
Vol.:(0123456789)1 3

Journal of Electronic Testing (2022) 38:303–319
https://doi.org/10.1007/s10836-022-06005-y

Deep Soft Error Propagation Modeling Using Graph Attention Network

Junchi Ma1  · Zongtao Duan1 · Lei Tang1

Received: 2 March 2022 / Accepted: 27 May 2022 / Published online: 8 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Soft errors are increasing in computer systems due to shrinking feature sizes. Soft errors can induce incorrect outputs, also
called silent data corruption (SDC), which raises no warnings in the system and hence is difficult to detect. To prevent SDC
effectively, protection techniques require a fine-grained profiling of SDC-prone instructions, which is often obtained by
applying machine learning models. However, these models rely on handcrafted features, and lack the ability to reason about
SDC propagation, which leads to an inferior SDC prediction performance. We propose a novel Graph Attention neTwork
to Predict SDC-prone instructions (GATPS). The GATPS representation is a heterogeneous graph with different types of
edges to represent various instruction relations. By stacking layers in which nodes are able to attend over their neighborhoods’
features, GATPS automatically captures the structural features that contribute to SDC propagation. The attention mechanism
is applied to compute the importance values to the neighboring nodes, which quantifies the fault effect on the neighboring
nodes. Moreover, the inductive model of GATPS can be applied to unseen programs without retraining, and it requires no
fault injection information of the target program. Experiments revealed GATPS achieved a 34% higher F1 score compared
to the baseline method and a 40-fold speedup compared to the fault injection approach.

Keywords  Silent Data Corruption · Soft Error · Graph Neural Network · Attention Mechanism · Inductive Learning

1  Introduction

Soft error is one of the major issues future computing sys-
tems face [8]. Researchers have witnessed unacceptably high
failure rates when running scientific workloads on ground-
level cloud or grid systems [5]. One outcome of soft errors is
silent data corruption (SDC), which means corrupted output
is produced without any trace of failure, representing the
worst case scenario for a resiliency solution [15]. Due to no
trace of failure, SDC is difficult to detect [18]. When cor-
rupted output are used to make decisions in areas such as cli-
mate [2], it can lead to catastrophic consequences. Facebook
observes that CPU SDCs in global data centers are orders of
magnitude higher than soft-error based simulations [3]. With
increased silicon density and technology scaling, methods
should be invested to counter these issues.

Researchers have demonstrated that a small proportion
of the instructions contribute to a majority of SDCs [26],
which facilitates selective instruction duplication techniques
to protect only partial instructions to maximize the SDC
coverage with low performance overhead [13, 17]. A precise
profiling of the SDC-prone instructions is required before
deciding which instructions should be protected. This is the
goal of our work.

The straightforward way to achieve the goal of profiling
the SDC-prone instructions is using fault injections [10],
which is often implemented by software to emulate faults at
assembly level. Real-world programs may consist of millions
of dynamic instructions, which makes fault injections very
time-consuming. Performing pure fault injection to deter-
mining whether each instruction of a program is SDC-prone
is too expensive to be practical.

There has been a series of work focused on predicting
SDCs to minimize the injection overhead [14, 19, 27].
Fault injections are applied to a portion of instructions in a
program to create a training set to fit the parameters of the
machine learning model. The model is then used to conduct
predictions on the other instructions. The input of machine
learning model is the structural features which describe the

Responsible Editor: A. Yan

 *	 Junchi Ma
	 majunchi@chd.edu.cn

1	 School of Information Engineering, Chang’an University,
Middle Section of Nan’erhuan Road, Xi’an, Shaanxi, China

http://orcid.org/0000-0001-6944-7511
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06005-y&domain=pdf

304	 Journal of Electronic Testing (2022) 38:303–319

1 3

fault propagation context of an instruction. The structural
features are important to build an effective machine learning
model. Usually the structural features are instruction statis-
tics extracted by analyzing the assembly file [14].

Unfortunately, such approaches have two inevitable short-
comings. First, researchers have to decide what informa-
tion summarizes the context of an instruction in a way that
may be useful in describing the fault propagation process.
The occurrence of SDC has been revealed to be affected
by complicated semantics including static data dependency
[16], control flow [20], memory layout [15], etc. These prior
approaches are not capable of describing the complicated
semantics, and thus leading to inaccurate analytical mod-
els for fault propagation. Second, these approaches lack
the ability of generalization, i.e., the trained model cannot
be used to predict unseen programs, so the model has to
be trained individually by using the fault injection data for
each program. The major time cost is related to the size of
the training set, determining how many fault injections are
conducted. For example, the percentage of the instructions
required to generate a training set for proPV model is 60%
[27], thus the total time cost is at least 60% of the time cost
of full fault injections, which may still be too high for large-
scale programs.

To address the first shortcoming, graph neural network
(GNN) can remove human involvement from SDC predic-
tion task. In this paper, we apply the Graph Attention neT-
work to Predict SDC-prone instructions (GATPS) model.
We see the program as a graph, and see the instruction as a
node. Low-dimensional embeddings of nodes are learned
during training and used for predicting SDC proneness of
the corresponding instruction. Therefore, the task of SDC-
prone instruction prediction is transferred to node classifica-
tion in a graph neural network. Compared to prior work, the
significant difference is that GATPS does not define explicit
structural features. GATPS learns the hidden structural fea-
tures by aggregation of the neighboring nodes’ features.
To reason about fault propagation, we utilize an attention
strategy to quantify the fault effect on the instructions. The
self-attention strategy can evaluate the contributions of
neighboring nodes to the fault propagation. To model the
different effects of the data flow and control flow, we apply
heterogeneous graphs to represent the various types of rela-
tions between the instructions and train separate attention
coefficients for different types of edges.

To address the second shortcoming, we then extend our
GATPS model to the task of inductive learning to make pre-
dictions for an unseen program, i.e., the testing program
remains completely unobserved during training. The learned
knowledge of the soft error propagation is transferable to
other programs, and thus, the trained model can be used to
predict SDC-prone instructions of other programs. Since the
training set is not related to the target program, the inductive

model does not require any fault injections on the target pro-
gram. By applying the inductive model, we can decouple the
vulnerability assessment from fault injections, which facili-
tates quick and accurate instruction vulnerability estimation.

In summary, the main contributions of this paper are as
follows:

1.	 We propose GATPS, which applies a graph attention
network framework to obtain an accurate profiling of
SDC-prone instructions. The model automatically cap-
tures structural features of instructions by aggregating
neighboring information. Our approach achieves an end-
to-end manner of learning, minimizing the influence of
researchers’ understandings of fault propagation.

2.	 The inductive learning of GATPS is designed to conduct
predictions without fault injections on target programs,
thus enables decoupling of the vulnerability assessment
from the fault injections. This technique eliminates the
requirement of fault injections on target programs for
vulnerability assessment.

3.	 The results of transductive learning, inductive learn-
ing, and the homogeneous GATPS graph model are
compared, and the advantages and suitable application
scenarios are discussed. We also propose a customized
SDC prediction strategy based on provided data and
user requests. In particular, when lacking fault injection
information of the target program, we can still obtain a
relatively high prediction accuracy.

2 � Related Work

In order to predict the SDC vulnerability of instructions,
prior work has employed classification and regression tree
(CART) [27], deep forest regression [19], and support vec-
tor machine (SVM) [14]). The structural features, used as
the input of machine learning algorithms, were defined by
researchers to depict the context of fault propagation. We
enumerate the structural features defined by prior work
in Table 1. These structural features can be categorized
into basic block(bbl, denotes a single entrance, single exit
sequence of instructions), function, and data-chain based on
the granularity of code.

