
Vol.:(0123456789)1 3

Journal of Electronic Testing (2022) 38:321–334
https://doi.org/10.1007/s10836-022-06007-w

Built‑In Self‑Test for Multi‑Threshold NULL Convention Logic
Asynchronous Circuits using Pipeline Stage Parallelism

Brett Sparkman1 · Scott C. Smith2 · Jia Di3

Received: 3 March 2022 / Accepted: 4 June 2022 / Published online: 17 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Although several synthesis methods for asynchronous circuits exist, only limited test methodologies have been developed.
This paper presents a built-in self-test (BIST) architecture for Multi-Threshold NULL Convention Logic (MTNCL) asyn-
chronous circuits that utilizes an automated, industry-standard tool-based flow. The software procedure for, and hardware
components to implement, BIST functionality are explained. To improve testing performance, the MTNCL pipeline is
separated into multiple parallel BIST circuits, with standard pipeline components doubling as BIST circuitry to reduce area
overhead. Results of this BIST architecture and software performance is explored for three different test cases looking at
area impact and effects of varying the number of input patterns and initial seeds. Further refinements to fault exclusions
based upon operating principles of MTNCL are developed to better depict actual fault coverage; and additional hardware
modifications are proposed to improve controllability and observability to further increase fault coverage.

Index Terms Asynchronous logic · Built-in self-test (BIST) · Multi-threshold NULL convention logic (MTNCL) · NULL
convention logic (NCL) · Sleep convention logic (SCL)

1 Introduction

While synchronous circuits have been the dominant archi-
tecture in digital systems for decades, asynchronous designs
exhibit several advantages that are becoming more enticing
as fabrication process technology continues to shrink. Sev-
eral of the primary advantages involve the lack of a global
clock, resulting in reduced power, noise, and electromag-
netic interference, and robustness to PVT (process, voltage,

temperature) variations. However, there are several barriers
to adoption of asynchronous design styles, including lack
of designer familiarity with asynchronous architectures,
synthesis methods to generate asynchronous circuits from
register-transfer level (RTL) hardware description language
(HDL) code, and testing methods to validate functionality
of the resulting asynchronous circuit.

Two promising asynchronous circuit paradigms are NULL
Convention Logic (NCL) [1] and Multi-Threshold NULL
Convention Logic (MTNCL), also known as Sleep Conven-
tion Logic (SCL) [2]. Both NCL and MTNCL are supported
by the UNCLE synthesis tool [3]; and Design-For-Test (DFT)
methods have been developed for both [4, 5]. Built-In Self-
Test (BIST) methods have been developed for NCL [6], and
an initial approach proposed for MTNCL that tests the entire
MTNCL circuit as a single BIST stage [7].

This paper expands upon the authors’ previous work in
[7] to develop a parallelized BIST architecture for MTNCL
circuits to decrease testing time, along with an automated
flow to insert the BIST functionality and obtain and vali-
date desired fault coverage. The developed automated flow
utilizes standard synchronous test software when possible,
to minimize custom software, while also providing the user
with a sense of familiarity. Additionally, further refinements

Responsible Editor: V. D. Agrawal

 * Scott C. Smith
 scott.smith@tamuk.edu

 Brett Sparkman
 bsparkma@uark.edu

 Jia Di
 jdi@uark.edu

1 Electrical Engineering, University of Arkansas, Fayetteville,
AR, USA

2 Electrical Engineering and Computer Science, Texas A&M
University-Kingsville, Kingsville, TX, USA

3 Computer Science and Computer Engineering, University
of Arkansas, Fayetteville, AR, USA

http://orcid.org/0000-0001-9863-6637
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06007-w&domain=pdf

322 Journal of Electronic Testing (2022) 38:321–334

1 3

are implemented to yield higher fault coverage by increas-
ing controllability and observability, and excluding some
reported faults based on the operating principles of MTNCL
circuits.

2 Background

NCL is a quasi-delay insensitive (QDI) asynchronous design
paradigm that utilizes multi-rail signals, such as dual-rail
logic, to represent data, and utilizes completion detection
and a 4-phase return-to-0 handshaking protocol for control
[1]. In dual-rail logic, 2 wires, D1 and D0, referred to as
rails, represent 1 bit of data; D1 asserted represents logic 1,
D0 asserted represents logic 0, both rails de-asserted repre-
sents the NULL state (i.e., absence of DATA), and both rails
simultaneously asserted is illegal. NCL circuits are designed
using threshold gates with hysteresis, and circuits must be
input-complete and observable for delay-insensitivity [8].
MTNCL is similar to NCL, but instead of flowing a NULL
wavefront through the circuit to reset all gates to 0 for the
NULL state, MTNCL threshold gates include a sleep input,
connected to a handshaking control signal, which simultane-
ously forces gates to 0 for the NULL state. Hence, MTNCL
gates do not require hysteresis, and MTNCL circuits do not
require input-completeness or observability, resulting in
faster, smaller, lower power circuits compared to NCL [2].

NCL and MTNCL systems consist of NCL/MTNCL reg-
isters, combinational logic (C/L), and completion detection,
which can be grouped into stages that include 1 of each,
as shown in Fig. 2 for an MTNCL pipeline. Each MTNCL
register has dual-rail inputs and outputs, and a Boolean sleep
input. MTNCL C/L implements a desired function by tak-
ing dual-rail logic inputs and producing dual-rail logic out-
puts, and is comprised of MTNCL gates, described above.
MTNCL utilizes an early completion handshaking proto-
col, which allows DATA to flow through a stage after all
inputs become DATA and the subsequent stage is requesting
DATA, and sleeps the stage to NULL after all stage inputs
are NULL and the subsequent stage is requesting NULL [2].

An example of an MTNCL slept early completion compo-
nent for 8 dual-rail inputs is shown in Fig. 1, which is com-
prised of MTNCL TH12 gates to detect a DATA or NULL
for each of the 8 register input signals, and a tree of MTNCL
THnn gates to combine the multiple TH12 gate outputs into
a single signal, which is then combined with the subsequent
stage’s early completion component’s sleep output via a
resettable inverted NCL TH22 gate, to generate the current
stage’s early completion component’s sleep output.

Integrated circuits (ICs) require testing to detect faults
that can occur during the fabrication process, such as a
wire being shorted to ground (i.e., stuck-at-0) or shorted to
 Vdd (i.e., stuck-at-1), to ensure correct operation. There are

2 main testing methodologies, 1) utilizing external instru-
mentation to input test patterns to the device under test
(DUT) and analyze the resulting outputs, or 2) incorporat-
ing additional logic within the DUT during its design, such
that the DUT can internally generate its own test patterns
and also validate the resulting outputs internally, without
requiring external test hardware, which is referred to as
BIST [9].

