bugs

- IC manufacturing 
phase

Classified into Gross 
area defects and spot 
defects

- Pre-or post-silicon verification
- operating region such as frequency, 

voltage, and temperature

Caused by - Change in speci-
fication

-Human factor
- Automated syn-

thesis tools with 
software bugs

- Incorrect transformation of a behavio-
ral specification to a verification code 
(testbench or assertions)

- Out of tolerance steps 
(macro level varia-
tions)

- Scratches from wafer 
mishandling (global 
faults)

- Missing patterns or 
extra patterns (spot 
bugs)

- Undesired interaction between a design 
and an electrical state such as: Cross-
talk, Power -supply noise, Thermal 
effects and Process variations
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Theorem 1: For detecting design errors in the implementa-
tion at any gate in a given circuit, it is sufficient to apply a 
pair of test patterns which detect the stuck-at one and stuck-
at zero at one of the gate inputs.

Therefore, the following set of corollaries describes the 
mapping process from stuck-at fault model to the design 
error domain. Also, Fig. 2 gives simple examples of these 
corollaries.

• Missing/extra inverter at the gate output mapped from s/1 
and s/0 faults on two or more gate inputs.

• Replacement faults: AND→OR, OR→NAND, 
NAND→NOR and NOR→AND results by s/1 faults at 
one or more gate inputs.

• Replacement faults: AND→NOR, OR→AND, 
NAND→OR and NOR→NAND mapped from s/0 faults 
are one or more gate inputs.

2.2  Logical Design Debugging

Design debugging or diagnosis is considered an internal pro-
cess for improving the design cycle, manufacture yield and 
shorten the time-to-market window. It defines as the process 
of finding all sets of fault locations or suspects in the buggy 
design and correcting the design faults for satisfying given 
specification. Figure 3 illustrates a design flow of guaran-
tying correctness before going deeper into manufacturing 
steps. Generally, design debugging is followed by a failed 
verification for detecting bugs to make them not able to find 

Fig. 2  Examples of Mapping 
Stuck at faults into gate replace-
ment errors

Fig. 3  Design Flow of verification, debugging and correction phases
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their ways in the field. Debugging techniques involve taking 
a counter-example that triggering failures then return a set 
of locations in the buggy design that might be responsible 
for the observed faults.

In general, there are two types of Fault diagnosis or 
debugging which are Design error diagnosis and Fault 
Diagnosis. The design flow is separated into two groups: 
the first group is HDL specification, RTL synthesis and 
Logic synthesis. The second group is generating physical 
design and Chip. In the early first design stages, malfunc-
tions might exist as a result of specification changes bugs 
in automated tools or the human factor. Therefore, logic 
corrections identify the possible corrections in the erro-
neous netlist to match a specification. In the second latter 
stages, the fabricated chip might fail testing, so the fault 
diagnosis should take place given the faulty chip and a 
netlist. It injects faults into a correct netlist until the netlist 
emulated the behavior of the faulty chip.

For sequential circuits, debugging process of sequential 
circuits is similar to that of combinational circuits except 
that their behavior must be modelled for a finite number 
of clock cycles. Therefore, the most common approach 
for modelling sequential circuits is to use the time frame 
expansion technique or the iterative logic array (ILA) rep-
resentation. These methods connect the current state and 
the text state together. Therefore, the sequential circuit is 
transformed into a new circuit called “unfolded combi-
national circuit”. Then, it can be debugged like any other 
combinational circuit. Figure 4 illustrates the iterative 
logic array model for any combinational logic. Our pro-
posed model focuses on the properties of unfolded com-
binational circuit of sequential circuits.

2.3  Fault Detection Based on AI

In general, fault diagnosis can be categorized into model-
based, signal-based, knowledge-based (also called data-
driven) and hybrid/active approaches [12]. Data-driven fault 
diagnosis that is implemented based on machine learning 
models (such as support vector machine (SVM), neural 
network (NN) and fuzzy logic) is more common because 
of the data analytical methods in them. On the other hand, 
knowledge-based diagnosis methods are different from 
other classes as it requires employment of a large volume of 

historical data available where other classes of fault diag-
nosis methods have to utilize real-time data. The schematic 
diagram of knowledge-based fault diagnosis is illustrated 
in Fig. 5. A variety of artificial intelligence techniques is 
applied on historical data, then the knowledge base can be 
extracted which represents the dependency of the variables 
of the system. Then fault diagnosis decision is determined 
by checking the consistency between the observed behavior 
of the system and the knowledge base with the aid of a clas-
sifier. Extracting knowledge base can be either qualitative or 
quantitative in nature.

2.4  Autoencoders

Since 2006, Deep learning becomes a crucial domain in 
machine learning. Autoencoder is a special type of feedforward 
neural network for the task of representation learning. The goal 
of autoencoders is to find the compressed representation of the 
input called "code" or "latent-space-representation" that can 

Fig. 4  Iterative Logic Array 
Model [11]

Fig. 5  Schematic diagram of knowledge-based fault diagnosis
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be used to reconstruct the output of autoencoders correctly. 
Therefore, it is simply used for performing dimensionally 
feature reduction from a higher dimension to a lower dimen-
sion. Autoencoders are considered unsupervised learning 
algorithm, as their outputs are simply reconstructed data from 
their inputs or features. it consists of three main parts: encoder, 
code, decoder which are a fully connected feedforward neural 
network (ANNs). Code is a single layer with a size of nodes 
representing the dimensionality of our choice. So, code size 
is a hyperparameter that we determined before training the 
autoencoder. Figure 6 illustrates the visual description of the 
autoencoder. Both encoder and decoder have a similar fully-
connected ANN structure. And the main goal is to produce 
output which is same of the input. Therefore, the only require-
ment is that the input and output dimensions are typically the 
same. Mainly, autoencoders have four following hyperparam-
eters that should be set before training.

• Code size is the number of nodes in the middle layer. The 
smaller size of the code layer, the more compression we 
can get.

• Number of layers in the encoder and decoder:The more 
layers exist in the encoder, the deeper autoencoder can 
be formed.

• Number of nodes per layer: There are many types of 
autoencoders such as stacked autoencoder where layers 
are stacked one after another.

• Loss function: There are two types of loss function which 
set according to a type of input data.

For binary inputs (like our case), the loss function is the 
cross-entropy described in Eq. 1 (more precisely: sum of 
Bernoulli cross entropies). Note that xk is the input data, x̂k 
is the reconstructed data and k is the number of samples.

For real-valued input, the loss function is sum of squared 
differences (squared Euclidean distance) and the output 
should be a linear activation function as follows:

The training of autoencoders is Not different from ANNs 
where parameter gradients are obtained by backpropagat-
ing the gradient like a regular network. The architecture 
of autoencoders can be handled to form powerful autoen-
coder by rising nodes per layer, code size and number of 
layers. Therefore, autoencoder can learn complex codings 
by increasing these hyperparameters and avoiding overfit-
ting at the same time. Therefore, it should be important to 
balance between its sensitivity to the inputs good enough to 
build an accurate reconstructed output and its insensitivity to 
the input good enough to avoid memorizing and overfitting 
the training data. Therefore, the loss function of the model 
L
(
x, x̂

)
 can be defined by two parts: one term for satisfying 

the sensitivity to the input and the other term for avoiding 
memorization/overfitting which is called regularizer.