IPAS defined the structural features in terms of the num-
ber of instructions (#inst) in a scope of bbl or local function
[14]. #inst reflected the distance between the fault activa-
tion site and the end of the bbl or function. However, many
intermediate instructions included in #inst were probably
irrelevant to the fault propagation. For example, nop instruc-
tion does nothing during execution and it does not partici-
pate in the fault propagation. To address this issue, features
describing the data dependence were introduced. The fault
propagation paths could be dissected in the perspective of

305Journal of Electronic Testing (2022) 38:303–319	

1 3

data flow which revealed the data-dependent instructions.
DFRMR proposed new structural features whether the result
of instruction was supplied to any address-related instruc-
tions [19]. An erroneous address was probably to result in a
crash, so introducing the address-related features helped to
filter out crash-prone instructions. proPV defined the con-
nector instructions [27], which operated returned values of
invoked functions, function parameters, or global variables.
These variables represented the data transfer between func-
tions, so the correctness of connector instructions reflected
the fault propagation between functions. Whether the fault
activated in one function propagated to other functions was
determined by checking the status of related connector
instruction. PARIS constructed features based on six resil-
ience computation patterns (such as dead locations, repeated
addition, conditional statements, and data truncation) related
to application resilience [7]. These patterns may not be able
to cover all propagation situations yet. SDCTune constructed
a classification tree to categorize the stored values by identi-
fying whether they were used for addressing or comparison
operations [20]. Linear regression was applied upon certain
leaf nodes of the classification tree which contained continu-
ous features such as data width to compute the probability
of it causing SDC.

These works selected various structural features to
dissect the propagation context. To date, these structural
features were chosen based on researchers’ understand-
ing of fault propagation. However, high accuracy loss
illustrated that the handcrafted features may not cover the
valuable information for predicting SDC. The proposed
structural features depicted certain aspects of the data flow
or control flow of a program, but they were not adequate
to depict the propagation of SDC. Many factors that were

validated to have effects on SDC (such as application-
specific behaviors [9] or stack behaviors [22]) were not
included in aforementioned features. It can be inferred that
there probably exist more obscure factors that contribute
to SDC. Enumerating exhaustively valuable structural fea-
tures tends to be impractical. How to depict the execution
context of instruction for predicting SDC proneness still
remains unsolved.

GNN has been successfully applied to tackle problems
such as node classification and community discovery. Mes-
sage passing methods were widely adopted by GNN to learn
node embeddings by aggregating the information from the
target node’s neighbors. GRAPHSAGE learned the topo-
logical structure of each node’s neighborhood as well as
the distribution of node features in the neighborhood [11].
GRAPHSAGE applied a message passing method of uni-
formly sampling one node’s neighbors, and in many graph
applications each neighbor may contribute differently. To
address this shortcoming of GRAPHSAGE, graph attention
network (GAT) explored attention mechanism, enabling
assigning different importance values to different neighbors
[25]. To perform graph embedding in heterogenous graphs,
heterogeneous graph structural attention neural network
(HetSANN) proposed a type-aware attention layer which
jointed different types of neighboring nodes [12]. Relational
Graph Convolutional Networks (R-GCN) used multiple
weight matrices to project the node embeddings into differ-
ent relation spaces to capture the edge heterogeneity [24].

We find GNN is suitable to solve above problems. Mes-
sage passing methods for GNN can be used to extract the
complex context of instruction. Moreover, attention mecha-
nism is appropriate to learn the fault propagation probabili-
ties automatically. The embedding for each node can reflect

Table 1   Structural features defined by related work

Structural Features proPV DFRMR IPAS SDCTune PARIS

Basic block level #inst of the bbl √ √ √
#remaining inst √ √ √
#cmp inst √
#branch inst √ √

Function level #inst of the function √
#remaining inst to ret inst √
#bbl of the function √
#successor bbl √ √ √
#predecessor bbl √

connector inst √
Data flow level whether

the inst
data feeds

cmp inst √ √
store inst √ √
shift inst √
add inst
address-related inst √

306	 Journal of Electronic Testing (2022) 38:303–319

1 3

both the attribute feature of the corresponding instruction
and its execution context.

3 � Model

We use the code example in Fig. 1 to explain a fault propaga-
tion process and present our model. A simple snippet of code
is shown in subgraph (a), which computes the summation
of array A. The assembly code is shown in subgraph (b).
An error in one instruction either propagates to downstream
instructions or stops to propagate. We take the propagations
between instructions 5 → 6, 2 → 3, 7 → 8 as an example.
Instruction 6 directly loads the execution result of instruction
5 ([ebp-0 × 8]). When a soft error activates in instruction 5,
the error propagates to instruction 6. For the propagation 2
→ 3, since the result of instruction 2 is used for addressing
by instruction 3, it is likely that the corrupted address causes
a crash and the fault propagation is ended. For the propaga-
tion 7 → 8, instruction 7 conducts a comparison operation
and affects the consequent branch instruction jl. The error
in instruction 7 may not change the comparison result so the
error is masked which ends the fault propagation. For exam-
ple, [ebp + 0xc] = 10, eax = 2, the least significant bit of
eax is flipped from 0 to 1, changing its value to 3. However,
eax < [ebp + 0xc], so it still selects L1 branch. To conclude,
due to the different relations, the effects of fault propagations
5 → 6, 2 → 3, 7 → 8 vary. So a heterogeneous graph net-
work is a natural way of representing multi-relational fault
propagations. We build a graph shown in subfigure (c). Each
node in the graph represents a dynamic instruction and the
edge represents the relation between instructions. Different
types of edges are used to represent the different relations
between (5,6), (2,3) and (7,8), which is denoted by different
colors. We also use edge weight to denote the fault effects,
which can be learned automatically by attention mechanism.

In this paper, we intend to learn the low-dimensional
embeddings for each node and apply it for downstream

node classification tasks. Although there are various GNN
models, they can be broadly grouped into transductive learn-
ing and inductive learning models. A transductive model
must see the entire graph structure during training to pro-
duce node embedding vectors, which implies that the model
needs to be retrained when the graph structure changes. In
contrast, an inductive model learns general knowledge via
aggregation function, which collects attribute information
from neighbors without knowing the whole graph structure.
Thus, the trained inductive model can be directly applied to
unseen graphs without retraining. Specifically, transductive
learning requires SDC labelling of instructions of a target
program for training, so fault injections need to be conducted
on the target program. Inductive learning does not require
fault injections on the target program. The inductive model
can extract a generalized mechanism of SDC propagation
and apply it to an unknown program.

We construct both a transductive model and an inductive
model to predict SDC-prone instructions. Figure 2 shows the
overall framework of our proposed GATPS model. The input

Fig. 1   Example of fault propagation and proposed graph representation

Fig. 2   Overall framework of GATPS (Graph Attention neTwork to
Predict SDC-causing instructions) model

307Journal of Electronic Testing (2022) 38:303–319	

1 3

of GATPS is the source code of program and SDC labels,
and the output is the SDC prediction of instructions. The
processing of GATPS can be divided into data collection
and graph computation. As we apply both the transductive
and inductive models, the data collection phases of these
two approaches are different. For the transductive model, we
apply partial fault injections on the target program to obtain
the training dataset (experiments showed that 30% was suf-
ficient to obtain a stable prediction accuracy), and for the
inductive model, we inject arbitrary programs, which do not
include the target program. Our inductive model is able to
learn the general propagation knowledge and apply it on the
target program. The graph computation is processed through
L attention layers, which are described in detail in Sect. 3.2.
The output of the previous attention layer is fed to the next
attention layer. The output of the final attention layers is then
supplied to the softmax function to predict the node label.

In this section, we present the attention layer used to con-
struct graph attention networks and the final layer for node
classification.

3.1 � Graph Construction

A graph comprises a set of nodes V and a set of edges E
between nodes, denoted as G = (V, E) . Each node represents
an executed instruction and also defines a computational
graph based on the neighboring nodes. Edges are typed to
differentiate instruction relations and we denote the edge
types by A . An edge e is mapped to a certain type pϵA by
using ϕ(e) = p , where ϕ is the mapping function from E to
A . We consider following four types of edges.

1.	 Branch relation. The relation depicts the impact of
branch instructions on the its consequently executed
instructions. If eij satisfies branch relation, instruction
i has to be a branch instruction, and instruction j is i’s
consequent instruction. When the branch instruction i is
affected by soft error, an incorrect branch may be taken
during execution and affects instruction j.

2.	 Addressing relation. If the destination operand of
instruction i is used for addressing by instruction j, eij
satisfies addressing relation, 2 → 3 in Fig. 1 is an exam-
ple of addressing relation.

3.	 Logical relation. The conditional jump instruction
decides whether to take the branch by checking the sta-
tus register eflags, and the value of eflags is determined
by the comparison result of cmp instruction. We have
given an example of logical relation 7 → 8 in Fig. 1 and
show that flipping the operand value does not affect the
value of eflags. The logical relation may lead to masking
the error of cmp instructions.