3 MTNCL BIST Design with Pipeline Stage
Parallelism

3.1 Components

In [7], a BIST implementation was designed that enables
simple functional BIST by inserting the BIST circuitry as
a wrapper around the entire MTNCL circuit. The approach
presented herein improves upon the wrapper-based BIST
design to increase observability and controllability of faults
inside the MTNCL pipeline, by partitioning it so that each
pipeline stage can be tested in parallel. This may yield
shortened test times as the cycle time of the BIST design is
reduced to single pipeline stages instead of the full design.

To implement MTNCL BIST, traditional synchronous
BIST methods were adjusted for compatibility with MTNCL
asynchronous systems. A common BIST method utilizes lin-
ear feedback shift registers (LFSRs), which are circular shift

11

11

11

11

A[0]
1

A[0]
1

A[0]
0

A[0]
0

A[1]
1

A[1]
1

A[1]
0

A[1]
0

A[2]
1

A[2]
1

A[2]
0

A[2]
0

A[3]
1

A[3]
1

A[3]
0

A[3]
0

44

22 ZZ

kiki

22

slpslp

tree

output

rstrst

11

11

11

11

A[4]1A[4]1

A[4]0A[4]0

A[5]1A[5]1

A[5]0A[5]0

A[6]1A[6]1

A[6]0A[6]0

A[7]1A[7]1

A[7]0A[7]0

44

input

Fig. 1 MTNCL Slept Early Completion Component

323Journal of Electronic Testing (2022) 38:321–334

1 3

registers with XOR elements in various feedback paths, to
generate input patterns. An N-bit LFSR is reset to a non-
zero seed, and then produces 2 N-1 pseudorandom outputs.
As LFSRs are a simple and effective way to present a large
number of input patterns, while requiring minimal additional
logic, LFSRs were utilized to generate the BIST inputs at
each of the pipeline stages. Since DFFs typically have both
a Q and Q’ output, with slightly different timing delays for
these signals, dual-rail gating (DRG) components, shown in
Fig. 3, were implemented to allow for proper flow of DATA
and NULL wavefronts, by presenting a NULL wavefront
when its D/N’ signal is 0 and a DATA wavefront when its
D/N’ signal is 1. The output response of each pipeline stage
of the DUT was measured with a Multiple Input Shift Reg-
ister (MISR) by connecting both the D0 and D1 rails of the
circuit to inputs of the MISR to enable checking both rails
simultaneously. Multiplexers were used to control the flow
of data between standard operation and BIST mode. Simple
Boolean logical equivalence checkers, shown in Fig. 4, were
utilized to control the number of input patterns presented
to the BIST stages by gating off the LFSR clock once the
final input pattern was presented, and then validating that
the final MISR output was the expected value, meaning that
the circuit is functioning correctly.

3.2 Software Procedure

An automated method was implemented to import an MTNCL
DUT Verilog netlist, separate the design into multiple BIST

stages, automatically insert the required MTNCL BIST logic,
simulate digital functionality, evaluate fault coverage, and iter-
ate, by first increasing the number of test patterns and then
varying initial values for the LFSRs, until either the desired
fault coverage is achieved or the maximum possible fault
coverage is obtained with limits imposed upon the number
of test patterns and seed adjustments. A flowchart outlining
this high-level procedure is shown in Fig. 5. This automation
tool was designed using Python for netlist parsing, separating
the design into multiple BIST stages, implementing all BIST
component netlists and testbenches, creating simulation mac-
ros, running both digital and fault simulations, evaluating sim-
ulation results, and iterating to improve fault coverage. Mentor
Graphics ModelSim and Synopsys TetraMAX were utilized
for digital simulation and fault simulation, respectively, as
these are industry-standard software packages. Compatibility
with other simulators may be possible with modifications.

A pipeline is separated into multiple BIST stages, as shown
in Fig. 6. The first BIST stage consists of the input MTNCL
register, C/L, and the first and subsequent registers’ slept early
completion components. Intermediate BIST stages include
the stage’s input MTNCL register, C/L, and the subsequent
register’s slept early completion component. The final BIST
stage includes the last two MTNCL registers, C/L, and final
slept early completion component. This was adjusted from the
standard MTNCL pipeline shown in Fig. 1.

For each simulation action, several simulations were
performed. To create the various equivalence hardware, the

AA

koko

slpinslpin

ZZ

kiki

slpoutslpout

Stage N-2 Stage N-1 Stage N

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Comb. Logic

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

MTNCL
Register
MTNCL
Register
MTNCL
Register

Fig. 2 MTNCL Pipeline Architecture [2]

AA

A’A’

D/N’D/N’

ZZ

Z’Z’

Fig. 3 Dual-Rail Gating (DRG) Component

A[0]A[0]

A’[1]A’[1]

A[2]A[2]

A’[3]A’[3]

A’[4]A’[4]

ZZ

Fig. 4 Example Equivalence Component for an Input Pattern of
00,101

324 Journal of Electronic Testing (2022) 38:321–334

1 3

LFSRs’ and MISRs’ outputs of a golden simulation must be
run for the desired number of patterns for each BIST stage.
As digital simulation is an efficient manner of calculating
these values, a base BIST block and testbench is initially
created for this purpose, similar to Fig. 7 but excluding the
two dashed blocks containing equivalence hardware and
C/L. If the BIST stage currently being simulated is the final
BIST stage, it will utilize the dashed completion tree com-
ponent instead of the inverter; this completion tree includes
the inputs and tree portions of the slept early completion
component shown in Fig. 1. For all other BIST stages, the
dashed single inverter is added instead of the completion tree
component so that the stage’s slept early completion com-
ponent can be re-used; the inversion is required because the

slept early completion component has an inverted TH22 gate
at its output, as shown in Fig. 2.

A mechanism to detect when a valid DATA wavefront
has arrived at each BIST stage output is required to clock
the various MISRs for each output pattern. Thus, the inter-
nal MTNCL pipeline’s slept early completion components
are utilized to detect when the BIST stage output has tran-
sitioned to valid DATA, and then clock the MISR. An
added completion tree component is utilized for the final
BIST stage to ensure that DATA is stable when the MISR is
clocked. Although the MISR outputs are not connected to
any logic, they are monitored during simulation.

Since TetraMAX is a cyclic fault simulator, it is incapable
of properly handling the asynchronous DATA and NULL
wavefronts unless both the changing inputs and outputs
occur in the same cycle; additionally, the DATA wavefront
must be provided last so that the simulator uses the proper
output value. To enable this, the base BIST block restricts
both the input and output to transition only once during a
cycle, through the use of the added TH22 threshold gate
(i.e., in dashed box in Fig. 7) that conjoins the BIST block’s
completion tree component’s inverted output with the ko out-
put from the BIST stage, and feeds this back into the BIST
stage’s ki input. This ensures that the BIST block will not
request a NULL wavefront until after a valid DATA wave-
front has appeared at the output, propagating from the static
DATA input. To further constrain the system with a static
DATA input per cycle, the DRG D/N’ control signal is taken
from this ki as well, and then inverted to clock the LFSR. If
multiple DATA transitions occur in a single cycle, as would
be the case if inputs were provided as soon as requested, the
TetraMAX functional simulator may produce invalid results
compared to the golden simulation, resulting in an invalid
fault grading result. The BIST stage’s ki is utilized as a rising
strobe during TetraMAX fault simulation each cycle.

