
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-022-06020-z

Automated Design Error Debugging of Digital VLSI Circuits

Mohammed Moness1 · Lamya Gaber1 · Aziza I. Hussein2 · Hanafy M. Ali1

Received: 10 January 2022 / Accepted: 26 July 2022
© The Author(s) 2022

Abstract
As the complexity and scope of VLSI designs continue to grow, fault detection processes in the pre-silicon stage have
become crucial to guaranteeing reliability in IC design. Most fault detection algorithms can be solved by transforming them
into a satisfiability (SAT) problem decipherable by SAT solvers. However, SAT solvers consume significant computational
time, as a result of the search space explosion problem. This ever- increasing amount of data can be handled via machine
learning techniques known as deep learning algorithms. In this paper, we propose a new approach utilizing deep learning
for fault detection (FD) of combinational and sequential circuits in a type of stuck-at-faults. The goal of the proposed semi-
supervised FD model is to avoid the search space explosion problem by taking advantage of unsupervised and supervised
learning processes. First, the unsupervised learning process attempts to extract underlying concepts of data using Deep
sparse autoencoder. Then, the supervised process tends to describe rules of classification that are applied to the reduced
features for detecting different stuck-at faults within circuits. The FD model proposes good performance in terms of running
time about 187 × compared to other FD algorithm based on SAT solvers. In addition, it is compared to common classical
machine learning models such as Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB) classifiers, in terms
of validation accuracy. The results show a maximum validation accuracy of the feature extraction process at 99.93%, using
Deep sparse autoencoder for combinational circuits. For sequential circuits, stacked sparse autoencoder presents 99.95%
as average validation accuracy. The fault detection process delivers around 99.6% maximum validation accuracy for com-
binational circuits from ISCAS’85 and 99.8% for sequential circuits from ISCAS’89 benchmarks. Moreover, the proposed
FD model has achieved a running time of about 1.7x, compared to DT classifier and around 1.6x, compared to RF classifier
and GB machine learning classifiers, in terms of validation accuracy in detecting faults occurred in eight different digital
circuits. Furthermore, the proposed model outperforms other FD models, based on Radial Basis Function Network (RBFN),
achieving 97.8% maximum validation accuracy.

Keywords Fault diagnosis · Deep learning · Neural networks · Autoencoder

1 Introduction

Given rapid downscaling of integration, there have been
ever increasing challenges to circuit designers [1]. Figure 1
summarizes the main phases of the IC design flow with
verification, debugging and correction processes. IC design
is a highly complicated task as it needs a full understanding
of the IC restrictions, specifications and all the required
EDA tools. It starts with writing a form of its specifications
passed through number of complex design steps to achieve
the desired final chip after fabricating billions of transistors
onto one piece of a semiconductor die, having a very small
size (no larger than a fingernail). The main challenges in
the design process are functional verification, debugging
and auto-correction processes. Functional debugging aims

Responsible Editor: V. D. Agrawal

 * Lamya Gaber
 lamya.gaber@mu.edu.eg

 Mohammed Moness
 m.moness@mu.edu.eg

 Aziza I. Hussein
 azibrahim@effatuniversity.edu.sa

 Hanafy M. Ali
 hmali@mu.edu.eg

1 Computers and Systems Eng. Dept, Minia University, Minia,
Egypt

2 Electrical and Computer Eng. Dept, Effat University, Jeddah,
Saudi Arabia

/ Published online: 31 August 2022

Journal of Electronic Testing (2022) 38:395–417

http://orcid.org/0000-0002-1843-702X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06020-z&domain=pdf

1 3

to find root-cause of a functional failure. This increase in
size and scope of bugs has made functional debugging one
of the largest bottlenecks in the design cycle. Therefore,
it points to a crucial requirement for more scalable and
innovative debugging solutions.

Consequently, the nature of faults in digital circuits has
been more complex and unpredictable, and automatic fault
diagnosis of complex systems has become crucial to main-
tain low production costs with changing technologies. This
process attempts to enhance system performance, avoid
negative results of logic faults and determine abnormal
functioning from data that may be corrupted due to unpre-
dictable events. Following detection of abnormal func-
tioning, reasons for failures can be located and identified.
Therefore, many researchers have investigated differing
methods for verifying, debugging and correcting digital
systems by trading-off accuracy, speed and human inter-
pretations. The main difference between each process is
explained in the following definitions:

Definition 1: Verification is the process of searching for dis-
crepancies between two levels of circuit abstraction in the
pre-silicon design.

Definition 2: Debugging is the process following failed veri-
fication intended for diagnosing and detecting potential bug
locations in an erroneous circuit. Therefore, it is also often
termed Fault Localization.

Definition 3: Correction is the phase responsible for modify-
ing components causing errors discovered by debuggers, so it
can rectify the desired circuit to behave in its intended manner.

Debugging process is a crucial process in digital design
which consumes 60% of the total formal verification time

in digital design [2]. This process is required for determin-
ing all potential faults in digital VLSI circuits. Many tradi-
tional methods are primarily based on satisfiability (SAT)
problem that convert the whole process into SAT instance,
followed by an attempt to analyze this instance for verify-
ing, debugging and even correcting the digital system [3–6].
For detecting logic faults in the case of erroneous digital
circuits, most of these approaches are based on detecting
different subsets that give valuable meaning to designers,
such as minimal correction subsets (MCSes) and minimal
unsatisfiable subsets (MUSes).

There are many techniques based on machine learning
algorithms that have been proposed for fault detection pro-
cesses [7, 8]. Machine learning (ML) techniques are primar-
ily based on a large amount of historical data available for
all such applications. It transforms this data into meaningful
information used for future analytics and predictive solutions.
Therefore, the primary requirement for establishment of a
good ML engine is an adequate amount of reliable data. The
success of ML models can be proven by quick solutions. The
second reason behind the upthrust of ML is deep learning
which introduces successive solutions with the availability of
high-speed hardware and graphic processing units for expedit-
ing the required computation. With the development of smart
manufacturing, fault diagnosis becomes essential to ensuring
the reliability and safety of industrial systems. Despite most
approaches based on ML are focused on locating design faults
at a post-silicon stage, detecting faults in a pre-silicon stage
is more important to make sure of all components in digital
circuits before going deeper into the design flow [9].

In this paper, we illustrate a new model for fault detec-
tion (FD) approach based on Autoencoders for detecting
stuck-at-faults, in both combinational and sequential cir-
cuits. The conducted research introduces the following
contributions that are more promising than SAT:

Fig. 1 Overview of IC Design Flow

396 Journal of Electronic Testing (2022) 38:395–417

1 3

• The search space explosion problem in FD approaches
based on formal methods can be solved using counterex-
ample resulting from failed verification passed to semi-
supervised learning model for classifying stuck-at-faults,
which might be causes for failing verification. In this
way, multiple calls of SAT solvers can be avoided.

• Instead of reducing SAT instances by SAT encoding
algorithms for detecting faults using SAT solvers, Deep
Sparse Auto-Encoders, as unsupervised model, can be
implemented on test patterns directly to extract robust
latent features. Therefore, conjunction between multiple
clauses can be dispensed.

• Exact debuggers using Max-SAT approach for detecting
the main reason of faults existed in circuit is replaced
by ATALANTA tool for generating multiple patterns for
each stuck-at-fault with high fault coverage. Therefore,
dataset can be helpful to avoid repetitive generation of
multiple unsatisfiable cores caused by single fault.

The rest of our paper is organized as follows: Sect. 2
and Sect. 3 give a brief description of fault detection
background and approaches based on machine learn-
ing and SAT problem, respectively. Section 4 illustrates
the proposed model. Section 5 shows the experimental
results. Finally, Sect. 6 is the conclusion.

2 Background

2.1 Fault Classes

Faults are physical defects that may cause a failure in logic
circuits or systems. They are described by: its nature, value
and duration. The nature of any fault may be a logical or
non-logical fault. A logical fault occurs if the logic func-
tion of a component or a signal is changed to some other

function. Otherwise, it is defined as non-logical fault such
as malfunction of clock signals or a power failure, para-
metric fault and delay fault. The value of a fault may be
fixed or varying erroneous logical values. Also, the dura-
tion of a fault may be permanent (known as solid faults) or
temporary.

In digital VLSI circuits, there are different classes of
faults or bugs which are divided into three main types:
design faults, verification faults, manufacturing faults and
electrical faults. Design faults are that occurred as functional
bugs or electrical bugs. The main reason for design faults
is interference by a designer in a synthesis phase in order
to reach a specific level of system optimization. Also, they
may be caused by automated synthesis tools with software
bugs. These bugs occur in gate-level implementation or
RTL implementation of IC design. In this paper, we focus
on detecting logical faults as they may occur around 98%
before tap-out and about 2% after tap-out. Tables 1 illus-
trates different types of faults in IC design.

The proposed algorithm is focused on detecting stuck-
at-faults that can be mapped to gate replacement faults in
logical circuits as proposed in [10], proving set of corollaries
for describing mapping from stuck-at-faults into design fault
model domain. The following definitions denotes types of
design faults:

Definition 1 (Gate replacement error). It defines a design
error which can be rectified by replacing the gate gi with
another gate gj.

Definition 2 (Extra/missing inverter error). It describes a
design error which can be corrected by removing or adding
an inverter at some input of a gate at some fanout branch.