4.	 Define-use relation. If instruction j reads the data that
instruction i writes, then eij satisfies define-use relation.

To distinguish from other relations, the data operated by
instruction j is neither eflags nor used for addressing.

These edge types cover major instruction relations, which
are used in analyzing SDC propagation [15, 16, 20]. We
show these types of edges by using different colors in Fig. 1.
The branch relation describes the control flow propagation,
and the other three relations describe data flow propagation.
Faults in data used for addressing relations cause crashes
easily since they likely generate invalid addresses. Faults
in data used for logical relations may not cause different
values of eflags and thus can easily cause benign outcomes.
Therefore, these relations vary significantly in the patterns of
propagating to incur SDC, which facilitates reasoning about
SDC propagation. The attention strategies are designed for
the aggregation of neighboring nodes with different edge
types separately.

We construct the graph by using the traces of dynamic
instruction in the execution, and detailed information is
shown in Algorithm 1. The dynamic instructions’ execu-
tion information can be recorded by using injection tool.
Each time we take one trace item, and generate node and
edges corresponding to the trace item. The types of edges
are determined by checking which definition of edge relation

308	 Journal of Electronic Testing (2022) 38:303–319

1 3

matches the dynamic instruction’s operation. If the instruc-
tion is branch instruction, we create an edge between the
branch instruction and each instruction in the consequent
basic block (line 3–6 in Algorithm 1). Then we use last_
write(r) to record the instruction that last writes the r (reg-
ister or memory location), thus we are able to create con-
nection between the last instruction that writes r and the
instruction that reads r. For example, if r is base register
(used for addressing), the edge is categorized as addressing
relation. Thus new edges are generated and categorized into
addressing relation, logical relation and define-use relation
(line 7–21 in Algorithm 1).

3.2 � Attention Layer

In this subsection, we describe the structure of a single atten-
tion layer. The number of nodes of single layer equals to
the number of dynamic instructions. Multi-head attention
mechanism is employed by each attention layer for the sta-
bilization of the learning process of self-attention.

The input to the first layer is a set of node features,
h = {h

(0)

0
, h

(0)

1
,… , h

(0)

N
} , h(0)

j
∈ ℝ

F , where N is the number of
nodes, and F is the number of attribute features in each node.
The attribute features contain two indices, representing the
opcode and the destination operands of the corresponding
instruction. The opcode denotes how the instruction affects
data or execution of other instructions, and the destination
operands denote which data the instruction affects. The desti-
nation operands we consider include the registers eax, ebx, ecx,
edx, esi, edi, ebp, esp, eflags, and eip. If the instruction uses an
8-bit register, such as ah, or the 16-bit register ax, we translate

it to 32-bit eax. The registers are encoded as unique one-hot
vectors. The opcode and destination operands of each instruc-
tion are converted to a vector by searching the embedding
table.

The workflow of an attention layer in the GATPS is shown
in Fig. 3. We consider a node jϵV represented as h(l)

j
 in the l-th

layer. h(l+1,m)

j
 denotes node j’s hidden state outputted by the

attention head m of the (l + 1)-th attention layer. Each attention
layer performs a transformation operation and an aggregation
operation of neighborhood. To accumulate from the node’s
previous layer representation, we add an identity matrix to the
adjacency matrix, thus adding virtual self-loops to the graph.
We use Nj to denote the neighbors of node j in the graph, after
adding self-loops Nj = {i, j, q, r}.

As an initial step, a shared linear transformation parameter-
ized by a weight matrix, W(l+1,m)

ϕ(eij)
 , is applied to each neighbor-

ing node i ∈ Nj as follows:

where h(l+1,m)

i,eij
 is the projection from layer l’s embedding to

the space of node i in the (l + 1)-th attention layer of the m-
th head. For the first layer, the input embedding represents
the attribute features, and the weight matrix W(2,m)

ϕ(eij)
∈ ℝ

F
�
×F ,

where F’ is the number of features in each node after linear
transformation. For the other layers, W(l+1,m)

ϕ(eij)
∈ ℝ

F
�
×F

�

 . Note
that the weight matrix W(l+1,m)

ϕ(eij)
 also consider the type of edge

since the equation contains ϕ(eij) . As shown in Fig. 3,
ϕ(eij) = ϕ(erj) = define-use relation, eij and erj share the same
weight matrix W(l+1,m)

ϕ(eij)
.

(1)h
(l+1,m)

i,eij
= W

(l+1,m)

ϕ(eij)
h
(l)

i
,

Fig. 3   Workflow of an attention layer in GATPS

309Journal of Electronic Testing (2022) 38:303–319	

1 3

We then perform self-attention mechanism to learn a
representation for each node. The self-attention mechanism
computes the interaction between input node features.
Applying such mechanism makes it possible to concentrate
more on important node features. The self-attention mecha-
nism yields aggregates of the interactions and attention
coefficients. The attention mechanism a ∶ ℝ

F
�

×ℝ
F
�

→ ℝ
is a dot-product function and shared by the edges of the
same type. In Fig. 3, eij and erj share the same attention
parameter a(l+1,m)

ϕ(eij)
= a

(l+1,m)

ϕ(erj)
.

where σ is a LeakyReLU(.) activation function. The attention
coefficient o(l+1,m)

eij
 indicates the importance of node i to the

target j. For the downstream prediction task, the importance
denotes the fault effect of instruction i on the instruction j
through the fault propagation path eij . The learning of impor-
tance quantifies the fault effects on the neighboring nodes.
Moreover, since the attention coefficients are trained for each
type of edge, the model is able to characterize various pat-
terns of fault propagations. We perform masked attention to
apply the real graph structure, which only computes the node
embedding if two nodes are connected. To make importance
values comparable across different nodes, normalization is
performed on these importance values across all edges to
node j by using a softmax function:

With the weights of each edge associated with node j,
the aggregation for node j can be performed as

After computing the representations under M attention
heads, the representations of node j are concatenated, and
then outputted by the (l + 1)-th attention layer:

where h(l+1)
j

∈ ℝ
MF

�

 and || denotes the concatenation operation.
The low-dimensional representations outputted by the final
layer is then used for prediction. For the final layer, we average
the representations under M attention heads as follows:

For SDC prediction task, a softmax function is applied
in the end to produce the outcome labels. The softmax
function outputs probability of incurring each outcome
class (SDC, benign, crash and hang). Using labeled data,
we minimize the cross-entropy loss:

(2)o(l+1,m)
eij

= σ
(
a
(l+1,m)

ϕ(eij)
(h

(l+1,m)

i,eij
, h

(l+1,m)

j,eij
)
)
,

(3)α(l+1,m)
eij

= e
o
(l+1,m)
eij ∕

∑
k∈Nj

e
o
(l+1,m)
ekj .

(4)h
(l+1,m)

j
= σ(

∑
k∈Nj

α(l+1,m)
ekj

h
(l+1,m)

j,ekj
).

(5)h
(l+1)

j
= ‖m=1Mh

(l+1,m)

j
,

(6)h
(l+1)

j
=

1

M

∑M

m=1
h
(l+1,m)

j
.

where yj is the outcome class label gained from fault injec-
tion, and

∼
yj is the predicted class label for node j. Vl denotes

the set of labeled nodes.

4 � Experimental Setup

4.1 � Fault Model & Injection Infrastructure

We considered a single bit flip that occurred in the regis-
ter file or memory. The dynamic instrument framework Pin
was used to build fault injector tools [21]. Pin is a dynamic
binary instrumentation framework for the IA-32 and ×
86–64 instruction-set architectures, facilitating the creation
of fault injection tools. During each run of fault injection,
we altered one bit of the destination operand of the target
instruction. A total of over 760,000 fault injections were
performed in the experiment. The experiment was conducted
on a rack server with an Intel(R) Xeon(R) CPU E5-2690 v3
processor operating at 2.60 GHz with 256 GB of memory.

The definitions of injection outcomes are shown in
Table 2. The error code was recorded after execution to deter-
mine the causes of the crash. A successful execution returns
0, while an unsuccessful execution returns a non-zero value.
For example, error code 139 denotes segmentation error.