A couple of important properties of dimensionality reduc-
tion using autoencoders:

– Data-specific:
  autoencoders are capable of compressing data that is 

similar to training data. Therefore, autoencoders are Not 
as standard data compression (like gzip) as the features 
learned by autoencoders are specific to the given training 
data.

– Lossy:
  autoencoders are not the way for lossless compression 

as the output of autoencoders will be close to the input 
but not the same (it is degraded representation).

– Unsupervised or self-supervised:
  as the training process of autoencoders does Not need 

any explicit labels for the input data, autoencoder is con-
sidered an unsupervised learning technique. Also, they 
can be called self-supervised because they can produce 
their labels from the training data.

The main goal of autoencoders is to extract the meaning-
ful features of raw signals and reconstructing them again 
at the output layer and avoid copying from input layer to 
hidden layer. Therefore, there are many types of autoencod-
ers to guarantee this property such as sparse autoencoder 
(SAE) [13], deep autoencoder [14], denoising AE [15] and 
contractive AEs [16]. There are many types of autoencoders. 
Table 2 illustrates the main differences between two used 
autoencoders in our model: sparse AE (SAE) and Deep AE.

(1)L
(
x, x̂

)
=
∑

k
(xklog

(
x̂k
)
+ (1 − xk)log(1 − x̂k))

(2)L
(
x, x̂

)
=

1

2

∑
k
(̂xk − xk)

2

Fig. 6  A simple architecture of autoencoder
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3  State of the Art for Fault Debugging

Many researches have been devoted to diagnosis and detect 
faults in digital systems. Most advanced methods are based 
on SAT solvers or machine learning or deep learning. The 
following two subsections discuss different approaches for 
fault detection based on machine learning or deep learning 
and fault detection and localization based on SAT solvers.

3.1  Fault Detection Algorithms based on AI

The first famous system of data-driven fault diagnosis was 
revealed in 1980s using expert system [6]. It depends on a set 
of rules from the past prior experience learned by experts. In 
[7], authors examined the recent benefits of SVM for fault 
diagnosis process. In [8], fuzzy genetic algorithms were 
developed for detecting failures in aircraft automatically.

On the other hand, deep learning becomes an essential 
topic in machine learning field since 2006. Many researchers 
have focused on getting benefits of different types of models 
based on deep learning models for improving accuracy and 
time consumed of fault detection process. In [9], authors 
used recurrent neural network and dynamic Bayesian model-
ling for detecting faults in induction motors. Also, stacked 
autoencoder (AE) was studied in [10] for fault classification 
of the induction motor. In addition, unsupervised two-layer 
neural network using the sparse filtering method was pro-
posed in [11] for fault diagnosis. In [12], authors proposed 
health state identification method for the fault diagnosis of 
rotary machinery based on the stacked denoising autoen-
coder. A deep belief network (DBN) was developed in [13] 
for intelligent fault diagnosis based on autoencoder.

Recently, feature extraction can be achieved using many 
algorithms of artificial intelligence. In [14] support vector 

machine (SVM) is utilized for detecting faults. SVM is one 
the most common ML algorithms that can be used for both 
regression and classification (but it is widely used in classifi-
cation). It attempts to find a hyperplane in an N-dimensional 
space that can classify the data points where N is the number 
of features. But the main drawback of this method is non-
linearity, local minimum and sample size problems. In [15], 
fuzzy C-means clustering algorithm have been utilized for 
dividing the fault pattern space into small sub-spaces. In 
[16], fault classification was implemented using a global 
two-layer backpropagation. Also, authors in [17, 18] have 
proposed the fault diagnosis approach using the multi-
class relevance vector machine and random forest. But the 
main drawbacks in this method is a long time consumed for 
achieving good results.

In [19] authors proposed a deep transfer learning (DTL) 
for fault diagnosis using a three-layer sparse auto-encoder 
for extracting features of raw data and implements the maxi-
mum mean discrepancy (MMD) for minimizing the variance 
penalty between features in training data and test data. Fault 
diagnosis task is considered a supervised learning problem 
as the goal is to correctly find which fault class each fault 
belongs to. Autoencoders are especially beneficial in extract-
ing nonlinear features for unsupervised learning from vari-
ous types of data [20–22]. LSTM is suitable for complex 
sequential problems as it is more efficient to learn the long-
term dependencies of unknown lengths of time series data 
using nonlinear gating functions [22, 23]. In [24] a predic-
tion of circuit complexity can be performed using recurrent 
neural network (RNNs) models. In this method, RNN takes 
the number of variables and the number of min-terms as 
inputs. Then it produces the number of nodes. This proce-
dure can learn from the Boolean function of a circuit for 2 to 
14 variables with an overall fault of less than 1%. The benefit 

Table 2  Description of Sparse and Deep Autoencoders

Type of AE Definition Advantages Drawbacks

Sparse Autoencoder (SAE) - It has hidden nodes greater than 
input nodes

-Sparsity is obtained by additional 
terms in the loss function during 
the training process (either by 
comparison between the prob-
ability distribution and low desired 
value or by zeroing all but the 
strongest hidden unit activations 
manually)

- Preventing overfitting by apply-
ing sparsity penalty on the hidden 
layer in addition to the recon-
structed fault

- Preventing autoencoder to use all 
of the hidden nodes

- Forcing a lessened number of hid-
den nodes

- The individual activated nodes 
should be data dependent

- Different inputs will activate dif-
ferent nodes through the network

Deep Autoencoder - It consists of two identical deep 
belief networks for encoding and 
decoding

-It uses unsupervised layer by layer 
pre-training for this model

- Layers are the building blocks of 
deep-belief networks

- The final layer of encoding is fast 
and compact

- It can be used for datasets with 
real-valued data

- Overfitting may be occurred as a 
result of high parameters other 
than input data

- Lower learning rate lead training 
data being a nuance
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of this approach is that a single NN can be used for a wide 
range of variables.

In [25], a combination of autoencoder and long short-
term memory (LSTM) is introduced for detecting rare fault 
events and classifying different types of faults, respectively. 
The autoencoder is utilized with offline normal data as 
anomaly detection. Then the predicted faulty data detected 
by autoencoder are passed into the LSTM network to iden-
tify the types of faults. Therefore, this method exploits the 
power of autoencoder in strong low-dimensional nonlinear 
representations for detecting rare events and the strength of 
LSTM in time series learning ability for the fault diagno-
sis. In this approach, the proposed network begins with a 
sequence input layer of the multivariate time series samples. 
Then autoencoder analyzes the time series data using the 
concept of anomaly detection to detect rare events. Then, 
once the autoencoder detects a fault, the dependencies 
between various time steps of sequential data can be learned 
by the LSTM network to identify the types of faults.