The method of mapping Stuck-at faults into gate-replacement
faults is concluded from the following proof in [10]:

Table 1 Different Types of Faults in IC design

Fault Type Functional Faults Verification Faults Manufacturing Faults Circuit or Electrical Faults

Occurred in - Design imple-
mentation

(RTL or gate
-level implemen-
tation)

- Behavioral specification
(testbenches or assertions)
Also, called as testbench bugs

- IC manufacturing
phase

Classified into Gross
area defects and spot
defects

- Pre-or post-silicon verification
- operating region such as frequency,

voltage, and temperature

Caused by - Change in speci-
fication

-Human factor
- Automated syn-

thesis tools with
software bugs

- Incorrect transformation of a behavio-
ral specification to a verification code
(testbench or assertions)

- Out of tolerance steps
(macro level varia-
tions)

- Scratches from wafer
mishandling (global
faults)

- Missing patterns or
extra patterns (spot
bugs)

- Undesired interaction between a design
and an electrical state such as: Cross-
talk, Power -supply noise, Thermal
effects and Process variations

397Journal of Electronic Testing (2022) 38:395–417

1 3

Theorem 1: For detecting design errors in the implementa-
tion at any gate in a given circuit, it is sufficient to apply a
pair of test patterns which detect the stuck-at one and stuck-
at zero at one of the gate inputs.

Therefore, the following set of corollaries describes the
mapping process from stuck-at fault model to the design
error domain. Also, Fig. 2 gives simple examples of these
corollaries.

• Missing/extra inverter at the gate output mapped from s/1
and s/0 faults on two or more gate inputs.

• Replacement faults: AND→OR, OR→NAND,
NAND→NOR and NOR→AND results by s/1 faults at
one or more gate inputs.

• Replacement faults: AND→NOR, OR→AND,
NAND→OR and NOR→NAND mapped from s/0 faults
are one or more gate inputs.

2.2 Logical Design Debugging

Design debugging or diagnosis is considered an internal pro-
cess for improving the design cycle, manufacture yield and
shorten the time-to-market window. It defines as the process
of finding all sets of fault locations or suspects in the buggy
design and correcting the design faults for satisfying given
specification. Figure 3 illustrates a design flow of guaran-
tying correctness before going deeper into manufacturing
steps. Generally, design debugging is followed by a failed
verification for detecting bugs to make them not able to find

Fig. 2 Examples of Mapping
Stuck at faults into gate replace-
ment errors

Fig. 3 Design Flow of verification, debugging and correction phases

398 Journal of Electronic Testing (2022) 38:395–417

1 3

their ways in the field. Debugging techniques involve taking
a counter-example that triggering failures then return a set
of locations in the buggy design that might be responsible
for the observed faults.

In general, there are two types of Fault diagnosis or
debugging which are Design error diagnosis and Fault
Diagnosis. The design flow is separated into two groups:
the first group is HDL specification, RTL synthesis and
Logic synthesis. The second group is generating physical
design and Chip. In the early first design stages, malfunc-
tions might exist as a result of specification changes bugs
in automated tools or the human factor. Therefore, logic
corrections identify the possible corrections in the erro-
neous netlist to match a specification. In the second latter
stages, the fabricated chip might fail testing, so the fault
diagnosis should take place given the faulty chip and a
netlist. It injects faults into a correct netlist until the netlist
emulated the behavior of the faulty chip.

For sequential circuits, debugging process of sequential
circuits is similar to that of combinational circuits except
that their behavior must be modelled for a finite number
of clock cycles. Therefore, the most common approach
for modelling sequential circuits is to use the time frame
expansion technique or the iterative logic array (ILA) rep-
resentation. These methods connect the current state and
the text state together. Therefore, the sequential circuit is
transformed into a new circuit called “unfolded combi-
national circuit”. Then, it can be debugged like any other
combinational circuit. Figure 4 illustrates the iterative
logic array model for any combinational logic. Our pro-
posed model focuses on the properties of unfolded com-
binational circuit of sequential circuits.

2.3 Fault Detection Based on AI

In general, fault diagnosis can be categorized into model-
based, signal-based, knowledge-based (also called data-
driven) and hybrid/active approaches [12]. Data-driven fault
diagnosis that is implemented based on machine learning
models (such as support vector machine (SVM), neural
network (NN) and fuzzy logic) is more common because
of the data analytical methods in them. On the other hand,
knowledge-based diagnosis methods are different from
other classes as it requires employment of a large volume of

historical data available where other classes of fault diag-
nosis methods have to utilize real-time data. The schematic
diagram of knowledge-based fault diagnosis is illustrated
in Fig. 5. A variety of artificial intelligence techniques is
applied on historical data, then the knowledge base can be
extracted which represents the dependency of the variables
of the system. Then fault diagnosis decision is determined
by checking the consistency between the observed behavior
of the system and the knowledge base with the aid of a clas-
sifier. Extracting knowledge base can be either qualitative or
quantitative in nature.

2.4 Autoencoders

Since 2006, Deep learning becomes a crucial domain in
machine learning. Autoencoder is a special type of feedforward
neural network for the task of representation learning. The goal
of autoencoders is to find the compressed representation of the
input called "code" or "latent-space-representation" that can

Fig. 4 Iterative Logic Array
Model [11]

Fig. 5 Schematic diagram of knowledge-based fault diagnosis

399Journal of Electronic Testing (2022) 38:395–417

1 3

be used to reconstruct the output of autoencoders correctly.
Therefore, it is simply used for performing dimensionally
feature reduction from a higher dimension to a lower dimen-
sion. Autoencoders are considered unsupervised learning
algorithm, as their outputs are simply reconstructed data from
their inputs or features. it consists of three main parts: encoder,
code, decoder which are a fully connected feedforward neural
network (ANNs). Code is a single layer with a size of nodes
representing the dimensionality of our choice. So, code size
is a hyperparameter that we determined before training the
autoencoder. Figure 6 illustrates the visual description of the
autoencoder. Both encoder and decoder have a similar fully-
connected ANN structure. And the main goal is to produce
output which is same of the input. Therefore, the only require-
ment is that the input and output dimensions are typically the
same. Mainly, autoencoders have four following hyperparam-
eters that should be set before training.

• Code size is the number of nodes in the middle layer. The
smaller size of the code layer, the more compression we
can get.

• Number of layers in the encoder and decoder:The more
layers exist in the encoder, the deeper autoencoder can
be formed.

• Number of nodes per layer: There are many types of
autoencoders such as stacked autoencoder where layers
are stacked one after another.

• Loss function: There are two types of loss function which
set according to a type of input data.

For binary inputs (like our case), the loss function is the
cross-entropy described in Eq. 1 (more precisely: sum of
Bernoulli cross entropies). Note that xk is the input data, x̂k
is the reconstructed data and k is the number of samples.

For real-valued input, the loss function is sum of squared
differences (squared Euclidean distance) and the output
should be a linear activation function as follows:

The training of autoencoders is Not different from ANNs
where parameter gradients are obtained by backpropagat-
ing the gradient like a regular network. The architecture
of autoencoders can be handled to form powerful autoen-
coder by rising nodes per layer, code size and number of
layers. Therefore, autoencoder can learn complex codings
by increasing these hyperparameters and avoiding overfit-
ting at the same time. Therefore, it should be important to
balance between its sensitivity to the inputs good enough to
build an accurate reconstructed output and its insensitivity to
the input good enough to avoid memorizing and overfitting
the training data. Therefore, the loss function of the model
L
(
x, x̂

)
 can be defined by two parts: one term for satisfying

the sensitivity to the input and the other term for avoiding
memorization/overfitting which is called regularizer.

A couple of important properties of dimensionality reduc-
tion using autoencoders:

– Data-specific:
 autoencoders are capable of compressing data that is

similar to training data. Therefore, autoencoders are Not
as standard data compression (like gzip) as the features
learned by autoencoders are specific to the given training
data.

– Lossy:
 autoencoders are not the way for lossless compression

as the output of autoencoders will be close to the input
but not the same (it is degraded representation).

– Unsupervised or self-supervised:
 as the training process of autoencoders does Not need

any explicit labels for the input data, autoencoder is con-
sidered an unsupervised learning technique. Also, they
can be called self-supervised because they can produce
their labels from the training data.

The main goal of autoencoders is to extract the meaning-
ful features of raw signals and reconstructing them again
at the output layer and avoid copying from input layer to
hidden layer. Therefore, there are many types of autoencod-
ers to guarantee this property such as sparse autoencoder
(SAE) [13], deep autoencoder [14], denoising AE [15] and
contractive AEs [16]. There are many types of autoencoders.
Table 2 illustrates the main differences between two used
autoencoders in our model: sparse AE (SAE) and Deep AE.

(1)L
(
x, x̂

)
=
∑

k
(xklog

(
x̂k
)
+ (1 − xk)log(1 − x̂k))

(2)L
(
x, x̂

)
=

1

2

∑
k
(̂xk − xk)

2

Fig. 6 A simple architecture of autoencoder

400 Journal of Electronic Testing (2022) 38:395–417

1 3

3 State of the Art for Fault Debugging

Many researches have been devoted to diagnosis and detect
faults in digital systems. Most advanced methods are based
on SAT solvers or machine learning or deep learning. The
following two subsections discuss different approaches for
fault detection based on machine learning or deep learning
and fault detection and localization based on SAT solvers.

3.1 Fault Detection Algorithms based on AI

The first famous system of data-driven fault diagnosis was
revealed in 1980s using expert system [6]. It depends on a set
of rules from the past prior experience learned by experts. In
[7], authors examined the recent benefits of SVM for fault
diagnosis process. In [8], fuzzy genetic algorithms were
developed for detecting failures in aircraft automatically.