The classes of outcomes were represented by one-hot
encoding such that the shape of the tensor of classes was
1 × 4. For example, if the outcome was SDC, the outcome
was encoded as [1,0,0,0]. A dataset with labels which denote
the outcome was generated after processing the data of fault
injections.

4.2 � Application Program

We chose six benchmarks from Siemens benchmark suite.
The benchmarks included replace (which performed string
matching and replacement), schedule and schedule2 (which
performed management of scheduling), print_tokens and

(7)L = −
∑

j∈Vl

yj log
∼
yj,

Table 2   The definition of injection outcomes

EC Error code, OFF Output in fault-free execution, ET execution
time

Category Definition Criteria

Benign the program produces the correct output EC = 0 &
Output = OFF

SDC the program produces an erroneous
output

EC = 0 &
Output ≠ OFF

Crash the program stops execution EC ≠ 0
Hang the program cannot finish execution ET > threshold

310	 Journal of Electronic Testing (2022) 38:303–319

1 3

print_tokens2 (which performed lexical analysis), and tot_info
(which computed statistics for the input data). The classical
algorithm dfs (which performed a deep first search on the
map) and kmp (string-searching algorithm) were used to test
the model. These programs contained several hundred lines
of code with large test suite, and applied the C output function
printf to print the output. The statistics of programs are shown
in Table 3. We performed fault injections on 11 separate
inputs of schedule2 to determine if our inductive model could
learn from the results of the different inputs. The SDC rates
were statistically significant with an error bar ranging from
0.94% (kmp) to 0.31% (dfs) at the 95% confidence intervals.

4.3 � Parameters Settings for GATPS

4.3.1 � Transductive learning

We adopted a GATPS model with L = 2, where L rep-
resented the number of attention layers. The first layer
employed 8 attention heads and outputted F’ = 8 features.

ELU nonlinearity was applied as the activation function. The
second layer was used to predict the outcome with a single
attention head. All model was implemented in TensorFlow
(version 1.14.0) with the Adam optimizer [1]. The learning
rate was set to 0.005. The attention coefficients are initial-
ized by Glorot initialization [6].

We split the labeled dataset obtained from the fault injec-
tions evenly split into a training set, validation set, and test
set. We selected the one with best performance in the vali-
dation set and then evaluated them on the test set. For all
models, the average performance of five repeated processes
was calculated. We ran 100 epochs for the models.

4.3.2 � Inductive Learning

For the inductive learning task, we applied a three-layer
GATPS model. The first two layers consisted of M = 4 atten-
tion heads computing F’ = 8 features, followed by an ELU
nonlinearity. The final layer applied single attention head
followed by a softmax activation function for classification.
The attention coefficients are initialized by Glorot initializa-
tion [6]. The training sets for this task were sufficiently large,
and we found no need to apply L2 regularization or dropout.
We utilized a batch size of one graph during training. The
inductive models were trained for 100 epochs.

4.4 � Comparison Baseline

We compared to IPAS and proPV, two state-of-the-art
machine learning models to predict SDC-prone instructions.
IPAS applied SVM with a radial basis function kernel [14]
and proPV applied a CART algorithm with the gini criterion
[27]. The input features for the baseline machine learning
algorithms comprised the structural features listed in Table 1
and the attribute features of the instruction. The attribute
features mainly contained the instruction type and the size
of the instruction’s return value. The training ratio was set
to the same configuration of GATPS model.

To evaluate the benefits of applying heterogeneous graphs
in the model, we provided the results when a homogeneous
graph (GATPS-homo) was applied, i.e., no types of edges
were considered. Moreover, to evaluate the benefits of apply-
ing an attention mechanism in this setting, we also provided

Table 3   Statistics of programs studied in our experiments

Program #nodes #edges #faults
injected

replace 6958 18191 33030
schedule 6809 16380 43660
print_tokens 2904 6995 18490
print_tokens2 5067 11394 33760
tot_info 5045 11486 18930
kmp 1360 2527 7520
dfs 12001 23508 66360
schedule2
(under 11 separate

inputs)

6651 15664 39250
9166 17317 51740
10003 18857 56330
8703 16197 46880
9897 18592 53920
10387 19907 60640
9462 17462 50010
9356 17360 49750
8330 15419 44050
5280 10203 32450
10213 19538 59370

Table 4   Performance indices of
SDC prediction

Indices Description

TP True positive: # of pairs correctly classified as SDC-prone inst
FP False positive: # of pairs incorrectly classified as SDC-prone inst
FN False negative: # of pairs incorrectly classified as non-SDC-prone inst
precision precision = TP/(TP + FP)
recall recall = TP/(TP + FN)
F1 F1 = 2*precision*recall/(precision + recall)

311Journal of Electronic Testing (2022) 38:303–319	

1 3

the results when a constant attention mechanism (GATPS-
const) was used with the same architecture–this assigned the
same weight ( a(l+1,m)

ϕ(eij)
 = 1) to every neighbor.

5 � Results

We adopted the precision, recall, and F1 score, which were
commonly used metrics, to measure the prediction results.
The false positive cases caused increased detection costs
(duplication instructions), and the false negative cases
caused a decrease in the SDC coverage. The F1 score con-
siders both the SDC coverage and detection cost, ensuring a
fair comparison between these techniques. The definitions
are shown in Table 4.

5.1 � Results for Transductive Learning

5.1.1 � Prediction Performance

Table 5 shows a comparison of the results of our models
with other baselines. Our model achieved the highest preci-
sion, recall, and F1 score for all studied programs. The aver-
age F1 score of the GATPS was 0.88. The average precision
of our model was 52% higher than that of IPAS and 34%
higher than that of proPV. Moreover, the average F1 score of
our model was 44% higher than that of IPAS and 34% higher
than that of proPV, showing that employing a framework of
graph neural network can be beneficial.

The comparison of GATPS, GATPS-const, and GATPS-
homo showed that utilizing the attention mechanism and
heterogeneous graph improved the prediction accuracy. The
GATPS model improved the F1 score by 20% compared to
the GATPS-const model (the identical architecture with con-
stant attention mechanism), directly demonstrating the sig-
nificance of being able to assign different weights to differ-
ent neighbors. Moreover, the average F1 score of the GATPS
model was 12% higher than the GATPS-homo model with
the input of the homogeneous graph, which indicated that
the heterogeneous graph yielded a better representation
of the various types of fault propagation. Various types of

edges in the heterogeneous graph were naturally modeled in
distinct spaces, which preserved the semantics of the differ-
ent relations between the nodes.

The learned node embeddings can be visualized by
t-SNE tool [23], which is straight-forward to find out how
successful is the prediction results. The inferred node
embeddings were embedded into a two-dimensional space.
The SDC prediction results of the program schedule2 are
presented in Fig. 4. Color of node represented the out-
come class. Red nodes represented the real SDC-prone
instructions obtained in the fault injections. The points
which were close to one another in the high-dimensional
prediction results tended to be close to one another in the
t-SNE plot. Figure 4 showed discernible clusters in the
projected 2D space, that points from the same outcome
class (e.g. red nodes) tended to be grouped close to one
another. Figure 4 demonstrates GATPS’s ability to learn
meaningful embeddings for the fault propagations and
make good predictions on SDC.