3.2  Fault Detection Approaches Based 
on Satisfiability

One of the most fundamental problems in computer science 
is the propositional satisfiability problem (SAT) that can 
be solved using one of SAT solvers [17–19]. The advances 
on SAT solvers [19, 20] lead to give tremendous solutions 
on many EDA applications such as hardware and software 
verification, test pattern generation and combinatorics by 
expressing them in SAT problem. Generally, SAT problem 
is an NP-complete problem [21] that checkable certificate in 
any context can be considered as attempting to find a satisfy-
ing assignment of a propositional formula.

Digital circuits can be formulated as SAT instances which 
are propositional logic built using true (1), false (0), vari-
ables, negations, conjunctions and disjunctions. A model of 
a formula is an assignment of Boolean values to its variable 
performing the formula to 1. Therefore, a model is known 
as satisfying assignment. Many forms can be used to express 
SAT formulas. A satisfiable formula is conjunction normal 
form (CNF) which is a conjunction of disjunctions of vari-
ables or their negated. Every conjunction is called a clause 
and each variable or its negated is called a literal. Every 
CNF formula is satisfiable if and only if every clause has at 
least one literal mapped to one '1'.

Verification of digital circuits can be performed by 
combining test patterns with their golden outputs and the 
equivalent SAT instance then calling SAT solver. If the 
formula is satisfiable, it means that the designed digital 
circuit has no logic fault. Otherwise, the combined for-
mula is unsatisfiable where we want to find a proof for 
falsifiability. There are many sound and complete proof 
systems for propositional logics such as resolution proof 

which is a standard choice for formulae in CNF (it has only 
a single inference rule).

Some researches focused on giving IC designers more 
precise information about logic faults by resolving the 
maximum satisfiability (MAX-SAT) problems which is the 
optimization version of SAT problem. This is considered 
the most crucial field for recognizing valuable diagnostic 
information about faults in digital VLSI circuits. In MAX-
SAT approaches, three main subsets of clauses are gener-
ated in case of unsatisifiability equation which are Maxi-
mum Satisfiability Subsets (MSS), Minimal Correction 
subsets (MCS) and Minimal Unsatisfiable Subsets (MUS). 
These subsets are required for giving detailed information 
about the location of faults and even sometimes possible 
corrections [3, 4, 22]. For example, if we have a following 
unsatisfiable equation.

The following definitions explain the difference between 
all subsets which are used in SAT-based Fault detection 
and diagnosis.

Definition 3. (Maximal Satisfiable Subset) A subset � of an 
unsatisfiable CNF formula � is an ��� if � ⊆ 𝜑 is satisfiable 
subset where ∀ci∈(��S) , (S

⋃�
ci
�
) is unsatisfiable.

Definition 4. (Minimal Correction Subset) A subset C of an 
unsatisfiable CNF formula � is a correction subset if ( � − C) 
is a satisfiable subset. A correction subset can be considered 
MCS if Cnew = ∅ , where Cnew ⊂ C and (� − C) forms an 
MSS.

Definition 5. (Minimal Unsatisfiable Subset) A subset U of 
an unsatisfiable CNF formula φ is an MUS if U ⊆ φ is unsat-
isfiable subset where,∀ci∈U , U − {ci } is satisfiable.

 Figure  7  describes an example of finding ����� , 
MCSes of a CNF formula � (Note: Ci indicates a clause i).

In SAT-based approaches, MCSes and MUSes have 
been used in functional debugging and diagnosing cor-
responding. This can be done by mapping every clause in 

(3)� = (a) ∨ (¬a) ∨ (¬a ∧ b) ∨ (¬b)

Fig. 7  Example of finding MSSes, MCSes
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subsets to the corresponding faulty component in a given 
circuit. Most of approaches based on MCSes and MUSes 
follow these steps with its own improvement procedures:

• Every gate in the circuit is transformed to the equivalent 
CNF equation according to number of inputs. In [6], we 
show the equivalent CNF equation for every logic gate.

• The equivalent CNF equation of a given circuit is com-
bined to form conjunction of clauses.

• Test patterns with correct outputs are combined to the 
equivalent CNF formula of a given circuit. The following 
equation is generated

• The final CNF equation is considered to be unsatisfiable, 
so number of MCSes and MUSes should be extracted to 
find all possible faulty components.

 Figure 8 shows an example of the correct circuit (a) and 
faulty circuit with gate replacement (b), the equivalent CNF 
formula of faulty circuit and the corresponding minimal cor-
rection subsets (MCSes) (d).

Therefore, many developed techniques have been pro-
posed for MUSs detection [23–27]. Also, many approaches 
have improved and proposed new representations and appli-
cations using this concept such as: debugging declarative 
specifications [28, 29], infeasibility-based maximum satisfi-
ability problem (MAX-SAT) and detecting minimal strongly 
unsatisfiable sets (MSUS) for reactive specification systems 
[30]. In Table 3, a brief illustration of the most common 

(4)� = I.Oc.CNF(Cf )

approaches for fault detection process based on SAT in 
MCSes or MUSes.

As the neural network has increased scope for solving 
various problems. In [33], a simple neural network archi-
tecture (NeuroSAT) is proposed to perform a discrete search 
after end-to-end training for avoiding hard-coded search 
procedures. NeuroSAT is a novel GNN that is trained as 
a classifier to predict satisfiability on a dataset of random 
SAT problems using a single bit of supervision (indicating 
whether or not the problem is satisfiable). NeuroSAT can 
solve SAT problems that are more difficult than those used in 
the training stage using hundreds of thousands of iterations 
of message passing.

Also, the same neural network proposed in [33] can be 
used to find proofs for unsatisfiability, calling NeuroUN-
SAT which is trained on different unsatisfiable problems 
and contains unsat cores. NeuroUnSAT learns to detect 
these unsat cores from NeuroSAT's activations. Neu-
roSAT model encodes a SAT instance as an undirected 
graph where clauses and literals are represented by nodes. 
Clauses and literals have vector space embeddings. And 
edges are connections between clauses and their literals 
and connections between each pair of complementary lit-
erals. Then the network attempts to refine a vector space 
embedding for each node using message passing along 
edges of the graph. But the main problem of NeuroSAT is 
still vastly less reliable than traditional SAT solvers.

The main problem of SAT-based Fault detection is mul-
tiple SAT solver calls. In SAT-based methods, the unsat-
isfiable equation shown in Eq. (4) are generated where I 

Fig. 8  Example of Correct circuit, Erroneous circuit, Equivalent CNF and MCSes
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represents test patterns and O represents the corresponding 
correct responses and CNF(Cf ) represents the equivalent 
equation of a given erroneous circuit in a conjunction 
normal form. Therefore, the search space is increased by 
growing number of lines and gates. In general, SAT-based 
method attempts to find the specific conjunction of clauses 
that causes unsatisfiability as shown in Fig. 6. Therefore, 
the search space is huge to find the clauses related to the 
error inside large number of clauses. Our proposed solu-
tion to this problem is to take advantages of deep learning 
model by the following:

1. Instead of encoding every gate to its equivalent CNF 
equation, the fault list file can represent all possible 
faults.