On the other hand, deep learning becomes an essential
topic in machine learning field since 2006. Many researchers
have focused on getting benefits of different types of models
based on deep learning models for improving accuracy and
time consumed of fault detection process. In [9], authors
used recurrent neural network and dynamic Bayesian model-
ling for detecting faults in induction motors. Also, stacked
autoencoder (AE) was studied in [10] for fault classification
of the induction motor. In addition, unsupervised two-layer
neural network using the sparse filtering method was pro-
posed in [11] for fault diagnosis. In [12], authors proposed
health state identification method for the fault diagnosis of
rotary machinery based on the stacked denoising autoen-
coder. A deep belief network (DBN) was developed in [13]
for intelligent fault diagnosis based on autoencoder.

Recently, feature extraction can be achieved using many
algorithms of artificial intelligence. In [14] support vector

machine (SVM) is utilized for detecting faults. SVM is one
the most common ML algorithms that can be used for both
regression and classification (but it is widely used in classifi-
cation). It attempts to find a hyperplane in an N-dimensional
space that can classify the data points where N is the number
of features. But the main drawback of this method is non-
linearity, local minimum and sample size problems. In [15],
fuzzy C-means clustering algorithm have been utilized for
dividing the fault pattern space into small sub-spaces. In
[16], fault classification was implemented using a global
two-layer backpropagation. Also, authors in [17, 18] have
proposed the fault diagnosis approach using the multi-
class relevance vector machine and random forest. But the
main drawbacks in this method is a long time consumed for
achieving good results.

In [19] authors proposed a deep transfer learning (DTL)
for fault diagnosis using a three-layer sparse auto-encoder
for extracting features of raw data and implements the maxi-
mum mean discrepancy (MMD) for minimizing the variance
penalty between features in training data and test data. Fault
diagnosis task is considered a supervised learning problem
as the goal is to correctly find which fault class each fault
belongs to. Autoencoders are especially beneficial in extract-
ing nonlinear features for unsupervised learning from vari-
ous types of data [20–22]. LSTM is suitable for complex
sequential problems as it is more efficient to learn the long-
term dependencies of unknown lengths of time series data
using nonlinear gating functions [22, 23]. In [24] a predic-
tion of circuit complexity can be performed using recurrent
neural network (RNNs) models. In this method, RNN takes
the number of variables and the number of min-terms as
inputs. Then it produces the number of nodes. This proce-
dure can learn from the Boolean function of a circuit for 2 to
14 variables with an overall fault of less than 1%. The benefit

Table 2 Description of Sparse and Deep Autoencoders

Type of AE Definition Advantages Drawbacks

Sparse Autoencoder (SAE) - It has hidden nodes greater than
input nodes

-Sparsity is obtained by additional
terms in the loss function during
the training process (either by
comparison between the prob-
ability distribution and low desired
value or by zeroing all but the
strongest hidden unit activations
manually)

- Preventing overfitting by apply-
ing sparsity penalty on the hidden
layer in addition to the recon-
structed fault

- Preventing autoencoder to use all
of the hidden nodes

- Forcing a lessened number of hid-
den nodes

- The individual activated nodes
should be data dependent

- Different inputs will activate dif-
ferent nodes through the network

Deep Autoencoder - It consists of two identical deep
belief networks for encoding and
decoding

-It uses unsupervised layer by layer
pre-training for this model

- Layers are the building blocks of
deep-belief networks

- The final layer of encoding is fast
and compact

- It can be used for datasets with
real-valued data

- Overfitting may be occurred as a
result of high parameters other
than input data

- Lower learning rate lead training
data being a nuance

401Journal of Electronic Testing (2022) 38:395–417

1 3

of this approach is that a single NN can be used for a wide
range of variables.

In [25], a combination of autoencoder and long short-
term memory (LSTM) is introduced for detecting rare fault
events and classifying different types of faults, respectively.
The autoencoder is utilized with offline normal data as
anomaly detection. Then the predicted faulty data detected
by autoencoder are passed into the LSTM network to iden-
tify the types of faults. Therefore, this method exploits the
power of autoencoder in strong low-dimensional nonlinear
representations for detecting rare events and the strength of
LSTM in time series learning ability for the fault diagno-
sis. In this approach, the proposed network begins with a
sequence input layer of the multivariate time series samples.
Then autoencoder analyzes the time series data using the
concept of anomaly detection to detect rare events. Then,
once the autoencoder detects a fault, the dependencies
between various time steps of sequential data can be learned
by the LSTM network to identify the types of faults.

3.2 Fault Detection Approaches Based
on Satisfiability

One of the most fundamental problems in computer science
is the propositional satisfiability problem (SAT) that can
be solved using one of SAT solvers [17–19]. The advances
on SAT solvers [19, 20] lead to give tremendous solutions
on many EDA applications such as hardware and software
verification, test pattern generation and combinatorics by
expressing them in SAT problem. Generally, SAT problem
is an NP-complete problem [21] that checkable certificate in
any context can be considered as attempting to find a satisfy-
ing assignment of a propositional formula.

Digital circuits can be formulated as SAT instances which
are propositional logic built using true (1), false (0), vari-
ables, negations, conjunctions and disjunctions. A model of
a formula is an assignment of Boolean values to its variable
performing the formula to 1. Therefore, a model is known
as satisfying assignment. Many forms can be used to express
SAT formulas. A satisfiable formula is conjunction normal
form (CNF) which is a conjunction of disjunctions of vari-
ables or their negated. Every conjunction is called a clause
and each variable or its negated is called a literal. Every
CNF formula is satisfiable if and only if every clause has at
least one literal mapped to one '1'.

Verification of digital circuits can be performed by
combining test patterns with their golden outputs and the
equivalent SAT instance then calling SAT solver. If the
formula is satisfiable, it means that the designed digital
circuit has no logic fault. Otherwise, the combined for-
mula is unsatisfiable where we want to find a proof for
falsifiability. There are many sound and complete proof
systems for propositional logics such as resolution proof

which is a standard choice for formulae in CNF (it has only
a single inference rule).

Some researches focused on giving IC designers more
precise information about logic faults by resolving the
maximum satisfiability (MAX-SAT) problems which is the
optimization version of SAT problem. This is considered
the most crucial field for recognizing valuable diagnostic
information about faults in digital VLSI circuits. In MAX-
SAT approaches, three main subsets of clauses are gener-
ated in case of unsatisifiability equation which are Maxi-
mum Satisfiability Subsets (MSS), Minimal Correction
subsets (MCS) and Minimal Unsatisfiable Subsets (MUS).
These subsets are required for giving detailed information
about the location of faults and even sometimes possible
corrections [3, 4, 22]. For example, if we have a following
unsatisfiable equation.

The following definitions explain the difference between
all subsets which are used in SAT-based Fault detection
and diagnosis.

Definition 3. (Maximal Satisfiable Subset) A subset � of an
unsatisfiable CNF formula � is an ��� if � ⊆ 𝜑 is satisfiable
subset where ∀ci∈(��S) , (S

⋃�
ci
�
) is unsatisfiable.

Definition 4. (Minimal Correction Subset) A subset C of an
unsatisfiable CNF formula � is a correction subset if (� − C)
is a satisfiable subset. A correction subset can be considered
MCS if Cnew = ∅ , where Cnew ⊂ C and (� − C) forms an
MSS.

Definition 5. (Minimal Unsatisfiable Subset) A subset U of
an unsatisfiable CNF formula φ is an MUS if U ⊆ φ is unsat-
isfiable subset where,∀ci∈U , U − {ci } is satisfiable.

 Figure 7 describes an example of finding ����� ,
MCSes of a CNF formula � (Note: Ci indicates a clause i).

In SAT-based approaches, MCSes and MUSes have
been used in functional debugging and diagnosing cor-
responding. This can be done by mapping every clause in

(3)� = (a) ∨ (¬a) ∨ (¬a ∧ b) ∨ (¬b)

Fig. 7 Example of finding MSSes, MCSes

402 Journal of Electronic Testing (2022) 38:395–417

1 3

subsets to the corresponding faulty component in a given
circuit. Most of approaches based on MCSes and MUSes
follow these steps with its own improvement procedures:

• Every gate in the circuit is transformed to the equivalent
CNF equation according to number of inputs. In [6], we
show the equivalent CNF equation for every logic gate.

• The equivalent CNF equation of a given circuit is com-
bined to form conjunction of clauses.

• Test patterns with correct outputs are combined to the
equivalent CNF formula of a given circuit. The following
equation is generated

• The final CNF equation is considered to be unsatisfiable,
so number of MCSes and MUSes should be extracted to
find all possible faulty components.

 Figure 8 shows an example of the correct circuit (a) and
faulty circuit with gate replacement (b), the equivalent CNF
formula of faulty circuit and the corresponding minimal cor-
rection subsets (MCSes) (d).

Therefore, many developed techniques have been pro-
posed for MUSs detection [23–27]. Also, many approaches
have improved and proposed new representations and appli-
cations using this concept such as: debugging declarative
specifications [28, 29], infeasibility-based maximum satisfi-
ability problem (MAX-SAT) and detecting minimal strongly
unsatisfiable sets (MSUS) for reactive specification systems
[30]. In Table 3, a brief illustration of the most common

(4)� = I.Oc.CNF(Cf)

approaches for fault detection process based on SAT in
MCSes or MUSes.