Moreover, we visualize the attention coefficients to show
how GATPS discriminates between fault propagations.
Attention coefficients are the key parameters that quantify

Table 5   Comparison of results for SDC prediction in datasets

The bold values are the highest value among all results

Dataset print_tokens replace schedule schedule2 print_tokens2 tot_info

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

GATPS 0.89 0.98 0.93 0.84 0.90 0.87 0.88 0.81 0.84 0.87 0.90 0.88 0.83 0.79 0.81 0.94 0.95 0.94
GATPS-homo 0.71 0.98 0.82 0.72 0.72 0.72 0.70 0.69 0.70 0.84 0.77 0.81 0.74 0.68 0.70 0.83 0.96 0.89
GATPS-const 0.49 0.88 0.63 0.57 0.63 0.60 0.68 0.55 0.61 0.75 0.71 0.73 0.58 0.58 0.58 0.82 0.96 0.88
IPAS 0.50 0.93 0.65 0.28 0.25 0.27 0.24 0.38 0.33 0.23 0.62 0.34 0.23 0.37 0.29 0.66 0.82 0.73
proPV 0.49 0.54 0.51 0.62 0.40 0.49 0.44 0.42 0.43 0.58 0.57 0.58 0.46 0.59 0.52 0.64 0.83 0.72

Fig. 4   t-SNE plot of the computed feature representations of the
GATPS’s final layer on the schedule2 program. Node colors denote
outcome classes

312	 Journal of Electronic Testing (2022) 38:303–319

1 3

the fault propagations from one node to another (described
in Sect. 3.2). The variations of the attention coefficients
of attention head 0 for schedule2 are shown in Fig. 5. The
edge thickness indicates the aggregated normalized atten-
tion coefficients between the two nodes. A thicker edge
means a larger attention coefficient, i.e. a stronger influence
on the neighboring node. The thicknesses of the edges var-
ied significantly, which showed that the effect of the fault
propagation between two nodes could be effectively learned
by the attention mechanism. Figure 5 also shows how our
model treats different types of edges. In Fig. 5, different
colors denote different edge types. The red color denotes the
define-use relation, which obtains the highest proportion of
occurrences of all the types of edges. For each type of edges,
an attention coefficient is calculated so that one node may
have multiple types of edges connecting to its neighbors,
also these edges vary in thickness.

Moreover, to gain insight into how the attention mecha-
nism treats different neighbors from an entire graph perspec-
tive, the distribution of the entropy of the attention coeffi-
cients is introduced, defined as follows:

Intuitively, the entropy value characterizes how the
uncertain node learns from its neighbors. Small entropy
values indicate that the node learns heavily from a few
neighbors. If we use Fig. 5 to illustrate the entropy value,
small entropy values correspond to uneven attention coef-
ficients, which means the node has edges differing in thick-
ness significantly. A uniform distribution of attention coef-
ficients corresponds to the highest entropy value log|Nj| ,

(8)H

(
{�(l,m)

eij
}
i∈Nj

)
= −

∑
i∈Nj

�
(l,m)
eij

log �
(l,m)
eij

.

which means node with edges of equal attention coefficient
(thickness). Due to the attention coefficients are set to the
same constant value, the attention coefficients of GATPS-
const follow a uniform distribution.

Figure 6 shows the entropy distribution of the eight
attention heads of layer1 of the schedule2 program. The
x-axis of each subfigure shows the entropy values, and
the y-axis shows the number of nodes. We introduce the
entropy distribution of a uniform distribution of the atten-
tion coefficients as a baseline for other distributions. The
last subfigure of Fig. 6 depicts the distribution of entropy
of a uniform distribution of the attention coefficients.
Compared to a uniform distribution, some attention heads
(such as head 2, 5, and 7) had relatively low entropies.
Thus, by applying these attention heads, the nodes learned
from a few neighbors. Head 3 had a high entropy distribu-
tion, and thus, the nodes learned more equally from their
neighbors than head 2, 5, 7. Two major findings could be
concluded from Fig. 6. First, the distribution of attention
coefficients for each attention head differed from that of
assumed uniform distribution, which indicated that each
attention head learned unevenly from node’s neighbors.
Second, the distributions of the entropies of the attention
heads varied. Therefore, each attention head learned in
a different manner and concentrated on various aspects
of propagation. It is necessary to apply multi-head atten-
tion mechanism to make it possible to observe the various
aspects of propagation. It is probable that certain attention
heads reflect the intrinsic propagation semantics, such as
data truncation or repeated addition [7]. The interpreta-
tion of the attention coefficients will be a subject of future
work.

The F1 score of IPAS was lower than GATPS and proPV.
The prediction process of IPAS was analyzed. If the instruc-
tions to be predicted were the same type of instruction and
in the same bbl, the structural features might vary in only
few items, incurring similar prediction results. The experi-
ment of the benchmark replace showed that 99% of the
mov instructions within the same bbl had the same predic-
tion result. For example, mov %esp,% ebp, and other mov
instructions within one bbl might obtain the same predic-
tion result. However, mov %esp, %ebp affected the stack
base pointer ebp, which likely led to the abnormal behav-
ior when it needed to restore the return address and finally
caused crash. After investigating the injection results, we
found that mov %esp,% ebp obtained a crash rate of 100%,
and other mov instructions obtained a crash rate of 42% and
a SDC rate of 22%. Therefore, the probable reason for IPAS
obtained a low F1 score is failing to discriminate between
the instructions of the same type within one bbl. Due to the
aggregation of neighboring nodes, our model could accu-
rately discriminate the structural differences of the same
type of instructions.

Fig. 5   Representation of attention coefficients of GATPS’s atten-
tion head 0 on the schedule2 program. Edge color denotes the type
of edge (blue: branch, green: addressing, yellow: logical, red: define-
use)

313Journal of Electronic Testing (2022) 38:303–319	

1 3

proPV did not take into account the types of relations
between instructions, so it could not differentiate between
types of relations. proPV examined if an instruction had
downstream connector instructions to propagate faults to
other functions. However, it failed to further describe the
patterns of propagation in which the dependent instruc-
tions were affected. As showed in Sect. 3, the effects of
fault propagations varied significantly due to different rela-
tions. For example, after examining the prediction results
of proPV, we found many false positive cases were because
the proPV model mistakenly classified the instructions
which produced data for addressing as SDC. The results
of the program tot_info showed that 22.6% of the address-
generating instructions were not correctly predicted, which
incurred crash in the fault injections and were predicted as
SDC-prone. As we showed in the incorrect cases, hand-
crafted features tended to be weak for describing the com-
plex propagation context.

5.1.2 � Time Cost

This subsection demonstrates the time costs of our model
and the baseline methods. The time cost can be roughly
divided into three parts: fault injection, model training,
and prediction. The time cost of the prediction was trivial.
In the experiment, we set the training ratio to 0.33, mean-
ing that we needed to conduct 33% of the exhaustive fault
injections to obtain the training set. Figure 7 shows the
time cost and its composition. The model training process
only represented 1/18 of the time compared to the fault
injection process averaged across all studied programs.
GATPS achieved an average 40 × speedup over the full
fault injections. Each epoch required 2–12 s, and the time
of each epoch was related to the scale of graph. As the pro-
gram replace had the largest number of nodes, the train-
ing of replace was the most time-consuming. The training
process was set to take 100 epochs. In total, the training

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4

of

 n
od

es

entropy

layer1, head1

0

500

1000

1500

2000

2500

0.5 1 1.5 2 2.5 3 3.5 4

of

 n
od

es

entropy

layer1, head2

0
500

1000
1500
2000
2500
3000

0.5 1 1.5 2 2.5 3 3.5 4

of

 n
od

es

entropy

layer1, head3

0

500

1000

1500

0.5 1 1.5 2 2.5 3 3.5 4

of

 n
od

es

entropy

layer1, head4

0

500

1000

1500

2000

2500

0.5 1 1.5 2 2.5 3 3.5 4

of

 n
od

es

entropy

layer1, head5

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4

of

 n
od

es

entropy

layer1, head6

0
500

1000
1500
2000
2500

0.5 1 1.5 2 2.5 3 3.5 4

of

 n
od

es

entropy

layer1, head7

0
500

1000
1500
2000
2500

0.5 1 1.5 2 2.5 3 3.5 4

of

 n
od

es

entropy

layer1,head8

0
500

1000
1500
2000
2500
3000

0.5 1 1.5 2 2.5 3 3.5 4

of

 n
od

es

entropy

uniform

Fig. 6   Entropy distributions of eight attention heads of layer1 of schedule2 program

314	 Journal of Electronic Testing (2022) 38:303–319

1 3

process took about 4–20 min. Since GATPS-homo model
had far fewer parameters to train, the time cost of GATPS-
homo was only 12% of that of GATPS.

The running time costs of proPV or IPAS for benchmark
programs were less than 1 s. Compared to the time cost of
conducting fault injections, the time cost of proPV or IPAS
was negligible. proPV and IPAS also had much lower time
costs than our model. However, because the major cost was
performing fault injections, the total time cost of our model
was only 5.4% larger than that of proPV or IPAS. Consider-
ing that our model obtained much more accurate (> 34%)
prediction results compared to the baselines, it is worth this
additional time cost.

