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Abstract
Soft errors are increasing in computer systems due to shrinking feature sizes. Soft errors can induce incorrect outputs, also 
called silent data corruption (SDC), which raises no warnings in the system and hence is difficult to detect. To prevent SDC 
effectively, protection techniques require a fine-grained profiling of SDC-prone instructions, which is often obtained by 
applying machine learning models. However, these models rely on handcrafted features, and lack the ability to reason about 
SDC propagation, which leads to an inferior SDC prediction performance. We propose a novel Graph Attention neTwork  
to Predict SDC-prone instructions (GATPS). The GATPS representation is a heterogeneous graph with different types of 
edges to represent various instruction relations. By stacking layers in which nodes are able to attend over their neighborhoods’ 
features, GATPS automatically captures the structural features that contribute to SDC propagation. The attention mechanism 
is applied to compute the importance values to the neighboring nodes, which quantifies the fault effect on the neighboring 
nodes. Moreover, the inductive model of GATPS can be applied to unseen programs without retraining, and it requires no 
fault injection information of the target program. Experiments revealed GATPS achieved a 34% higher F1 score compared 
to the baseline method and a 40-fold speedup compared to the fault injection approach.

Keywords  Silent Data Corruption · Soft Error · Graph Neural Network · Attention Mechanism · Inductive Learning

1  Introduction

Soft error is one of the major issues future computing sys-
tems face [8]. Researchers have witnessed unacceptably high 
failure rates when running scientific workloads on ground-
level cloud or grid systems [5]. One outcome of soft errors is 
silent data corruption (SDC), which means corrupted output 
is produced without any trace of failure, representing the 
worst case scenario for a resiliency solution [15]. Due to no 
trace of failure, SDC is difficult to detect [18]. When cor-
rupted output are used to make decisions in areas such as cli-
mate [2], it can lead to catastrophic consequences. Facebook 
observes that CPU SDCs in global data centers are orders of 
magnitude higher than soft-error based simulations [3]. With 
increased silicon density and technology scaling, methods 
should be invested to counter these issues.

Researchers have demonstrated that a small proportion 
of the instructions contribute to a majority of SDCs [26], 
which facilitates selective instruction duplication techniques 
to protect only partial instructions to maximize the SDC 
coverage with low performance overhead [13, 17]. A precise 
profiling of the SDC-prone instructions is required before 
deciding which instructions should be protected. This is the 
goal of our work.

The straightforward way to achieve the goal of profiling 
the SDC-prone instructions is using fault injections [10], 
which is often implemented by software to emulate faults at 
assembly level. Real-world programs may consist of millions 
of dynamic instructions, which makes fault injections very 
time-consuming. Performing pure fault injection to deter-
mining whether each instruction of a program is SDC-prone 
is too expensive to be practical.

There has been a series of work focused on predicting 
SDCs to minimize the injection overhead [14, 19, 27]. 
Fault injections are applied to a portion of instructions in a 
program to create a training set to fit the parameters of the 
machine learning model. The model is then used to conduct 
predictions on the other instructions. The input of machine 
learning model is the structural features which describe the 
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fault propagation context of an instruction. The structural 
features are important to build an effective machine learning 
model. Usually the structural features are instruction statis-
tics extracted by analyzing the assembly file [14].

Unfortunately, such approaches have two inevitable short-
comings. First, researchers have to decide what informa-
tion summarizes the context of an instruction in a way that 
may be useful in describing the fault propagation process. 
The occurrence of SDC has been revealed to be affected 
by complicated semantics including static data dependency 
[16], control flow [20], memory layout [15], etc. These prior 
approaches are not capable of describing the complicated 
semantics, and thus leading to inaccurate analytical mod-
els for fault propagation. Second, these approaches lack 
the ability of generalization, i.e., the trained model cannot 
be used to predict unseen programs, so the model has to 
be trained individually by using the fault injection data for 
each program. The major time cost is related to the size of 
the training set, determining how many fault injections are 
conducted. For example, the percentage of the instructions 
required to generate a training set for proPV model is 60% 
[27], thus the total time cost is at least 60% of the time cost 
of full fault injections, which may still be too high for large-
scale programs.

To address the first shortcoming, graph neural network 
(GNN) can remove human involvement from SDC predic-
tion task. In this paper, we apply the Graph Attention neT-
work to Predict SDC-prone instructions (GATPS) model. 
We see the program as a graph, and see the instruction as a 
node. Low-dimensional embeddings of nodes are learned 
during training and used for predicting SDC proneness of 
the corresponding instruction. Therefore, the task of SDC-
prone instruction prediction is transferred to node classifica-
tion in a graph neural network. Compared to prior work, the 
significant difference is that GATPS does not define explicit 
structural features. GATPS learns the hidden structural fea-
tures by aggregation of the neighboring nodes’ features. 
To reason about fault propagation, we utilize an attention 
strategy to quantify the fault effect on the instructions. The 
self-attention strategy can evaluate the contributions of 
neighboring nodes to the fault propagation. To model the 
different effects of the data flow and control flow, we apply 
heterogeneous graphs to represent the various types of rela-
tions between the instructions and train separate attention 
coefficients for different types of edges.

To address the second shortcoming, we then extend our 
GATPS model to the task of inductive learning to make pre-
dictions for an unseen program, i.e., the testing program 
remains completely unobserved during training. The learned 
knowledge of the soft error propagation is transferable to 
other programs, and thus, the trained model can be used to 
predict SDC-prone instructions of other programs. Since the 
training set is not related to the target program, the inductive 

model does not require any fault injections on the target pro-
gram. By applying the inductive model, we can decouple the 
vulnerability assessment from fault injections, which facili-
tates quick and accurate instruction vulnerability estimation.

In summary, the main contributions of this paper are as 
follows:

1.	 We propose GATPS, which applies a graph attention 
network framework to obtain an accurate profiling of 
SDC-prone instructions. The model automatically cap-
tures structural features of instructions by aggregating 
neighboring information. Our approach achieves an end-
to-end manner of learning, minimizing the influence of 
researchers’ understandings of fault propagation.

2.	 The inductive learning of GATPS is designed to conduct 
predictions without fault injections on target programs, 
thus enables decoupling of the vulnerability assessment 
from the fault injections. This technique eliminates the 
requirement of fault injections on target programs for 
vulnerability assessment.

3.	 The results of transductive learning, inductive learn-
ing, and the homogeneous GATPS graph model are 
compared, and the advantages and suitable application 
scenarios are discussed. We also propose a customized 
SDC prediction strategy based on provided data and 
user requests. In particular, when lacking fault injection 
information of the target program, we can still obtain a 
relatively high prediction accuracy.

2 � Related Work

In order to predict the SDC vulnerability of instructions, 
prior work has employed classification and regression tree 
(CART) [27], deep forest regression [19], and support vec-
tor machine (SVM) [14]). The structural features, used as 
the input of machine learning algorithms, were defined by 
researchers to depict the context of fault propagation. We 
enumerate the structural features defined by prior work 
in Table 1. These structural features can be categorized 
into basic block(bbl, denotes a single entrance, single exit 
sequence of instructions), function, and data-chain based on 
the granularity of code.

