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Abstract
Although several synthesis methods for asynchronous circuits exist, only limited test methodologies have been developed. 
This paper presents a built-in self-test (BIST) architecture for Multi-Threshold NULL Convention Logic (MTNCL) asyn-
chronous circuits that utilizes an automated, industry-standard tool-based flow. The software procedure for, and hardware 
components to implement, BIST functionality are explained. To improve testing performance, the MTNCL pipeline is 
separated into multiple parallel BIST circuits, with standard pipeline components doubling as BIST circuitry to reduce area 
overhead. Results of this BIST architecture and software performance is explored for three different test cases looking at 
area impact and effects of varying the number of input patterns and initial seeds. Further refinements to fault exclusions 
based upon operating principles of MTNCL are developed to better depict actual fault coverage; and additional hardware 
modifications are proposed to improve controllability and observability to further increase fault coverage.

Index Terms Asynchronous logic · Built-in self-test (BIST) · Multi-threshold NULL convention logic (MTNCL) · NULL 
convention logic (NCL) · Sleep convention logic (SCL)

1 Introduction

While synchronous circuits have been the dominant archi-
tecture in digital systems for decades, asynchronous designs 
exhibit several advantages that are becoming more enticing 
as fabrication process technology continues to shrink. Sev-
eral of the primary advantages involve the lack of a global 
clock, resulting in reduced power, noise, and electromag-
netic interference, and robustness to PVT (process, voltage, 

temperature) variations. However, there are several barriers 
to adoption of asynchronous design styles, including lack 
of designer familiarity with asynchronous architectures, 
synthesis methods to generate asynchronous circuits from 
register-transfer level (RTL) hardware description language 
(HDL) code, and testing methods to validate functionality 
of the resulting asynchronous circuit.

Two promising asynchronous circuit paradigms are NULL 
Convention Logic (NCL) [1] and Multi-Threshold NULL 
Convention Logic (MTNCL), also known as Sleep Conven-
tion Logic (SCL) [2]. Both NCL and MTNCL are supported 
by the UNCLE synthesis tool [3]; and Design-For-Test (DFT) 
methods have been developed for both [4, 5]. Built-In Self-
Test (BIST) methods have been developed for NCL [6], and 
an initial approach proposed for MTNCL that tests the entire 
MTNCL circuit as a single BIST stage [7].

This paper expands upon the authors’ previous work in 
[7] to develop a parallelized BIST architecture for MTNCL 
circuits to decrease testing time, along with an automated 
flow to insert the BIST functionality and obtain and vali-
date desired fault coverage. The developed automated flow 
utilizes standard synchronous test software when possible, 
to minimize custom software, while also providing the user 
with a sense of familiarity. Additionally, further refinements 
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are implemented to yield higher fault coverage by increas-
ing controllability and observability, and excluding some 
reported faults based on the operating principles of MTNCL 
circuits.

2  Background

NCL is a quasi-delay insensitive (QDI) asynchronous design 
paradigm that utilizes multi-rail signals, such as dual-rail 
logic, to represent data, and utilizes completion detection 
and a 4-phase return-to-0 handshaking protocol for control 
[1]. In dual-rail logic, 2 wires, D1 and D0, referred to as 
rails, represent 1 bit of data; D1 asserted represents logic 1, 
D0 asserted represents logic 0, both rails de-asserted repre-
sents the NULL state (i.e., absence of DATA), and both rails 
simultaneously asserted is illegal. NCL circuits are designed 
using threshold gates with hysteresis, and circuits must be 
input-complete and observable for delay-insensitivity [8]. 
MTNCL is similar to NCL, but instead of flowing a NULL 
wavefront through the circuit to reset all gates to 0 for the 
NULL state, MTNCL threshold gates include a sleep input, 
connected to a handshaking control signal, which simultane-
ously forces gates to 0 for the NULL state. Hence, MTNCL 
gates do not require hysteresis, and MTNCL circuits do not 
require input-completeness or observability, resulting in 
faster, smaller, lower power circuits compared to NCL [2].

NCL and MTNCL systems consist of NCL/MTNCL reg-
isters, combinational logic (C/L), and completion detection, 
which can be grouped into stages that include 1 of each, 
as shown in Fig. 2 for an MTNCL pipeline. Each MTNCL 
register has dual-rail inputs and outputs, and a Boolean sleep 
input. MTNCL C/L implements a desired function by tak-
ing dual-rail logic inputs and producing dual-rail logic out-
puts, and is comprised of MTNCL gates, described above. 
MTNCL utilizes an early completion handshaking proto-
col, which allows DATA to flow through a stage after all 
inputs become DATA and the subsequent stage is requesting 
DATA, and sleeps the stage to NULL after all stage inputs 
are NULL and the subsequent stage is requesting NULL [2].

An example of an MTNCL slept early completion compo-
nent for 8 dual-rail inputs is shown in Fig. 1, which is com-
prised of MTNCL TH12 gates to detect a DATA or NULL 
for each of the 8 register input signals, and a tree of MTNCL 
THnn gates to combine the multiple TH12 gate outputs into 
a single signal, which is then combined with the subsequent 
stage’s early completion component’s sleep output via a 
resettable inverted NCL TH22 gate, to generate the current 
stage’s early completion component’s sleep output.

