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Abstract
The effectiveness of  software test data relates to the number of found faults by the test data. Software mutation test is used 
to evaluate the effectiveness of the software test methods and is one of the challenging fields of software engineering. In 
order to evaluate the capability of test data in finding the program faults, some syntactical changes are made in the program 
source code to cause faulty program; then, the generated mutants (faulty programs) and original program are executing with 
the corresponding test data. One of the main drawbacks of mutation testing is its computational cost. Indeed, high execution 
time of mutation testing is a challenging research problem. Reducing the time and cost of mutation test is the main objec-
tive of this paper. In the traditional mutation methods and tools the mutants are injected randomly in each instructions of a 
program. Meanwhile, in the real-world program, the probability of fault occurrences in the simple locations (instructions and 
data) of a program is negligible. With respect to the 80–20 rule, 80% of the faults are found in 20% of the fault-prone code 
of a program. In the first stage of the proposed method, Artificial Bee Colony optimization algorithm is used to identifying 
the most fault prone paths of a program; in the next stage, the mutation operators (faults) are injected only on the identified 
fault-prone instructions and data. Regarding the results of conducted experiments on the standard benchmark programs, 
Compared to existing methods, the proposed method reduces 28.10% of the generated mutants. Reducing the number of 
generated mutants will reduce the cost of mutation testing. The traditional mutation testing tools (Mujava, Muclipse, Jester, 
Jumble) can perform the mutation testing with a lower cost using the method presented in this study.

Keywords Software mutation testing · Mutation reduction · Fault-prone test paths · Artificial bee colony algorithm · 
Mutation score

1 Introduction

One of the most important considerations for software 
developers is ensuring the quality of their products. In 
this approach, software engineers employ software testing 

techniques in order to identify software flaws. The number 
of errors found by a test suite is a measure of its efficacy. 
One of the most difficult areas of research is determining 
the efficiency of software testing methodologies [2, 4, 12]. 
Mutation testing is a common way for determining the use-
fulness of test data. The success of a test set in terms of 
its capacity to find errors is measured using the mutation 
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test [10]. Syntactic modifications are made in the primary 
source code using mutation operators in this test. These 
modifications are implemented as a fault (bug) injection, 
and the resulting program (mutated program) will be defec-
tive. The test data is used to run the created mutants (faulty 
programs) and the original program. It can be assumed that 
the mutant is eliminated (recognized) by the test data if the 
outputs of the main program and a mutated program vary. 
The goal is to eliminate all of the mutations that have been 
created. The success of the test set in terms of its capacity 
to detect injected flaws is measured using the mutation score 
(mutants).

The injection of each mutation operator in the pro-
gram source code results in the creation of a different ver-
sion of faulty program; each version simulates a certain 
real bug. The number of mutated versions of a program 
depends on the number of lines of source code and the 
number of injected faults. All of the generated mutants 
should be executed by the test set. One of the main draw-
backs of mutation testing is its computational cost. Indeed, 
high execution time of mutation testing is a challenging 
research problem. Reducing the time and cost of mutation 
test is the main objective of this paper. In the traditional 
mutation methods and tools the mutants are injected ran-
domly in each instructions of a program. Meanwhile, in the 
real-world program, the probability of fault occurrences in 
the simple locations (instructions and data) of a program 
is negligible. With respect to the 80–20 rule, 80% of the 
faults are found in 20% of the fault-prone code of a pro-
gram [3, 11].