IPAS defined the structural features in terms of the num-
ber of instructions (#inst) in a scope of bbl or local function 
[14]. #inst reflected the distance between the fault activa-
tion site and the end of the bbl or function. However, many 
intermediate instructions included in #inst were probably 
irrelevant to the fault propagation. For example, nop instruc-
tion does nothing during execution and it does not partici-
pate in the fault propagation. To address this issue, features 
describing the data dependence were introduced. The fault 
propagation paths could be dissected in the perspective of 
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data flow which revealed the data-dependent instructions. 
DFRMR proposed new structural features whether the result 
of instruction was supplied to any address-related instruc-
tions [19]. An erroneous address was probably to result in a 
crash, so introducing the address-related features helped to 
filter out crash-prone instructions. proPV defined the con-
nector instructions [27], which operated returned values of 
invoked functions, function parameters, or global variables. 
These variables represented the data transfer between func-
tions, so the correctness of connector instructions reflected 
the fault propagation between functions. Whether the fault 
activated in one function propagated to other functions was 
determined by checking the status of related connector 
instruction. PARIS constructed features based on six resil-
ience computation patterns (such as dead locations, repeated 
addition, conditional statements, and data truncation) related 
to application resilience [7]. These patterns may not be able 
to cover all propagation situations yet. SDCTune constructed 
a classification tree to categorize the stored values by identi-
fying whether they were used for addressing or comparison 
operations [20]. Linear regression was applied upon certain 
leaf nodes of the classification tree which contained continu-
ous features such as data width to compute the probability 
of it causing SDC.

These works selected various structural features to 
dissect the propagation context. To date, these structural 
features were chosen based on researchers’ understand-
ing of fault propagation. However, high accuracy loss 
illustrated that the handcrafted features may not cover the 
valuable information for predicting SDC. The proposed 
structural features depicted certain aspects of the data flow 
or control flow of a program, but they were not adequate 
to depict the propagation of SDC. Many factors that were 

validated to have effects on SDC (such as application-
specific behaviors [9] or stack behaviors [22]) were not 
included in aforementioned features. It can be inferred that 
there probably exist more obscure factors that contribute 
to SDC. Enumerating exhaustively valuable structural fea-
tures tends to be impractical. How to depict the execution 
context of instruction for predicting SDC proneness still 
remains unsolved.

GNN has been successfully applied to tackle problems 
such as node classification and community discovery. Mes-
sage passing methods were widely adopted by GNN to learn 
node embeddings by aggregating the information from the 
target node’s neighbors. GRAPHSAGE learned the topo-
logical structure of each node’s neighborhood as well as 
the distribution of node features in the neighborhood [11]. 
GRAPHSAGE applied a message passing method of uni-
formly sampling one node’s neighbors, and in many graph 
applications each neighbor may contribute differently. To 
address this shortcoming of GRAPHSAGE, graph attention 
network (GAT) explored attention mechanism, enabling 
assigning different importance values to different neighbors 
[25]. To perform graph embedding in heterogenous graphs, 
heterogeneous graph structural attention neural network 
(HetSANN) proposed a type-aware attention layer which 
jointed different types of neighboring nodes [12]. Relational 
Graph Convolutional Networks (R-GCN) used multiple 
weight matrices to project the node embeddings into differ-
ent relation spaces to capture the edge heterogeneity [24].

We find GNN is suitable to solve above problems. Mes-
sage passing methods for GNN can be used to extract the 
complex context of instruction. Moreover, attention mecha-
nism is appropriate to learn the fault propagation probabili-
ties automatically. The embedding for each node can reflect 

Table 1   Structural features defined by related work

Structural Features proPV DFRMR IPAS SDCTune PARIS

Basic block level #inst of the bbl √ √ √
#remaining inst √ √ √
#cmp inst √
#branch inst √ √

Function level #inst of the function √
#remaining inst to ret inst √
#bbl of the function √
#successor bbl √ √ √
#predecessor bbl √

connector inst √
Data flow level whether

the inst
data feeds

cmp inst √ √
store inst √ √
shift inst √
add inst
address-related inst √
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both the attribute feature of the corresponding instruction 
and its execution context.

3 � Model

We use the code example in Fig. 1 to explain a fault propaga-
tion process and present our model. A simple snippet of code 
is shown in subgraph (a), which computes the summation 
of array A. The assembly code is shown in subgraph (b). 
An error in one instruction either propagates to downstream 
instructions or stops to propagate. We take the propagations 
between instructions 5 → 6, 2 → 3, 7 → 8 as an example. 
Instruction 6 directly loads the execution result of instruction 
5 ([ebp-0 × 8]). When a soft error activates in instruction 5, 
the error propagates to instruction 6. For the propagation 2 
→ 3, since the result of instruction 2 is used for addressing 
by instruction 3, it is likely that the corrupted address causes 
a crash and the fault propagation is ended. For the propaga-
tion 7 → 8, instruction 7 conducts a comparison operation 
and affects the consequent branch instruction jl. The error 
in instruction 7 may not change the comparison result so the 
error is masked which ends the fault propagation. For exam-
ple, [ebp + 0xc] = 10, eax = 2, the least significant bit of 
eax is flipped from 0 to 1, changing its value to 3. However, 
eax < [ebp + 0xc], so it still selects L1 branch. To conclude, 
due to the different relations, the effects of fault propagations 
5 → 6, 2 → 3, 7 → 8 vary. So a heterogeneous graph net-
work is a natural way of representing multi-relational fault 
propagations. We build a graph shown in subfigure (c). Each 
node in the graph represents a dynamic instruction and the 
edge represents the relation between instructions. Different 
types of edges are used to represent the different relations 
between (5,6), (2,3) and (7,8), which is denoted by different 
colors. We also use edge weight to denote the fault effects, 
which can be learned automatically by attention mechanism.

In this paper, we intend to learn the low-dimensional 
embeddings for each node and apply it for downstream 

node classification tasks. Although there are various GNN 
models, they can be broadly grouped into transductive learn-
ing and inductive learning models. A transductive model 
must see the entire graph structure during training to pro-
duce node embedding vectors, which implies that the model 
needs to be retrained when the graph structure changes. In 
contrast, an inductive model learns general knowledge via 
aggregation function, which collects attribute information 
from neighbors without knowing the whole graph structure. 
Thus, the trained inductive model can be directly applied to 
unseen graphs without retraining. Specifically, transductive 
learning requires SDC labelling of instructions of a target 
program for training, so fault injections need to be conducted 
on the target program. Inductive learning does not require 
fault injections on the target program. The inductive model 
can extract a generalized mechanism of SDC propagation 
and apply it to an unknown program.