As the neural network has increased scope for solving
various problems. In [33], a simple neural network archi-
tecture (NeuroSAT) is proposed to perform a discrete search
after end-to-end training for avoiding hard-coded search
procedures. NeuroSAT is a novel GNN that is trained as
a classifier to predict satisfiability on a dataset of random
SAT problems using a single bit of supervision (indicating
whether or not the problem is satisfiable). NeuroSAT can
solve SAT problems that are more difficult than those used in
the training stage using hundreds of thousands of iterations
of message passing.

Also, the same neural network proposed in [33] can be
used to find proofs for unsatisfiability, calling NeuroUN-
SAT which is trained on different unsatisfiable problems
and contains unsat cores. NeuroUnSAT learns to detect
these unsat cores from NeuroSAT's activations. Neu-
roSAT model encodes a SAT instance as an undirected
graph where clauses and literals are represented by nodes.
Clauses and literals have vector space embeddings. And
edges are connections between clauses and their literals
and connections between each pair of complementary lit-
erals. Then the network attempts to refine a vector space
embedding for each node using message passing along
edges of the graph. But the main problem of NeuroSAT is
still vastly less reliable than traditional SAT solvers.

The main problem of SAT-based Fault detection is mul-
tiple SAT solver calls. In SAT-based methods, the unsat-
isfiable equation shown in Eq. (4) are generated where I

Fig. 8 Example of Correct circuit, Erroneous circuit, Equivalent CNF and MCSes

403Journal of Electronic Testing (2022) 38:395–417

1 3

represents test patterns and O represents the corresponding
correct responses and CNF(Cf) represents the equivalent
equation of a given erroneous circuit in a conjunction
normal form. Therefore, the search space is increased by
growing number of lines and gates. In general, SAT-based
method attempts to find the specific conjunction of clauses
that causes unsatisfiability as shown in Fig. 6. Therefore,
the search space is huge to find the clauses related to the
error inside large number of clauses. Our proposed solu-
tion to this problem is to take advantages of deep learning
model by the following:

1. Instead of encoding every gate to its equivalent CNF
equation, the fault list file can represent all possible
faults.

2. Instead of injecting debug circuits like multiplexers on
every line for checking faults. Our model can learn from
fault masks as labels for every test pattern to find all
equivalent faults.

3. Instead of solving the CNF equation (which is in large
size after injecting debug circuits) by one of SAT solv-
ers, our model can learn the connections between lines
from the data set which contains test patterns with cor-
responding correct outputs and the corresponding fault
mask.

4 The Proposed Implementation

This section illustrates the proposed model for fault detec-
tion of digital circuits. In this section, we propose a new
method for detecting all potential faults in a circuit for
solving the problem of:

– Tracking the effect of all test patterns and their corre-
sponding correct outputs on all lines on the circuit for
finding the location of faults or the root cause of errors.

– Solve the problem of search space process which make
the fault detection and diagnosing more complex for
large-sized digital systems.

In our application, our problem is handled as a matrix
(X) of a dimension N*M where N represents the number
of samples and M represents the set of primary inputs and
primary outputs of a given circuit. Each xij corresponds to a
Boolean value of (j) input in sample (i) . The proposed archi-
tecture consists of two main phases a dimensionality reduc-
tion phase and a classification phase. The proposed model
mainly contains two main sequential processes: unsuper-
vised feature extraction model and semi-supervised model.
The following subsections discuss each step in details.

Table 3 Review of some Approaches of Fault Detection based on SAT domain

Method Description

Destructive Approach [9, 31] - It is iteratively excluding irrelative clauses on infeasibility of a given CNF instance
- The best extraction of MUS requires O(m) where m is the number of clauses in SAT instance
- Extensive consuming time for finding MUSes, especially with large digital circuits

CAMUS Approach [26] - Computing all minimal correction subsets (MCSes)
- Searching for MUS into the complete set of MCSes
- No Extra calls for SAT solvers for finding MUS

ExcludeMUS Routine [9] - Based on the previous method
- Enhancing MCSes enumeration for improving MUS generation
- Can handle a large amount of MCSes
- Some parts of codes are implemented on multicores for eliminating the
negative impact of large sized instances (Complex Circuits)

Shrink Routine [32] - A recursive method of computing MUSes directly from the input formula
- Critical constraints are the main core of this process
- No need to compute MCSes
- The number of calling SAT solver is reduced then the destructive algorithm to be O(|�| − |crits|)
- Still repetitive process of satisfiability check is the hardest part

Improved Shrink routine [9] - It is based on the previous method for avoiding time and cost of computing the complete set of
MCSes

- It tries to reduce the number of SAT solver calls for computing MUS
- It performs two processes: classification and reduction processes consequently for reducing the

number of calls of SAT solvers
- It speeds up the computation using GPUs algorithms

404 Journal of Electronic Testing (2022) 38:395–417

1 3

4.1 Dataset Description

In our application, the input data or features are test inputs and
their golden responses for each digital circuit. So, the whole
model depends on the amount of training data and how much
it is unique in giving the network the ability to learn different
features of digital circuits. Therefore, "ATALANTA" tool [34]
is utilized in this phase for preparing data that represents digi-
tal circuit in bench format. ATALANTA is an automatic test
pattern generator for stuck-at-faults which employs FAN algo-
rithm for test pattern generation and parallel pattern single
fault propagation technique for fault simulation. Also, it can
produce the fault mask for every pattern for the consequent
processes. Therefore, specifying/identifying/detecting the
whole digital circuits using conjunction normal form of cir-
cuits CNF(c) can be avoided to reduce complexity specifically
for large-sized circuit. This can be achieved by defining fea-
tures as all inputs and output pins of digital circuits with the
complete test patterns which can detect all stuck-at-faults as
features of our model. Then, our model learns from these data
to detect any fault occurred in the digital circuit, by knowing
only the inputs and output of digital circuits. We collect data
of best test paths using ATALANTA tool which is shown in
Fig. 9 at the output file in the second and third column as the
best test inputs and golden responses of a given circuit (“C17”
in this example). Using these types of data, we can cover all
input paradigms and avoiding unnecessary repetitions.

4.2 Unsupervised Feature Dimension Reduction

This process is the first phase of our proposed model and
the goal of this phase is to extract a new feature dimension
representation which is more accurate in multi-class fault
diagnosis. For large-sized digital circuit, extracting the main
reasons for possible faults is considered a challenging pro-
cess which needs a high accuracy for avoiding new faults
or escaping dominant faults. In proposed semi-supervised
model, autoencoder is proposed to learn the lower dimen-
sional representation for test patterns and their corresponding
correct responses which can be used in creating a model for
faults classification. Therefore, this procedure can give the
following advantages:

– With the complexity of line connections, stuck-at fault
detection requires best representation for inputs and outputs
for detection. Therefore, AE is used for reduce the com-
plexity of values with high accuracy for reconstructions.

– A higher validation accuracy means that AE can recon-
struct test patterns better by finding the important input
values and observing stuck-at faults. Therefore, our
model can extract the starting points of all potential
stuck-at faults (the root cause of faults).

As we attempt to detect faults on a given circuit without
implicitly injecting the structure of a circuit due to its large
size, we use test patterns with its correct responses and
their fault mask for forming a model that can approximate
the connections between lines which are faulty lines due
to single stuck-at fault. Therefore, we use autoencoders as
the first phase of our model to learn a lower-dimensional
representation (encoding) for a higher-dimensional data.
This phase can capture the most important part of the
Boolean values of all primary inputs and their primary
outputs which can be used in the next classification phase.
In other words, the model attempt to extract the important
primary inputs and outputs and remove all other inputs or
outputs that are not important in detecting a specific fault
mask. This can be useful due to the following reasons:

– The used data set are test patterns for primary inputs
and corresponding correct outputs for primary outputs
corresponding to a specific fault mask.

– In our proposed model, we used the trained encoder
layers and bottleneck layer of the autoencoder for the
next classification phase. Therefore, we need to train
the proposed autoencoders to find the appropriate
weights on encoder layers and code layer for reducing
the unimportant features (noisy data).

So, the validation accuracy of the autoencoder means
that the autoencoder can extract the most important part
of test patterns and faulty-free responses of a circuit for
detecting all possible stuck-at fault. These parts are used in
the next phase of classification. Therefore, the autoencoder

Fig. 9 An example of preparing data of C17 circuit

405Journal of Electronic Testing (2022) 38:395–417

1 3

stage can shrink the search space of faults inside a circuit
by reducing the starting points of all possible paths.

By increasing size of most digital circuits, the number
of test patterns are increasing exponentially. Therefore,
multiple types of autoencoder can be used in this phase as
an unsupervised learning algorithm to accomplish feature
dimension reduction. Instead of passing the all-Boolean
values for all inputs and outputs of a circuit, a meaning-
ful feature representation of test patterns can be extracted
using autoencoders. In our application, features are both
test patterns and their corresponding faulty-free outputs
for every digital circuit. We have used different types of
autoencoders to find the best one for this application: nor-
mal AE, stacked sparse autoencoder (SSAE) and Deep
Sparse autoencoder. Therefore, the meaningful inputs and
outputs can be extracted from all test patterns for helping
model to detect faults quickly and solve the search space
explosion problem occurred in traditional fault detection
methods especially faults occurred in large-sized digital
circuits.

Autoencoder networks have been built to learn how to
transform Boolean values of inputs and outputs into a com-
pressed essential pattern by minimizing the reconstruction
fault which measures the difference between the original
input patterns and reconstructed patterns. Therefore, the bot-
tleneck shown in Fig. 10 is the key attribute of this network
for avoiding simple memorizing input data.