A suitable selection of mutations should be chosen from 
the created mutants to reduce mutation test costs. As a con-
sequence, introducing mutation operators (faults) into a 
program's fault-prone regions yields correct results with a 
small number of mutations. Furthermore, inserting flaws in 
basic programs results in the generation of stillborn mutants 
that are detectable (killed) by all test sets (even poor test 
data). The suggested approach analyzes the program's source 
code statically to find the program's fault-prone regions. The 
suggested technique prevents the modification of non-fault 
prone (simple) codes, resulting in a significant reduction 
in the number of mutants. There are 2n execution routes 
(test path) in a program having n branch instructions. Each 
of these pathways' data and codes can be regarded a target 
for mutation operators. Identifying a program's fault-prone 
(complex) routes is an NP-hard complete. Nowadays, dif-
ferent heuristic algorithms are used to solve various prob-
lems in computer engineering [13, 17, 25]. The Artificial 
Bee Colony optimization technique is utilized in the first 
step of the proposed method to identify the most fault prone 
paths of a program. In the second stage, the mutation opera-
tors (faults) are injected solely on the identified fault-prone 

instructions and data. MuJava was used to do the mutation 
injection procedures [23].

The paper is organized as follows: Sect. 2 reviews the 
related studies on software mutation testing. Section 3 pre-
sents the proposed method. Section 4 is concerned with the 
simulation of the proposed method, the experiments and 
evaluation criteria. Also, this section discusses and analy-
ses of the experimental results and the compares the pro-
posed method with other methods. Finally, Sect. 5 concludes 
the findings of the study and presents directions for further 
research.

2  Background and Related Work

Different methods have been proposed by researchers for 
reducing the cost of mutation testing. A brief summary of 
some seminal methods is as follows:

• Mutant sampling: mutant sampling is one of the most 
straightforward strategies for lowering the number of 
mutations [6]. Mutant sampling takes a small selection 
of the created mutants and performs mutations on them. 
Different scholars have looked into the proportion of dif-
ferent samples ranging from 10 to 40% in 5% increments 
[30]. The effect of the 10% sample percentage was only 
16 percent smaller than the complete set of produced 
mutants, according to the experimental data. As a result, 
mutation testing methodologies with a 10% sample per-
centage can be maintained as a viable choice for muta-
tion. This is in line with King and Offutt's findings [19]. 
Papadakis and Malevris [28] studied the effectiveness 
of several mutation sampling methodologies through 
experiments (from 10 to 60 percent in 10 percent steps). 
The registered test's effectiveness loss varied from 6 to 
26%, according to the researchers.

• Selective mutation: it is considered as another approxi-
mate technique which reduces the number of respec-
tive mutants. Random selection mutation, which was 
introduced by Acree et al. [1], is aimed at reducing the 
number of executive mutations. It randomly analyzes 
only a small portion of the mutations. Another strategy, 
known as limited mutation [26], examines only a cer-
tain number of mutations and neglects the other ones. 
One drawback of this method is related to the manner 
of selecting operators; also, they are not able to produce 
different good sets based on the specific purposes. Offutt 
et al. [26, 27] expanded this idea and investigated the 
effectiveness of different mutation operator sets. The 
related findings indicated that 5 operators out of 22 
operators are sufficient for investigating the efficacy of 
mutation test. Barbosa et al. [5] proposed 6 operators for 
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determining the number of adequate mutation operators. 
Using these operators led to a set of 10 operators which 
reduced 65% of the mutations and test efficacy was not 
lost. Other studies have examined the efficacy of using 
mutation with only one or two mutation operators. Wong 
[30] examined the efficacy of using mutation with one or 
two assignment mutation operators in relation to depend-
ent mutation operator. The experimental evaluation of 
this approach indicated that the number of respective 
mutations may be reduced up to 67% and only 5% of 
the test effectiveness is lost. Also, some experimental 
results indicated that using this type of mutations does 
not reduce the quality of the produced test cases. Zhang 
et al. [33] compared selective mutation with sampling 
mutation. They investigated three selective techniques vs. 
two sampling techniques. It was observed that sampling 
mutation was more effective than selective mutation. 
Finally, Zhang et al. [32] recommended that selective 
mutation and sampling mutation may be used together 
and along with each other so as to obtain promising 
results.