We construct both a transductive model and an inductive 
model to predict SDC-prone instructions. Figure 2 shows the 
overall framework of our proposed GATPS model. The input 

Fig. 1   Example of fault propagation and proposed graph representation

Fig. 2   Overall framework of GATPS (Graph Attention neTwork to 
Predict SDC-causing instructions) model
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of GATPS is the source code of program and SDC labels, 
and the output is the SDC prediction of instructions. The 
processing of GATPS can be divided into data collection 
and graph computation. As we apply both the transductive 
and inductive models, the data collection phases of these 
two approaches are different. For the transductive model, we 
apply partial fault injections on the target program to obtain 
the training dataset (experiments showed that 30% was suf-
ficient to obtain a stable prediction accuracy), and for the 
inductive model, we inject arbitrary programs, which do not 
include the target program. Our inductive model is able to 
learn the general propagation knowledge and apply it on the 
target program. The graph computation is processed through 
L attention layers, which are described in detail in Sect. 3.2. 
The output of the previous attention layer is fed to the next 
attention layer. The output of the final attention layers is then 
supplied to the softmax function to predict the node label.

In this section, we present the attention layer used to con-
struct graph attention networks and the final layer for node 
classification.

3.1 � Graph Construction

A graph comprises a set of nodes V and a set of edges E 
between nodes, denoted as G = (V, E) . Each node represents 
an executed instruction and also defines a computational 
graph based on the neighboring nodes. Edges are typed to 
differentiate instruction relations and we denote the edge 
types by A . An edge e is mapped to a certain type pϵA by 
using ϕ(e) = p , where ϕ is the mapping function from E to 
A . We consider following four types of edges.

1.	 Branch relation. The relation depicts the impact of 
branch instructions on the its consequently executed 
instructions. If eij satisfies branch relation, instruction 
i has to be a branch instruction, and instruction j is i’s 
consequent instruction. When the branch instruction i is 
affected by soft error, an incorrect branch may be taken 
during execution and affects instruction j.

2.	 Addressing relation. If the destination operand of 
instruction i is used for addressing by instruction j, eij 
satisfies addressing relation, 2 → 3 in Fig. 1 is an exam-
ple of addressing relation.

3.	 Logical relation. The conditional jump instruction 
decides whether to take the branch by checking the sta-
tus register eflags, and the value of eflags is determined 
by the comparison result of cmp instruction. We have 
given an example of logical relation 7 → 8 in Fig. 1 and 
show that flipping the operand value does not affect the 
value of eflags. The logical relation may lead to masking 
the error of cmp instructions.

4.	 Define-use relation. If instruction j reads the data that 
instruction i writes, then eij satisfies define-use relation. 

To distinguish from other relations, the data operated by 
instruction j is neither eflags nor used for addressing.

These edge types cover major instruction relations, which 
are used in analyzing SDC propagation [15, 16, 20]. We 
show these types of edges by using different colors in Fig. 1. 
The branch relation describes the control flow propagation, 
and the other three relations describe data flow propagation. 
Faults in data used for addressing relations cause crashes 
easily since they likely generate invalid addresses. Faults 
in data used for logical relations may not cause different 
values of eflags and thus can easily cause benign outcomes. 
Therefore, these relations vary significantly in the patterns of 
propagating to incur SDC, which facilitates reasoning about 
SDC propagation. The attention strategies are designed for 
the aggregation of neighboring nodes with different edge 
types separately.

We construct the graph by using the traces of dynamic 
instruction in the execution, and detailed information is 
shown in Algorithm 1. The dynamic instructions’ execu-
tion information can be recorded by using injection tool. 
Each time we take one trace item, and generate node and 
edges corresponding to the trace item. The types of edges 
are determined by checking which definition of edge relation 
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matches the dynamic instruction’s operation. If the instruc-
tion is branch instruction, we create an edge between the 
branch instruction and each instruction in the consequent 
basic block (line 3–6 in Algorithm 1). Then we use last_
write(r) to record the instruction that last writes the r (reg-
ister or memory location), thus we are able to create con-
nection between the last instruction that writes r and the 
instruction that reads r. For example, if r is base register 
(used for addressing), the edge is categorized as addressing 
relation. Thus new edges are generated and categorized into 
addressing relation, logical relation and define-use relation 
(line 7–21 in Algorithm 1).

3.2 � Attention Layer

In this subsection, we describe the structure of a single atten-
tion layer. The number of nodes of single layer equals to 
the number of dynamic instructions. Multi-head attention 
mechanism is employed by each attention layer for the sta-
bilization of the learning process of self-attention.

The input to the first layer is a set of node features, 
h = {h

(0)

0
, h

(0)

1
,… , h

(0)

N
} , h(0)

j
∈ ℝ

F , where N is the number of 
nodes, and F is the number of attribute features in each node. 
The attribute features contain two indices, representing the 
opcode and the destination operands of the corresponding 
instruction. The opcode denotes how the instruction affects 
data or execution of other instructions, and the destination 
operands denote which data the instruction affects. The desti-
nation operands we consider include the registers eax, ebx, ecx, 
edx, esi, edi, ebp, esp, eflags, and eip. If the instruction uses an 
8-bit register, such as ah, or the 16-bit register ax, we translate 

it to 32-bit eax. The registers are encoded as unique one-hot 
vectors. The opcode and destination operands of each instruc-
tion are converted to a vector by searching the embedding 
table.

The workflow of an attention layer in the GATPS is shown 
in Fig. 3. We consider a node jϵV represented as h(l)

j
 in the l-th 

layer. h(l+1,m)

j
 denotes node j’s hidden state outputted by the 

attention head m of the (l + 1)-th attention layer. Each attention 
layer performs a transformation operation and an aggregation 
operation of neighborhood. To accumulate from the node’s 
previous layer representation, we add an identity matrix to the 
adjacency matrix, thus adding virtual self-loops to the graph. 
We use Nj to denote the neighbors of node j in the graph, after 
adding self-loops Nj = {i, j, q, r}.

As an initial step, a shared linear transformation parameter-
ized by a weight matrix, W(l+1,m)

ϕ(eij)
 , is applied to each neighbor-

ing node i ∈ Nj as follows:

where h(l+1,m)

i,eij
 is the projection from layer l’s embedding to 

the space of node i in the (l + 1)-th attention layer of the m-
th head. For the first layer, the input embedding represents 
the attribute features, and the weight matrix W(2,m)

ϕ(eij)
∈ ℝ

F
�
×F , 

where F’ is the number of features in each node after linear 
transformation. For the other layers, W(l+1,m)

ϕ(eij)
∈ ℝ

F
�
×F

�

 . Note 
that the weight matrix W(l+1,m)

ϕ(eij)
 also consider the type of edge 

since the equation contains ϕ(eij) . As shown in Fig.  3, 
ϕ(eij) = ϕ(erj) = define-use relation, eij and erj share the same 
weight matrix W(l+1,m)

ϕ(eij)
.