2. Instead of injecting debug circuits like multiplexers on 
every line for checking faults. Our model can learn from 
fault masks as labels for every test pattern to find all 
equivalent faults.

3. Instead of solving the CNF equation (which is in large 
size after injecting debug circuits) by one of SAT solv-
ers, our model can learn the connections between lines 
from the data set which contains test patterns with cor-
responding correct outputs and the corresponding fault 
mask.

4  The Proposed Implementation

This section illustrates the proposed model for fault detec-
tion of digital circuits. In this section, we propose a new 
method for detecting all potential faults in a circuit for 
solving the problem of:

– Tracking the effect of all test patterns and their corre-
sponding correct outputs on all lines on the circuit for 
finding the location of faults or the root cause of errors.

– Solve the problem of search space process which make 
the fault detection and diagnosing more complex for 
large-sized digital systems.

In our application, our problem is handled as a matrix 
(X) of a dimension N*M where N represents the number 
of samples and M represents the set of primary inputs and 
primary outputs of a given circuit. Each xij corresponds to a 
Boolean value of (j) input in sample (i) . The proposed archi-
tecture consists of two main phases a dimensionality reduc-
tion phase and a classification phase. The proposed model 
mainly contains two main sequential processes: unsuper-
vised feature extraction model and semi-supervised model. 
The following subsections discuss each step in details.

Table 3  Review of some Approaches of Fault Detection based on SAT domain

Method Description

Destructive Approach [9, 31] - It is iteratively excluding irrelative clauses on infeasibility of a given CNF instance
- The best extraction of MUS requires O(m) where m is the number of clauses in SAT instance
- Extensive consuming time for finding MUSes, especially with large digital circuits

CAMUS Approach [26] - Computing all minimal correction subsets (MCSes)
- Searching for MUS into the complete set of MCSes
- No Extra calls for SAT solvers for finding MUS

ExcludeMUS Routine [9] - Based on the previous method
- Enhancing MCSes enumeration for improving MUS generation
- Can handle a large amount of MCSes
- Some parts of codes are implemented on multicores for eliminating the
negative impact of large sized instances (Complex Circuits)

Shrink Routine [32] - A recursive method of computing MUSes directly from the input formula
- Critical constraints are the main core of this process
- No need to compute MCSes
- The number of calling SAT solver is reduced then the destructive algorithm to be O(|�| − |crits|)
- Still repetitive process of satisfiability check is the hardest part

Improved Shrink routine [9] - It is based on the previous method for avoiding time and cost of computing the complete set of 
MCSes

- It tries to reduce the number of SAT solver calls for computing MUS
- It performs two processes: classification and reduction processes consequently for reducing the 

number of calls of SAT solvers
- It speeds up the computation using GPUs algorithms
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4.1   Dataset Description

In our application, the input data or features are test inputs and 
their golden responses for each digital circuit. So, the whole 
model depends on the amount of training data and how much 
it is unique in giving the network the ability to learn different 
features of digital circuits. Therefore, "ATALANTA" tool [34] 
is utilized in this phase for preparing data that represents digi-
tal circuit in bench format. ATALANTA is an automatic test 
pattern generator for stuck-at-faults which employs FAN algo-
rithm for test pattern generation and parallel pattern single 
fault propagation technique for fault simulation. Also, it can 
produce the fault mask for every pattern for the consequent 
processes. Therefore, specifying/identifying/detecting the 
whole digital circuits using conjunction normal form of cir-
cuits CNF(c) can be avoided to reduce complexity specifically 
for large-sized circuit. This can be achieved by defining fea-
tures as all inputs and output pins of digital circuits with the 
complete test patterns which can detect all stuck-at-faults as 
features of our model. Then, our model learns from these data 
to detect any fault occurred in the digital circuit, by knowing 
only the inputs and output of digital circuits. We collect data 
of best test paths using ATALANTA tool which is shown in 
Fig. 9 at the output file in the second and third column as the 
best test inputs and golden responses of a given circuit (“C17” 
in this example). Using these types of data, we can cover all 
input paradigms and avoiding unnecessary repetitions.

4.2  Unsupervised Feature Dimension Reduction

This process is the first phase of our proposed model and 
the goal of this phase is to extract a new feature dimension 
representation which is more accurate in multi-class fault 
diagnosis. For large-sized digital circuit, extracting the main 
reasons for possible faults is considered a challenging pro-
cess which needs a high accuracy for avoiding new faults 
or escaping dominant faults. In proposed semi-supervised 
model, autoencoder is proposed to learn the lower dimen-
sional representation for test patterns and their corresponding 
correct responses which can be used in creating a model for 
faults classification. Therefore, this procedure can give the 
following advantages:

– With the complexity of line connections, stuck-at fault 
detection requires best representation for inputs and outputs 
for detection. Therefore, AE is used for reduce the com-
plexity of values with high accuracy for reconstructions.

– A higher validation accuracy means that AE can recon-
struct test patterns better by finding the important input 
values and observing stuck-at faults. Therefore, our 
model can extract the starting points of all potential 
stuck-at faults (the root cause of faults).

As we attempt to detect faults on a given circuit without 
implicitly injecting the structure of a circuit due to its large 
size, we use test patterns with its correct responses and 
their fault mask for forming a model that can approximate 
the connections between lines which are faulty lines due 
to single stuck-at fault. Therefore, we use autoencoders as 
the first phase of our model to learn a lower-dimensional 
representation (encoding) for a higher-dimensional data. 
This phase can capture the most important part of the 
Boolean values of all primary inputs and their primary 
outputs which can be used in the next classification phase. 
In other words, the model attempt to extract the important 
primary inputs and outputs and remove all other inputs or 
outputs that are not important in detecting a specific fault 
mask. This can be useful due to the following reasons:

– The used data set are test patterns for primary inputs 
and corresponding correct outputs for primary outputs 
corresponding to a specific fault mask.

– In our proposed model, we used the trained encoder 
layers and bottleneck layer of the autoencoder for the 
next classification phase. Therefore, we need to train 
the proposed autoencoders to find the appropriate 
weights on encoder layers and code layer for reducing 
the unimportant features (noisy data).

So, the validation accuracy of the autoencoder means 
that the autoencoder can extract the most important part 
of test patterns and faulty-free responses of a circuit for 
detecting all possible stuck-at fault. These parts are used in 
the next phase of classification. Therefore, the autoencoder 

Fig. 9  An example of preparing data of C17 circuit
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stage can shrink the search space of faults inside a circuit 
by reducing the starting points of all possible paths.

By increasing size of most digital circuits, the number 
of test patterns are increasing exponentially. Therefore, 
multiple types of autoencoder can be used in this phase as 
an unsupervised learning algorithm to accomplish feature 
dimension reduction. Instead of passing the all-Boolean 
values for all inputs and outputs of a circuit, a meaning-
ful feature representation of test patterns can be extracted 
using autoencoders. In our application, features are both 
test patterns and their corresponding faulty-free outputs 
for every digital circuit. We have used different types of 
autoencoders to find the best one for this application: nor-
mal AE, stacked sparse autoencoder (SSAE) and Deep 
Sparse autoencoder. Therefore, the meaningful inputs and 
outputs can be extracted from all test patterns for helping 
model to detect faults quickly and solve the search space 
explosion problem occurred in traditional fault detection 
methods especially faults occurred in large-sized digital 
circuits.