Once the LFSR and MISR pattern are known from a digi-
tal simulation of the BIST block, the equivalence modules
are created when writing the testbench and BIST module for

Start

Python
Parse Netlist

Split into Pipeline Stages

Simulation
ModelSim Digital Sim

TetraMAX Fault Sim

Stop Condition?

Python
Adjust # Patterns

or adjust LFSR Seed

End

Inputs
Netlist

Target Fault

Coverage

Max Patterns/

Seeds

Python
Implement BIST Hardware

Create Simulation Macros

Outputs
BIST Design

BIST TB

Sim Macros

Fault Coverage

N

Y

For Each Pipeline Stage

Fig. 5 Flowchart of High-Level MTNCL BIST Procedure with Paral-
lelism

AA

koko

slpinslpin
BIST Stage 1 BIST Stage 2...N-1

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Comb. Logic

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

ZZ

kiki

slpoutslpout

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Comb. Logic

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

BIST Stage N

MTNCL
Register
MTNCL
Register
MTNCL
Register

Fig. 6 MTNCL BIST Stage Pipeline Separation

325Journal of Electronic Testing (2022) 38:321–334

1 3

fault simulation, and inserted into the architecture as shown
in Fig. 7. The LFSR equivalence circuit is produced to match
the input pattern following the desired final input. The LFSR
and MISR are internally clocked using the BIST stage’s
handshaking signals. Once the final pattern is reached, the
LFSR clock is gated off, and the DRG D/N’ control signal
remains low, providing a static NULL wavefront to the BIST
stage input.

Since the fault simulation BIST architecture will be uti-
lized by TetraMAX, it includes the constrained acknowledge
signals, merged with the dashed TH22 gate, and utilizes the
BIST stage’s ki for the gating mechanism of the LFSR and
DRG control signals. This ensures that only one DATA input
is presented to the BIST stage during fault simulation every
cycle, as required for the fault simulation.

Once the digital simulation is completed for the fault
simulation BIST architecture, then a fault simulation is per-
formed for stuck-at faults. If the fault simulation completes
correctly, then all fault summary information is parsed and
utilized to calculate fault coverage. This includes detected
faults (DT), possibly detected faults (PT), undetectable
faults (UD), ATPG untestable faults (AU), not detected
faults (ND), and total faults. DT faults include faults
that TetraMAX was able to completely evaluate as being
detected with the present set of inputs. PT faults are evalu-
ated when the good digital simulation values are known,
but the faulty machine simulation resulted in an unknown
value. UD faults are ones that cannot be tested, and may be
due to unused outputs or pins that are statically tied to 0 or
1, may have controllability or observability limitations, or
may have redundant logic that would mask an actual fault.

AU faults are faults that cannot be controlled or observed
due to constraints utilized during fault simulation, or faults
regarding non-scan sequential devices. As these constraints
and devices that would incur this type of fault are not uti-
lized with the proposed flow or MTNCL, TetraMAX did
not report any AU faults for any of the circuits reported in
this paper. ND faults are ones that were not detected during
fault simulation and may occur due to lack of controllability
or observability. Total faults represent the total number of
simulated faults.

Fault coverage is then calculated by dividing the sum of
all DT and half-weighted sum of all PT from each BIST
stage by the sum of the total faults of each BIST stage, as
shown in Eq. (1). This value is not output from TetraMAX,
although it does output the individual fault coverage of each
BIST stage separately. This calculation is the same method
that TetraMAX uses for a single design. As PT faults have
a 50% chance of being detected in a binary system, they are
assigned a weight of 0.5, which is the default TetraMAX
value. None of the other fault types are utilized in this cal-
culation, although they are recorded in the simulation log.

Once the fault simulation is complete, the final MTNCL
BIST architecture is generated by removing the TH22
gate used to constrain the DATA/NULL cycles during the
fault simulation, such that BIST stage input and output
MTNCL registers once again function independently, as
originally designed. A schematic of the final MTNCL BIST

(1)Fault Coverage =

∑

DT + 0.5 ×
∑

PT
∑

Total Faults

LFSRLFSRLFSR DRGDRGDRG

AA

testtest

BIST StageBIST StageBIST Stage

koko

slpinslpin

MultiplexerMultiplexerMultiplexer

kiki

MISRMISRMISR

ZZ

slpoutslpout

MultiplexerMultiplexerMultiplexer

Completion
Tree

Completion
Tree

Completion
Tree

MultiplexerMultiplexerMultiplexer

22

resetreset

Equivalence
Equivalence
Equivalence

statusstatus

EquivalenceEquivalenceEquivalence

Fig. 7 MTNCL BIST Block Architecture with Parallelism

326 Journal of Electronic Testing (2022) 38:321–334

1 3

architecture is shown in Fig. 7, excluding the dashed TH22
gate and using its inverted input as its following MUX’s B
input.

The interface for the MTNCL BIST final circuit is the
same as the original MTNCL circuit, shown in Fig. 1, with
the addition of a test input and status output. Test controls
when the circuit functions in BIST mode vs. standard oper-
ating mode; and status indicates if the DUT generated the
correct MISR output after a self-test, to show whether or
not it is functioning correctly. Since this BIST implemen-
tation utilizes parallelism by separating pipeline stages of
the MTNCL DUT, each pipeline stage is included as its
own BIST block in the top-level design, then the status of
each is merged using an AND tree to output the final self-
test status of the overall DUT, as shown in Fig. 8. As each
BIST block controls itself using its own BIST circuitry, the
controllability and observability of the system is increased
because each of the BIST stages’ data inputs and outputs are
independently provided by an LFSR and measured using an
MISR, respectively.

4 MTNCL BIST with Parallelism Results

4.1 Design Preparation

A number of circuits were used to evaluate the developed
automation flow, including many ISCAS ‘85 C/L bench-
marks, which are available as structural Verilog netlists
[10]. UNCLE [3] was utilized to synthesize MTNCL circuits
from synchronous RTL. To integrate the linear synchronous
pipeline functionality required by UNCLE into these purely
C/L circuits, an input register was added before the C/L,
two registers connected in series were added following the
output of the C/L, and a clk input was added to control all
three registers. Note that UNCLE cannot currently syn-
thesize an MTNCL circuit from a synchronous circuit that
includes feedback, which is why the ISCAS’89 sequential
benchmarks were not used. Following UNCLE synthesis,
the resulting pipelines were balanced using Synopsys Design
Vision. Additionally, an 8-bit adder and a 32-bit multiplier

were also evaluated. These two designs were implemented
as 2-stage pipelines, using behavioral RTL, and synthesized
into MTNCL circuits using UNCLE.