Integrated circuits (ICs) require testing to detect faults 
that can occur during the fabrication process, such as a 
wire being shorted to ground (i.e., stuck-at-0) or shorted to 
 Vdd (i.e., stuck-at-1), to ensure correct operation. There are 

2 main testing methodologies, 1) utilizing external instru-
mentation to input test patterns to the device under test 
(DUT) and analyze the resulting outputs, or 2) incorporat-
ing additional logic within the DUT during its design, such 
that the DUT can internally generate its own test patterns 
and also validate the resulting outputs internally, without 
requiring external test hardware, which is referred to as 
BIST [9].

3  MTNCL BIST Design with Pipeline Stage 
Parallelism

3.1  Components

In [7], a BIST implementation was designed that enables 
simple functional BIST by inserting the BIST circuitry as 
a wrapper around the entire MTNCL circuit. The approach 
presented herein improves upon the wrapper-based BIST 
design to increase observability and controllability of faults 
inside the MTNCL pipeline, by partitioning it so that each 
pipeline stage can be tested in parallel. This may yield 
shortened test times as the cycle time of the BIST design is 
reduced to single pipeline stages instead of the full design.

To implement MTNCL BIST, traditional synchronous 
BIST methods were adjusted for compatibility with MTNCL 
asynchronous systems. A common BIST method utilizes lin-
ear feedback shift registers (LFSRs), which are circular shift 
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registers with XOR elements in various feedback paths, to 
generate input patterns. An N-bit LFSR is reset to a non-
zero seed, and then produces  2 N-1 pseudorandom outputs. 
As LFSRs are a simple and effective way to present a large 
number of input patterns, while requiring minimal additional 
logic, LFSRs were utilized to generate the BIST inputs at 
each of the pipeline stages. Since DFFs typically have both 
a Q and Q’ output, with slightly different timing delays for 
these signals, dual-rail gating (DRG) components, shown in 
Fig. 3, were implemented to allow for proper flow of DATA 
and NULL wavefronts, by presenting a NULL wavefront 
when its D/N’ signal is 0 and a DATA wavefront when its 
D/N’ signal is 1. The output response of each pipeline stage 
of the DUT was measured with a Multiple Input Shift Reg-
ister (MISR) by connecting both the D0 and D1 rails of the 
circuit to inputs of the MISR to enable checking both rails 
simultaneously. Multiplexers were used to control the flow 
of data between standard operation and BIST mode. Simple 
Boolean logical equivalence checkers, shown in Fig. 4, were 
utilized to control the number of input patterns presented 
to the BIST stages by gating off the LFSR clock once the 
final input pattern was presented, and then validating that 
the final MISR output was the expected value, meaning that 
the circuit is functioning correctly.

3.2  Software Procedure

An automated method was implemented to import an MTNCL 
DUT Verilog netlist, separate the design into multiple BIST 

stages, automatically insert the required MTNCL BIST logic, 
simulate digital functionality, evaluate fault coverage, and iter-
ate, by first increasing the number of test patterns and then 
varying initial values for the LFSRs, until either the desired 
fault coverage is achieved or the maximum possible fault 
coverage is obtained with limits imposed upon the number 
of test patterns and seed adjustments. A flowchart outlining 
this high-level procedure is shown in Fig. 5. This automation 
tool was designed using Python for netlist parsing, separating 
the design into multiple BIST stages, implementing all BIST 
component netlists and testbenches, creating simulation mac-
ros, running both digital and fault simulations, evaluating sim-
ulation results, and iterating to improve fault coverage. Mentor 
Graphics ModelSim and Synopsys TetraMAX were utilized 
for digital simulation and fault simulation, respectively, as 
these are industry-standard software packages. Compatibility 
with other simulators may be possible with modifications.

A pipeline is separated into multiple BIST stages, as shown 
in Fig. 6. The first BIST stage consists of the input MTNCL 
register, C/L, and the first and subsequent registers’ slept early 
completion components. Intermediate BIST stages include 
the stage’s input MTNCL register, C/L, and the subsequent 
register’s slept early completion component. The final BIST 
stage includes the last two MTNCL registers, C/L, and final 
slept early completion component. This was adjusted from the 
standard MTNCL pipeline shown in Fig. 1.

For each simulation action, several simulations were 
performed. To create the various equivalence hardware, the 
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LFSRs’ and MISRs’ outputs of a golden simulation must be 
run for the desired number of patterns for each BIST stage. 
As digital simulation is an efficient manner of calculating 
these values, a base BIST block and testbench is initially 
created for this purpose, similar to Fig. 7 but excluding the 
two dashed blocks containing equivalence hardware and 
C/L. If the BIST stage currently being simulated is the final 
BIST stage, it will utilize the dashed completion tree com-
ponent instead of the inverter; this completion tree includes 
the inputs and tree portions of the slept early completion 
component shown in Fig. 1. For all other BIST stages, the 
dashed single inverter is added instead of the completion tree 
component so that the stage’s slept early completion com-
ponent can be re-used; the inversion is required because the 

slept early completion component has an inverted TH22 gate 
at its output, as shown in Fig. 2.