Moreover, the training time cost could be further reduced
by running the training program on a GPU. Our experiment
was conducted on a CPU. We also ran model training of
print_tokens on a GPU. The training of print_tokens showed
that the time cost of running on a GPU was only 36.5% that
of running on a CPU. However, our GPU devices, which had
10 GB of embedded memory, were not able to compute other
larger scale programs due to the limited memory capacity.
We attempt to compress the graph to make it able to compute
GATPS on the GPUs. This is a subject of future work.

5.1.3 � Parameter Sensitivity Study

In this subsection, we examine the sensitivity of the models
to various parameter, including the training ratio and the
number of attention layers. Figure 8 details the comparison
of the F1 scores for the schedule2 program for various val-
ues of the training ratio. The F1 scores were in the order of
GATPS > proPV > IPAS. The F1 score of GATPS/proPV/
IPAS varied in a small range (< 0.09) when the ratio of the
training data was greater than 0.3. The F1 score of IPAS
increased faster as the training ratio increased compared to

other methods. Furthermore, the experiment showed that the
training ratio did not affect the training time cost per epoch
of GATPS. Since the F1 score remained stable and the cost
of the fault injection increased linearly when the training
ratio increased, it was beneficial to set the training ratio of
the GATPS to a low level to balance the prediction accuracy
and cost. The experiment showed that it was adequate to set
the training ratio to 0.2 to obtain a stable F1 score.

We also analyzed the effect of the number of attention
layers L when the other parameters were fixed. Figure 9
shows the F1 score and training time cost per epoch as L
increased. The F1 score of the GATPS increased slowly as
L increased. The F1 scores when 2 ≤ L ≤ 7 varied in a small
range (< 0.05). As the number of layers L increased, the
node could learn structural information from farther neigh-
boring nodes. The training time per epoch increased linearly
as L increased. The three-layer training took 1.6 × the time
of the two-layer training. For the seven-layer model, the

0

5000

10000

15000

20000

25000

30000
�m

e
co

st
(s

)

fault injec�on model training

Fig. 7   Time cost of transductive learning of GATPS

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9

F1
 sc

or
e

Ra�o of training data

GATPS proPVInsiden IPAS

Fig. 8   Predictive performance for various training ratios

0

10

20

30

40

50

60

2 3 4 5 6 7
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93
tr

ai
ni

ng

m
e

co
st

 p
er

 e
po

ch
(s

)

number of a�en
on layers L

F1
 sc

or
e

F1 score training
me cost per epoch

Fig. 9   Predictive performance for various numbers of attention layers

315Journal of Electronic Testing (2022) 38:303–319	

1 3

training took 4.3 × the time of the two-layer training. Com-
pared to the rapid growth in the time cost, the increase in the
F1 score was slight. The experiment showed that the two- or
three-layer model provided a high prediction accuracy with a
low cost, which was adequate for the general profiling needs.
However, if strict goal accuracy is required, it is feasible to
increase the number of attention layers. This is a trade-off
that should be considered by the users.

5.2 � Results for Inductive Learning

In this subsection, we quantify the prediction performance
of inductive learning. Different from transductive learning,
inductive learning predicts SDC-prone instructions without
any fault injection information of the target program, which
requires a higher generalization ability. We performed two
experiments to show how the input graph affected the pre-
diction performance.

1.	 N-inputs. The first experiment applied the graphs gener-
ated from the execution of the same program with dif-
ferent inputs (N-inputs). Although the executions with
different inputs varied in data flow and control flow, they
may have the same functions or bbls, resulting in similar
graphs.

2.	 N-programs. The second experiment applied the graphs
generated from the execution of totally different pro-
grams (N-programs). The results of the two experiments
are presented separately.

5.2.1 � Model Trained by N‑inputs

The dataset contained six graphs for training and two for
validation. After training the inductive model, we performed
predictions on three test inputs separately. These graphs
were generated from the executions of 11 distinct inputs for
the program of schedule2. The testing graphs remained com-
pletely unobserved during training.

Prediction Performance  Table 6 shows the comparison
of the results of N-inputs with the baselines. Our model
achieved a higher precision, recall and F1 score than base-
lines. The F1 score of our model was 54% higher than that
of IPAS and 37% higher than that of proPV, showing that our
model had a higher ability to predict unseen graphs. Com-
pared to transductive learning, the differences between the
inductive learning and baseline results were larger because
inductive learning required a higher ability of generalization.

The comparison of the inductive learning results between
the GATPS and GATPS-homo models showed that applying
a heterogeneous graph was beneficial. The average F1 score
of GATPS was 7% higher than that of GATPS-homo. This
conclusion is consistent with the transductive learning results.

Time Cost  The average training time per epoch was 93 s,
which was 9.3 × the time cost of transductive learning. This
was because the scale of the model increased. The training
input of the transductive learning was one graph, and the
input of the inductive learning increased to six graphs. The
time cost of the GATPS for predicting SDC-prone instruc-
tions under a single input was only 6.8% that of the exhaus-
tive fault injections.

Furthermore, we could repeatedly use the trained model
of the GATPS to predict the SDC-prone instructions for
different inputs. The function of keras load_weights could
be used to reload the trained weights of each attention
layer. Thus, the subsequent predictions did not require
training. If we needed to perform predictions for n inputs,
the time cost of the GATPS could be amortized over n
tests, and each prediction would require only 1/n of the
training time cost.

Parameter Sensitivity Study  We discuss the influence of the
parameters of the inductive learning model, including the
number of layers and the training ratio. Figure 10 shows
the effect of the number of attention layers L when the
other parameters were fixed. The results of the GATPS and
GATPS-homo training by N-inputs are shown. The maxi-
mum number of attention layers was set to 7. The F1 score
increased by 9% when L increased from 2 to 7. Figure 10
also shows the training time cost per epoch. The training
time increased linearly as the number of layers increased.
For the seven-layer model, the training required 5.2 × the
time required for the two-layer training. The 2-layer model
obtained a high F1 score with low lost, which was the most

Table 6   Comparison of results for SDC prediction of inductive model
trained by N-inputs

Metrics P R F1

GATPS test1 0.86 0.78 0.82
test2 0.80 0.86 0.83
test3 0.88 0.69 0.77
average 0.85 0.78 0.81

GATPS-homo test1 0.89 0.74 0.80
test2 0.73 0.70 0.71
test3 0.90 0.60 0.72
average 0.84 0.68 0.74

IPAS test1 0.19 0.49 0.27
test2 0.14 0.44 0.21
test3 0.22 0.54 0.32
average 0.18 0.42 0.27

proPV test1 0.52 0.46 0.49
test2 0.31 0.38 0.34
test3 0.72 0.38 0.49
average 0.52 0.41 0.44

316	 Journal of Electronic Testing (2022) 38:303–319

1 3

cost-effective compared to other numbers of layers. When L
increased from 2 to 3, the F1 score increased by 3.8% while
the time cost increased by 86.0%.

Figure 11 shows the result comparison of the F1 scores
on the schedule2 program, varying the number of graphs
in the training set. The validation set and test set remained
unchanged during the experiment. The F1 score increased
when the number of graphs increased, and it varied in a
small range (< 0.05) when the number of graphs ≥ 4. The
training time cost per epoch increased linearly as the number
of graphs in the training set increased. When the number of
graphs was nine, the training time cost increased to 7.1 ×
the time cost with one graph in the training set. According
to the result of experiment, it was adequate to set the number
of graphs in the training set to 4 to obtain a stable F1 score
for model trained by N-inputs.

5.2.2 � Model Trained by N‑programs

The dataset contained four graphs for training, one for vali-
dation, and three for testing. The training set was the dataset
of four distinct programs {schedule, print_tokens, print_
tokens2, and tot_info}, the validation set was {replace}, and
the test set was three distinct programs {schedule2, kmp, and
dfs}. The functionalities of the training and validation sets
were totally different from the test set, so the test set was
completely unseen.

Prediction Performance  Table 7 shows the comparison of
the results of our models trained by N-programs with base-
lines. The average F1 score for inductive learning trained
by N-programs was 0.59. The results validated that the
GATPS could learn certain general propagation knowl-
edge and accommodate unseen programs. The result for the
same test samples of schedule2 showed that the F1 score
was 16% lower than that of the model trained by N-inputs.
Thus, the input graphs affected the prediction performance
significantly. The model trained by N-inputs could learn
application-specific knowledge, but the model trained by
N-programs could not. The difference between the F1 scores
indicated that certain SDC propagations were application
specific, and thus, the model trained by N-inputs could
achieve a higher F1 score.