Three test cases were performed for each design. The
initial test case had a target fault coverage of 75%, no maxi-
mum pattern count (the default), and no additional seeds
besides the initial default binary 1 seed. The number of input
patterns was initialized to 5. This would enable the circuit
to utilize the maximum number of patterns for each BIST
stage, 2n-2 patterns, where n is the number of input bits to
the BIST stage, provided the target fault coverage was not
reached first. This run was primarily performed to ensure
that the fault simulation would complete in a short amount
of time.

For the second test case, a target fault coverage of 100%
was utilized. The number of patterns was initialized to 5,
while the maximum number of input patterns was set to 1E6
patterns. For any BIST stage with fewer than 20 input bits,
this would utilize all possible input patterns, with some pat-
terns repeated. For a BIST stage with 20 input bits or more,
only 1E6 patterns would be tested. Similar to the previous
test case, the number of seeds was limited to 1, so that only
the initial default binary 1 seed was used. This test case was
utilized to determine the maximal fault coverage obtainable
by each design within 1E6 patterns and using only the initial
seed. This was used to evaluate performance as the num-
ber of input patterns increased. The actual simulation time
increases significantly as the design size and pattern count
increases; a maximum pattern count of 1E6 was set to limit
the actual time required for the larger designs.

The third test case had a target fault coverage of 100%, a
pattern count set to exactly 1000 patterns (i.e., 1000 start-
ing pattern count and 1000 maximum pattern count), and a
maximum seed count set to 1000 seeds. The initial seed was
the default seed pattern of binary 1, with additional seeds of
the same-length as the LFSR hardware randomly generated.
The 1000 static pattern count was selected after reviewing
results from the other test cases, as most designs converged
to a moderately high fault coverage within 1000 patterns.
Although this does not run an exhaustive simulation for all
possible LFSR seeds, it does provide insight into how fault

Fig. 8 Example 2-Stage Top-
Level MTNCL BIST Design
with Parallelism

BIST BlockBIST BlockBIST Block BIST BlockBIST BlockBIST Block

AA

testtest

koko

slpinslpin

kiki

ZZ

slpoutslpout

resetreset
statusstatus

327Journal of Electronic Testing (2022) 38:321–334

1 3

coverage, test time, and actual time vary across different
seeds; however, an untested seed could potentially produce
a better fault coverage.

4.2 First Test Case: Area Impact

Since all the first test case simulations successfully com-
pleted quickly, those fault results are not discussed. As the
first test case had no maximum pattern count, only LFSR
lengths up to the BIST stage input length were generated,
which yields the minimum sized BIST hardware required.
An increased pattern count could produce a slightly larger
design, as the LFSR and equivalence circuits would increase
in size. A comparison of circuit area for the original and first
test case BIST designs, as measured by Synopsys Design
Vision using UNCLE’s library of gate areas, is listed in
Table 1.

For small designs, a large area impact was observed,
greater than 200%. This occurs because the ratio of BIST
stage I/O to logic is rather high, such that the added BIST
logic is more significant compared to the original area. For
medium-sized designs, an area impact of approximately
65–132% was generally observed. The c499 design had
a significant area overhead due to a higher ratio of BIST
stage I/O to original circuit logic. For large designs, area
overheads of 37.4% and 27.1% were realized. Overall, area
overhead is dependent on the ratio of BIST stage I/O to
original circuit logic. This parallel implementation requires
additional area overhead compared to the previous work [7],
since it requires BIST logic for each pipeline stage, instead
of only at the circuit’s primary I/O.

4.3 Second Test Case: Maximum Fault Coverage

The results from the second test case with a target of 100%
fault coverage and a maximum pattern count limit of 1E6
patterns are shown in Table 2. None of the designs were able
to obtain the target fault coverage of 100% within 1E6 pat-
terns; so the maximum fault coverage obtained for any of

the 1E6 patterns is shown for each design. In many cases,
the maximum fault coverage was obtained for numerous
consecutive iterations as more patterns were presented, so
the minimum pattern count producing the maximum fault
coverage is shown along with the test time and actual time
for that specific run.

All designs obtained a fault coverage of at least 76.75%,
which was unexpectedly lower than the previous work [7].
This decreased fault coverage occurred due to additional
nodes being evaluated, such as the outputs from the added
BIST multiplexers. Although this may seem low, only
output nodes of each BIST stage are being observed; and
internal circuitry, such as completion components, do not
directly affect data outputs and are therefore difficult for
ATPG tools to assess. For all but one design, the maximum
fault coverage took less than 25 min to simulate for that
specific number of input patterns, which is listed as Actual
Time in Table 2. Note that this is not the summation of all
simulations, which would be more. The largest design in
terms of instance count (but not circuit area), mult32 × 32,
took approximately 342.6 h to run the digital and fault
simulations for 655,360 patterns. The only remaining pat-
tern count for this design, 1E6 patterns, took 564 h to
run, while achieving the exact same fault coverage. Thus,
large designs could become a burden in terms of both
CPU resources and run time for high pattern counts. Test
Time, which is the time required to perform a complete
BIST of the DUT, as approximated by the digital simulator
using UNCLE’s MTNCL gate models, may also be sig-
nificant to the user. The mult32 × 32 design would require
approximately 55 ms to complete a BIST operation. This is
reduced from 88 ms in the previous work [7], so the paral-
lel MTNCL BIST architecture presented herein increases
testing throughput. Depending upon the cost associated
with testing, the tradeoff of a lower fault coverage may be
enticing to reduce testing time.

Table 1 MTNCL BIST Area Comparison

Design Name Original Area Area with BIST % Overhead

c17 153 543 254.9%
adder8 621 1901 206.1%
c499 2200 6873 212.4%
c432 2403 5584 132.4%
c1908 4471 7985 78.6%
c880 4502 9079 101.7%
c1355 5632 9278 64.7%
mult32 × 32 21,523 29,575 37.4%
c6288 23,731 30,167 27.1%

Table 2 MTNCL BIST Maximum Fault Coverage (1E6 Patterns, 1
Seed)

Design Name Fault
Coverage
(%)

Patterns Test Time
(ns)

Actual Time
(s)

c17 76.752 160 4649 8
adder8 79.539 163,840 5,542,128 224
c499 84.664 2560 107,529 30
c432 83.237 2560 128,009 21
c1908 81.612 81,920 4,014,089 1090
c880 82.855 5120 235,529 99
c1355 83.848 5120 245,769 99
mult32 × 32 95.330 655,360 54,583,533 1,233,222
c6288 86.509 5120 471,049 1544

328 Journal of Electronic Testing (2022) 38:321–334

1 3

Since none of the designs achieved 100% fault coverage,
and the maximum fault coverage generally took a moderate
actual time to obtain, the lowest fault coverage within 2.5% of
the maximum fault coverage was determined, and the circuits
were re-analyzed at this fault coverage. These results are shown
in Table 3, and demonstrate that although the maximum fault
coverage may take a long time to obtain, it may be possible
to obtain an acceptable fault coverage within a much shorter
timespan by slightly relaxing required fault coverage. In some
cases, the fault coverage penalty was much less than 2.5%.