(1)h
(l+1,m)

i,eij
= W

(l+1,m)

ϕ(eij)
h
(l)

i
,

Fig. 3   Workflow of an attention layer in GATPS
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We then perform self-attention mechanism to learn a 
representation for each node. The self-attention mechanism 
computes the interaction between input node features. 
Applying such mechanism makes it possible to concentrate 
more on important node features. The self-attention mecha-
nism yields aggregates of the interactions and attention 
coefficients. The attention mechanism a ∶ ℝ

F
�

×ℝ
F
�

→ ℝ 
is a dot-product function and shared by the edges of the 
same type. In Fig. 3, eij and erj share the same attention 
parameter a(l+1,m)

ϕ(eij)
= a

(l+1,m)

ϕ(erj)
.

where σ is a LeakyReLU(.) activation function. The attention 
coefficient o(l+1,m)

eij
 indicates the importance of node i to the 

target j. For the downstream prediction task, the importance 
denotes the fault effect of instruction i on the instruction j 
through the fault propagation path eij . The learning of impor-
tance quantifies the fault effects on the neighboring nodes. 
Moreover, since the attention coefficients are trained for each 
type of edge, the model is able to characterize various pat-
terns of fault propagations. We perform masked attention to 
apply the real graph structure, which only computes the node 
embedding if two nodes are connected. To make importance 
values comparable across different nodes, normalization is 
performed on these importance values across all edges to 
node j by using a softmax function:

With the weights of each edge associated with node j, 
the aggregation for node j can be performed as

After computing the representations under M attention 
heads, the representations of node j are concatenated, and 
then outputted by the (l + 1)-th attention layer:

where h(l+1)
j

∈ ℝ
MF

�

 and || denotes the concatenation operation. 
The low-dimensional representations outputted by the final 
layer is then used for prediction. For the final layer, we average 
the representations under M attention heads as follows:

For SDC prediction task, a softmax function is applied 
in the end to produce the outcome labels. The softmax 
function outputs probability of incurring each outcome 
class (SDC, benign, crash and hang). Using labeled data, 
we minimize the cross-entropy loss:

(2)o(l+1,m)
eij

= σ
(
a
(l+1,m)

ϕ(eij)
(h

(l+1,m)

i,eij
, h

(l+1,m)

j,eij
)
)
,

(3)α(l+1,m)
eij

= e
o
(l+1,m)
eij ∕

∑
k∈Nj

e
o
(l+1,m)
ekj .

(4)h
(l+1,m)

j
= σ(

∑
k∈Nj

α(l+1,m)
ekj

h
(l+1,m)

j,ekj
).

(5)h
(l+1)

j
= ‖m=1Mh

(l+1,m)

j
,

(6)h
(l+1)

j
=

1

M

∑M

m=1
h
(l+1,m)

j
.

where yj is the outcome class label gained from fault injec-
tion, and 

∼
yj is the predicted class label for node j. Vl denotes 

the set of labeled nodes.

4 � Experimental Setup

4.1 � Fault Model & Injection Infrastructure

We considered a single bit flip that occurred in the regis-
ter file or memory. The dynamic instrument framework Pin 
was used to build fault injector tools [21]. Pin is a dynamic 
binary instrumentation framework for the IA-32 and × 
86–64 instruction-set architectures, facilitating the creation 
of fault injection tools. During each run of fault injection, 
we altered one bit of the destination operand of the target 
instruction. A total of over 760,000 fault injections were 
performed in the experiment. The experiment was conducted 
on a rack server with an Intel(R) Xeon(R) CPU E5-2690 v3 
processor operating at 2.60 GHz with 256 GB of memory.

The definitions of injection outcomes are shown in 
Table 2. The error code was recorded after execution to deter-
mine the causes of the crash. A successful execution returns 
0, while an unsuccessful execution returns a non-zero value. 
For example, error code 139 denotes segmentation error.

The classes of outcomes were represented by one-hot 
encoding such that the shape of the tensor of classes was 
1 × 4. For example, if the outcome was SDC, the outcome 
was encoded as [1,0,0,0]. A dataset with labels which denote 
the outcome was generated after processing the data of fault 
injections.

4.2 � Application Program

We chose six benchmarks from Siemens benchmark suite. 
The benchmarks included replace (which performed string 
matching and replacement), schedule and schedule2 (which 
performed management of scheduling), print_tokens and 

(7)L = −
∑

j∈Vl

yj log
∼
yj,

Table 2   The definition of injection outcomes

EC Error code, OFF Output in fault-free execution, ET execution 
time

Category Definition Criteria

Benign the program produces the correct output EC = 0 &
Output = OFF

SDC the program produces an erroneous 
output

EC = 0 &
Output ≠ OFF

Crash the program stops execution EC ≠ 0
Hang the program cannot finish execution ET > threshold
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print_tokens2 (which performed lexical analysis), and tot_info 
(which computed statistics for the input data). The classical 
algorithm dfs (which performed a deep first search on the 
map) and kmp (string-searching algorithm) were used to test 
the model. These programs contained several hundred lines 
of code with large test suite, and applied the C output function 
printf to print the output. The statistics of programs are shown 
in Table 3. We performed fault injections on 11 separate 
inputs of schedule2 to determine if our inductive model could 
learn from the results of the different inputs. The SDC rates 
were statistically significant with an error bar ranging from 
0.94% (kmp) to 0.31% (dfs) at the 95% confidence intervals.

4.3 � Parameters Settings for GATPS

4.3.1 � Transductive learning

We adopted a GATPS model with L = 2, where L rep-
resented the number of attention layers. The first layer 
employed 8 attention heads and outputted F’ = 8 features. 

ELU nonlinearity was applied as the activation function. The 
second layer was used to predict the outcome with a single 
attention head. All model was implemented in TensorFlow 
(version 1.14.0) with the Adam optimizer [1]. The learning 
rate was set to 0.005. The attention coefficients are initial-
ized by Glorot initialization [6].

We split the labeled dataset obtained from the fault injec-
tions evenly split into a training set, validation set, and test 
set. We selected the one with best performance in the vali-
dation set and then evaluated them on the test set. For all 
models, the average performance of five repeated processes 
was calculated. We ran 100 epochs for the models.

4.3.2 � Inductive Learning

For the inductive learning task, we applied a three-layer 
GATPS model. The first two layers consisted of M = 4 atten-
tion heads computing F’ = 8 features, followed by an ELU 
nonlinearity. The final layer applied single attention head 
followed by a softmax activation function for classification. 
The attention coefficients are initialized by Glorot initializa-
tion [6]. The training sets for this task were sufficiently large, 
and we found no need to apply L2 regularization or dropout. 
We utilized a batch size of one graph during training. The 
inductive models were trained for 100 epochs.

4.4 � Comparison Baseline

We compared to IPAS and proPV, two state-of-the-art 
machine learning models to predict SDC-prone instructions. 
IPAS applied SVM with a radial basis function kernel [14] 
and proPV applied a CART algorithm with the gini criterion 
[27]. The input features for the baseline machine learning 
algorithms comprised the structural features listed in Table 1 
and the attribute features of the instruction. The attribute 
features mainly contained the instruction type and the size 
of the instruction’s return value. The training ratio was set 
to the same configuration of GATPS model.