A mechanism to detect when a valid DATA wavefront 
has arrived at each BIST stage output is required to clock 
the various MISRs for each output pattern. Thus, the inter-
nal MTNCL pipeline’s slept early completion components 
are utilized to detect when the BIST stage output has tran-
sitioned to valid DATA, and then clock the MISR. An 
added completion tree component is utilized for the final 
BIST stage to ensure that DATA is stable when the MISR is 
clocked. Although the MISR outputs are not connected to 
any logic, they are monitored during simulation.

Since TetraMAX is a cyclic fault simulator, it is incapable 
of properly handling the asynchronous DATA and NULL 
wavefronts unless both the changing inputs and outputs 
occur in the same cycle; additionally, the DATA wavefront 
must be provided last so that the simulator uses the proper 
output value. To enable this, the base BIST block restricts 
both the input and output to transition only once during a 
cycle, through the use of the added TH22 threshold gate 
(i.e., in dashed box in Fig. 7) that conjoins the BIST block’s 
completion tree component’s inverted output with the ko out-
put from the BIST stage, and feeds this back into the BIST 
stage’s ki input. This ensures that the BIST block will not 
request a NULL wavefront until after a valid DATA wave-
front has appeared at the output, propagating from the static 
DATA input. To further constrain the system with a static 
DATA input per cycle, the DRG D/N’ control signal is taken 
from this ki as well, and then inverted to clock the LFSR. If 
multiple DATA transitions occur in a single cycle, as would 
be the case if inputs were provided as soon as requested, the 
TetraMAX functional simulator may produce invalid results 
compared to the golden simulation, resulting in an invalid 
fault grading result. The BIST stage’s ki is utilized as a rising 
strobe during TetraMAX fault simulation each cycle.

Once the LFSR and MISR pattern are known from a digi-
tal simulation of the BIST block, the equivalence modules 
are created when writing the testbench and BIST module for 
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fault simulation, and inserted into the architecture as shown 
in Fig. 7. The LFSR equivalence circuit is produced to match 
the input pattern following the desired final input. The LFSR 
and MISR are internally clocked using the BIST stage’s 
handshaking signals. Once the final pattern is reached, the 
LFSR clock is gated off, and the DRG D/N’ control signal 
remains low, providing a static NULL wavefront to the BIST 
stage input.

Since the fault simulation BIST architecture will be uti-
lized by TetraMAX, it includes the constrained acknowledge 
signals, merged with the dashed TH22 gate, and utilizes the 
BIST stage’s ki for the gating mechanism of the LFSR and 
DRG control signals. This ensures that only one DATA input 
is presented to the BIST stage during fault simulation every 
cycle, as required for the fault simulation.

Once the digital simulation is completed for the fault 
simulation BIST architecture, then a fault simulation is per-
formed for stuck-at faults. If the fault simulation completes 
correctly, then all fault summary information is parsed and 
utilized to calculate fault coverage. This includes detected 
faults (DT), possibly detected faults (PT), undetectable 
faults (UD), ATPG untestable faults (AU), not detected 
faults (ND), and total faults. DT faults include faults 
that TetraMAX was able to completely evaluate as being 
detected with the present set of inputs. PT faults are evalu-
ated when the good digital simulation values are known, 
but the faulty machine simulation resulted in an unknown 
value. UD faults are ones that cannot be tested, and may be 
due to unused outputs or pins that are statically tied to 0 or 
1, may have controllability or observability limitations, or 
may have redundant logic that would mask an actual fault. 

AU faults are faults that cannot be controlled or observed 
due to constraints utilized during fault simulation, or faults 
regarding non-scan sequential devices. As these constraints 
and devices that would incur this type of fault are not uti-
lized with the proposed flow or MTNCL, TetraMAX did 
not report any AU faults for any of the circuits reported in 
this paper. ND faults are ones that were not detected during 
fault simulation and may occur due to lack of controllability 
or observability. Total faults represent the total number of 
simulated faults.

Fault coverage is then calculated by dividing the sum of 
all DT and half-weighted sum of all PT from each BIST 
stage by the sum of the total faults of each BIST stage, as 
shown in Eq. (1). This value is not output from TetraMAX, 
although it does output the individual fault coverage of each 
BIST stage separately. This calculation is the same method 
that TetraMAX uses for a single design. As PT faults have 
a 50% chance of being detected in a binary system, they are 
assigned a weight of 0.5, which is the default TetraMAX 
value. None of the other fault types are utilized in this cal-
culation, although they are recorded in the simulation log.

Once the fault simulation is complete, the final MTNCL 
BIST architecture is generated by removing the TH22 
gate used to constrain the DATA/NULL cycles during the 
fault simulation, such that BIST stage input and output 
MTNCL registers once again function independently, as 
originally designed. A schematic of the final MTNCL BIST 
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architecture is shown in Fig. 7, excluding the dashed TH22 
gate and using its inverted input as its following MUX’s B 
input.