As the fault coverage began to increase for designs with a
very large pattern count, substantial savings can be observed for
both test time and actual time. For the mult32 × 32 design, the
actual time difference to obtain 94.67% fault coverage instead
of the 95.33% maximum fault coverage was approximately
342 h; the slightly lower fault coverage only took 17.5 min at
that specific pattern count. Likewise, the BIST test time was
also significantly faster, approximately 26 µs vs. 55 ms.

4.4 Third Test Case: LFSR Seed Adjustment

The results from the third test case with a target of 100% fault
coverage and a maximum seed count of 1000 seeds are shown
in Table 4. For these simulations, all designs used a starting
and maximum pattern count of 1000, so exactly 1000 input
patterns were presented for all of the various seeds. This may
have resulted in slightly larger BIST structures for small-input-
count circuits. Like the second test case, none of the designs
were able to obtain the target 100% fault coverage. The maxi-
mum fault coverage obtained is listed for each design.

For most of the designs, the test and actual times were
very similar across all seeds. All the designs were able to
achieve a higher fault coverage using different seeds than
the initial seed used in the second test case. For all other
designs except c17, the 1000 patterns also had a significantly
reduced pattern count compared to the maximum fault cov-
erage, and thus smaller test time compared to the second

test case, while achieving this higher fault coverage. These
effects are design dependent, as is the rate of increasing fault
coverage as pattern counts increase across various seeds.
The actual times are almost doubled due to additional simu-
lations and file I/O, but test times are significantly reduced
compared to the previous work [7]. Note that actual times
could be improved via parallel simulation, since all BIST
stages function as completely independent circuits.

4.5 MTNCL BIST Automation with Parallelism
Performance

To further investigate the performance of the MTNCL BIST
automation, all designs were extensively analyzed in terms
of their actual simulation time across the second and third
test cases. The information for the c1355 design is detailed,
as it was the largest of the medium-sized designs.

Fault coverage versus pattern count is shown in Fig. 9 on the
primary axis. The implementation achieved an initial fault cov-
erage around 36% using 5 patterns. As pattern count increases,
fault coverage also increases, and then flattens out once the
maximum is obtained. Actual time vs. pattern count is shown
in Fig. 9 on the secondary axis. This time was calculated from
the log files by comparing the times between the fault coverage
output of each run. For lower pattern counts with this design,
the digital simulations took a longer time to complete than the
fault simulations. However, the fault simulations began to take
more time starting just before 1000 patterns, and increased
at a faster rate. The percentages of total run time for the fault
simulations, digital simulations, and processing accounted for
91.37%, 8.32%, and 0.31%, respectively.

During analysis of the third test case, histograms showing
the distributions are utilized to observe differences using a
static 1000 pattern count, as the starting LFSR seed is adjusted
for 1000 different seeds. The fault coverage distributions for
the c1355 design are shown in Fig. 10, which has a normal
distribution, with an average fault coverage of 83.6%. The

Table 3 MTNCL BIST Relaxed Fault Coverage (1E6 Patterns, 1
Seed)

Design Name Fault
Coverage
(%)

Patterns Test Time
(ns)

Actual Time
(s)

c17 76.519 20 589 9
adder8 78.636 40 1332 8
c499 83.416 640 26,889 15
c432 83.142 320 16,009 13
c1908 80.879 1280 62,729 28
c880 80.584 320 14,729 18
c1355 81.807 640 30,729 22
mult32 × 32 94.673 320 26,019 1051
c6288 84.123 640 58,889 223

Table 4 LFSR Seed Effect on MTNCL BIST Fault Coverage (1000
Patterns, 1000 Seeds)

Design
Name

Fault
Coverage
(%)

Seed Count Test Time
(ns)

Actual Time
(s)

c17 80.023 277 29,009 15
adder8 81.670 339 33,881 16
c499 84.814 49 42,009 24
c432 83.637 768 50,009 20
c1908 82.223 520 49,009 28
c880 84.478 630 46,009 32
c1355 84.812 807 48,009 31
mult32 × 32 95.380 453 83,285 2065
c6288 88.784 688 92,009 268

329Journal of Electronic Testing (2022) 38:321–334

1 3

maximum fault coverage obtained was 84.8%, 1% higher than
in the second test case, and requiring only 20% of the pattern
count. The average actual time was 9.85 s; and the percentages
of total run time for the fault simulation, digital simulation,
and processing accounted for 49.18%, 30.64%, and 20.18%,
respectively.

5 Additional Considerations

5.1 Feedback Compatibility

Although UNCLE is incapable of synthesizing designs that
include feedback, the pipeline stage parallelism method

presented herein can be utilized for designs with data feed-
back, such as Finite State Machines (FSMs) and datapath
feedback; however, some manual adjustments are required.
One approach is to avoid breaking feedback loops by assign-
ing an entire feedback circuit to a single pipeline stage, while
other pipeline stages can still be parallelized. However, as
discussed in [7], an MTNCL BIST circuit with data feed-
back is operational, but due to TetraMAX limitations, fault
coverage cannot be calculated. Hence, a better approach is
to partition each feedback loop into multiple BIST stages,
such that no BIST stage contains data feedback. This enables
TetraMAX to calculate fault coverage for each BIST stage,
which are then combined to produce the DUT overall fault
coverage for the DUT, as explained in Sect. 3.2.

Fig. 9 Fault Coverage and
Actual Time vs. Pattern Count
for c1355 Design

1

10

100

1000

10000

100000

35

40

45

50

55

60

65

70

75

80

85

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

A
ct
u
al
T
im

e
(s
)

)
%(

e
gare

v
o

C
tl

ua
F

Pattern Count

Fault Coverage

Actual Time

Total Run Time

Fig. 10 Fault Coverage Distri-
bution for c1355 Design with
1000 Seeds

330 Journal of Electronic Testing (2022) 38:321–334

1 3

Take for example the synchronous circuit shown in Fig. 11,
which includes internal datapath feedback, and its MTNCL
implementation, shown in Fig. 12, which includes the mini-
mum required 3 registers in the feedback path [8]. Note that
C/L #2 in Fig. 11 is partitioned into C/L #2A and #2B in
Fig. 12 to increase throughput. Also note that any registers
that provide feedback must be implemented as Reset to DATA
(RTD) NCL registers to provide a valid DATA wavefront for
the feedback path upon initialization; all non-feedback regis-
ters remain as MTNCL registers. The dual-rail feedback path
from the feedback loop’s output (e.g., primary output, Z, in
Fig. 12) into the feedback loop’s MTNCL register feedback
input (e.g., input D of top most MTNCL register in Fig. 12)
must also be incorporated into the previous stage’s comple-
tion component to detect when a valid DATA wavefront has
arrived at the input to the entire feedback loop stage. Simi-
larly, as shown in Fig. 12, a TH22 gate must be added to
merge the ko generated from the stage immediately prior to
the feedback loop with the ko generated from the next stage
after the feedback loop, to ensure that the feedback loop’s
NCL register holds a valid DATA wavefront until the DATA
wavefront has been processed by both the feedback loop and
the subsequent stage.