• Minimum mutation sets: the results show that by tar-
geting other mutations, a substantial number of muta-
tions may be reductively destroyed [24]. Research-
ers have attempted to estimate the minimal number 
of mutations required to cover their whole set, which 
would be sufficient for calculating the minimum set's 
ability. Kintis et al. [20] were the first to incorporate 
the smallest number of alterations in the source code of 
programs in an experiment. Even for mutations that are 
barely destroyed, the acquired data show that just a tiny 
percentage of the created mutations (9%) is necessary 
to cover the full set (35%). Kurtz et al. [21] looked at 
this topic from both a theoretical and an experimental 
standpoint. To reduce the number of mutations, they 
adopted dynamic sharing. The x mutation is dynami-
cally transformed to the y mutation given a test set; that 
is, the test cases that kill x will also kill y. The dynamic 
subset's experimental assessment in C programming lan-
guage revealed that just 12% of the created mutations 
are required to cover the whole set. Finally, Kurtz et al. 
[21, 22] looked at whether dynamic and static analy-
sis approaches may be utilized to estimate the relation-
ship between common mutations. They discovered that 
static and dynamic analysis approaches should be used 
together to produce better results.

• Strong, weak and hard mutations: in addition to limiting 
the number of respective mutations for managing muta-
tion costs, researchers have developed different techniques 
for reducing the implementation cost of all the mutations 
in the available test set. One such technique is referred 
to as weak mutation technique which was proposed by 

Howden [16]. Weak mutation is aimed at reducing the 
required computational cost for preventing mutation by 
avoiding complete implementation of the main program 
and its mutations. For achieving this aim, the weak muta-
tion defines the conditions which should be considered 
for the mutation as the killed mutation. For comparing 
the final output of the main program and the mutated 
program, the internal states of the programs are com-
pared immediately after implementing the mutation or 
the mutated components. It should be noted that standard 
mutation is known as strong mutation when it is compared 
with weak mutation. Woodward and Halewood [31] intro-
duced the concept of hard mutation which is regarded as 
the one between strong and weak mutation. They argued 
that we can make comparisons on the internal states of 
the main program and its mutation at any points between 
the first implementation of the mutation and the end of the 
program. Different studies acknowledged the efficiency 
and productivity of weak mutations. Offutt and Lee 
(1991) developed a weak framework for FORTRAN77 
program; then, they experimentally examined its perfor-
mance and operation. The obtained results indicated that 
weak mutation also leads to the manual efficacy loss of 
mutation by considering fewer equal mutations. Offutt 
and Lee (1991, 1993) investigated the effectiveness and 
efficiency of weak mutations by implementing different 
techniques. They found that this method can be consid-
ered as an economical alternative for strong mutation. 
According to the conducted implementations, research-
ers proposed that the internal states of the main program 
and its mutations should be compared with each other 
after the first execution of the mutated expression or the 
main block which includes it. Cutigi et al. [7] made a 
systematic review that characterizes the state-of-the-art in 
mutation testing cost reduction. It examines the progress 
of research on this issue, as well as its underlying aims 
and methodology, and identifies cost-cutting metrics. The 
research is based on a group of 165 peer-reviewed arti-
cles, of which 146 give unique or updated methodologies 
and outcomes for lowering the cost of mutation testing. 
A list of six key cost-cutting aims is offered, along with 
22 approaches. In the past, 18 measures were employed 
to quantify the gains and losses reported in experimental 
investigations. Table 1 illustrates the main features of the 
related methods.

3  The Proposed Method

Because software mutation testing is time-consuming 
and expensive, several recent research efforts have con-
centrated on this topic in order to resolve it. Indeed, the 
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primary goal of such research is to reduce the amount of 
mutations. We suggested an effective technique for soft-
ware mutation testing in this paper by utilizing an artifi-
cial bee colony algorithm. Only the codes and data of the 
identified fault-prone paths of the program source code 
were subjected to mutation operators in this procedure. 
Indeed, the suggested strategy prevents mutation of the 
program's non-fault prone (simple) codes, resulting in a 
significant reduction in the number of mutants. The pro-
posed technique is depicted in Fig. 1.