The interface for the MTNCL BIST final circuit is the 
same as the original MTNCL circuit, shown in Fig. 1, with 
the addition of a test input and status output. Test controls 
when the circuit functions in BIST mode vs. standard oper-
ating mode; and status indicates if the DUT generated the 
correct MISR output after a self-test, to show whether or 
not it is functioning correctly. Since this BIST implemen-
tation utilizes parallelism by separating pipeline stages of 
the MTNCL DUT, each pipeline stage is included as its 
own BIST block in the top-level design, then the status of 
each is merged using an AND tree to output the final self-
test status of the overall DUT, as shown in Fig. 8. As each 
BIST block controls itself using its own BIST circuitry, the 
controllability and observability of the system is increased 
because each of the BIST stages’ data inputs and outputs are 
independently provided by an LFSR and measured using an 
MISR, respectively.

4  MTNCL BIST with Parallelism Results

4.1  Design Preparation

A number of circuits were used to evaluate the developed 
automation flow, including many ISCAS ‘85 C/L bench-
marks, which are available as structural Verilog netlists 
[10]. UNCLE [3] was utilized to synthesize MTNCL circuits 
from synchronous RTL. To integrate the linear synchronous 
pipeline functionality required by UNCLE into these purely 
C/L circuits, an input register was added before the C/L, 
two registers connected in series were added following the 
output of the C/L, and a clk input was added to control all 
three registers. Note that UNCLE cannot currently syn-
thesize an MTNCL circuit from a synchronous circuit that 
includes feedback, which is why the ISCAS’89 sequential 
benchmarks were not used. Following UNCLE synthesis, 
the resulting pipelines were balanced using Synopsys Design 
Vision. Additionally, an 8-bit adder and a 32-bit multiplier 

were also evaluated. These two designs were implemented 
as 2-stage pipelines, using behavioral RTL, and synthesized 
into MTNCL circuits using UNCLE.

Three test cases were performed for each design. The 
initial test case had a target fault coverage of 75%, no maxi-
mum pattern count (the default), and no additional seeds 
besides the initial default binary 1 seed. The number of input 
patterns was initialized to 5. This would enable the circuit 
to utilize the maximum number of patterns for each BIST 
stage,  2n-2 patterns, where n is the number of input bits to 
the BIST stage, provided the target fault coverage was not 
reached first. This run was primarily performed to ensure 
that the fault simulation would complete in a short amount 
of time.

For the second test case, a target fault coverage of 100% 
was utilized. The number of patterns was initialized to 5, 
while the maximum number of input patterns was set to 1E6 
patterns. For any BIST stage with fewer than 20 input bits, 
this would utilize all possible input patterns, with some pat-
terns repeated. For a BIST stage with 20 input bits or more, 
only 1E6 patterns would be tested. Similar to the previous 
test case, the number of seeds was limited to 1, so that only 
the initial default binary 1 seed was used. This test case was 
utilized to determine the maximal fault coverage obtainable 
by each design within 1E6 patterns and using only the initial 
seed. This was used to evaluate performance as the num-
ber of input patterns increased. The actual simulation time 
increases significantly as the design size and pattern count 
increases; a maximum pattern count of 1E6 was set to limit 
the actual time required for the larger designs.

The third test case had a target fault coverage of 100%, a 
pattern count set to exactly 1000 patterns (i.e., 1000 start-
ing pattern count and 1000 maximum pattern count), and a 
maximum seed count set to 1000 seeds. The initial seed was 
the default seed pattern of binary 1, with additional seeds of 
the same-length as the LFSR hardware randomly generated. 
The 1000 static pattern count was selected after reviewing 
results from the other test cases, as most designs converged 
to a moderately high fault coverage within 1000 patterns. 
Although this does not run an exhaustive simulation for all 
possible LFSR seeds, it does provide insight into how fault 

Fig. 8  Example 2-Stage Top-
Level MTNCL BIST Design 
with Parallelism
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coverage, test time, and actual time vary across different 
seeds; however, an untested seed could potentially produce 
a better fault coverage.

4.2  First Test Case: Area Impact

Since all the first test case simulations successfully com-
pleted quickly, those fault results are not discussed. As the 
first test case had no maximum pattern count, only LFSR 
lengths up to the BIST stage input length were generated, 
which yields the minimum sized BIST hardware required. 
An increased pattern count could produce a slightly larger 
design, as the LFSR and equivalence circuits would increase 
in size. A comparison of circuit area for the original and first 
test case BIST designs, as measured by Synopsys Design 
Vision using UNCLE’s library of gate areas, is listed in 
Table 1.

For small designs, a large area impact was observed, 
greater than 200%. This occurs because the ratio of BIST 
stage I/O to logic is rather high, such that the added BIST 
logic is more significant compared to the original area. For 
medium-sized designs, an area impact of approximately 
65–132% was generally observed. The c499 design had 
a significant area overhead due to a higher ratio of BIST 
stage I/O to original circuit logic. For large designs, area 
overheads of 37.4% and 27.1% were realized. Overall, area 
overhead is dependent on the ratio of BIST stage I/O to 
original circuit logic. This parallel implementation requires 
additional area overhead compared to the previous work [7], 
since it requires BIST logic for each pipeline stage, instead 
of only at the circuit’s primary I/O.