To evaluate the benefits of applying heterogeneous graphs 
in the model, we provided the results when a homogeneous 
graph (GATPS-homo) was applied, i.e., no types of edges 
were considered. Moreover, to evaluate the benefits of apply-
ing an attention mechanism in this setting, we also provided 

Table 3   Statistics of programs studied in our experiments

Program #nodes #edges #faults
injected

replace 6958 18191 33030
schedule 6809 16380 43660
print_tokens 2904 6995 18490
print_tokens2 5067 11394 33760
tot_info 5045 11486 18930
kmp 1360 2527 7520
dfs 12001 23508 66360
schedule2
(under 11 separate 

inputs)

6651 15664 39250
9166 17317 51740
10003 18857 56330
8703 16197 46880
9897 18592 53920
10387 19907 60640
9462 17462 50010
9356 17360 49750
8330 15419 44050
5280 10203 32450
10213 19538 59370

Table 4   Performance indices of 
SDC prediction

Indices Description

TP True positive: # of pairs correctly classified as SDC-prone inst
FP False positive: # of pairs incorrectly classified as SDC-prone inst
FN False negative: # of pairs incorrectly classified as non-SDC-prone inst
precision precision = TP/(TP + FP)
recall recall = TP/(TP + FN)
F1 F1 = 2*precision*recall/(precision + recall)
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the results when a constant attention mechanism (GATPS-
const) was used with the same architecture–this assigned the 
same weight ( a(l+1,m)

ϕ(eij)
 = 1) to every neighbor.

5 � Results

We adopted the precision, recall, and F1 score, which were 
commonly used metrics, to measure the prediction results. 
The false positive cases caused increased detection costs 
(duplication instructions), and the false negative cases 
caused a decrease in the SDC coverage. The F1 score con-
siders both the SDC coverage and detection cost, ensuring a 
fair comparison between these techniques. The definitions 
are shown in Table 4.

5.1 � Results for Transductive Learning

5.1.1 � Prediction Performance

Table 5 shows a comparison of the results of our models 
with other baselines. Our model achieved the highest preci-
sion, recall, and F1 score for all studied programs. The aver-
age F1 score of the GATPS was 0.88. The average precision 
of our model was 52% higher than that of IPAS and 34% 
higher than that of proPV. Moreover, the average F1 score of 
our model was 44% higher than that of IPAS and 34% higher 
than that of proPV, showing that employing a framework of 
graph neural network can be beneficial.

The comparison of GATPS, GATPS-const, and GATPS-
homo showed that utilizing the attention mechanism and 
heterogeneous graph improved the prediction accuracy. The 
GATPS model improved the F1 score by 20% compared to 
the GATPS-const model (the identical architecture with con-
stant attention mechanism), directly demonstrating the sig-
nificance of being able to assign different weights to differ-
ent neighbors. Moreover, the average F1 score of the GATPS 
model was 12% higher than the GATPS-homo model with 
the input of the homogeneous graph, which indicated that 
the heterogeneous graph yielded a better representation 
of the various types of fault propagation. Various types of 

edges in the heterogeneous graph were naturally modeled in 
distinct spaces, which preserved the semantics of the differ-
ent relations between the nodes.

The learned node embeddings can be visualized by 
t-SNE tool [23], which is straight-forward to find out how 
successful is the prediction results. The inferred node 
embeddings were embedded into a two-dimensional space. 
The SDC prediction results of the program schedule2 are 
presented in Fig. 4. Color of node represented the out-
come class. Red nodes represented the real SDC-prone 
instructions obtained in the fault injections. The points 
which were close to one another in the high-dimensional 
prediction results tended to be close to one another in the 
t-SNE plot. Figure 4 showed discernible clusters in the 
projected 2D space, that points from the same outcome 
class (e.g. red nodes) tended to be grouped close to one 
another. Figure 4 demonstrates GATPS’s ability to learn 
meaningful embeddings for the fault propagations and 
make good predictions on SDC.

Moreover, we visualize the attention coefficients to show 
how GATPS discriminates between fault propagations. 
Attention coefficients are the key parameters that quantify 

Table 5   Comparison of results for SDC prediction in datasets

The bold values are the highest value among all results

Dataset print_tokens replace schedule schedule2 print_tokens2 tot_info

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

GATPS 0.89 0.98 0.93 0.84 0.90 0.87 0.88 0.81 0.84 0.87 0.90 0.88 0.83 0.79 0.81 0.94 0.95 0.94
GATPS-homo 0.71 0.98 0.82 0.72 0.72 0.72 0.70 0.69 0.70 0.84 0.77 0.81 0.74 0.68 0.70 0.83 0.96 0.89
GATPS-const 0.49 0.88 0.63 0.57 0.63 0.60 0.68 0.55 0.61 0.75 0.71 0.73 0.58 0.58 0.58 0.82 0.96 0.88
IPAS 0.50 0.93 0.65 0.28 0.25 0.27 0.24 0.38 0.33 0.23 0.62 0.34 0.23 0.37 0.29 0.66 0.82 0.73
proPV 0.49 0.54 0.51 0.62 0.40 0.49 0.44 0.42 0.43 0.58 0.57 0.58 0.46 0.59 0.52 0.64 0.83 0.72

Fig. 4   t-SNE plot of the computed feature representations of the 
GATPS’s final layer on the schedule2 program. Node colors denote 
outcome classes
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the fault propagations from one node to another (described 
in Sect. 3.2). The variations of the attention coefficients 
of attention head 0 for schedule2 are shown in Fig. 5. The 
edge thickness indicates the aggregated normalized atten-
tion coefficients between the two nodes. A thicker edge 
means a larger attention coefficient, i.e. a stronger influence 
on the neighboring node. The thicknesses of the edges var-
ied significantly, which showed that the effect of the fault 
propagation between two nodes could be effectively learned 
by the attention mechanism. Figure 5 also shows how our 
model treats different types of edges. In Fig. 5, different 
colors denote different edge types. The red color denotes the 
define-use relation, which obtains the highest proportion of 
occurrences of all the types of edges. For each type of edges, 
an attention coefficient is calculated so that one node may 
have multiple types of edges connecting to its neighbors, 
also these edges vary in thickness.

Moreover, to gain insight into how the attention mecha-
nism treats different neighbors from an entire graph perspec-
tive, the distribution of the entropy of the attention coeffi-
cients is introduced, defined as follows:

Intuitively, the entropy value characterizes how the 
uncertain node learns from its neighbors. Small entropy 
values indicate that the node learns heavily from a few 
neighbors. If we use Fig. 5 to illustrate the entropy value, 
small entropy values correspond to uneven attention coef-
ficients, which means the node has edges differing in thick-
ness significantly. A uniform distribution of attention coef-
ficients corresponds to the highest entropy value log|Nj| , 

(8)H

(
{�(l,m)

eij
}
i∈Nj

)
= −

∑
i∈Nj

�
(l,m)
eij

log �
(l,m)
eij

.

which means node with edges of equal attention coefficient 
(thickness). Due to the attention coefficients are set to the 
same constant value, the attention coefficients of GATPS-
const follow a uniform distribution.