3.1  Control Flow Graph

In the proposed method, the most fault prone paths of 
the program should be identified befor injecting muta-
tion operators. As shown in Fig. 1, at the first step, the 
corresponding control flow graph (CFG) of the program 
source code should be generated. A CFG is a demonstra-
tion of all the possible paths and branches of a program. 
The graph includes a set of nodes and edges. Each node 
is defined as a block which includes a set of operators 
and operands that are executed continuously. In fact, in 
case an instruction is executed in the block, the entire 
block will be executed. The presence of directional edge 
among nodes indicates a possible executing path in the 
graph. If a node has more than one output edge, it is 
called branch. The CFG of a program is illustrated in 
Fig. 2.

The fault prone (complexity) of a path in a CFG is a 
function of its nodes’ complexity. Hence, calculating the 
weight of nodes (fault prone metric of nodes) is required 
for calculating the weight of paths (fault prone metric of 
paths) in the CFG.

3.2  Node Weight

Node weight is utilized in this study to define the fault 
proneness (complexity) of a node in a CFG. The larger the 
weight of a node, the more complicated and fault-prone it is. 
The weight of nodes is calculated by adding the normalized 
weights of operators and operands. Node weight is indicated 
via Formula (1). The number of accessible operators and 
operands in a node are the most important elements that 
influence the weight of nodes.

The weight of available operators in each node is denoted 
by W

(

N1

)

 which indicates the total number of available 
operators in that node. The weight of available operands 
in each node is denoted by W(Mi) which indicates the total 
number of available operands in that node. Then, the nor-
malized weight of each of them is obtained and their total 
is measured. We used Formula (2) for normalizing opera-
tors’ weights where the number of available operators in the 

(1)
W �

(

BBi

)

= W �
(

Ni

)

+W �
(

Mi

)

+ �

{

� = 0.5, Node have if instruction.

� = 1, Node have not if instruction.

Table 1  Merits and demerits of the proposed related works for reducing the number of mutations

The methods Procedure Merits Demerits

Mutation sampling:
(Offutt and Lee 1993) [1, 6, 19, 29, 

30]

Selecting a subset of the generated 
mutations

Simplicity of conducting the test Reduced test efficacy

Selective mutation, limited mutation:
(DeMillo et al. 1980) [5, 8, 15, 20, 

26–28, 30, 32, 33]

Selection of a small set of mutation 
operators

Maintenance of test effectiveness by 
reducing 65% of mutations

Low performance of this 
method alone and the 
need for combining it 
with mutation sampling

Minimum mutation sets:
[9, 14, 20–22, 24]

It reductively destroys a large number 
of mutations by targeting other 
mutations

It requires a small section of produced 
mutations for covering the entire set

It is imprecise

Strong, weak and hard mutations:
(Offutt and Lee 1991) [15, 16, 20, 

31]

Weak mutation: it reduces the 
number of mutations by avoiding 
complete execution of the program. 
Strong mutation: it reduces the 
number of mutations by comparing 
the final output of the main 
program and the mutated program

Hard mutation: it is an approach 
between strong and weak mutation

They are economical and require 
fewer computational resources

They need comparison and 
they might be imprecise 
if the total program is not 
executed
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respective node is divided on the total number of operators 
of the nodes.

For normalizing the weight of operands, we used For-
mula (3) in which the number of available operands in the 
respective node is divided on the total number of operands 
of the nodes.

3.3  Branch Weight

A branch's reachability is determined by its weight. The 
algorithm should strive harder to obtain the branch with a 

(2)W �
�

Ni

�
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W
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greater branch weight. The branch weight is affected by the 
complexity of the propositions of the decision node. Propo-
sition weight was calculated using Formula (4) and Table 2. 
The following two states are created by this formula:

• If the respective decision node includes h conditions 
which have combined with each other through AND 
operator, the square root of the total weight of the prop-
ositions will be considered to be the selection condition.