4.3  Second Test Case: Maximum Fault Coverage

The results from the second test case with a target of 100% 
fault coverage and a maximum pattern count limit of 1E6 
patterns are shown in Table 2. None of the designs were able 
to obtain the target fault coverage of 100% within 1E6 pat-
terns; so the maximum fault coverage obtained for any of 

the 1E6 patterns is shown for each design. In many cases, 
the maximum fault coverage was obtained for numerous 
consecutive iterations as more patterns were presented, so 
the minimum pattern count producing the maximum fault 
coverage is shown along with the test time and actual time 
for that specific run.

All designs obtained a fault coverage of at least 76.75%, 
which was unexpectedly lower than the previous work [7]. 
This decreased fault coverage occurred due to additional 
nodes being evaluated, such as the outputs from the added 
BIST multiplexers. Although this may seem low, only 
output nodes of each BIST stage are being observed; and 
internal circuitry, such as completion components, do not 
directly affect data outputs and are therefore difficult for 
ATPG tools to assess. For all but one design, the maximum 
fault coverage took less than 25 min to simulate for that 
specific number of input patterns, which is listed as Actual 
Time in Table 2. Note that this is not the summation of all 
simulations, which would be more. The largest design in 
terms of instance count (but not circuit area), mult32 × 32, 
took approximately 342.6 h to run the digital and fault 
simulations for 655,360 patterns. The only remaining pat-
tern count for this design, 1E6 patterns, took 564 h to 
run, while achieving the exact same fault coverage. Thus, 
large designs could become a burden in terms of both 
CPU resources and run time for high pattern counts. Test 
Time, which is the time required to perform a complete 
BIST of the DUT, as approximated by the digital simulator 
using UNCLE’s MTNCL gate models, may also be sig-
nificant to the user. The mult32 × 32 design would require 
approximately 55 ms to complete a BIST operation. This is 
reduced from 88 ms in the previous work [7], so the paral-
lel MTNCL BIST architecture presented herein increases 
testing throughput. Depending upon the cost associated 
with testing, the tradeoff of a lower fault coverage may be 
enticing to reduce testing time.

Table 1  MTNCL BIST Area Comparison

Design Name Original Area Area with BIST % Overhead

c17 153 543 254.9%
adder8 621 1901 206.1%
c499 2200 6873 212.4%
c432 2403 5584 132.4%
c1908 4471 7985 78.6%
c880 4502 9079 101.7%
c1355 5632 9278 64.7%
mult32 × 32 21,523 29,575 37.4%
c6288 23,731 30,167 27.1%

Table 2  MTNCL BIST Maximum Fault Coverage (1E6 Patterns, 1 
Seed)

Design Name Fault 
Coverage
(%)

Patterns Test Time
(ns)

Actual Time
(s)

c17 76.752 160 4649 8
adder8 79.539 163,840 5,542,128 224
c499 84.664 2560 107,529 30
c432 83.237 2560 128,009 21
c1908 81.612 81,920 4,014,089 1090
c880 82.855 5120 235,529 99
c1355 83.848 5120 245,769 99
mult32 × 32 95.330 655,360 54,583,533 1,233,222
c6288 86.509 5120 471,049 1544
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Since none of the designs achieved 100% fault coverage, 
and the maximum fault coverage generally took a moderate 
actual time to obtain, the lowest fault coverage within 2.5% of 
the maximum fault coverage was determined, and the circuits 
were re-analyzed at this fault coverage. These results are shown 
in Table 3, and demonstrate that although the maximum fault 
coverage may take a long time to obtain, it may be possible 
to obtain an acceptable fault coverage within a much shorter 
timespan by slightly relaxing required fault coverage. In some 
cases, the fault coverage penalty was much less than 2.5%.

As the fault coverage began to increase for designs with a 
very large pattern count, substantial savings can be observed for 
both test time and actual time. For the mult32 × 32 design, the 
actual time difference to obtain 94.67% fault coverage instead 
of the 95.33% maximum fault coverage was approximately 
342 h; the slightly lower fault coverage only took 17.5 min at 
that specific pattern count. Likewise, the BIST test time was 
also significantly faster, approximately 26 µs vs. 55 ms.

4.4  Third Test Case: LFSR Seed Adjustment

The results from the third test case with a target of 100% fault 
coverage and a maximum seed count of 1000 seeds are shown 
in Table 4. For these simulations, all designs used a starting 
and maximum pattern count of 1000, so exactly 1000 input 
patterns were presented for all of the various seeds. This may 
have resulted in slightly larger BIST structures for small-input-
count circuits. Like the second test case, none of the designs 
were able to obtain the target 100% fault coverage. The maxi-
mum fault coverage obtained is listed for each design.

For most of the designs, the test and actual times were 
very similar across all seeds. All the designs were able to 
achieve a higher fault coverage using different seeds than 
the initial seed used in the second test case. For all other 
designs except c17, the 1000 patterns also had a significantly 
reduced pattern count compared to the maximum fault cov-
erage, and thus smaller test time compared to the second 

test case, while achieving this higher fault coverage. These 
effects are design dependent, as is the rate of increasing fault 
coverage as pattern counts increase across various seeds. 
The actual times are almost doubled due to additional simu-
lations and file I/O, but test times are significantly reduced 
compared to the previous work [7]. Note that actual times 
could be improved via parallel simulation, since all BIST 
stages function as completely independent circuits.