The F1 score of GATPS-homo was 3% lower than that of
GATPS, which was consistent with the result of transductive
learning. Moreover, IPAS and proPV obtained much lower F1
scores than GATPS. The F1 scores of IPAS and proPV were
27% and 38% lower than that of GATPS. Notably, the inductive

0

50

100

150

200

250

300

0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9

2 3 4 5 6 7

tr
ai

ni
ng

m

e
co

st
 p

er
 e

po
ch

(s
)

F1
 S

co
re

number of a�en
on layer

F1 score training
me cost

Fig. 10   Predictive performance for N-inputs inductive learning for
various numbers of attention layers

0
20
40
60
80
100
120
140
160

1 2 3 4 5 6 7 8 9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

tr
ai

ni
ng

m

e
co

st
 p

er
 e

po
ch

(s
)

number of graphs in training set

F1
 sc

or
e

F1 score training
me cost

Fig. 11   Predictive performance of N-inputs inductive learning for
various numbers of graphs in the training set

Table 7   Comparison of results for SDC prediction of inductive learn-
ing trained N-programs

Metrics Test program P R F1

GATPS schedule2 0.64 0.67 0.66
kmp 0.57 0.48 0.52
dfs 0.86 0.45 0.59
average 0.69 0.53 0.59

GATPS-homo schedule2 0.42 0.81 0.55
kmp 0.46 0.61 0.53
dfs 0.78 0.48 0.59
average 0.55 0.63 0.56

IPAS schedule2 0.13 0.76 0.22
kmp 0.16 1.00 0.28
dfs 0.29 1.00 0.45
average 0.19 0.92 0.32

proPV schedule2 0.14 0.30 0.19
kmp 0.12 0.06 0.08
dfs 0.38 0.36 0.37
average 0.21 0.24 0.21

317Journal of Electronic Testing (2022) 38:303–319	

1 3

learning of GATPS achieved a higher F1 score than the trans-
ductive learning of IPAS and proPV, showing that our model
had a better ability for reasoning about fault propagation.

Time Cost  The average training time per epoch was 53 s,
which was 5.3 × the time cost of transductive learning.
The time cost was less than the time cost of the training by
N-inputs because the training set was smaller. The GATPS
trained by N-programs achieved an average 43 × speedup
over the full fault injections. As we stated before, the time
cost could be roughly divided into three parts: fault injec-
tion, model training, and prediction. The model trained by
N-programs did not require information about the target
program, and the fault injection and model training could
be performed in advance. If we knew the target program,
we would only need to load the trained model to predict the
SDC-prone instructions. Thus, the time cost that affected the
user was only the prediction time cost.

Parameter Sensitivity Study  In this section, we discuss the
influence of the number of layers, which is shown in Fig. 12.
The F1 score changed in a larger range as the number of lay-
ers increased compared to transductive learning and N-inputs
training. The largest difference between the maximum and
minimum F1 scores was 0.21. For comparison, the largest
differences were 0.09 (N-inputs) and 0.04 (transductive learn-
ing). Moreover, the model trained using more attention layers
did not show a higher F1 score, which was also different from
the results of transductive learning and N-inputs training.
The models with varying attention layers may concentrate on
different aspects of the fault propagation. Since the test pro-
gram was never observed, more attention layers did not cause
the trained model to predict more fault propagations of the
test program correctly. However, the training time increased

linearly as the number of layers increased. The three-layer
training took 1.8 × the time of the two-layer training. For
the seven-layer model, the training took 4.2 × the time of
the two-layer training. More attention layers did not bring a
higher prediction accuracy, and thus, we can apply the simple
two-layer model to reduce the time cost in practice.

5.3 � Discussion

In this subsection, we discuss the predictive results of the
GATPS (transductive learning, inductive learning trained
by N-inputs and N-programs, and homo graph model).
Figure 13 shows the prediction results for schedule2 by the
GATPS models. We discuss the F1 scores and time costs of
these models.

1.	 F1 scores: transductive learning > inductive learning
(N-inputs) > inductive learning (N-programs)

	  To explain this result, we broadly divide the propaga-
tion knowledge into general knowledge and application-
specific knowledge. General knowledge refers to the
propagation schemes that suit all programs. For example,
if a fault occurs in a dynamically dead instruction, it defi-
nitely results in a benign outcome [4]. Furthermore, many
propagations are related to program-specific knowledge.
For example, faults in the memory address or branch
may cause different behaviors in different programs [16].
The model trained by N-programs can learn only general
knowledge, and the model trained by N-inputs can learn
both general knowledge and application-specific knowl-
edge. Transductive learning directly learns propagation
knowledge from the target program, and its application-
specific knowledge is even more precise than that trained

20

40

60

80

100

120

140

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2 3 4 5 6 7

tr
ai

ni
ng

 �
m

e
co

st
 p

er
 e

po
ch

(s
)

F1
 sc

or
e

number of a�en�on layer L

�me cost schedule2 dfs kmp

Fig. 12   Predictive performance of N-programs inductive model for
various numbers of attention layers

Fig. 13   Comparison of the predictive performances of different mod-
els

318	 Journal of Electronic Testing (2022) 38:303–319

1 3

by N-inputs since different inputs still vary in execution
details.

2.	 Time cost: inductive learning > transductive learning
	  The time cost of the model is largely related to the

scale of the input graphs. The scale of the input graphs
of inductive learning is usually larger than that of trans-
ductive learning, i.e., the input of transductive learning
is one graph and the input of inductive learning is mul-
tiple graphs, so inductive learning often has a higher
training cost. However, the time cost of inductive learn-
ing can be amortized over multiple tests. Once the model
is constructed, we can predict SDC-prone instructions
over other inputs or even programs. Furthermore, train-
ing of inductive learning can be performed before we
know the target program, and the trained model can
be loaded immediately when it needs to predict SDC-
prone instructions of the target program. For transduc-
tive learning, after we know the target program, we have
to conduct fault injections to acquire the labels of the
training set of the target program and perform model
training. Therefore, although inductive learning has a
higher total time cost than transductive learning, it can
provide prediction results in a shorter time than trans-
ductive learning after user provides the target program.

To conclude, we summarize the characteristics of the
transductive learning, inductive learning, and homo graph
models of the GATPS.

•	 The advantage of transductive learning is a high predic-
tion accuracy. The prediction of the SDC-prone instruc-
tions achieved the highest F1 score. The disadvantage is
that it requires a portion of the fault injection results of
the target program before training.

•	 The advantage of inductive learning is that it does not
need to perform injections to the target program, which
enables the decoupling of the vulnerability assessment
from the fault injections. However, its accuracy is lower
than that of transductive learning.

•	 The advantage of the homo graph model is a lower time
cost compared to the heterogeneous graph model. It
requires only 12%–33% time of the heterogeneous graph
model, and its F1 score is 3%–12% lower than those of
the heterogeneous graph model.

To satisfy user demand, different GATPS models can be
used based on the time cost and data provided. We discuss
some typical application scenarios.

•	 If fault injection cannot be conducted on the target
program, we can apply an inductive learning model of
the GATPS. The trained model of N-programs can be
loaded to make predictions.

•	 If SDCs under multiple inputs of one program need to
be predicted, we can apply an inductive model trained
by N-inputs and predict SDC-prone instructions.

•	 If the time cost constraint is strict and the heterogeneous
graph model of the GATPS cannot satisfy the requirement,
the homo graph model can be used to reduce the time cost.

6 � Conclusion

This paper predicts SDC-prone instructions by using a het-
erogeneous graph attention network. To obtain the context
of fault propagation, the embedding of each instruction
is learned by aggregates of its neighbors’ information.
The self-attention mechanism is applied to evaluate the
influences of errors in neighboring nodes. Our approach
is different from previous machine learning approaches
since we perform SDC prediction in an end-to-end manner
instead of using handcrafted features. Experimental results
showed that our model outperformed previous models
applying handcrafted features. We also constructed an
inductive model to predict SDC-prone instructions with-
out any fault injections on target programs, minimizing
the dependence on the fault injections. The advantages,
disadvantages, and typical application scenarios of trans-
ductive learning and inductive learning of the GATPS
models were discussed to provide solutions for different
vulnerability assessment demands.