Autoencoder networks have been built to learn how to 
transform Boolean values of inputs and outputs into a com-
pressed essential pattern by minimizing the reconstruction 
fault which measures the difference between the original 
input patterns and reconstructed patterns. Therefore, the bot-
tleneck shown in Fig. 10 is the key attribute of this network 
for avoiding simple memorizing input data.

In our model, we utilize stacked sparse autoencoder 
(SSAE) which is one of classical variants of the traditional 
AE to improve the performance. It consists of several 
stacked autoencoder (SAE) layers and its goal is to avoid 
reduction of hidden nodes in hidden layers by activating a 
small number of neurons. This introduction of bottleneck 
without reduction can be achieved by imposing a sparsity 
constraint on the hidden units and constructing loss func-
tion by penalizing activation within hidden layers. In other 
words, it learns the relatively sparse features by penalizing 
the hidden unit biases.

Informally, if the output of neuron close to 1, the neuron 
will be "active". Otherwise, the neuron will be "inactive" (In 
case of using sigmoid activation function). In SAE, most of 
neural in the hidden layer is inactive if the average activation 
of the hidden unit �k (k = 1, …, s) (shown in Eq. 5) is close to 
zero where the dataset denotes to xi , n is number of samples, 
sf  is the nonlinear function in the encoder network.

There are two ways for imposing a sparsity constraint 
for penalizing activation within hidden layers that are 
L1-Regulaization and Kullback–Leibler (KL) Divergence. 
Generally, each method depends on measuring average 
activations of hidden neurons and adding some penalty 
term to loss function for controlling excessive activations.

In L1-Regulaization, the absolute value of the activation 
vector in the hidden layer for observation training batch 
is added to loss function L

(
xi, x̂i

)
 . This value is scaled by 

tuning parameter � as the following equation:

where L
(
xi, x̂i

)
 is loss function between input values x and 

the reconstruction ones x̂ , m is the dimension of each input 
sample and � is the parameter set {W, b,W

�

, d}.
In KL-divergence, to penalize �k in Eq. 5, the sparse 

penalty term is expressed by deviating from a predefined 
sparse parameter � . These deviations can be measured 
by Eq. 7 which attempts to hold the following property: 
KL(�|||�k

)
= 0at� = �k.

In order to prevent overfitting, a regularization item is 
added to cost function C(�) as shown in Eq. 8. The penalty 
coefficients of the sparse item are � and � , respectively.

(5)�k =
1

n

n∑

i=1

[sf (bk +Wikxi)]

(6)C(�) =

n∑

i=1

L
(
xi, x̂i

)
+ �

n∑

i=1

|sf (bk +Wikxi)|

(7)KL(�|||�k
)
= �log

�

�k
+ (1 − �)log

1 − �

1 − �k

Fig. 10  ETPs Extraction 
Process
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Therefore, minimal extracted features can be utilized for 
enhancing the performance of the proposed model and bal-
ancing between validation accuracy and consumed time.

Using Stacked Sparse Autoencoder (SSAE), we have 
used three SAE1 takes the features vector S of the matrix 
X of range M , and gave it to the encoder, in the bottleneck 
layer. Therefore, a new latent space LS1 of rangeK , where 
k < M is generated. According to this latent space, the 
decoder attempts to reconstruct the input S as close as 
possible at the output of the decoder forS ≈ S

� . Then, the 
output (S�

) of SAE1 becomes the input to the next SAE2 
for more reduction of features. And the same steps are 
followed to generate a latent space (LS2) and decoder tries 

(8)

C(�) =

n∑

i=1

L
(
xi, x̂i

)
+ �KL(�|||�k

)
+

�

2

m∑

i=1

s∑

k=1

(W2

ik
+W �2

ki
)

to reconstruct S′ at the output of decoder 
(
Sprime

)
 where 

Sprime ≈ Sprime . Then, the last SAE3 is used using the out-
put of SAE2 as inputs of SAE3 for more reduction. The 
last latent features space vector (LS3) is generated using 
the bottleneck of the third sparse autoencoder. The final 
architecture settings of autoencoders and each autoencoder 
have been evaluated by calculating the reconstruction 
error loss between the input of the encoder and the output 
of the decoder for each SAEi. We have used the binary-
crossentropy loss function (Eq. 1). Every autoencoder 
is separately trained as unsupervised stage by minimiz-
ing its reconstruction errors. When all layers are trained, 
the network can be passed to supervised stage (stage 3 
in Fig. 11). The concatenation between three generated 
features [LS1, LS2, LS3] from each SAE is performed in one 
feature vector (LS4) which is used to train the classifiers.

4.3  The Complete Semi‑supervised FD Model

After building Deep autoencoder that can learn a concise 
representation of test patterns, the learned encoder layers is 
connected to a classifier layer for building the full complete 
model (as shown in Fig. 12), for learning how to classify 
between multiple faults occurred in this current used circuit. 
Therefore, a classifier is considered the last layer in our pro-
posed FD model where the number of classes in this layer 
equals to the number of faults recognized in the first phase. 
This process is an alternative approach than searching for 
unsatisfiable subsets (MUSes or MCSes) in falsified con-
strains used in SAT fault detection methods. After this, we 
have tested the model using unseen test patterns and stuck-
at-faults for improving accuracy. In this phase, we have used 

Fig. 11  Deep Autoencoder

Fig. 12  The proposed semi-supervised FD model
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three different classifiers to predict the fault lines. The fol-
lowing steps are following:

– The concatenated training layers of encoders are combined 
with binary classifier with sigmoid activation as the output 
layer and use the binary cross-entropy as loss function. 
The labels of this supervised learning are the fault mask.

– Also, three different classifiers in machine learning mod-
els are used which are Decision Tree (DT) and Random 
Forest (RF) and Gradient Boosting (GB) classifiers.

4.4  Example

A Data Set Generation

In this section, we explain the proposed model step by 
step applying on a simple circuit called “cExample”. This 
model requires circuits in bench format so our example 
called “cExample.bench” which contains two gates (2-input 
OR gate and 2-input AND gate) as shown in Fig. 13. We 
assume that we have stuck-at zero in line (b).

In this phase, we attempt to form a model which can 
generate all possible stuck-at faults for each test patterns.

Therefore, ATALANTA is used to generate our data set 
which are test patterns and Fault mask of each pattern. 
According to this data, our model attempts to follow two 
main phases: unsupervised learning phase for extracting the 
important main features for classifying faults using Autoen-
coders. Then, Semi-supervised learning phase for classify-
ing faults. Classification as we previously mentioned is per-
formed as binary classification which can detect faulty lines 
and faulty-free lines.