In our model, we utilize stacked sparse autoencoder
(SSAE) which is one of classical variants of the traditional
AE to improve the performance. It consists of several
stacked autoencoder (SAE) layers and its goal is to avoid
reduction of hidden nodes in hidden layers by activating a
small number of neurons. This introduction of bottleneck
without reduction can be achieved by imposing a sparsity
constraint on the hidden units and constructing loss func-
tion by penalizing activation within hidden layers. In other
words, it learns the relatively sparse features by penalizing
the hidden unit biases.

Informally, if the output of neuron close to 1, the neuron
will be "active". Otherwise, the neuron will be "inactive" (In
case of using sigmoid activation function). In SAE, most of
neural in the hidden layer is inactive if the average activation
of the hidden unit �k (k = 1, …, s) (shown in Eq. 5) is close to
zero where the dataset denotes to xi , n is number of samples,
sf is the nonlinear function in the encoder network.

There are two ways for imposing a sparsity constraint
for penalizing activation within hidden layers that are
L1-Regulaization and Kullback–Leibler (KL) Divergence.
Generally, each method depends on measuring average
activations of hidden neurons and adding some penalty
term to loss function for controlling excessive activations.

In L1-Regulaization, the absolute value of the activation
vector in the hidden layer for observation training batch
is added to loss function L

(
xi, x̂i

)
 . This value is scaled by

tuning parameter � as the following equation:

where L
(
xi, x̂i

)
 is loss function between input values x and

the reconstruction ones x̂ , m is the dimension of each input
sample and � is the parameter set {W, b,W

�

, d}.
In KL-divergence, to penalize �k in Eq. 5, the sparse

penalty term is expressed by deviating from a predefined
sparse parameter � . These deviations can be measured
by Eq. 7 which attempts to hold the following property:
KL(�|||�k

)
= 0at� = �k.

In order to prevent overfitting, a regularization item is
added to cost function C(�) as shown in Eq. 8. The penalty
coefficients of the sparse item are � and � , respectively.

(5)�k =
1

n

n∑

i=1

[sf (bk +Wikxi)]

(6)C(�) =

n∑

i=1

L
(
xi, x̂i

)
+ �

n∑

i=1

|sf (bk +Wikxi)|

(7)KL(�|||�k
)
= �log

�

�k
+ (1 − �)log

1 − �

1 − �k

Fig. 10 ETPs Extraction
Process

406 Journal of Electronic Testing (2022) 38:395–417

1 3

Therefore, minimal extracted features can be utilized for
enhancing the performance of the proposed model and bal-
ancing between validation accuracy and consumed time.

Using Stacked Sparse Autoencoder (SSAE), we have
used three SAE1 takes the features vector S of the matrix
X of range M , and gave it to the encoder, in the bottleneck
layer. Therefore, a new latent space LS1 of rangeK , where
k < M is generated. According to this latent space, the
decoder attempts to reconstruct the input S as close as
possible at the output of the decoder forS ≈ S

� . Then, the
output (S�

) of SAE1 becomes the input to the next SAE2
for more reduction of features. And the same steps are
followed to generate a latent space (LS2) and decoder tries

(8)

C(�) =

n∑

i=1

L
(
xi, x̂i

)
+ �KL(�|||�k

)
+

�

2

m∑

i=1

s∑

k=1

(W2

ik
+W �2

ki
)

to reconstruct S′ at the output of decoder
(
Sprime

)
 where

Sprime ≈ Sprime . Then, the last SAE3 is used using the out-
put of SAE2 as inputs of SAE3 for more reduction. The
last latent features space vector (LS3) is generated using
the bottleneck of the third sparse autoencoder. The final
architecture settings of autoencoders and each autoencoder
have been evaluated by calculating the reconstruction
error loss between the input of the encoder and the output
of the decoder for each SAEi. We have used the binary-
crossentropy loss function (Eq. 1). Every autoencoder
is separately trained as unsupervised stage by minimiz-
ing its reconstruction errors. When all layers are trained,
the network can be passed to supervised stage (stage 3
in Fig. 11). The concatenation between three generated
features [LS1, LS2, LS3] from each SAE is performed in one
feature vector (LS4) which is used to train the classifiers.

4.3 The Complete Semi‑supervised FD Model

After building Deep autoencoder that can learn a concise
representation of test patterns, the learned encoder layers is
connected to a classifier layer for building the full complete
model (as shown in Fig. 12), for learning how to classify
between multiple faults occurred in this current used circuit.
Therefore, a classifier is considered the last layer in our pro-
posed FD model where the number of classes in this layer
equals to the number of faults recognized in the first phase.
This process is an alternative approach than searching for
unsatisfiable subsets (MUSes or MCSes) in falsified con-
strains used in SAT fault detection methods. After this, we
have tested the model using unseen test patterns and stuck-
at-faults for improving accuracy. In this phase, we have used

Fig. 11 Deep Autoencoder

Fig. 12 The proposed semi-supervised FD model

407Journal of Electronic Testing (2022) 38:395–417

1 3

three different classifiers to predict the fault lines. The fol-
lowing steps are following:

– The concatenated training layers of encoders are combined
with binary classifier with sigmoid activation as the output
layer and use the binary cross-entropy as loss function.
The labels of this supervised learning are the fault mask.

– Also, three different classifiers in machine learning mod-
els are used which are Decision Tree (DT) and Random
Forest (RF) and Gradient Boosting (GB) classifiers.

4.4 Example

A Data Set Generation

In this section, we explain the proposed model step by
step applying on a simple circuit called “cExample”. This
model requires circuits in bench format so our example
called “cExample.bench” which contains two gates (2-input
OR gate and 2-input AND gate) as shown in Fig. 13. We
assume that we have stuck-at zero in line (b).

In this phase, we attempt to form a model which can
generate all possible stuck-at faults for each test patterns.

Therefore, ATALANTA is used to generate our data set
which are test patterns and Fault mask of each pattern.
According to this data, our model attempts to follow two
main phases: unsupervised learning phase for extracting the
important main features for classifying faults using Autoen-
coders. Then, Semi-supervised learning phase for classify-
ing faults. Classification as we previously mentioned is per-
formed as binary classification which can detect faulty lines
and faulty-free lines.

First of all, we generate fault list file called “cExmaple.
flt” of a given circuit (see Fig. 12) by assuming all possible
stuck-at faults. In ATALANTA tool, we can generate Fault
List (FL) using the following line:

atalanta.exe -F cExample.flt cExample.bench

In Fig.14, Stuck at faults in fault list can be written as
follows: line-name/0 or line-name/1. For example b/0 means
line “b” has stuck-at zero. Then, fault mask file is generated
using ATALANTA tool for each test patterns. Therefore,
the size of Fault mask is matrix (N * L) where N equals to

Fig. 13 Simple example of
correct Circuit a and faulty
circuit b

Fig. 14 Representation of Data
set for a simple given example
in Fig. 13

408 Journal of Electronic Testing (2022) 38:395–417

1 3

number of test patterns and F is number of possible faults in
fault list. In our example, Fault list assumes to be (e/0, b/0,
a/0, e/1, d/1, c/1). So, fault mask may be [110000] which
means that both line “e” and “b” are fault lines and all other
lines are not faulty lines. The following command can gener-
ate all test patterns with fault mask on the same file called
“cExample.pat” in this example.

-F cExample.flt -t cExample.pat -W 4 cExample.bench

Or the following command if we have a specific fault list
called “cExample.flt”.

-f cExample.flt -t cExample.pat -W 4 cExample.bench

In order to generate as more as possible data points for
reducing loss errors and avoid underfitting problems during
learning. We can generate multiple test patterns for each sin-
gle fault type which can give our model the accurate connec-
tions between fault lines and test patterns without injecting
the implicit structures of a circuit. This is can be achieved
by adding “-D #N” to the previous command, where #N is
number of test patterns.

-F cExample.flt -t cExample.pat -W 4 cExample.bench

A Semi-supervised Learning Model

In this step, we create an unsupervised model using
autoencoders for dimensionality Reduction of our fea-
tures. The main problem of using deep learning for fault

detection using data driven methods as the complexity of
approximating a function of fault classification where mul-
tiple inputs and outputs. The data set of this phase are test
patterns which are generated at previous step. This step is
required for extracting new feature space for effective fault
detection. As we explained in Sect. 4.2, we utilize multiple
stacked sparse autoencoder and deep autoencoders for bal-
ancing between the quality of the new features by detecting
the validation performance of Autoencoder and reducing
the consumed time for fault detection. In Fig. 15, unsuper-
vised model is created using test patterns with faulty-free
responses for extracting new rich features which can be used
in the consequent classifier. Every Stacked Autoencoder is
sparse for imposing a sparsity constraint on the hidden units
and introducing bottleneck without reduction.

Then, the trained encoder layers for each SSAE are com-
bined together with a binary classifier for the next phase
of supervised learning. In this phase, labels are fault mask
which can be mapped to the fault lines in fault list for approx-
imating fault detection process. The binary classification can
detect every possible line in fault list as faulty line if its value
is 1. Otherwise, it is Not a faulty line. These mapping from
fault mask to fault list make the model not only can detect the
specific faulty line but also it can approximate the connec-
tions between the root-cause line and other lines in the circuit
that are not the main causes of faults. This proof is concluded
according to our assumption of using test patterns for every
single stuck-at faults that have multiple negative impact on
other lines in the circuit. Using this method, we can avoid the
searching problem of finding the minimal correction subsets
or minimal unsatisfiable subsets in SAT-based Fault detection
which can be an efficient way in large-size circuits. In Fig. 13,
we illustrate unsupervised model which is trained using test
patterns and their correcting responses for c432.bench circuit
which is 27-channel interrupt controller.