As shown in Fig. 12, this design could be partitioned into
2 BIST stages, with the entire feedback loop implemented
as a single BIST stage. It is important to note that additional
multiplexers and BIST input generation logic are needed to
fully decouple the feedback path when in test mode. One

dual-rail bus multiplexer must be inserted at the feedback
datapath completion input port, labelled as A in Fig. 12, along
with additional BIST input logic, in order to provide com-
plete DATA/NULL wavefronts to the completion logic when
the stages are separated in test mode. A single multiplexer
is required at the merging TH22 gate’s output, labelled as
B in Fig. 12, to break the feedback handshaking during test
mode so the BIST stages operate independently. However,
as mentioned previously, this would be a functional system,
but would not allow for simulation or calculation of fault
coverage due to TetraMAX limitations with feedback loops.

As shown in Fig. 13, the feedback path could instead be
broken and partitioned into multiple BIST stages, thereby
allowing BIST circuitry to provide inputs to all BIST stages
during each individual stage’s TetraMAX fault simulation,
such that fault coverage for the DUT can be calculated. Same
as Fig. 12, the addition of multiplexers at A and B, and addi-
tional BIST input logic at A, is necessary to enable both
testing capability and normal design functionality.

It is worth noting that TetraMAX simulation of settable
NCL gates does not exhibit proper hysteresis behavior, as
the output of a RTD gate with one data input asserted, is
de-asserted immediately after its reset input is de-asserted,
whereas the gate should remain asserted due to hysteresis.
To remedy this, the external RTD NCL registers in feedback
paths must be extracted up one level of hierarchy from the
BIST stage to the BIST block level, shown in Fig. 7. Correct
hysteresis functionality will then be exhibited via the Value

Fig. 11 Synchronous Pipeline
with Datapath Feedback

AA ZZ

RegisterRegisterRegister C/L #1C/L #1C/L #1 RegisterRegisterRegister C/L #2C/L #2C/L #2 RegisterRegisterRegister

clkclk

AA

koko

slpinslpin

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
C/L #1

MTNCL
C/L #1

MTNCL
C/L #1

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
C/L #2A
MTNCL
C/L #2A
MTNCL
C/L #2A

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

ZZ

kiki

slpoutslpout

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
C/L #2B
MTNCL
C/L #2B
MTNCL
C/L #2B

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

NCL
Register

RTD

NCL
Register

RTD

NCL
Register

RTD

MTNCL
Register
MTNCL
Register
MTNCL
Register

22

BIST Stage 1 BIST Stage 2

A

B

Fig. 12 MTNCL Pipeline with Datapath Feedback as a Single BIST Stage

331Journal of Electronic Testing (2022) 38:321–334

1 3

Change Dump (VCD) files through digital simulation, so
TetraMAX simulation will be possible. However, faults on
this now external RTD NCL register are no longer included.

5.2 Improving Fault Coverage via Fault Exclusion

As MTNCL circuits operate in an asynchronous fashion
with local handshaking, specific combinations of stuck-at
fault type and asynchronous gate function can be applied to
the TetraMAX verbose fault list to better depict actual fault
coverage. For example, if one of the BIST stage sleep nets
is stuck-at-1, then that entire stage will always be slept, such
that it will never transition to DATA. Likewise, if one of the
BIST stage sleep nets is stuck-at-0, that would cause the
previous stage’s sleep net to be stuck-at-1 (i.e., the previous
stage’s slept early completion component final TH22 NCL
gate, shown in Fig. 2, would be stuck-at-0 due to its ki input,
which is the stuck-at-0 sleep net; and this TH22 NCL gate
output is inverted to generate the previous stage sleep net,
which would therefore be stuck-at-1). Both of these exam-
ples would cause the circuit to deadlock. Furthermore, any
slept early completion component gate output (except for
the final inverter, which is already considered in the previ-
ous case) that is stuck-at-0 will cause the sleep net gener-
ated by that component to be stuck-at-1, which would cause
the circuit to deadlock, as mentioned above. Since these
scenarios cause the circuit to immediately deadlock, any
undetected faults on any of these nets flagged by TetraMAX
can be ignored, since they would be immediately detected,
in either test mode or normal operation, due to circuit dead-
lock. A summary of exclusion rules is provided below; and
applying these exclusion rules to the single BIST stage c17
circuit [7] increases fault coverage from 86.93% to 90.74%.

1. Stuck-at faults on sleep nets can be excluded.
2. Stuck-at-0 faults on slept early completion component

gate outputs can be excluded.

Through review of verbose fault lists produced by TetraMAX
for several designs, it was determined that many undetect-
able faults were located in the slept early completion logic.
When slept early completion components are designed using
MTNCL threshold gates (with sleep input), stuck-at-1 faults can
be masked by the sleep mechanism, and therefore cannot be
excluded. However, if NCL gates (with hysteresis) are used to
implement the early completion logic instead of MTNCL gates
(i.e., replace the MTNCL gates in Fig. 2 with NCL gates), then
any stuck-at-1 fault in this logic will result in a stuck-at-0 fault
on its corresponding subsequent sleep net, and can therefore
be excluded. A summary of these rules is provided below; and
applying these additional exclusion rules to the single BIST stage
c17 circuit [7] further increases fault coverage from 90.74% to
98.10%. The tradeoff for using this method to increase fault cov-
erage is a slight decrease in performance and slight increase in
area, energy/operation, and leakage power, as NCL gates are
larger, with increased leakage power and energy per transi-
tion, compared to their MTNCL equivalent, and this requires a
NULL input to flow through the non-slept early completion logic
instead of all gates being simultaneously slept to 0 [2].

3. Stuck-at-1 faults on early completion component gate out-
puts can be excluded, when designed using NCL gates.

4. Stuck-at-1 faults on any input to an early completion
component can be excluded, when designed using NCL
gates.

5.3 Improving Fault Coverage via Increased
Controllability

Since reported fault coverages are slightly lower than current
industry-standard requirements, the ability to add control-
lability and observability points in asynchronous dual-rail
logic was investigated. Controllability points can be added
to dual-rail nets to inject a DATA value in order to improve
fault coverage, using the hardware shown in Fig. 14. When

AA

koko

slpinslpin

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
C/L #1

MTNCL
C/L #1

MTNCL
C/L #1

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
C/L #2A
MTNCL
C/L #2A
MTNCL
C/L #2A

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

ZZ

kiki

slpoutslpout

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
C/L #2B
MTNCL
C/L #2B
MTNCL
C/L #2B

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

NCL
Register

RTD

NCL
Register

RTD

NCL
Register

RTD

BIST Stage 1

BIST Stage 3BIST Stage 2

B

A

22

Fig. 13 MTNCL Pipeline with BIST Datapath Feedback Partitioning

332 Journal of Electronic Testing (2022) 38:321–334

1 3

Ctrl Sel is asserted, the Ctrl D0 and Ctrl D1 inputs replace D0
and D1 generated by the preceding C/L, respectively, allow-
ing for injection of a DATA0 (D0 asserted, D1 de-asserted),
a DATA1 (D0 de-asserted, D1 asserted), or even an INVA-
LID (both D0 and D1 asserted) value, as desired. Note that
an INVALID value should only be injected if not part of a
single stage BIST feedback loop; otherwise, this could result
in perpetual INVALID values in the feedback loop until the
circuit is reset. Also, note that a NULL value should not be
injected, as this may cause the pipeline to deadlock. Further-
more, each dual-rail signal transitions to NULL after every
DATA value, so there would be no need to inject a NULL
value. Note that C/L could also be utilized instead of two
multiplexers; however, multiplexers offer a higher level of
control, with increased area as the tradeoff.