Generating the control �low

graph of the program

Evaluating the number of

mutants and mutation score in

the proposed method

Performing the mutation testing

on the fault-prone codes and all

codes of the program

Test set

Second Step : Selecting the 

codes of the identi�ied fault-

prone paths to inject mutation 

operators

First Step : Finding the most 

fault prone paths of the 

program by the proposed 

Arti�icial Bee Colony algorithm

P
ro

p
o

se
d

 M
e

th
o

d

Java Source 
code

Fig. 1  Steps of the proposed method

Fig. 2  A control flow graph of a program

Table 2  Weights of the 
operators for computing 
proposition weight

Operator Weight

 == 0.9
<, <=, >, >= 0.6
Boolean 0.5
!= 0.2
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• If the respective decision node includes h conditions 
which have been combined with each other through OR 
operator, the lowest weight of the propositions’ weight 
will be regarded as the selection condition.

In this formula, Bchj variable stands for the jth decision 
node which is determined as (1 ≤ j ≤ pj ). In computing 
the proposition weight of the jth node, h variable refers 
to the available conditions within the decision node. Cg 
denotes the gth condition which is determined as (1 ≤ g ≤ 
h). Wr variable refers to condition weight which was speci-
fied by Table 2. We used Formula (5) for normalizing the 
weight of propositions in which the proposition weight of 
the respective branch is divided on the total weight of the 
propositions.

Also, Table  2 gives all the operators which may be 
involved in the condition. Indeed, they determine the weight 
of the propositions. Finally, Formula (6) indicates objective 
(fitness) function.

In this formula, the expression 
∑
�
pi�

i=1
BBi denotes the total 

complexity of the nodes into pathi in which pi indicates the 
number of nodes; also, the expression 

∑
�
pj�

j=1
Bchj refers to the 

total complexity of decision nodes in which pj stands for the 
number of available decision nodes in the program. In this 
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formula, α was used as an impact factor; it was applied as 
the efficacy degree of complexity criteria. In this paper, the 
value of α was assumed to be 0.5.

3.4  Artificial Bee Colony Algorithm (ABC)

Karaboga and Basturk [18] proposed the Artificial Bee Col-
ony (ABC) method. Its goal was to achieve true parameter 
optimization. This technique was developed as an optimi-
zation algorithm that replicates the unrestricted exploring 
behavior of a bee colony in terms of optimization difficulties. 
One limitation-handling approach is paired with this algo-
rithm to solve optimization issues with limitations. There 
are responsibilities carried out by specialist personnel in a 
real honeybee colony. That is, the specialized bees use labor 
division and effective self-organization to strive to optimize 
the amount of stored nectar in the hive. The program has 
adapted the minimal food selection search strategy used by 
smart bee groups in the honeybee colony, which contains 
three categories of bees: worker bees, observer bees, and 
precursor bees. The worker bees make up half of the colony, 
while the observer bees make up the other half. Worker bees 
are in charge of collecting nectar from previously discovered 
sources. They should also advise other bees (waiting obser-
vation bees in the hive) about the quality and location of the 
nectar supply being harvested. Observer bees remain in the 
hive and make food-related decisions based on the informa-
tion provided by worker bees. To identify new food sources, 
precursor bees explore the surroundings instinctively, ran-
domly, or based on other external indications.

3.4.1  Steps of the algorithm

The main steps of the ABC algorithm are as follows:

1. Giving an initial value to food source locations.
2. Each worker bee produces a new food source in its own 

food source location and extracts the better source.
3. Each precursor bee selects a source depending on its 

solution quality. Then, it produces a new food source in 

Fig. 3  Steps of the ABC algo-
rithm

Step 1: producing initial solutions and computing their quality by precursor bees  

Step 2: optimizing the presented solutions and re-computing quality  

Step3: computing the probability of solution selection and greedy selection of them  

Step 4: optimizing selected solutions and re-computing their quality  

Step 5: saving the selected solutions  

Step 6: presenting a new solution by precursor bee in case the old solution is abandoned  

Step 7: return to the 2nd step if the algorithm is not ended  

Step 8: showing the selected solutions  
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the location of the selected food source and extracts the 
better source.

4. The food source which should be abandoned is deter-
mined and some worker bees are allocated as precursor 
bees that should search for new food sources.