Therefore, classification rules in supervised process for
feature reduction are measured by the following steps:

Fig. 15 visual explanation of unsupervised phase and supervised phase

409Journal of Electronic Testing (2022) 38:395–417

1 3

• The Data set used on our model are (X,Y) where X
matrix represents features of our model which are num-
ber of test patterns with corresponding correct output and
Y matrix represents Labels which are the corresponding
possible fault mask for every test pattern

• The Fault mask can be mapped to the fault list which
contains all possible fault lines on a given circuit (see
Fig. 12).

• Our main goal is to learn the connection between faulty
lines which lead to the faulty outputs.

• Dimensionality reduction of test patterns with golden
responses is applied on the best test vectors for given
circuit.

• The validation accuracy of Autoencoder is measured to
find the best type for dimensionality reduction with best
sparsity constraint.

• The trained encoder layers and bottleneck layer is com-
bined with classifier layer which is the last layer on our
model.

• The sigmoid function is used in the last layer as an activa-
tion layer. And the number of neurons in this layer equals
to all possible faults in circuit.

• For training model, optimizer is chosen to be “adam” and
loss function is “binary cross entropy” which is explained
in page 3 Eq. (1)

Fig. 16 Example of sequential circuit as combinational circuit

410 Journal of Electronic Testing (2022) 38:395–417

1 3

5 Experimental Results

This section shows the experimental results of a proposed
algorithm for detecting stuck-at-0 and stuck-at-1 faults in
digital circuits. In order to verify the performance of our
model, some classic models of machine learning and deep
learning were compared with our model such as Decision
Tree, Random Forest and Gradient Boosting classifiers in
machine learning model and Radial Basis Function (RBF)
networks.

The proposed algorithm is used on the ISCAS'85 bench-
mark [35] for combinational circuits and ISCAS'89 bench-
mark [36] for sequential circuits. The proposed FD model is
implemented using python 3.7.9, keras API [37], the most
used deep learning framework built on top of TensorFlow
and an open source python library for developing deep learn-
ing models. It was executed on intel core i7 10,750 working
at 2.60 GHz with 16 GB system memory. Also, some of the

training processes is executed on NVIDIA GeForce GTX
1650 Ti using cuDNN toolkit.

The sequential circuit is transformed into a new circuit
called “unfolded combinational circuit”. Figure 16 illustrates
s27 treated as combinational circuits in (b). Therefore, the
total ports of sequential circuits are changed, for example
s13207.1 from 214 to be 1490 port. Using this method, we
avoid the search space explosion for finding faults in sequen-
tial circuits.

5.1 Data Preprocessing

From ISCAS'85 and ISCAS'89, every circuit has been
passed to ATALANTA software which generates multiple
test patterns for each fault. We have selected around 20/50
test vectors for each fault in combinational digital circuit and
one vector for each fault in sequential circuits. These fea-
tures and labels of our proposed algorithm are split into 70%
for training data and 20% for testing data. In Table 4, the
parameters of digital circuits in terms of number of inputs,
number of outputs, number of faults, number of test vectors
and fault coverage are illustrated.

5.2 Feature Reduction and Classifier

5.2.1 Extracting Features Using Different AE

In this section, Different models of Autoencoders for feature
reduction, which is the second phase of our algorithm, are
implemented on both combinational and sequential circuits.
Table 5 illustrates four different stacked autoencoder with dif-
ferent sizes of neurons to find the best model for every circuit.
From this table, we can find that maximum validation accu-
racy for dimensionality reduction of test patterns in “c5315”
with SAE1 which contains three layers (200,100,50).

Table 4 Number of inputs and outputs, faults, test patterns and fault
coverage of 11 combinational circuit [38]

Circuit #gates Sum of
#Inputs and
#outputs

#Faults # Test Vec-
tors

Fault
Coverage%

c17 6 7 22 54 100
c432 160 43 524 8950 98.8
c499 202 73 758 13,066 95.5
c880 383 86 942 15,357 100
c1355 546 73 1574 25,824 96.8
c1908 880 58 1879 34,216 99.2
c2670 1193 373 2747 39,725 94.1
c3540 1669 72 3428 55,752 95.9
c5315 2307 301 5350 88,978 98.7
c6288 2406 64 7744 114,101 80.8
c7552 3512 315 7550 134,093 94.1

Table 5 Different Stacked
Autoencoders with different
sizes of neurons

CNF Type SAE1 SAE2 SAE3 SAE4

#N VA% #N VA% #N VA% #N VA%

c17 5,3,2 71.4 6,5,3 69.74 5,4,2 68.06 4,2,1 62.18
c432 (40,30,20) 99% (30,20,10) 97.5% (20,10,5) 92.52% (25,15,10) 96.19%
c499 (60,30,20) 98.91% (50,30,20) 98.50% (40,30,20) 98.4% (40,15,10) 95.78%
c880 (70,50,30) 99.56% (70,40,20) 98.9% (50,30,20) 98.6% (30,20,10) 95.78%
c1355 (60,30,20) 98.1% (70,50,20) 98.87 (70,30,10) 95.16 50,20,10 94.58
c1908 (50,30,20) 98.8% (40,20,10) 94.98 (50,30,10) 95.36 50,40,15 96.4
c2670 (200,150,50) 99.94 (200,100,20) 99.82 (150,50,10) 99.55 100,30,10 99.26
c3540 (50,30,20) 98.2% (60,40,20) 97.99 (60,50,20) 96.55 50,40,15 95.72
c5315 (200,100,50) 99.93 (150,50,20) 99.79 (100,50,20) 99.7% 130,30,10 99.08
c6288 (55,35,20) 99.13 (60,30,15) 98.23 (50,30,20) 97.3 55,25,5 96.09

411Journal of Electronic Testing (2022) 38:395–417

1 3

For combinational circuits, Table 6 shows that the maxi-
mum validation accuracy of simple AE equals to 98.9% for
“c5315”. On the other hand, Deep AE with 10e-9 sparsity
constraint outperforms a simple autoencoder in extracting
features in terms of validation accuracy around 99.7% for the
same circuit. In terms of average validation accuracy, Deep
AE achieves around 96.4% where simple AE accomplishes
94.95% using unseen dataset.

Figure 17 visualizes accuracy and loss accuracy during
100 epochs of SSAE model for c2760 circuit. It shows that
model can find a good balance between underfitting and over-
fitting to find the best latent information of any new test pat-
terns that can be efficiently reconstructed to the original data.

The previous results are based on choosing the best
value of sparsity constraint (explained in section II.C), for
deep and stacked sparse AEs. The effect of sparsity con-
straint of SSAE for the reconstruction phase is illustrated
in Fig. 18 where three values are used (ρ1 = 10e-6, ρ2 = 10e-
5, ρ3 = 10e-6) implementing on ten different combinational

circuits. From these results, we conclude that the best value
of ρ for reconstruction is about 0.024 for ALU circuits and
SEC circuits, in ISACAS’85 benchmark.

For sequential circuits, we implement Deep Sparse AE
and stacked sparse autoencoder on nine sequential design
from ISCAS'89, for feature reduction process and compare
validation accuracy of reconstruction data using the same
architecture (three sparse layers), as shown in Table 7. From
the results, SSAE outperforms Deep AE in several sequen-
tial circuits in validation accuracy (VA%) about 99.95% and
99.8% respectively in terms of maximum VA%.

5.2.2 The Complete Semi‑supervised FD

After combining Deep AE with Classifier layer using sig-
moid activation function for multilabel classification as
detecting multiple faults in digital circuits, our model is
trained on GPU for classifying multiple stuck-at faults in
digital circuits, using the latent space extracted from pre-
vious step. Table 8 illustrates the validation accuracy of
implementing the complete semi-supervised model (Deep
AE combined with logistic classifier) on ten combinational
circuits from ISCAS'85. From experiments, our FD model
delivers around 99.6% maximum validation accuracy for

Fig. 17 A visualization of loss and accuracy of SSAE of c2760 circuit

Fig. 18 The effect of sparsity constraints on the accuracy of SSAE

Table 6 Number of hidden neurons and validation accuracy of feature
extraction with sparsity constraints [38]

Circuit # hidden
neurons

VA%
using simple
AE

VA%
using
Deep AE

Sparsity
Constraints

c432 30,20,10 95.4 97.5 10e-6
c499 50,30,20 98.2 98.50 10e-9
c880 50,30,20 98.3 98.6 10e-6
c1355 70,50,20 97.44 98.87 10e-9
c1908 50,30,20 97.8 98.8 10e-6
c2670 200,150,50 99.9 99.94 10e-9
c3540 50,30,20 97.3 98.2 10e-6
c5315 100,50,20 98.9 99.7 10e-9
c6288 50,30,20 97.9 99.3 10e-6
c7552 200,100,20 99.5 99.6 10e-9

412 Journal of Electronic Testing (2022) 38:395–417

1 3

detecting 1923 stuck-at faults (testing data) in c2670. For
sequential circuits, the complete model evaluates maximum
validation accuracy around 99.8% for classifying multiple
stuck-at-faults as illustrated in Table 9. However, with the
growing size of inputs and outputs of sequential circuits
which causes search space explosion in other approaches,
the proposed model accomplishes around 99.7% as valida-
tion accuracy to detect possible faults in "s13207.1", which
contains 1,490 input and output port.