First of all, we generate fault list file called “cExmaple.
flt” of a given circuit (see Fig. 12) by assuming all possible 
stuck-at faults. In ATALANTA tool, we can generate Fault 
List (FL) using the following line:

atalanta.exe  -F  cExample.flt  cExample.bench 

In Fig.14, Stuck at faults in fault list can be written as 
follows: line-name/0 or line-name/1. For example b/0 means 
line “b” has stuck-at zero. Then, fault mask file is generated 
using ATALANTA tool for each test patterns. Therefore, 
the size of Fault mask is matrix (N * L) where N equals to 

Fig. 13  Simple example of 
correct Circuit a and faulty 
circuit b 

Fig. 14  Representation of Data 
set for a simple given example 
in Fig. 13 
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number of test patterns and F is number of possible faults in 
fault list. In our example, Fault list assumes to be (e/0, b/0, 
a/0, e/1, d/1, c/1). So, fault mask may be [110000] which 
means that both line “e” and “b” are fault lines and all other 
lines are not faulty lines. The following command can gener-
ate all test patterns with fault mask on the same file called 
“cExample.pat” in this example.

-F  cExample.flt  -t  cExample.pat  -W  4  cExample.bench 

Or the following command if we have a specific fault list 
called “cExample.flt”.

-f  cExample.flt  -t  cExample.pat  -W 4  cExample.bench 

In order to generate as more as possible data points for 
reducing loss errors and avoid underfitting problems during 
learning. We can generate multiple test patterns for each sin-
gle fault type which can give our model the accurate connec-
tions between fault lines and test patterns without injecting 
the implicit structures of a circuit. This is can be achieved 
by adding “-D #N” to the previous command, where #N is 
number of test patterns.

-F cExample.flt  -t cExample.pat  -W 4  cExample.bench 

A Semi-supervised Learning Model

In this step, we create an unsupervised model using 
autoencoders for dimensionality Reduction of our fea-
tures. The main problem of using deep learning for fault 

detection using data driven methods as the complexity of 
approximating a function of fault classification where mul-
tiple inputs and outputs. The data set of this phase are test 
patterns which are generated at previous step. This step is 
required for extracting new feature space for effective fault 
detection. As we explained in Sect. 4.2, we utilize multiple 
stacked sparse autoencoder and deep autoencoders for bal-
ancing between the quality of the new features by detecting 
the validation performance of Autoencoder and reducing 
the consumed time for fault detection. In Fig. 15, unsuper-
vised model is created using test patterns with faulty-free 
responses for extracting new rich features which can be used 
in the consequent classifier. Every Stacked Autoencoder is 
sparse for imposing a sparsity constraint on the hidden units 
and introducing bottleneck without reduction.

Then, the trained encoder layers for each SSAE are com-
bined together with a binary classifier for the next phase 
of supervised learning. In this phase, labels are fault mask 
which can be mapped to the fault lines in fault list for approx-
imating fault detection process. The binary classification can 
detect every possible line in fault list as faulty line if its value 
is 1. Otherwise, it is Not a faulty line. These mapping from 
fault mask to fault list make the model not only can detect the 
specific faulty line but also it can approximate the connec-
tions between the root-cause line and other lines in the circuit 
that are not the main causes of faults. This proof is concluded 
according to our assumption of using test patterns for every 
single stuck-at faults that have multiple negative impact on 
other lines in the circuit. Using this method, we can avoid the 
searching problem of finding the minimal correction subsets 
or minimal unsatisfiable subsets in SAT-based Fault detection 
which can be an efficient way in large-size circuits. In Fig. 13, 
we illustrate unsupervised model which is trained using test 
patterns and their correcting responses for c432.bench circuit 
which is 27-channel interrupt controller.

Therefore, classification rules in supervised process for 
feature reduction are measured by the following steps:

Fig. 15  visual explanation of unsupervised phase and supervised phase
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• The Data set used on our model are (X,Y) where X 
matrix represents features of our model which are num-
ber of test patterns with corresponding correct output and 
Y matrix represents Labels which are the corresponding 
possible fault mask for every test pattern

• The Fault mask can be mapped to the fault list which 
contains all possible fault lines on a given circuit (see 
Fig. 12).

• Our main goal is to learn the connection between faulty 
lines which lead to the faulty outputs.

• Dimensionality reduction of test patterns with golden 
responses is applied on the best test vectors for given 
circuit.

• The validation accuracy of Autoencoder is measured to 
find the best type for dimensionality reduction with best 
sparsity constraint.

• The trained encoder layers and bottleneck layer is com-
bined with classifier layer which is the last layer on our 
model.

• The sigmoid function is used in the last layer as an activa-
tion layer. And the number of neurons in this layer equals 
to all possible faults in circuit.

• For training model, optimizer is chosen to be “adam” and 
loss function is “binary cross entropy” which is explained 
in page 3 Eq. (1)

Fig. 16  Example of sequential circuit as combinational circuit
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5  Experimental Results

This section shows the experimental results of a proposed 
algorithm for detecting stuck-at-0 and stuck-at-1 faults in 
digital circuits. In order to verify the performance of our 
model, some classic models of machine learning and deep 
learning were compared with our model such as Decision 
Tree, Random Forest and Gradient Boosting classifiers in 
machine learning model and Radial Basis Function (RBF) 
networks.

The proposed algorithm is used on the ISCAS'85 bench-
mark [35] for combinational circuits and ISCAS'89 bench-
mark [36] for sequential circuits. The proposed FD model is 
implemented using python 3.7.9, keras API [37], the most 
used deep learning framework built on top of TensorFlow 
and an open source python library for developing deep learn-
ing models. It was executed on intel core i7 10,750 working 
at 2.60 GHz with 16 GB system memory. Also, some of the 

training processes is executed on NVIDIA GeForce GTX 
1650 Ti using cuDNN toolkit.

The sequential circuit is transformed into a new circuit 
called “unfolded combinational circuit”. Figure 16 illustrates 
s27 treated as combinational circuits in (b). Therefore, the 
total ports of sequential circuits are changed, for example 
s13207.1 from 214 to be 1490 port. Using this method, we 
avoid the search space explosion for finding faults in sequen-
tial circuits.

5.1  Data Preprocessing

From ISCAS'85 and ISCAS'89, every circuit has been 
passed to ATALANTA software which generates multiple 
test patterns for each fault. We have selected around 20/50 
test vectors for each fault in combinational digital circuit and 
one vector for each fault in sequential circuits. These fea-
tures and labels of our proposed algorithm are split into 70% 
for training data and 20% for testing data. In Table 4, the 
parameters of digital circuits in terms of number of inputs, 
number of outputs, number of faults, number of test vectors 
and fault coverage are illustrated.

5.2  Feature Reduction and Classifier

5.2.1  Extracting Features Using Different AE

In this section, Different models of Autoencoders for feature 
reduction, which is the second phase of our algorithm, are 
implemented on both combinational and sequential circuits. 
Table 5 illustrates four different stacked autoencoder with dif-
ferent sizes of neurons to find the best model for every circuit. 
From this table, we can find that maximum validation accu-
racy for dimensionality reduction of test patterns in “c5315” 
with SAE1 which contains three layers (200,100,50).