Our future work will focus on interpretation of the
graph model. Our model learns propagation knowledge to
predict SDC-prone instructions. However, this knowledge
is expressed implicitly, which is not readable for research-
ers. It is helpful to interpret the attention coefficients to
gain insights into the general knowledge of fault propa-
gation. Moreover, by using the instruction embeddings
obtained in this paper we can compute the embeddings for
higher levels (basic block, function or program) to solve
other fault propagation problems such as computing prob-
ability of a corrupt branch affects final output or comput-
ing overall SDC probability for the program.

Funding  This work was funded by the Natural Science Foundation of
China (No.62002030), Key research and development plan project of
the Shaanxi Province, China (No.2019ZDLGY17-08, 2019ZDLGY03-
09–01, 2019GY-006, 2020GY-013).

Data Availability  The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on
reasonable request.

Declarations 

Competing Interest  The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

319Journal of Electronic Testing (2022) 38:303–319	

1 3

References

	 1.	 Abadi M, Barham P, Chen J et al (2016) Tensorflow: A system
for large-scale machine learning. In: Proc. USENIX symposium
on operating systems design and implementation (OSDI). IEEE,
pp 265–283

	 2.	 Benacchio T, Bonaventura L, Altenbernd M et al (2021) Resil-
ience and fault tolerance in high-performance computing for
numerical weather and climate prediction. Int J High Perform
Comput Appl 35(4):285–311

	 3.	 Dixit HD, Pendharkar S, Beadon M et al (2021) Silent data cor-
ruptions at scale. arXiv preprint. http://​arxiv.​org/​abs/​2102.​11245

	 4.	 Fang B, Lu Q, Pattabiraman K et al (2016) ePVF: An enhanced
program vulnerability factor methodology for cross-layer resil-
ience analysis. In: Dependable Systems and Networks (DSN).
IEEE, pp 168–179

	 5.	 Gao Y, Gupta SK, Wang Y et al (2014) An energy-aware fault tol-
erant scheduling framework for soft error resilient cloud computing
systems. In: Proc. Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, pp 1–6

	 6.	 Glorot X, Bengio Y (2010) Understanding the difficulty of training
deep feedforward neural networks. In: Proceedings of interna-
tional conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, pp 249–256

	 7.	 Guo L, Li D, Laguna I (2021) Paris: Predicting application resil-
ience using machine learning. J Parallel Distrib Comput

	 8.	 Hashimoto M, Wang L (2020) Soft error and its countermeasures
in terrestrial environment. In: Proc. Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, pp 617–622

	 9.	 Hari SKS, Adve SV, Naeimi H (2012) Low-cost program-level
detectors for reducing silent data corruptions. In: Dependable
Systems and Networks (DSN). IEEE, pp 1–12

	10.	 Hari SKS, Adve SV, Naeimi H et al (2012) Relyzer: Exploiting
application-level fault equivalence to analyze application resil-
iency to transient faults. In: Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM, pp
123–134

	11.	 Hamilton W, Ying Z, Leskovec J (2017) Inductive representation
learning on large graphs. In: Advances in Neural Information Pro-
cessing Systems (NIPS). IEEE, pp 1024–1034

	12.	 Hong H, Guo H, Lin Y et al (2020) An attention-based graph
neural network for heterogeneous structural learning. In: Proc.
Conference on Artificial Intelligence (AAAI). AI Access Founda-
tion, pp 4132–4139

	13.	 Kalra C, Previlon F, Rubin N et al (2020) Armorall: Compiler-
based resilience targeting gpu applications. ACM Trans Archit
Code Optim 17(2):1–24

	14.	 Laguna I, Schulz M, Richards DF et al (2016) Ipas: Intelligent pro-
tection against silent output corruption in scientific applications. In:
Proc. International Symposium on Code Generation and Optimiza-
tion (CGO). IEEE, pp 227–238

	15.	 Li G, Pattabiraman K (2018) Modeling input-dependent error
propagation in programs. In: Dependable Systems and Networks
(DSN). IEEE, pp 279–290

	16.	 Li G, Pattabiraman K, Hari SKS et al (2018) Modeling soft-error
propagation in programs. In: Dependable Systems and Networks
(DSN). IEEE, pp 27–38

	17.	 Li Z, Menon H, Maljovec D et al (2020) SpotSDC: Revealing the
silent data corruption propagation in high-performance computing
systems. IEEE Trans Vis Comput Graph

	18.	 Li Z, Menon H, Mohror K et al (2021) Understanding a program's
resiliency through error propagation. In: Proc. ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP). ACM, pp 362–373

	19.	 Liu C, Gu J, Yan Z et al (2019) SDC-causing error detection based
on lightweight vulnerability prediction. In: Proc. Asian Confer-
ence on Machine Learning (ACML). IEEE, pp 1049–1064

	20.	 Lu Q, Pattabiraman K, Gupta MS et al (2014) SDCTune: A model
for predicting the SDC proneness of an application for config-
urable protection. In: Compilers, Architecture and Synthesis for
Embedded Systems (CASES). ACM, pp 1–10

	21.	 Luk CK, Cohn R, Muth R et al (2005) Pin: building customized
program analysis tools with dynamic instrumentation. ACM Sig-
plan Notices 40(6):190–200

	22.	 Ma J, Wang Y (2017) Characterization of stack behavior under
soft errors. In: Proc. Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). IEEE, pp 1538–1543

	23.	 Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach
Learn Res 9:2579–2605

	24.	 Schlichtkrull M, Kipf TN, Bloem P et al (2018) Modeling rela-
tional data with graph convolutional networks. In: Proc. European
Semantic Web Conference. Springer, pp 593–607

	25.	 Velickovic P, Cucurull G, Casanova A et al (2018) Graph attention
networks. In: Proc. International Conference on Learning Repre-
sentations (ICLR). IEEE, pp 1–12

	26.	 Xin X, Li ML (2012) Understanding soft error propagation using
efficient vulnerability-driven fault injection. In: Dependable Sys-
tems and Networks (DSN). IEEE, pp 1–12

	27.	 Yang N, Wang Y (2019) Predicting the silent data corruption
vulnerability of instructions in programs. In Proc. International
Conference on Parallel and Distributed Systems (ICPADS). IEEE,
pp 862–869

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Junchi Ma  received the Ph.D. degree in computer science and engi-
neering from Southeast University, China, in 2017. He is currently
working in the school of information engineering, Chang’an Univer-
sity, P. R. China. His research interests include software reliability and
graph representation learning.

Zongtao Duan  received his Ph.D. in computer science from North-
western Polytechnical University, P. R. China in 2006. He is currently
a professor at the school of information engineering, Chang’an Univer-
sity, P. R. China. He was a postdoctoral research fellow in the Univer-
sity of North Carolina, American in 2009-2010. His research interests
include context-aware computing in transportation. He is a member of
CCF, CCF High Performance Computing, and Pervasive Computing
Technical Committee.

Lei Tang  received the Ph.D. degree in computer science and technol-
ogy in 2012. She is currently working in the school of information
engineering, Chang’an University, P. R. China. She was a visiting
researcher at the chair of information systems, Mannheim University,
Germany in 2009-2010. Her research interests include graph represen-
tation learning and intelligent transportation system. She is a member
of ACM, IEEE, and CCF (China Computer Federation).

http://arxiv.org/abs/2102.11245

	Deep Soft Error Propagation Modeling Using Graph Attention Network
	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Graph Construction
	3.2 Attention Layer

	4 Experimental Setup
	4.1 Fault Model & Injection Infrastructure
	4.2 Application Program
	4.3 Parameters Settings for GATPS
	4.3.1 Transductive learning
	4.3.2 Inductive Learning

	4.4 Comparison Baseline

	5 Results
	5.1 Results for Transductive Learning
	5.1.1 Prediction Performance
	5.1.2 Time Cost
	5.1.3 Parameter Sensitivity Study

	5.2 Results for Inductive Learning
	5.2.1 Model Trained by N-inputs
	5.2.2 Model Trained by N-programs

	5.3 Discussion

	6 Conclusion
	References