5.3 Comparsion to Fault Detection Based on SAT
Domain

Table 10 illustrates running time of fault detection algorithm
based in SAT domain (using MUS proposed in [32]) com-
pared to consumed time of proposed FD-based on DL after
learning how to use multiple test vectors as dataset for single
faults. As was said in the previous section III.B the core of
most fault detection or diagnosis methods is how to find the
minimum number of SAT solver calls for increasing speed-
up. However, the extraction of minimal unsatisfiable subsets
(MUS) from SAT formulas equivalent to digital circuit can
detect faults in digital circuits using advanced parallel SAT
solvers. The main problem of FD-based on SAT solvers is

the search space explosion by growing on complexity and
size of IC designs. Therefore, the proposed FD-based on
DL method is based on an attempt to teach our model to
extract essential features for quickly detecting stuck-at-
faults and getting rid of searching process into SAT formula
for unsatisfiable subsets. This comparison is implemented
on 9 different combinational and sequential circuits from
ISCAS'85 and ISCAS'89 benchmarks. In SAT domain, the
input of Find-MUS algorithm shown in Eq. 9 is a conjunc-
tion between input stimulus I and their corresponding cor-
rect outputs Oc of digital circuits, and the equivalent instance
of erroneous circuit in conjunction normal form (CNF(Cf)) .
The erroneous circuit is provided by manual modification
of the functionality of a single random gate and mapping
stuck-at-faults into design fault models, as proposed in sec-
tion II.A. Also, C + + algorithm of SAT Encoding algorithm
[9] can be utilized for storing CNF instances in DIMACS
format.

This equation is passed to Find-MUS algorithm proposed
in [32], which is an explanation of logical fault existed in
erroneous circuit. A parallel CUD@SAT solver proposed

(9)� = I.Oc.CNF(Cf)

Table 7 Number of hidden
neurons and validation accuracy
of feature extraction with
sparsity constraints

Circuit #gates Sum of
#Inputs and
#outputs

#Faults # Test Vectors Architecture
(L1, L2, L3)

VA% of SSAE VA% of
Deep AE

S1196 529 64 1242 16,391 (40,30,20) 98.5 97.55
S1238 508 64 1355 16,797 (30,20,10) 94.8 96.8
S1423 657 170 1515 24,359 (70,50,30) 99.7 98.98
S1488 653 39 1486 8627 (20,10,5) 93.1 96.6
S1494 647 39 1506 8630 (30,20,10) 97.9 97.45
S9234.1 5597 497 6927 92,055 (300,200,100) 99.95 99.8
S5378 2836 427 4551 67,991 (300,200,70) 99.93 99.71
s13207.1 7979 1,490 9815 9661 (300,100,10) 99.88 99.75
s15850.1 9775 1,295 11,322 11,725 (300,100,10) 99.84 99.77

Table 8 Number of hidden
neurons and validation accuracy
of classification process

Circuit Architecture
(L1, L2, L3)

VA%

c432 30,20,10 97.7
c499 50,30,20 91.1
c880 50,30,20 97.3
c1355 70,50,20 90.68
c1908 50,30,20 96.5
c2670 200,100,50 99.6
c3540 50,30,20 98
c5315 100,50,20 97.8
c6288 50,30,20 97.9
c7552 200,100,20 98.41

Table 9 Number of hidden neurons and validation accuracy and time
of classification process

Circuit Sum of #Inputs
and #outputs

Architecture
(L1, L2, L3)

Testing time
(sec)

VA%

S1196 64 (40,30,20) 0.172 97.55
S1238 64 (30,20,10) 0.161 96.8
S1423 170 (70,50,30) 0.249 99
S1488 39 (20,10,5) 0.0969 96.6
S1494 39 (30,20,10) 0.0882 97.45
S9234.1 497 (300,200,100) 0.0014 99.8
S5378 427 (300,200,70) 0.895 99.7
s13207.1 1,490 (300,100,10) 0.225 99.75
s15850.1 1,295 (300,100,10) 0.266 99.8

413Journal of Electronic Testing (2022) 38:395–417

1 3

in [20] is used in MUS generation for SAT solving on GPU.
In Table 10, the proposed FD-based on DL achieved around
187 × as average speed-up compared to FD-based on SAT.
Therefore, the performance of proposed FD-based on DL
outperforms SAT fault detection, as a result of dispense of
searching process and multiple calls of SAT solvers and con-
struct DL model of IC design interpreting possible multiple
stuck-at-faults by extracting features from test vectors and
classifying multiple faults.

5.4 Comparsion to Other Models in ML and DL

In this subsection, we present results of fault detection
using other models in machine learning and deep learning.
Validation Accuracy of both proposed method and fault
detection using Radial Basis Function network (RBFN)
is illustrated in Fig. 19 in terms of validation accuracy.
Although RBFNs are common with their speed but its
validation accuracy in our application is not efficient in
terms of detecting faults, compared to model of using
Deep AE. The FD based on RBFNs achieves maximum
validation accuracy about 97.81% where the proposed
algorithm accomplishes about 99.6% maximum valida-
tion accuracy. Also, fault detection using RBF model has
an average validation accuracy about 90.6% but our pro-
posed algorithm (Deep AE and classifier using Sigmoid)
achieved 96.1 for SSAE phase and 94.9% for classification
phase. Also, Fig. 20 illustrates the variation of validation
accuracy to s15850.1 circuit to show the improvement of
validation accuracy as increasing epochs from 1 to 80.

Also, a comparison between our proposed FD model
and some classic models of machine learning such as
Decision Tree (DT), Random Forest (RF) and Gradient
Boosting classifiers in terms of validation accuracy is
shown in Fig. 21. It can be seen that other classic machine
learning models do not perform well in detecting faults in
eight digital circuits. On the contrary, our proposed FD

Fig. 19 Validation accuracy
(VA%) of Classification process
using different DL Architectures

Table 10 Number of hidden neurons and validation accuracy and
time of classification process

Circuit FD-based on
SAT
(time in sec)

FD-based on DL

Testing time in
sec

Training
time in
sec

C432 2.18 0.0754 68
C499 4.89 0.109 24.9
C880 10.14 0.146 45.1
C1908 41.69 0.277 111
S1196 21.12 0.147 39.7
S1238 29.62 0.144 52.4
S1423 29.62 0.234 52.6
S1488 34.16 0.0767 10.8
S1494 36.13 0.0765

414 Journal of Electronic Testing (2022) 38:395–417

1 3

model based on deep learning achieved a better perfor-
mance of about 35.1% higher than DT model, and about
33.1% higher than RF and GB classifiers.

6 Conclusion

The main contribution of this work is to solving the search
space explosion due to large size circuits by designing a
semi-supervised model that is mainly based on Deep Sparse
Auto-encoder for dimensionality reduction of features rep-
resented correct IC design. Different types of autoencoders
(normal AE, Deep Sparse AE and stacked sparse AE) as
unsupervised model, were implemented in order to find
the latent representation of test patterns with their correct
response for the next phase of fault classifier. Also, our
model can extract the main connections in a given circuit
which leads to multiple equivalent faults. The proposed FD

model is tested on ten combinational and nine sequential
circuits from ISCAS’85 and ISCAS’89 benchmarks. Dur-
ing experiments, Stacked Sparse AE extracted more robust
latent features across source data set of sequential circuits
while Deep Sparse AE was sufficient for combinational
circuits. In addition, we compared the complete semi-
supervised model to other fault diagnosis based on SAT
solvers in terms of consumed time. The main advantage of
our model is avoiding multiple calls of SAT solver and the
reduction of search space problem for generating a specific
MUS that can extract faults. The drawback of our model
is that we must collect as many correct data as possible to
approximate the connections between lines accurately for
detecting the root cause of faults.

Funding Open access funding provided by The Science, Technology &
Innovation Funding Authority (STDF) in cooperation with The Egyp-
tian Knowledge Bank (EKB). There's no financial/personal interest or
belief that could affect the objectivity.

Fig. 20 Validation accuracy
(VA%) of Classification process
of s15850.1 during epochs

Fig. 21 A comparison between
our proposed FD model and
other ML models

415Journal of Electronic Testing (2022) 38:395–417

1 3

Data Availability The proposed semi-supervised FD-model is available
in [39] for detecting stuck-at faults in combinational and sequential
circuits along with some of datasets and SSAE models for different
design circuits.