Table 4  Number of inputs and outputs, faults, test patterns and fault 
coverage of 11 combinational circuit [38]

Circuit #gates Sum of 
#Inputs and 
#outputs

#Faults # Test Vec-
tors

Fault
Coverage%

c17 6 7 22 54 100
c432 160 43 524 8950 98.8
c499 202 73 758 13,066 95.5
c880 383 86 942 15,357 100
c1355 546 73 1574 25,824 96.8
c1908 880 58 1879 34,216 99.2
c2670 1193 373 2747 39,725 94.1
c3540 1669 72 3428 55,752 95.9
c5315 2307 301 5350 88,978 98.7
c6288 2406 64 7744 114,101 80.8
c7552 3512 315 7550 134,093 94.1

Table 5  Different Stacked 
Autoencoders with different 
sizes of neurons

CNF Type SAE1 SAE2 SAE3 SAE4

#N VA% #N VA% #N VA% #N VA%

c17 5,3,2 71.4 6,5,3 69.74 5,4,2 68.06 4,2,1 62.18
c432 (40,30,20) 99% (30,20,10) 97.5% (20,10,5) 92.52% (25,15,10) 96.19%
c499 (60,30,20) 98.91% (50,30,20) 98.50% (40,30,20) 98.4% (40,15,10) 95.78%
c880 (70,50,30) 99.56% (70,40,20) 98.9% (50,30,20) 98.6% (30,20,10) 95.78%
c1355 (60,30,20) 98.1% (70,50,20) 98.87 (70,30,10) 95.16 50,20,10 94.58
c1908 (50,30,20) 98.8% (40,20,10) 94.98 (50,30,10) 95.36 50,40,15 96.4
c2670 (200,150,50) 99.94 (200,100,20) 99.82 (150,50,10) 99.55 100,30,10 99.26
c3540 (50,30,20) 98.2% (60,40,20) 97.99 (60,50,20) 96.55 50,40,15 95.72
c5315 (200,100,50) 99.93 (150,50,20) 99.79 (100,50,20) 99.7% 130,30,10 99.08
c6288 (55,35,20) 99.13 (60,30,15) 98.23 (50,30,20) 97.3 55,25,5 96.09
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For combinational circuits, Table 6 shows that the maxi-
mum validation accuracy of simple AE equals to 98.9% for 
“c5315”. On the other hand, Deep AE with 10e-9 sparsity 
constraint outperforms a simple autoencoder in extracting 
features in terms of validation accuracy around 99.7% for the 
same circuit. In terms of average validation accuracy, Deep 
AE achieves around 96.4% where simple AE accomplishes 
94.95% using unseen dataset.

Figure 17 visualizes accuracy and loss accuracy during 
100 epochs of SSAE model for c2760 circuit. It shows that 
model can find a good balance between underfitting and over-
fitting to find the best latent information of any new test pat-
terns that can be efficiently reconstructed to the original data.

The previous results are based on choosing the best 
value of sparsity constraint (explained in section II.C), for 
deep and stacked sparse AEs. The effect of sparsity con-
straint of SSAE for the reconstruction phase is illustrated 
in Fig. 18 where three values are used (ρ1 = 10e-6, ρ2 = 10e-
5, ρ3 = 10e-6) implementing on ten different combinational 

circuits. From these results, we conclude that the best value 
of ρ for reconstruction is about 0.024 for ALU circuits and 
SEC circuits, in ISACAS’85 benchmark.

For sequential circuits, we implement Deep Sparse AE 
and stacked sparse autoencoder on nine sequential design 
from ISCAS'89, for feature reduction process and compare 
validation accuracy of reconstruction data using the same 
architecture (three sparse layers), as shown in Table 7. From 
the results, SSAE outperforms Deep AE in several sequen-
tial circuits in validation accuracy (VA%) about 99.95% and 
99.8% respectively in terms of maximum VA%.

5.2.2  The Complete Semi‑supervised FD

After combining Deep AE with Classifier layer using sig-
moid activation function for multilabel classification as 
detecting multiple faults in digital circuits, our model is 
trained on GPU for classifying multiple stuck-at faults in 
digital circuits, using the latent space extracted from pre-
vious step. Table 8 illustrates the validation accuracy of 
implementing the complete semi-supervised model (Deep 
AE combined with logistic classifier) on ten combinational 
circuits from ISCAS'85. From experiments, our FD model 
delivers around 99.6% maximum validation accuracy for 

Fig. 17  A visualization of loss and accuracy of SSAE of c2760 circuit

Fig. 18  The effect of sparsity constraints on the accuracy of SSAE

Table 6  Number of hidden neurons and validation accuracy of feature 
extraction with sparsity constraints [38]

Circuit # hidden 
neurons

VA%
using simple 
AE

VA% 
using
Deep AE

Sparsity 
Constraints

c432 30,20,10 95.4 97.5 10e-6
c499 50,30,20 98.2 98.50 10e-9
c880 50,30,20 98.3 98.6 10e-6
c1355 70,50,20 97.44 98.87 10e-9
c1908 50,30,20 97.8 98.8 10e-6
c2670 200,150,50 99.9 99.94 10e-9
c3540 50,30,20 97.3 98.2 10e-6
c5315 100,50,20 98.9 99.7 10e-9
c6288 50,30,20 97.9 99.3 10e-6
c7552 200,100,20 99.5 99.6 10e-9
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detecting 1923 stuck-at faults (testing data) in c2670. For 
sequential circuits, the complete model evaluates maximum 
validation accuracy around 99.8% for classifying multiple 
stuck-at-faults as illustrated in Table 9. However, with the 
growing size of inputs and outputs of sequential circuits 
which causes search space explosion in other approaches, 
the proposed model accomplishes around 99.7% as valida-
tion accuracy to detect possible faults in "s13207.1", which 
contains 1,490 input and output port.

5.3  Comparsion to Fault Detection Based on SAT 
Domain

Table 10 illustrates running time of fault detection algorithm 
based in SAT domain (using MUS proposed in [32]) com-
pared to consumed time of proposed FD-based on DL after 
learning how to use multiple test vectors as dataset for single 
faults. As was said in the previous section III.B the core of 
most fault detection or diagnosis methods is how to find the 
minimum number of SAT solver calls for increasing speed-
up. However, the extraction of minimal unsatisfiable subsets 
(MUS) from SAT formulas equivalent to digital circuit can 
detect faults in digital circuits using advanced parallel SAT 
solvers. The main problem of FD-based on SAT solvers is 

the search space explosion by growing on complexity and 
size of IC designs. Therefore, the proposed FD-based on 
DL method is based on an attempt to teach our model to 
extract essential features for quickly detecting stuck-at-
faults and getting rid of searching process into SAT formula 
for unsatisfiable subsets. This comparison is implemented 
on 9 different combinational and sequential circuits from 
ISCAS'85 and ISCAS'89 benchmarks. In SAT domain, the 
input of Find-MUS algorithm shown in Eq. 9 is a conjunc-
tion between input stimulus I and their corresponding cor-
rect outputs Oc of digital circuits, and the equivalent instance 
of erroneous circuit in conjunction normal form (CNF(Cf )) . 
The erroneous circuit is provided by manual modification 
of the functionality of a single random gate and mapping 
stuck-at-faults into design fault models, as proposed in sec-
tion II.A. Also, C + + algorithm of SAT Encoding algorithm 
[9] can be utilized for storing CNF instances in DIMACS 
format.