5. The best food source which has been discovered up to 
now is remembered.

6. The steps 2–5 are repeated until the stop criterion 
becomes appropriate.

In the first step of the algorithm, 
(

i = 1.… .SN
)

Xi , solu-
tions are randomly produced. SN refers to the number of 
food sources. In the second step of the algorithm, a new 

food source is produced by Formula (7) for each worker bee, 
whose population is equal to the half of the total number of 
food sources.

A random number was uniformly distributed within 
[-1, 1] interval which controls location production of 
neighboring food sources around xij. K is the solution 
index which was randomly selected from the colony. 
j = 1.… .D = int(rand ∗ SN) + 1 and D are problem dimen-
sions. After Vi is produced, this new solution is compared 
with Xi and the worker bee extracts the better source. In the 
third stage of the algorithm, an observer bee selects a food 
source with (2) probability and produces a new source in 
the location of the food source selected by (1). In the same 
way as the worker bee, decision is made about extracting a 
better source. Fiti refers to the fitness degree of Xi solution. 
After all the observer bees are distributed in the sources, 
sources are examined to find out whether or not they should 
be abandoned. If the number of the cycles of a source which 
are not optimized is greater than the predetermined limit, 
that source will be regarded as a terminated source. The 
worker bee related to the terminated source becomes a pre-
cursor bee which starts a random search within the problem 
area by using Formula (8). The operating procedure of the 
ABC algorithm is depicted in Figs. 3 and 4.

The paths of the CFG are regarded as the input of the ABC 
algorithm. Each graph path illustrates a honey bee which is 
specified by an array. The length of the graph stands for the 
path length. Each member of the array indicates an available 
node on the path. Based on honey bee structure shown in 
Fig. 5, each honeybee has 2 characteristics:

• Honeybee position is specified by array.
• Nectar quality in the food source is the amount of the 

respective target function.

After initial population is randomly produced, the 
values of the target function defined in Formula (6) are 
computed for each honey bee. The target function for the 
proposed algorithm is of the maximization type. Then, by 
capitalizing on ABC algorithm, high-complexity (most 
fault prone) paths are selected from the control flow graph. 
This subset of paths is applied for injecting mutation on 
the mutation test. These paths are the most fault prone 

(7)vij = xij + φij

(

xij − xkj
)

φij

(8)xij = xjmin +
(

xjmax − xjmin
)

∗ rand

Fig. 4  Stages of the ABC algorithm

Fig. 5  Honey bee structure
Cost BB  . . . . . BB  BB  
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locations of the program. the remaining paths are execu-
tive paths which have no impact or minimum impact on the 
output. As a result, injecting mutation operators on such 
routes is fruitless and ineffective. Optimization algorithms, 
random search and evolutionary methods are regarded 
as modern and efficient methods which are particularly 
applied for finding global optimal responses for the prob-
lems. The randomness feature of these algorithms prevents 
them from being trapped in local optimal points. Most 
algorithms have been inspired from biological systems. 
Honey bee colony algorithm is considered to be an exam-
ple of such biological systems. It models the behavior of 
honeybees and assigns a value in accordance to the fitness 
of the location of each bee for the quality of bees; in this 
way, by updates bees’ locations in consecutive iterations 
of the algorithm, the algorithm seeks optimal response for 
the problem. The output of ABC algorithm for each input 
algorithm is the most fault-prone (most complex) executive 
paths. The input of the proposed algorithm is the control 
flow graph and its output is a subset of executive routes 
with maximum complexity.

4  The Experiments of the Proposed ABC 
Algorithm

On a 64-bit Win7 operating system, the suggested method 
was evaluated and implemented in Matlab 2018. The exper-
iments were carried out on a machine with an Intel Core 
i7 CPU and 4 GB of RAM. The suggested approach was 
implemented in Matlab, and mutations were injected using 

the MUJAVA tool. This problem has been solved using a 
variety of evolutionary techniques. We utilized the ABC 
technique to discover the program's fault-prone places 
in this article. As previously stated, an effort was made 
to identify the program's most complicated (fault-prone) 
routes. It should be noted that benchmark programs are 
essential for evaluating the suggested method's efficiency 
and efficacy. The elements of the benchmark software are 
listed in Table 3.