Declarations

Conflict of Interest There's no financial/personal interest or belief that
could affect the objectivity. Also, there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Jo S, Matsumoto T, Fujita M (2014) SAT-based automatic rectifi-
cation and debugging of combinational circuits with LUT inser-
tions. IPSJ Transactions on System LSI Design Methodology
7:46–55

 2. Rashinkar P, Paterson P, Singh L (2007) Singh, System-on-a-
chip verification: methodology and techniques: Springer Science
& Business Media

 3. Gaber L, Hussein AI, Moness M (2019) Improved automatic cor-
rection for digital VLSI circuits. In 2019 Proceeding 31st inter-
national conference on microelectronics (ICM), 2019, pp 18–22

 4. Gaber L, Hussein AI, Moness M (2020) Incremental Automatic
Correction for Digital VLSI Circuits. Presented at the Proce-
ceeding 11th International Conference on VLSI (VLSI 2020)

 5. Gaber L, Hussein AI, Moness M (2021) Fast Auto-Correction
algorithm for Digital VLSI Circuits. Procedia Computer Sci-
ence 182:95–102

 6. Osama M, Gaber L, Hussein AI, Mahmoud H (2018) An Efficient
SAT-Based Test Generation Algorithm with GPU Accelerator. J
Electron Test 34:511–527

 7. Rodríguez Gómez L (2017) Machine Learning Support for Logic
Diagnosis. Doctoral dissertation, university of Stuttgart

 8. El Mandouh E, Wassal AG (2018) Application of Machine Learn-
ing Techniques in Post-Silicon Debugging and Bug Localization.
J Electron Test 34:163–181

 9. Gaber L, Hussein AI, Mahmoud H, Mabrook MM, Moness M
(2020) Computation of minimal unsatisfiable subformulas for
SAT-based digital circuit error diagnosis. J Ambient Intel Human-
ized Comp pp 1–19

 10. Jutman A, Ubar R (2000) Design error diagnosis in digital circuits
with stuck-at fault model. Microelectron Reliab 40:307–320

 11. Wahba A, Borrione D (1995) Design error diagnosis in sequential
circuits. In Proceeding Advanced Research Working Conference
on Correct Hardware Design and Verification Methods pp 171–188

 12. Gao Z, Cecati C, Ding SX (2015) A survey of fault diagnosis and fault-
tolerant techniques—Part I: Fault diagnosis with model-based and
signal-based approaches. IEEE Trans Industr Electron 62:3757–3767

 13. Ng A (2011) Sparse autoencoder. CS294A Lecture notes 72:1–19

 14. Baldi P (2012) Autoencoders, unsupervised learning, and deep
architectures. In Proceedings of ICML workshop on unsupervised
and transfer learning pp 37–49

 15. Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extract-
ing and composing robust features with denoising autoencoders.
In Proceedings of the 25th international conference on Machine
learning pp 1096–1103

 16. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011)
Contractive auto-encoders: Explicit invariance during feature
extraction. In Icml

 17. Lynce I, Marques-Silva J (2001) Efficient data structures for fast
sat solvers

 18. Ali LG, Hussein AI, Ali HM (2016) Parallelization of unit
propagation algorithm for SAT-based ATPG of digital circuits.
In 2016 Proceeding 28th International Conference on Micro-
electronics (ICM) pp 184–188

 19. Eén NSN (2016) The MiniSat Page. Available: http:// minis at. se
 20. Dal Palù A, Dovier A, Formisano A, Pontelli E (2015) Cud@

sat: Sat solving on gpus. J Exp Theor Artif Intell 27:293–316
 21. Cook SA (1971) The complexity of theorem-proving proce-

dures. In Proceedings of the third annual ACM symposium on
Theory of computing pp 151–158

 22. Gaber L, Hussein AI, Moness M (2020) Fast Auto-Correction
algorithm for Digital VLSI Circuits. Presented at the 17th Inter-
national Learning & Technology Conference

 23. Bendík J, Černá I, Beneš N (2018) Recursive online enumeration
of all minimal unsatisfiable subsets. In International Symposium on
Automated Technology for Verification and Analysis pp 143–159

 24. Bendík J, Cerná I (2018) Evaluation of Domain Agnostic
Approaches for Enumeration of Minimal Unsatisfiable Subsets.
In LPAR pp 131–142

 25. Guthmann O, Strichman O, Trostanetski A (2016) “Minimal
unsatisfiable core extraction for SMT,” in. Formal Methods in
Computer-Aided Design (FMCAD) 2016:57–64

 26. Liffiton MH, Previti A, Malik A, Marques-Silva J (2016) Fast,
flexible MUS enumeration. Constraints 21:223–250

 27. Arodytska N, Bjørner N, Marinescu MC, Sagiv M (2018) Core-
Guided Minimal Correction Set and Core Enumeration. In
IJCAI pp 1353–1361

 28. Becker AJ (2018) Satisfiability-Based Methods for Digital Cir-
cuit Design, Debug, and Optimization. EPFL

 29. Leo K, Tack G (2017) Debugging unsatisfiable constraint mod-
els. In Proceeding International Conference on AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimiza-
tion Problems pp 77–93

 30. Shimakawa M, Hagihara S, Yonezaki N (2018) Efficiency of
the strong satisfiability checking procedure for reactive system
specifications. In Proceeding AIP Conference pp 040051

 31. Marques-Silva J (2012) Computing Minimally Unsatisfiable
Subformulas: State of the Art and Future Directions. J Multiple-
Valued Logic & Soft Comp 19

 32. Bendík J, Černá I (2020) MUST: Minimal Unsatisfiable Subsets
Enumeration Tool. In Proceeding International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems pp 135–152

 33. Selsam D (2019) Neural Networks and the Satisfiability Problem:
Stanford University

 34. Fišer P (2005) Atalanta-M. Available: https:// ddd. fit. cvut. cz/ prj/
Atala nta-M/

 35. Bryan D (1985) The ISCAS'85 benchmark circuits and netlist
format. North Carolina State University 25

 36. Brglez F, Bryan D, Kozminski K (1989) Combinational profiles of
sequential benchmark circuits. In IEEE international symposium
on circuits and systems pp 1929–1934

 37. FC et al (2015) keras. Available: https:// keras. io/

416 Journal of Electronic Testing (2022) 38:395–417

http://creativecommons.org/licenses/by/4.0/
http://minisat.se
https://ddd.fit.cvut.cz/prj/Atalanta-M/
https://ddd.fit.cvut.cz/prj/Atalanta-M/
https://keras.io/

1 3

 38. Gaber L, Hussein AI, Moness M (2021) Fault Detection based
on Deep Learning for Digital VLSI Circuits. Procedia Computer
Science 194:122–131

 39. Mohammed Moness LG, Hussein AI, Ali HM. Automated Design
Error Debugging of Digital VLSI Circuits [Online]. Available:
https:// drive. google. com/ drive/ folde rs/ 1Q2Ns wbxkb vioZ5 YD5g1
yPFKK PXwXm Aqo? usp= shari ng

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Mohammed Moness received the B.Sc. (Hons.) and M.Sc. degrees
in electronics and communication engineering from Assiut Univer-
sity, Egypt, and the Ph.D. degree in control engineering from BME,
Budapest, Hungary. From 1975 to 1985, he worked as a Lecturer and
an Assistant Professor with the Department of Electrical Engineering,
Assiut University. In 1985, he joined the University of Minia, Egypt,
where he worked as an Associate Professor and a Professor of systems
and control engineering. From 1995 to 2018, he served as the Chair-
man for the Department of Computers and Systems Engineering, and
the Vice Dean and the Dean for the Faculty of Engineering, Minia
University. On the following topics, he published over 80 articles. His
current research interests include multivariable systems, evolutionary
algorithms, computational intelligence, and embedded systems. Dr.
Moness is a member of the Engineering Advisor Committee, Supreme
Council of Universities, Egypt. He is a Senior Member of IEEE.

Lamya Gaber Ali received her B.Sc., and M.Sc. degrees in Computer
Engineering from Minia University, Egypt in 2014 and 2017 respec-
tively. In 2014, she joined the department of computer and systems

engineering, Minia University, Egypt as teaching assistant. She has
been an assistant lecturer since 2018. Her research interests include
Test Pattern Generation, Formal Verification, Parallel Programming,
High Performance Computing and Artificial Intelligence.

Aziza I. Hussein received her Ph.D. degree in Electrical & Com-
puter Engineering from Kansas State University, USA in 2001 and
the M.Sc. and B.Sc. degrees from Assiut University, Egypt in 1989
and 1983, respectively. She joined Effat University in Saudi Arabia
In 2004 and established the first Electrical and Computer Engineering
program for women in the country and taught related courses. She
was the head of the Electrical and Computer Engineering Department
at Effat University from 2007-2010, 2016-2021. She was the head of
Computer and Systems Engineering Department, Faculty of Engi-
neering, Minia University, Egypt from 2011-2016. Currently, she is
a professor and researcher at the Electrical & Computer Engineering
Department at Effat University Saudi Arabia. Her research interests
include microelectronics, analog/digital VLSI system design, RF cir-
cuit design, high-speed analog-to-digital converters design and wireless
communications.

Hanafy M. Ali is an assistant professor at the Department of Computers
and Systems Engineering, Faculty of Engineering, Minia University,
El Minia, Egypt. He received his B.Sc., M.Sc. and PhD. degrees from
the Electrical Engineering Department, College of Engineering, Minia
University, Minia, Egypt in 1997, 2002 and 2008, respectively.

417Journal of Electronic Testing (2022) 38:395–417

https://drive.google.com/drive/folders/1Q2NswbxkbvioZ5YD5g1yPFKKPXwXmAqo?usp=sharing
https://drive.google.com/drive/folders/1Q2NswbxkbvioZ5YD5g1yPFKKPXwXmAqo?usp=sharing

	Automated Design Error Debugging of Digital VLSI Circuits
	Abstract
	1 Introduction
	2 Background
	2.1 Fault Classes
	2.2 Logical Design Debugging
	2.3 Fault Detection Based on AI
	2.4 Autoencoders

	3 State of the Art for Fault Debugging
	3.1 Fault Detection Algorithms based on AI
	3.2 Fault Detection Approaches Based on Satisfiability

	4 The Proposed Implementation
	4.1 Dataset Description
	4.2 Unsupervised Feature Dimension Reduction
	4.3 The Complete Semi-supervised FD Model
	4.4 Example

	5 Experimental Results
	5.1 Data Preprocessing
	5.2 Feature Reduction and Classifier
	5.2.1 Extracting Features Using Different AE
	5.2.2 The Complete Semi-supervised FD

	5.3 Comparsion to Fault Detection Based on SAT Domain
	5.4 Comparsion to Other Models in ML and DL

	6 Conclusion
	References