5.4 Improving Fault Coverage via Increased
Observability

It may also be desirable to increase observability separately,
or in addition to increased controllability. To view any sig-
nal, the pipeline may be stalled so that a DATA wavefront
exists on all dual-rail nets. This is the same methodology
used to enable the asynchronous fault simulation; the addi-
tional dashed TH22 gate in Fig. 7 that ties the BIST stage
ko, and slpout or added completion tree component, together
forces pipeline stalls. Any net, such as a single rail of a dual-
rail signal or an acknowledge net, as shown in Fig. 15, can
be probed for improved observability when the pipeline is
stalled, which requires one additional MISR bit for each net
probed. Note that inserted observability points bypass the
final BIST stage’s added completion tree component, shown
in a dashed box in Fig. 7. Adding controllability hardware
and observability points into the single BIST stage c17 cir-
cuit [7] increases fault coverage from 86.93% to 91.17%,
and requires 6 additional multiplexers and 5 additional
MISR bits. Applying this after applying the previous fault
exclusions further increased fault coverage from 98.10% to
98.54%.

6 Conclusion and Future Work

This paper presents an automated method for MTNCL BIST
insertion to achieve a desired fault coverage, which utilizes
industry-standard tools within the design flow for digital and
fault simulations. The proposed method separates the MTNCL
DUT into multiple parallel BIST circuits, which yields a reduc-
tion in test time at the expense of increased area overhead, com-
pared to the previous work in [7] that implemented the entire
DUT as a single BIST stage. The method presented herein also
allows for fault calculation of circuits that include data feed-
back, whereas the previous work in [7] produced functional
BIST circuits for designs with data feedback, but could not
calculate their fault coverage. Furthermore, fault exclusion
rules were developed, based upon the operating principles of
MTNCL circuits, to better depict actual fault coverage. And,
additional controllability and observability hardware was pro-
posed to further improve fault coverage for MTNCL circuits.

Compared to the single BIST circuit implementation in
[7], a substantial area increase (average of 44% for the 9 test
circuits) is required for the pipelined BIST due to additional
LFSR and MISR circuitry for each pipeline stage, as shown
in Table 5. The pipelined BIST implementation reduced test
time for maximum fault coverage by an average of 51% for 6
of the 9 test circuits, compared to the single BIST implemen-
tation, while increasing test time for the other 3 test circuits,
as shown in Table 6. However, fault coverage was slightly
lower compared to the single BIST circuit implementation
due to additional inserted nodes being evaluated for fault
coverage, such as the outputs from added BIST multiplex-
ers. Nevertheless, the parallel BIST implementation will
significantly benefit from the addition of controllability and
observability points, as each pipeline stage has access to all
internal nodes during normal BIST operation, which can sig-
nificantly increase overall fault coverage to above 98.5%, as
detailed in Sect. 5.4. The single BIST implementation may
also benefit from these, but the pipeline must be stalled to
ensure a DATA wavefront is present to the entire pipeline,
which would significantly increase test time.

MultiplexerMultiplexerMultiplexer

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MultiplexerMultiplexerMultiplexer

 Ctrl D0 Ctrl D0

 Ctrl D
1

 Ctrl D
1

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Comb. Logic

 Ctrl Sel Ctrl Sel

D
0

R
ai

l

D
1

R
ai

l

D
0

R
ai

l

D
1

R
ai

l

Fig. 14 MTNCL Controllability Hardware

AA

koko

slpinslpin

ZZ

kiki

slpoutslpout
Stage N-1 Stage N

MTNCL
Register
MTNCL
Register
MTNCL
Register

MTNCL
Comb. Logic

MTNCL
Comb. Logic

MTNCL
Comb. Logic

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

Slept Early
Completion
Slept Early
Completion
Slept Early
Completion

MTNCL
Register
MTNCL
Register
MTNCL
Register

ObsrvObsrv

Fig. 15 Added Observability Points for Stage N-1

333Journal of Electronic Testing (2022) 38:321–334

1 3

The current automated flow increases pattern count in
increasingly larger steps (i.e., doubled each iteration) to
achieve the desired or highest attainable fault coverage,
which could result in substantially more patterns than the
minimum required. Hence, once the desired or maximum
fault coverage is obtained, the associated pattern count,
N, could potentially be further iterated upon to lower the
minimum required pattern count to somewhere between N/2
and N, while maintaining target/maximum attainable fault
coverage. This would increase actual time, but potentially
decrease test time and reduce area overhead. Additionally,
other methods of pattern generation, instead of the LFSRs
used in this work, could also be considered, such as BILBO
registers [11]. Furthermore, the processes of fault exclusion
and addition of controllability and observability points pre-
sented in Sects. 5.2 – 5.4, respectively, could be automated
to make it feasible to apply these techniques to large cir-
cuits to significantly increase fault coverage, as shown for
the small example c17 circuit where these techniques were

manually applied to increase fault coverage to more than
98.5%, as described in Sect. 5.4.

Data Availability Data sharing not applicable to this article as no data-
sets were generated or analyzed during the current study.

Declarations

Competing Interests The authors have no relevant financial or non-
financial interests to disclose.

List of Differences The work presented in this paper is a continuation of
our previous work, titled “Built-In Self-Test for Multi-Threshold NULL
Convention Logic Asynchronous Circuits,” which was published in the
2020 IEEE VLSI Test Symposium [7]. Our previous work implemented
the entire MTNCL DUT as a single BIST stage, while this paper parti-
tions the DUT, such that each MTNCL pipeline stage is its own BIST
stage, in order to parallelize BIST operation. The method proposed
herein not only decreases test time, but also allows for fault calculation
of MTNCL circuits with data feedback, which was not possible in our
previous work. Additional new contributions include development of
fault exclusion rules, based upon MTNCL circuit operating principles,
to better depict actual fault coverage, and hardware for increasing con-
trollability and observability, in order to increase fault coverage. We
estimate that this paper consists of approximately 50% new material
compared to our VTS paper, which is well above the minimum require-
ment of 30% new material.