4.5  MTNCL BIST Automation with Parallelism 
Performance

To further investigate the performance of the MTNCL BIST 
automation, all designs were extensively analyzed in terms 
of their actual simulation time across the second and third 
test cases. The information for the c1355 design is detailed, 
as it was the largest of the medium-sized designs.

Fault coverage versus pattern count is shown in Fig. 9 on the 
primary axis. The implementation achieved an initial fault cov-
erage around 36% using 5 patterns. As pattern count increases, 
fault coverage also increases, and then flattens out once the 
maximum is obtained. Actual time vs. pattern count is shown 
in Fig. 9 on the secondary axis. This time was calculated from 
the log files by comparing the times between the fault coverage 
output of each run. For lower pattern counts with this design, 
the digital simulations took a longer time to complete than the 
fault simulations. However, the fault simulations began to take 
more time starting just before 1000 patterns, and increased 
at a faster rate. The percentages of total run time for the fault 
simulations, digital simulations, and processing accounted for 
91.37%, 8.32%, and 0.31%, respectively.

During analysis of the third test case, histograms showing 
the distributions are utilized to observe differences using a 
static 1000 pattern count, as the starting LFSR seed is adjusted 
for 1000 different seeds. The fault coverage distributions for 
the c1355 design are shown in Fig. 10, which has a normal 
distribution, with an average fault coverage of 83.6%. The 

Table 3  MTNCL BIST Relaxed Fault Coverage (1E6 Patterns, 1 
Seed)

Design Name Fault 
Coverage
(%)

Patterns Test Time
(ns)

Actual Time
(s)

c17 76.519 20 589 9
adder8 78.636 40 1332 8
c499 83.416 640 26,889 15
c432 83.142 320 16,009 13
c1908 80.879 1280 62,729 28
c880 80.584 320 14,729 18
c1355 81.807 640 30,729 22
mult32 × 32 94.673 320 26,019 1051
c6288 84.123 640 58,889 223

Table 4  LFSR Seed Effect on MTNCL BIST Fault Coverage (1000 
Patterns, 1000 Seeds)

Design 
Name

Fault 
Coverage
(%)

Seed Count Test Time
(ns)

Actual Time
(s)

c17 80.023 277 29,009 15
adder8 81.670 339 33,881 16
c499 84.814 49 42,009 24
c432 83.637 768 50,009 20
c1908 82.223 520 49,009 28
c880 84.478 630 46,009 32
c1355 84.812 807 48,009 31
mult32 × 32 95.380 453 83,285 2065
c6288 88.784 688 92,009 268
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maximum fault coverage obtained was 84.8%, 1% higher than 
in the second test case, and requiring only 20% of the pattern 
count. The average actual time was 9.85 s; and the percentages 
of total run time for the fault simulation, digital simulation, 
and processing accounted for 49.18%, 30.64%, and 20.18%, 
respectively.

5  Additional Considerations

5.1  Feedback Compatibility

Although UNCLE is incapable of synthesizing designs that 
include feedback, the pipeline stage parallelism method 

presented herein can be utilized for designs with data feed-
back, such as Finite State Machines (FSMs) and datapath 
feedback; however, some manual adjustments are required. 
One approach is to avoid breaking feedback loops by assign-
ing an entire feedback circuit to a single pipeline stage, while 
other pipeline stages can still be parallelized. However, as 
discussed in [7], an MTNCL BIST circuit with data feed-
back is operational, but due to TetraMAX limitations, fault 
coverage cannot be calculated. Hence, a better approach is 
to partition each feedback loop into multiple BIST stages, 
such that no BIST stage contains data feedback. This enables 
TetraMAX to calculate fault coverage for each BIST stage, 
which are then combined to produce the DUT overall fault 
coverage for the DUT, as explained in Sect. 3.2.

Fig. 9  Fault Coverage and 
Actual Time vs. Pattern Count 
for c1355 Design
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Take for example the synchronous circuit shown in Fig. 11, 
which includes internal datapath feedback, and its MTNCL 
implementation, shown in Fig. 12, which includes the mini-
mum required 3 registers in the feedback path [8]. Note that 
C/L #2 in Fig. 11 is partitioned into C/L #2A and #2B in 
Fig. 12 to increase throughput. Also note that any registers 
that provide feedback must be implemented as Reset to DATA 
(RTD) NCL registers to provide a valid DATA wavefront for 
the feedback path upon initialization; all non-feedback regis-
ters remain as MTNCL registers. The dual-rail feedback path 
from the feedback loop’s output (e.g., primary output, Z, in 
Fig. 12) into the feedback loop’s MTNCL register feedback 
input (e.g., input D of top most MTNCL register in Fig. 12) 
must also be incorporated into the previous stage’s comple-
tion component to detect when a valid DATA wavefront has 
arrived at the input to the entire feedback loop stage. Simi-
larly, as shown in Fig. 12, a TH22 gate must be added to 
merge the ko generated from the stage immediately prior to 
the feedback loop with the ko generated from the next stage 
after the feedback loop, to ensure that the feedback loop’s 
NCL register holds a valid DATA wavefront until the DATA 
wavefront has been processed by both the feedback loop and 
the subsequent stage.