Figure 6 shows the entropy distribution of the eight 
attention heads of layer1 of the schedule2 program. The 
x-axis of each subfigure shows the entropy values, and 
the y-axis shows the number of nodes. We introduce the 
entropy distribution of a uniform distribution of the atten-
tion coefficients as a baseline for other distributions. The 
last subfigure of Fig. 6 depicts the distribution of entropy 
of a uniform distribution of the attention coefficients. 
Compared to a uniform distribution, some attention heads 
(such as head 2, 5, and 7) had relatively low entropies. 
Thus, by applying these attention heads, the nodes learned 
from a few neighbors. Head 3 had a high entropy distribu-
tion, and thus, the nodes learned more equally from their 
neighbors than head 2, 5, 7. Two major findings could be 
concluded from Fig. 6. First, the distribution of attention 
coefficients for each attention head differed from that of 
assumed uniform distribution, which indicated that each 
attention head learned unevenly from node’s neighbors. 
Second, the distributions of the entropies of the attention 
heads varied. Therefore, each attention head learned in 
a different manner and concentrated on various aspects 
of propagation. It is necessary to apply multi-head atten-
tion mechanism to make it possible to observe the various 
aspects of propagation. It is probable that certain attention 
heads reflect the intrinsic propagation semantics, such as 
data truncation or repeated addition [7]. The interpreta-
tion of the attention coefficients will be a subject of future 
work.

The F1 score of IPAS was lower than GATPS and proPV. 
The prediction process of IPAS was analyzed. If the instruc-
tions to be predicted were the same type of instruction and 
in the same bbl, the structural features might vary in only 
few items, incurring similar prediction results. The experi-
ment of the benchmark replace showed that 99% of the 
mov instructions within the same bbl had the same predic-
tion result. For example, mov %esp,% ebp, and other mov 
instructions within one bbl might obtain the same predic-
tion result. However, mov %esp, %ebp affected the stack 
base pointer ebp, which likely led to the abnormal behav-
ior when it needed to restore the return address and finally 
caused crash. After investigating the injection results, we 
found that mov %esp,% ebp obtained a crash rate of 100%, 
and other mov instructions obtained a crash rate of 42% and 
a SDC rate of 22%. Therefore, the probable reason for IPAS 
obtained a low F1 score is failing to discriminate between 
the instructions of the same type within one bbl. Due to the 
aggregation of neighboring nodes, our model could accu-
rately discriminate the structural differences of the same 
type of instructions.

Fig. 5   Representation of attention coefficients of GATPS’s atten-
tion head 0 on the schedule2 program. Edge color denotes the type 
of edge (blue: branch, green: addressing, yellow: logical, red: define-
use)
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proPV did not take into account the types of relations 
between instructions, so it could not differentiate between 
types of relations. proPV examined if an instruction had 
downstream connector instructions to propagate faults to 
other functions. However, it failed to further describe the 
patterns of propagation in which the dependent instruc-
tions were affected. As showed in Sect. 3, the effects of 
fault propagations varied significantly due to different rela-
tions. For example, after examining the prediction results 
of proPV, we found many false positive cases were because 
the proPV model mistakenly classified the instructions 
which produced data for addressing as SDC. The results 
of the program tot_info showed that 22.6% of the address-
generating instructions were not correctly predicted, which 
incurred crash in the fault injections and were predicted as 
SDC-prone. As we showed in the incorrect cases, hand-
crafted features tended to be weak for describing the com-
plex propagation context.

5.1.2 � Time Cost

This subsection demonstrates the time costs of our model 
and the baseline methods. The time cost can be roughly 
divided into three parts: fault injection, model training, 
and prediction. The time cost of the prediction was trivial. 
In the experiment, we set the training ratio to 0.33, mean-
ing that we needed to conduct 33% of the exhaustive fault 
injections to obtain the training set. Figure 7 shows the 
time cost and its composition. The model training process 
only represented 1/18 of the time compared to the fault 
injection process averaged across all studied programs. 
GATPS achieved an average 40 × speedup over the full 
fault injections. Each epoch required 2–12 s, and the time 
of each epoch was related to the scale of graph. As the pro-
gram replace had the largest number of nodes, the train-
ing of replace was the most time-consuming. The training 
process was set to take 100 epochs. In total, the training 
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process took about 4–20 min. Since GATPS-homo model 
had far fewer parameters to train, the time cost of GATPS-
homo was only 12% of that of GATPS.

The running time costs of proPV or IPAS for benchmark 
programs were less than 1 s. Compared to the time cost of 
conducting fault injections, the time cost of proPV or IPAS 
was negligible. proPV and IPAS also had much lower time 
costs than our model. However, because the major cost was 
performing fault injections, the total time cost of our model 
was only 5.4% larger than that of proPV or IPAS. Consider-
ing that our model obtained much more accurate (> 34%) 
prediction results compared to the baselines, it is worth this 
additional time cost.

Moreover, the training time cost could be further reduced 
by running the training program on a GPU. Our experiment 
was conducted on a CPU. We also ran model training of 
print_tokens on a GPU. The training of print_tokens showed 
that the time cost of running on a GPU was only 36.5% that 
of running on a CPU. However, our GPU devices, which had 
10 GB of embedded memory, were not able to compute other 
larger scale programs due to the limited memory capacity. 
We attempt to compress the graph to make it able to compute 
GATPS on the GPUs. This is a subject of future work.

5.1.3 � Parameter Sensitivity Study

In this subsection, we examine the sensitivity of the models 
to various parameter, including the training ratio and the 
number of attention layers. Figure 8 details the comparison 
of the F1 scores for the schedule2 program for various val-
ues of the training ratio. The F1 scores were in the order of 
GATPS > proPV > IPAS. The F1 score of GATPS/proPV/
IPAS varied in a small range (< 0.09) when the ratio of the 
training data was greater than 0.3. The F1 score of IPAS 
increased faster as the training ratio increased compared to 

other methods. Furthermore, the experiment showed that the 
training ratio did not affect the training time cost per epoch 
of GATPS. Since the F1 score remained stable and the cost 
of the fault injection increased linearly when the training 
ratio increased, it was beneficial to set the training ratio of 
the GATPS to a low level to balance the prediction accuracy 
and cost. The experiment showed that it was adequate to set 
the training ratio to 0.2 to obtain a stable F1 score.

We also analyzed the effect of the number of attention 
layers L when the other parameters were fixed. Figure 9 
shows the F1 score and training time cost per epoch as L 
increased. The F1 score of the GATPS increased slowly as 
L increased. The F1 scores when 2 ≤ L ≤ 7 varied in a small 
range (< 0.05). As the number of layers L increased, the 
node could learn structural information from farther neigh-
boring nodes. The training time per epoch increased linearly 
as L increased. The three-layer training took 1.6 × the time 
of the two-layer training. For the seven-layer model, the 
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training took 4.3 × the time of the two-layer training. Com-
pared to the rapid growth in the time cost, the increase in the 
F1 score was slight. The experiment showed that the two- or 
three-layer model provided a high prediction accuracy with a 
low cost, which was adequate for the general profiling needs. 
However, if strict goal accuracy is required, it is feasible to 
increase the number of attention layers. This is a trade-off 
that should be considered by the users.