References

 1. Fant KM, Brandt SA (1996) NULL Convention Logic: A Com-
plete and Consistent Logic for Asynchronous Digital Circuit
Synthesis. Proc Int Conf Appl Specific Syst Architect Process
261–273

 2. Zhou L, Parameswaran R, Parsan F, Smith SC, Di J (2015) Multi-
Threshold NULL Convention Logic (MTNCL): An Ultra-Low
Power Asynchronous Circuit Design Methodology. J Low Power
Electron Appl 5(2):81–100

 3. Reese RB, Smith SC, Thornton MA (2012) Uncle - An RTL
Approach to Asynchronous Design. Proc IEEE Int Symp Asyn-
chronous Circuits Syst 65–72

 4. Parsan F, Smith SC, Al-Assadi WK (2016) Design for Testability
of Sleep Convention Logic. IEEE Transactions on VLSI Systems
24(2):743–753

 5. Nemati N, Beckett P, Reed MC, Fant K (2018) Clock-less DFT-
less Test Strategy for Null Convention Logic. IEEE Trans Emerg
Top Comput 6(4):460–473

 6. Nemati N, Reed MC, Fant K, Beckett P (2016) Asynchronous
Interleaved Scan Architecture for On-line Built-in Self-test of Null
Convention Logic. Proc IEEE Int Symp Circuits Syst 746–749

 7. Sparkman B, Smith SC, Di J (2020) Built-In Self-Test for Multi-
Threshold NULL Convention Logic Asynchronous Circuits. Proc
IEEE VLSI Test Symp 1–6

 8. Smith SC, Di J (2009) Designing Asynchronous Circuits using
NULL Convention Logic (NCL). Synthesis Lectures on Digital
Circuits and Systems, Morgan & Claypool Publishers, Vol. 4/1

 9. Nagle HT, Roy SC, Hawkins CF, McNamer MG, Fritzemeier RR
(1989) Design for Testability and Built-In Self Test: A Review.
IEEE Trans Industr Electron 36(2):129–140

Table 5 MTNCL BIST Area Comparison between Single and Pipe-
lined BIST

Design Name Original Area Area with
Single BIST

Area with
Pipelined
BIST

c17 153 355 543
adder8 621 1245 1901
c499 2200 3891 6873
c432 2403 3317 5584
c1908 4471 5822 7985
c880 4502 6370 9079
c1355 5632 7323 9278
mult32 × 32 21,523 24,513 29,575
c6288 23,731 25,260 30,167

Table 6 MTNCL BIST Maximum Fault Coverage Comparison
between Single and Pipelined BIST (1E6 Patterns, 1 Seed)

Design Single BIST Pipelined BIST

Name Fault
Coverage
(%)

Test Time
(ns)

Fault
Coverage
(%)

Test Time
(ns)

c17 86.929 1.6E3 76.752 4.6E3
adder8 87.956 8.0E6 79.539 5.5E6
c499 86.783 327.7E3 84.664 107.5E3
c432 87.492 209.9E3 83.237 128.0E3
c1908 86.552 1.6E6 81.612 4.0E6
c880 86.097 3.1E6 82.855 235.5E3
c1355 86.920 384.0E3 83.848 245.8E3
mult32 × 32 93.396 87.7E6 95.330 54.6E6
c6288 90.424 26.9E3 86.509 471.0E3

334 Journal of Electronic Testing (2022) 38:321–334

1 3

 10. Fišer P. Collection of Digital Design Benchmarks. Czech Techni-
cal University in Prague, [Online]. Available: https:// ddd. fit. cvut.
cz/ www/ prj/ Bench marks/. Accessed June 2022

 11. Wang LT, McCluskey EJ (1987) Built-in self-test for sequential
machines. Proc Int Test Conf 334–341

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Brett E. Sparkman received B.S., M.S., and Ph.D. degrees in electri-
cal engineering from the University of Arkansas, in 2011, 2017, and
2020, respectively. From 2009 to 2015, he transitioned from an Engi-
neering Intern to a Senior Engineer at Arkansas Power Electronics
International, working on extreme-environment IC design and system
implementations. Upon APEI’s acquisition by Cree/Wolfspeed in 2015,
he continued work as a System Design Engineer at Wolfspeed in Fay-
etteville, AR, USA. His current research interests include asynchronous
circuits, embedded systems, wireless sensor networks, wide-bandgap
power electronics, and automation.

Scott C. Smith received B.S. degrees in electrical engineering and com-
puter engineering and the M.S. degree in electrical engineering from
the University of Missouri, Columbia, in 1996 and 1998, respectively,

and the Ph.D. degree in computer engineering from the University of
Central Florida, Orlando, in 2001. He is a Professor of Electrical Engi-
neering and Computer Science at Texas A&M University-Kingsville.
He has published over 100 refereed journal/conference papers, 8 U.S.
patents, 2 books, and 4 additional book chapters. His research inter-
ests include Asynchronous Logic, NULL Convention Logic, Computer
Architecture, Embedded Systems, Digital Logic, FPGAs, CAD Tools
for Digital Design, Computer Arithmetic, VHDL, VLSI, Secure/Trust-
able Hardware, Wireless Sensor Networks, Robotics, and Cyber Physi-
cal Systems. Dr. Smith is a senior member of IEEE, and a member of
the National Academy of Inventors, Sigma Xi, IEEE-HKN, and Tau
Beta Pi.

Jia Di received the B.S. and M.S. degrees from Tsinghua University,
China, and the Ph.D. degree in electrical engineering from the Univer-
sity of Central Florida, in 1997, 2000, and 2004, respectively. He joined
the Computer Science and Computer Engineering Department of the
University of Arkansas as an Assistant Professor in Fall 2004, where he
is now a Professor, Rodger S. Kline Chair, and the Department Head.
His research area is asynchronous integrated circuit design and hard-
ware security. He has published two books and more than 100 papers
in technical journals and conferences. He also has 5 U.S. patents. He
is a senior member of the IEEE and an elected member of the National
Academy of Inventors.

https://ddd.fit.cvut.cz/www/prj/Benchmarks/
https://ddd.fit.cvut.cz/www/prj/Benchmarks/

	Built-In Self-Test for Multi-Threshold NULL Convention Logic Asynchronous Circuits using Pipeline Stage Parallelism
	Abstract
	1 Introduction
	2 Background
	3 MTNCL BIST Design with Pipeline Stage Parallelism
	3.1 Components
	3.2 Software Procedure

	4 MTNCL BIST with Parallelism Results
	4.1 Design Preparation
	4.2 First Test Case: Area Impact
	4.3 Second Test Case: Maximum Fault Coverage
	4.4 Third Test Case: LFSR Seed Adjustment
	4.5 MTNCL BIST Automation with Parallelism Performance

	5 Additional Considerations
	5.1 Feedback Compatibility
	5.2 Improving Fault Coverage via Fault Exclusion
	5.3 Improving Fault Coverage via Increased Controllability
	5.4 Improving Fault Coverage via Increased Observability

	6 Conclusion and Future Work
	References