As shown in Fig. 12, this design could be partitioned into 
2 BIST stages, with the entire feedback loop implemented 
as a single BIST stage. It is important to note that additional 
multiplexers and BIST input generation logic are needed to 
fully decouple the feedback path when in test mode. One 

dual-rail bus multiplexer must be inserted at the feedback 
datapath completion input port, labelled as A in Fig. 12, along 
with additional BIST input logic, in order to provide com-
plete DATA/NULL wavefronts to the completion logic when 
the stages are separated in test mode. A single multiplexer 
is required at the merging TH22 gate’s output, labelled as 
B in Fig. 12, to break the feedback handshaking during test 
mode so the BIST stages operate independently. However, 
as mentioned previously, this would be a functional system, 
but would not allow for simulation or calculation of fault 
coverage due to TetraMAX limitations with feedback loops.

As shown in Fig. 13, the feedback path could instead be 
broken and partitioned into multiple BIST stages, thereby 
allowing BIST circuitry to provide inputs to all BIST stages 
during each individual stage’s TetraMAX fault simulation, 
such that fault coverage for the DUT can be calculated. Same 
as Fig. 12, the addition of multiplexers at A and B, and addi-
tional BIST input logic at A, is necessary to enable both 
testing capability and normal design functionality.

It is worth noting that TetraMAX simulation of settable 
NCL gates does not exhibit proper hysteresis behavior, as 
the output of a RTD gate with one data input asserted, is 
de-asserted immediately after its reset input is de-asserted, 
whereas the gate should remain asserted due to hysteresis. 
To remedy this, the external RTD NCL registers in feedback 
paths must be extracted up one level of hierarchy from the 
BIST stage to the BIST block level, shown in Fig. 7. Correct 
hysteresis functionality will then be exhibited via the Value 

Fig. 11  Synchronous Pipeline 
with Datapath Feedback
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Change Dump (VCD) files through digital simulation, so 
TetraMAX simulation will be possible. However, faults on 
this now external RTD NCL register are no longer included.

5.2  Improving Fault Coverage via Fault Exclusion

As MTNCL circuits operate in an asynchronous fashion 
with local handshaking, specific combinations of stuck-at 
fault type and asynchronous gate function can be applied to 
the TetraMAX verbose fault list to better depict actual fault 
coverage. For example, if one of the BIST stage sleep nets 
is stuck-at-1, then that entire stage will always be slept, such 
that it will never transition to DATA. Likewise, if one of the 
BIST stage sleep nets is stuck-at-0, that would cause the 
previous stage’s sleep net to be stuck-at-1 (i.e., the previous 
stage’s slept early completion component final TH22 NCL 
gate, shown in Fig. 2, would be stuck-at-0 due to its ki input, 
which is the stuck-at-0 sleep net; and this TH22 NCL gate 
output is inverted to generate the previous stage sleep net, 
which would therefore be stuck-at-1). Both of these exam-
ples would cause the circuit to deadlock. Furthermore, any 
slept early completion component gate output (except for 
the final inverter, which is already considered in the previ-
ous case) that is stuck-at-0 will cause the sleep net gener-
ated by that component to be stuck-at-1, which would cause 
the circuit to deadlock, as mentioned above. Since these 
scenarios cause the circuit to immediately deadlock, any 
undetected faults on any of these nets flagged by TetraMAX 
can be ignored, since they would be immediately detected, 
in either test mode or normal operation, due to circuit dead-
lock. A summary of exclusion rules is provided below; and 
applying these exclusion rules to the single BIST stage c17 
circuit [7] increases fault coverage from 86.93% to 90.74%.

1. Stuck-at faults on sleep nets can be excluded.
2. Stuck-at-0 faults on slept early completion component 

gate outputs can be excluded.

Through review of verbose fault lists produced by TetraMAX 
for several designs, it was determined that many undetect-
able faults were located in the slept early completion logic.  
When slept early completion components are designed using 
MTNCL threshold gates (with sleep input), stuck-at-1 faults can  
be masked by the sleep mechanism, and therefore cannot be 
excluded. However, if NCL gates (with hysteresis) are used to 
implement the early completion logic instead of MTNCL gates 
(i.e., replace the MTNCL gates in Fig. 2 with NCL gates), then 
any stuck-at-1 fault in this logic will result in a stuck-at-0 fault 
on its corresponding subsequent sleep net, and can therefore 
be excluded. A summary of these rules is provided below; and 
applying these additional exclusion rules to the single BIST stage 
c17 circuit [7] further increases fault coverage from 90.74% to 
98.10%. The tradeoff for using this method to increase fault cov-
erage is a slight decrease in performance and slight increase in 
area, energy/operation, and leakage power, as NCL gates are 
larger, with increased leakage power and energy per transi-
tion, compared to their MTNCL equivalent, and this requires a  
NULL input to flow through the non-slept early completion logic 
instead of all gates being simultaneously slept to 0 [2].