5.2 � Results for Inductive Learning

In this subsection, we quantify the prediction performance 
of inductive learning. Different from transductive learning, 
inductive learning predicts SDC-prone instructions without 
any fault injection information of the target program, which 
requires a higher generalization ability. We performed two 
experiments to show how the input graph affected the pre-
diction performance.

1.	 N-inputs. The first experiment applied the graphs gener-
ated from the execution of the same program with dif-
ferent inputs (N-inputs). Although the executions with 
different inputs varied in data flow and control flow, they 
may have the same functions or bbls, resulting in similar 
graphs.

2.	 N-programs. The second experiment applied the graphs 
generated from the execution of totally different pro-
grams (N-programs). The results of the two experiments 
are presented separately.

5.2.1 � Model Trained by N‑inputs

The dataset contained six graphs for training and two for 
validation. After training the inductive model, we performed 
predictions on three test inputs separately. These graphs 
were generated from the executions of 11 distinct inputs for 
the program of schedule2. The testing graphs remained com-
pletely unobserved during training.

Prediction Performance  Table  6 shows the comparison 
of the results of N-inputs with the baselines. Our model 
achieved a higher precision, recall and F1 score than base-
lines. The F1 score of our model was 54% higher than that 
of IPAS and 37% higher than that of proPV, showing that our 
model had a higher ability to predict unseen graphs. Com-
pared to transductive learning, the differences between the 
inductive learning and baseline results were larger because 
inductive learning required a higher ability of generalization.

The comparison of the inductive learning results between 
the GATPS and GATPS-homo models showed that applying 
a heterogeneous graph was beneficial. The average F1 score 
of GATPS was 7% higher than that of GATPS-homo. This 
conclusion is consistent with the transductive learning results.

Time Cost  The average training time per epoch was 93 s, 
which was 9.3 × the time cost of transductive learning. This 
was because the scale of the model increased. The training 
input of the transductive learning was one graph, and the 
input of the inductive learning increased to six graphs. The 
time cost of the GATPS for predicting SDC-prone instruc-
tions under a single input was only 6.8% that of the exhaus-
tive fault injections.

Furthermore, we could repeatedly use the trained model 
of the GATPS to predict the SDC-prone instructions for 
different inputs. The function of keras load_weights could 
be used to reload the trained weights of each attention 
layer. Thus, the subsequent predictions did not require 
training. If we needed to perform predictions for n inputs, 
the time cost of the GATPS could be amortized over n 
tests, and each prediction would require only 1/n of the 
training time cost.

Parameter Sensitivity Study  We discuss the influence of the 
parameters of the inductive learning model, including the 
number of layers and the training ratio. Figure 10 shows 
the effect of the number of attention layers L when the 
other parameters were fixed. The results of the GATPS and 
GATPS-homo training by N-inputs are shown. The maxi-
mum number of attention layers was set to 7. The F1 score 
increased by 9% when L increased from 2 to 7. Figure 10 
also shows the training time cost per epoch. The training 
time increased linearly as the number of layers increased. 
For the seven-layer model, the training required 5.2 × the 
time required for the two-layer training. The 2-layer model 
obtained a high F1 score with low lost, which was the most 

Table 6   Comparison of results for SDC prediction of inductive model 
trained by N-inputs

Metrics P R F1

GATPS test1 0.86 0.78 0.82
test2 0.80 0.86 0.83
test3 0.88 0.69 0.77
average 0.85 0.78 0.81

GATPS-homo test1 0.89 0.74 0.80
test2 0.73 0.70 0.71
test3 0.90 0.60 0.72
average 0.84 0.68 0.74

IPAS test1 0.19 0.49 0.27
test2 0.14 0.44 0.21
test3 0.22 0.54 0.32
average 0.18 0.42 0.27

proPV test1 0.52 0.46 0.49
test2 0.31 0.38 0.34
test3 0.72 0.38 0.49
average 0.52 0.41 0.44
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cost-effective compared to other numbers of layers. When L 
increased from 2 to 3, the F1 score increased by 3.8% while 
the time cost increased by 86.0%.

Figure 11 shows the result comparison of the F1 scores 
on the schedule2 program, varying the number of graphs 
in the training set. The validation set and test set remained 
unchanged during the experiment. The F1 score increased 
when the number of graphs increased, and it varied in a 
small range (< 0.05) when the number of graphs ≥ 4. The 
training time cost per epoch increased linearly as the number 
of graphs in the training set increased. When the number of 
graphs was nine, the training time cost increased to 7.1 × 
the time cost with one graph in the training set. According 
to the result of experiment, it was adequate to set the number 
of graphs in the training set to 4 to obtain a stable F1 score 
for model trained by N-inputs.

5.2.2 � Model Trained by N‑programs

The dataset contained four graphs for training, one for vali-
dation, and three for testing. The training set was the dataset 
of four distinct programs {schedule, print_tokens, print_
tokens2, and tot_info}, the validation set was {replace}, and 
the test set was three distinct programs {schedule2, kmp, and 
dfs}. The functionalities of the training and validation sets 
were totally different from the test set, so the test set was 
completely unseen.

Prediction Performance  Table 7 shows the comparison of 
the results of our models trained by N-programs with base-
lines. The average F1 score for inductive learning trained 
by N-programs was 0.59. The results validated that the 
GATPS could learn certain general propagation knowl-
edge and accommodate unseen programs. The result for the 
same test samples of schedule2 showed that the F1 score 
was 16% lower than that of the model trained by N-inputs. 
Thus, the input graphs affected the prediction performance 
significantly. The model trained by N-inputs could learn 
application-specific knowledge, but the model trained by 
N-programs could not. The difference between the F1 scores 
indicated that certain SDC propagations were application 
specific, and thus, the model trained by N-inputs could 
achieve a higher F1 score.

The F1 score of GATPS-homo was 3% lower than that of 
GATPS, which was consistent with the result of transductive 
learning. Moreover, IPAS and proPV obtained much lower F1 
scores than GATPS. The F1 scores of IPAS and proPV were 
27% and 38% lower than that of GATPS. Notably, the inductive 
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Table 7   Comparison of results for SDC prediction of inductive learn-
ing trained N-programs

Metrics Test program P R F1

GATPS schedule2 0.64 0.67 0.66
kmp 0.57 0.48 0.52
dfs 0.86 0.45 0.59
average 0.69 0.53 0.59

GATPS-homo schedule2 0.42 0.81 0.55
kmp 0.46 0.61 0.53
dfs 0.78 0.48 0.59
average 0.55 0.63 0.56

IPAS schedule2 0.13 0.76 0.22
kmp 0.16 1.00 0.28
dfs 0.29 1.00 0.45
average 0.19 0.92 0.32

proPV schedule2 0.14 0.30 0.19
kmp 0.12 0.06 0.08
dfs 0.38 0.36 0.37
average 0.21 0.24 0.21
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learning of GATPS achieved a higher F1 score than the trans-
ductive learning of IPAS and proPV, showing that our model 
had a better ability for reasoning about fault propagation.