This equation is passed to Find-MUS algorithm proposed 
in [32], which is an explanation of logical fault existed in 
erroneous circuit. A parallel CUD@SAT solver proposed 

(9)� = I.Oc.CNF(Cf )

Table 7  Number of hidden 
neurons and validation accuracy 
of feature extraction with 
sparsity constraints

Circuit #gates Sum of 
#Inputs and 
#outputs

#Faults # Test Vectors Architecture
(L1, L2, L3)

VA% of SSAE VA% of 
Deep AE

S1196 529 64 1242 16,391 (40,30,20) 98.5 97.55
S1238 508 64 1355 16,797 (30,20,10) 94.8 96.8
S1423 657 170 1515 24,359 (70,50,30) 99.7 98.98
S1488 653 39 1486 8627 (20,10,5) 93.1 96.6
S1494 647 39 1506 8630 (30,20,10) 97.9 97.45
S9234.1 5597 497 6927 92,055 (300,200,100) 99.95 99.8
S5378 2836 427 4551 67,991 (300,200,70) 99.93 99.71
s13207.1 7979 1,490 9815 9661 (300,100,10) 99.88 99.75
s15850.1 9775 1,295 11,322 11,725 (300,100,10) 99.84 99.77

Table 8  Number of hidden 
neurons and validation accuracy 
of classification process

Circuit Architecture
(L1, L2, L3)

VA%

c432 30,20,10 97.7
c499 50,30,20 91.1
c880 50,30,20 97.3
c1355 70,50,20 90.68
c1908 50,30,20 96.5
c2670 200,100,50 99.6
c3540 50,30,20 98
c5315 100,50,20 97.8
c6288 50,30,20 97.9
c7552 200,100,20 98.41

Table 9  Number of hidden neurons and validation accuracy and time 
of classification process

Circuit Sum of #Inputs 
and #outputs

Architecture
(L1, L2, L3)

Testing time
(sec)

VA%

S1196 64 (40,30,20) 0.172 97.55
S1238 64 (30,20,10) 0.161 96.8
S1423 170 (70,50,30) 0.249 99
S1488 39 (20,10,5) 0.0969 96.6
S1494 39 (30,20,10) 0.0882 97.45
S9234.1 497 (300,200,100) 0.0014 99.8
S5378 427 (300,200,70) 0.895 99.7
s13207.1 1,490 (300,100,10) 0.225 99.75
s15850.1 1,295 (300,100,10) 0.266 99.8
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in [20] is used in MUS generation for SAT solving on GPU. 
In Table 10, the proposed FD-based on DL achieved around 
187 × as average speed-up compared to FD-based on SAT. 
Therefore, the performance of proposed FD-based on DL 
outperforms SAT fault detection, as a result of dispense of 
searching process and multiple calls of SAT solvers and con-
struct DL model of IC design interpreting possible multiple 
stuck-at-faults by extracting features from test vectors and 
classifying multiple faults.

5.4  Comparsion to Other Models in ML and DL

In this subsection, we present results of fault detection 
using other models in machine learning and deep learning. 
Validation Accuracy of both proposed method and fault 
detection using Radial Basis Function network (RBFN) 
is illustrated in Fig. 19 in terms of validation accuracy. 
Although RBFNs are common with their speed but its 
validation accuracy in our application is not efficient in 
terms of detecting faults, compared to model of using 
Deep AE. The FD based on RBFNs achieves maximum 
validation accuracy about 97.81% where the proposed 
algorithm accomplishes about 99.6% maximum valida-
tion accuracy. Also, fault detection using RBF model has 
an average validation accuracy about 90.6% but our pro-
posed algorithm (Deep AE and classifier using Sigmoid) 
achieved 96.1 for SSAE phase and 94.9% for classification 
phase. Also, Fig. 20 illustrates the variation of validation 
accuracy to s15850.1 circuit to show the improvement of 
validation accuracy as increasing epochs from 1 to 80.

Also, a comparison between our proposed FD model 
and some classic models of machine learning such as 
Decision Tree (DT), Random Forest (RF) and Gradient 
Boosting classifiers in terms of validation accuracy is 
shown in Fig. 21. It can be seen that other classic machine 
learning models do not perform well in detecting faults in 
eight digital circuits. On the contrary, our proposed FD 

Fig. 19  Validation accuracy 
(VA%) of Classification process 
using different DL Architectures

Table 10  Number of hidden neurons and validation accuracy and 
time of classification process

Circuit FD-based on 
SAT
(time in sec)

FD-based on DL

Testing time in 
sec

Training 
time in 
sec

C432 2.18 0.0754 68
C499 4.89 0.109 24.9
C880 10.14 0.146 45.1
C1908 41.69 0.277 111
S1196 21.12 0.147 39.7
S1238 29.62 0.144 52.4
S1423 29.62 0.234 52.6
S1488 34.16 0.0767 10.8
S1494 36.13 0.0765
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model based on deep learning achieved a better perfor-
mance of about 35.1% higher than DT model, and about 
33.1% higher than RF and GB classifiers.

6  Conclusion

The main contribution of this work is to solving the search 
space explosion due to large size circuits by designing a 
semi-supervised model that is mainly based on Deep Sparse 
Auto-encoder for dimensionality reduction of features rep-
resented correct IC design. Different types of autoencoders 
(normal AE, Deep Sparse AE and stacked sparse AE) as 
unsupervised model, were implemented in order to find 
the latent representation of test patterns with their correct 
response for the next phase of fault classifier. Also, our 
model can extract the main connections in a given circuit 
which leads to multiple equivalent faults. The proposed FD 

model is tested on ten combinational and nine sequential 
circuits from ISCAS’85 and ISCAS’89 benchmarks. Dur-
ing experiments, Stacked Sparse AE extracted more robust 
latent features across source data set of sequential circuits 
while Deep Sparse AE was sufficient for combinational 
circuits. In addition, we compared the complete semi-
supervised model to other fault diagnosis based on SAT 
solvers in terms of consumed time. The main advantage of 
our model is avoiding multiple calls of SAT solver and the 
reduction of search space problem for generating a specific 
MUS that can extract faults. The drawback of our model 
is that we must collect as many correct data as possible to 
approximate the connections between lines accurately for 
detecting the root cause of faults.

Funding Open access funding provided by The Science, Technology & 
Innovation Funding Authority (STDF) in cooperation with The Egyp-
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belief that could affect the objectivity.

Fig. 20  Validation accuracy 
(VA%) of Classification process 
of s15850.1 during epochs

Fig. 21  A comparison between 
our proposed FD model and 
other ML models
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in [39] for detecting stuck-at faults in combinational and sequential 
circuits along with some of datasets and SSAE models for different 
design circuits.
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