3. Stuck-at-1 faults on early completion component gate out-
puts can be excluded, when designed using NCL gates.

4. Stuck-at-1 faults on any input to an early completion 
component can be excluded, when designed using NCL 
gates.

5.3  Improving Fault Coverage via Increased 
Controllability

Since reported fault coverages are slightly lower than current 
industry-standard requirements, the ability to add control-
lability and observability points in asynchronous dual-rail 
logic was investigated. Controllability points can be added 
to dual-rail nets to inject a DATA value in order to improve 
fault coverage, using the hardware shown in Fig. 14. When 
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Ctrl Sel is asserted, the Ctrl D0 and Ctrl D1 inputs replace D0 
and D1 generated by the preceding C/L, respectively, allow-
ing for injection of a DATA0  (D0 asserted,  D1 de-asserted), 
a DATA1  (D0 de-asserted,  D1 asserted), or even an INVA-
LID (both  D0 and  D1 asserted) value, as desired. Note that 
an INVALID value should only be injected if not part of a 
single stage BIST feedback loop; otherwise, this could result 
in perpetual INVALID values in the feedback loop until the 
circuit is reset. Also, note that a NULL value should not be 
injected, as this may cause the pipeline to deadlock. Further-
more, each dual-rail signal transitions to NULL after every 
DATA value, so there would be no need to inject a NULL 
value. Note that C/L could also be utilized instead of two 
multiplexers; however, multiplexers offer a higher level of 
control, with increased area as the tradeoff.

5.4  Improving Fault Coverage via Increased 
Observability

It may also be desirable to increase observability separately, 
or in addition to increased controllability. To view any sig-
nal, the pipeline may be stalled so that a DATA wavefront 
exists on all dual-rail nets. This is the same methodology 
used to enable the asynchronous fault simulation; the addi-
tional dashed TH22 gate in Fig. 7 that ties the BIST stage 
ko, and slpout or added completion tree component, together 
forces pipeline stalls. Any net, such as a single rail of a dual-
rail signal or an acknowledge net, as shown in Fig. 15, can 
be probed for improved observability when the pipeline is 
stalled, which requires one additional MISR bit for each net 
probed. Note that inserted observability points bypass the 
final BIST stage’s added completion tree component, shown 
in a dashed box in Fig. 7. Adding controllability hardware 
and observability points into the single BIST stage c17 cir-
cuit [7] increases fault coverage from 86.93% to 91.17%, 
and requires 6 additional multiplexers and 5 additional 
MISR bits. Applying this after applying the previous fault 
exclusions further increased fault coverage from 98.10% to 
98.54%.

6  Conclusion and Future Work

This paper presents an automated method for MTNCL BIST 
insertion to achieve a desired fault coverage, which utilizes 
industry-standard tools within the design flow for digital and 
fault simulations. The proposed method separates the MTNCL 
DUT into multiple parallel BIST circuits, which yields a reduc-
tion in test time at the expense of increased area overhead, com-
pared to the previous work in [7] that implemented the entire 
DUT as a single BIST stage. The method presented herein also 
allows for fault calculation of circuits that include data feed-
back, whereas the previous work in [7] produced functional 
BIST circuits for designs with data feedback, but could not 
calculate their fault coverage. Furthermore, fault exclusion 
rules were developed, based upon the operating principles of 
MTNCL circuits, to better depict actual fault coverage. And, 
additional controllability and observability hardware was pro-
posed to further improve fault coverage for MTNCL circuits.

Compared to the single BIST circuit implementation in 
[7], a substantial area increase (average of 44% for the 9 test 
circuits) is required for the pipelined BIST due to additional 
LFSR and MISR circuitry for each pipeline stage, as shown 
in Table 5. The pipelined BIST implementation reduced test 
time for maximum fault coverage by an average of 51% for 6 
of the 9 test circuits, compared to the single BIST implemen-
tation, while increasing test time for the other 3 test circuits, 
as shown in Table 6. However, fault coverage was slightly 
lower compared to the single BIST circuit implementation 
due to additional inserted nodes being evaluated for fault 
coverage, such as the outputs from added BIST multiplex-
ers. Nevertheless, the parallel BIST implementation will 
significantly benefit from the addition of controllability and 
observability points, as each pipeline stage has access to all 
internal nodes during normal BIST operation, which can sig-
nificantly increase overall fault coverage to above 98.5%, as 
detailed in Sect. 5.4. The single BIST implementation may 
also benefit from these, but the pipeline must be stalled to 
ensure a DATA wavefront is present to the entire pipeline, 
which would significantly increase test time.
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The current automated flow increases pattern count in 
increasingly larger steps (i.e., doubled each iteration) to 
achieve the desired or highest attainable fault coverage, 
which could result in substantially more patterns than the 
minimum required. Hence, once the desired or maximum 
fault coverage is obtained, the associated pattern count, 
N, could potentially be further iterated upon to lower the 
minimum required pattern count to somewhere between N/2 
and N, while maintaining target/maximum attainable fault 
coverage. This would increase actual time, but potentially 
decrease test time and reduce area overhead. Additionally, 
other methods of pattern generation, instead of the LFSRs 
used in this work, could also be considered, such as BILBO 
registers [11]. Furthermore, the processes of fault exclusion 
and addition of controllability and observability points pre-
sented in Sects. 5.2 – 5.4, respectively, could be automated 
to make it feasible to apply these techniques to large cir-
cuits to significantly increase fault coverage, as shown for 
the small example c17 circuit where these techniques were 

manually applied to increase fault coverage to more than 
98.5%, as described in Sect. 5.4.
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