Time Cost  The average training time per epoch was 53 s, 
which was 5.3 × the time cost of transductive learning. 
The time cost was less than the time cost of the training by 
N-inputs because the training set was smaller. The GATPS 
trained by N-programs achieved an average 43 × speedup 
over the full fault injections. As we stated before, the time 
cost could be roughly divided into three parts: fault injec-
tion, model training, and prediction. The model trained by 
N-programs did not require information about the target 
program, and the fault injection and model training could 
be performed in advance. If we knew the target program, 
we would only need to load the trained model to predict the 
SDC-prone instructions. Thus, the time cost that affected the 
user was only the prediction time cost.

Parameter Sensitivity Study  In this section, we discuss the 
influence of the number of layers, which is shown in Fig. 12. 
The F1 score changed in a larger range as the number of lay-
ers increased compared to transductive learning and N-inputs 
training. The largest difference between the maximum and 
minimum F1 scores was 0.21. For comparison, the largest 
differences were 0.09 (N-inputs) and 0.04 (transductive learn-
ing). Moreover, the model trained using more attention layers 
did not show a higher F1 score, which was also different from 
the results of transductive learning and N-inputs training. 
The models with varying attention layers may concentrate on 
different aspects of the fault propagation. Since the test pro-
gram was never observed, more attention layers did not cause 
the trained model to predict more fault propagations of the 
test program correctly. However, the training time increased 

linearly as the number of layers increased. The three-layer 
training took 1.8 × the time of the two-layer training. For 
the seven-layer model, the training took 4.2 × the time of 
the two-layer training. More attention layers did not bring a 
higher prediction accuracy, and thus, we can apply the simple 
two-layer model to reduce the time cost in practice.

5.3 � Discussion

In this subsection, we discuss the predictive results of the 
GATPS (transductive learning, inductive learning trained 
by N-inputs and N-programs, and homo graph model). 
Figure 13 shows the prediction results for schedule2 by the 
GATPS models. We discuss the F1 scores and time costs of 
these models.

1.	 F1 scores: transductive learning > inductive learning 
(N-inputs) > inductive learning (N-programs)

	   To explain this result, we broadly divide the propaga-
tion knowledge into general knowledge and application-
specific knowledge. General knowledge refers to the 
propagation schemes that suit all programs. For example, 
if a fault occurs in a dynamically dead instruction, it defi-
nitely results in a benign outcome [4]. Furthermore, many 
propagations are related to program-specific knowledge. 
For example, faults in the memory address or branch 
may cause different behaviors in different programs [16]. 
The model trained by N-programs can learn only general 
knowledge, and the model trained by N-inputs can learn 
both general knowledge and application-specific knowl-
edge. Transductive learning directly learns propagation 
knowledge from the target program, and its application-
specific knowledge is even more precise than that trained 
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by N-inputs since different inputs still vary in execution 
details.

2.	 Time cost: inductive learning > transductive learning
	   The time cost of the model is largely related to the 

scale of the input graphs. The scale of the input graphs 
of inductive learning is usually larger than that of trans-
ductive learning, i.e., the input of transductive learning 
is one graph and the input of inductive learning is mul-
tiple graphs, so inductive learning often has a higher 
training cost. However, the time cost of inductive learn-
ing can be amortized over multiple tests. Once the model 
is constructed, we can predict SDC-prone instructions 
over other inputs or even programs. Furthermore, train-
ing of inductive learning can be performed before we 
know the target program, and the trained model can 
be loaded immediately when it needs to predict SDC-
prone instructions of the target program. For transduc-
tive learning, after we know the target program, we have 
to conduct fault injections to acquire the labels of the 
training set of the target program and perform model 
training. Therefore, although inductive learning has a 
higher total time cost than transductive learning, it can 
provide prediction results in a shorter time than trans-
ductive learning after user provides the target program.

To conclude, we summarize the characteristics of the 
transductive learning, inductive learning, and homo graph 
models of the GATPS.

•	 The advantage of transductive learning is a high predic-
tion accuracy. The prediction of the SDC-prone instruc-
tions achieved the highest F1 score. The disadvantage is 
that it requires a portion of the fault injection results of 
the target program before training.

•	 The advantage of inductive learning is that it does not 
need to perform injections to the target program, which 
enables the decoupling of the vulnerability assessment 
from the fault injections. However, its accuracy is lower 
than that of transductive learning.

•	 The advantage of the homo graph model is a lower time 
cost compared to the heterogeneous graph model. It 
requires only 12%–33% time of the heterogeneous graph 
model, and its F1 score is 3%–12% lower than those of 
the heterogeneous graph model.

To satisfy user demand, different GATPS models can be 
used based on the time cost and data provided. We discuss 
some typical application scenarios.

•	 If fault injection cannot be conducted on the target 
program, we can apply an inductive learning model of 
the GATPS. The trained model of N-programs can be 
loaded to make predictions.

•	 If SDCs under multiple inputs of one program need to 
be predicted, we can apply an inductive model trained 
by N-inputs and predict SDC-prone instructions.

•	 If the time cost constraint is strict and the heterogeneous 
graph model of the GATPS cannot satisfy the requirement, 
the homo graph model can be used to reduce the time cost.

6 � Conclusion

This paper predicts SDC-prone instructions by using a het-
erogeneous graph attention network. To obtain the context 
of fault propagation, the embedding of each instruction 
is learned by aggregates of its neighbors’ information. 
The self-attention mechanism is applied to evaluate the 
influences of errors in neighboring nodes. Our approach 
is different from previous machine learning approaches 
since we perform SDC prediction in an end-to-end manner 
instead of using handcrafted features. Experimental results 
showed that our model outperformed previous models 
applying handcrafted features. We also constructed an 
inductive model to predict SDC-prone instructions with-
out any fault injections on target programs, minimizing 
the dependence on the fault injections. The advantages, 
disadvantages, and typical application scenarios of trans-
ductive learning and inductive learning of the GATPS 
models were discussed to provide solutions for different 
vulnerability assessment demands.

Our future work will focus on interpretation of the 
graph model. Our model learns propagation knowledge to 
predict SDC-prone instructions. However, this knowledge 
is expressed implicitly, which is not readable for research-
ers. It is helpful to interpret the attention coefficients to 
gain insights into the general knowledge of fault propa-
gation. Moreover, by using the instruction embeddings 
obtained in this paper we can compute the embeddings for 
higher levels (basic block, function or program) to solve 
other fault propagation problems such as computing prob-
ability of a corrupt branch affects final output or comput-
ing overall SDC probability for the program.
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