One of the shortcomings of evolutionary algorithms is 
the value specification of the parameters of each method. 
In many cases, parameters play an essential role in bringing 
the algorithm closer to the optimal response. ABC algo-
rithm has 2 parameters. Appropriate values for these two 
parameters within the approximate interval were defined 
by Karaboga and Basturk [18]. Like other algorithms, the 
parameters of ABC algorithm are calibrated experimentally 
through trial and error. Table 4 gives the adjusted parameters 
of ABC algorithm in this study. The features of the bench-
mark programs are described in Table 4. All of the program-
ming structures that may be used in real-world software are 
included in these programs, including:

• if-else structure
• for structure
• while structure
• switch structure
• I/O structure
• Operators for arithmetic and logic

The source code of huge real-world applications (with 
millions of lines of code), which is made up of modules and 

Table 3  Benchmark programs 
used in the study

Program name Input parameters Code lines 
(LOC)

Program objective

Triangle Type 3 31 Specifying triangle type
CallDay 3 72 Specifying weekday
isValidDate 3 41 Checking the validity of the inserted date
Cal 6 26 Calculating the number of days between two dates
Reminder 2 17 Calculating the remainder integer number

Table 4  Adjusted parameters for ABC algorithm with regard to 
benchmark programs

Benchmark Program Population size Pm

cal 3 0.03
CallDay 3 0.03
isValidDate 6 0.02
reminder 6 0.006
triangle 80 0.03

Table 5  Success rate 
comparisons of ABC and GA 
algorithms in 5 benchmark 
programs

Program name ABC GA

Cal 70% 10%
calDay 60% 30%
isValidDate 70% 60%
Reminder 90% 40%
Triangle 90% 10%
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a) Convergence of the proposed method and GA for cal program b) Convergence of the proposed method and GA for calDay 
program

c) Convergence of the proposed method and GA for isValidDate 
program

d) Convergence of the proposed method and GA for Reminder 
program

e) Convergence of the proposed method and GA for Triangle program
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Fig. 6  Comparing the convergence of FA and GA algorithms for 5 benchmark programs
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routines. Functions in real-world applications are typically 
between 10 and 60 lines of code in length. Hundreds of lines 
of code are not conventional or intelligible, and should be 
split down into smaller functions.

4.1  Results and Discussion

4.1.1  Success Rate

The collected findings for the performances of ABC and 
genetic algorithm (GA) algorithms are detailed in the next 
section in relation to the assessed criteria in five benchmark 
programs. The optimal value for the fitness function of each 
program is determined for computing success rate in 10 
executions of the method. Table 5 shows ABC and GA's 
success rate in determining the most error prone routes of 
each benchmark program in ten executions; this table shows 
how many executions out of ten have attained the best fitness 
function value.

4.1.2  Convergence

Figure  6 shows the convergence of the ABC, Genetic 
Algorithm (GA), Particle Swarm Optimization Algo-
rithm (PSO), and Ant Colony Optimization Algorithm 
(ACO) algorithms in five benchmark applications. The 
same benchmark programs were used to run all of the 
algorithms. The convergence of ABC and GA algorithms 
in five benchmark programs is shown in Fig. 6. The sug-
gested technique surpasses the previous algorithms in 
terms of discovering the most error prone routes of the 
input program and also in terms of convergence speed, as 
shown in Fig. 6. Table 6 illustrates the average fitness of 
the algorithms' produced outputs in 10 executions (ABS, 
GA, PSO, and ACO). The fitness (complexity) of the final 

generated output (program executing path) created by the 
ABC algorithm after 44 iterations is around 4.740 in the 
cal benchmark. After 21 rounds on the calDay benchmark, 
the ABC algorithm earned the best result of 6.320. In com-
pared to GA, PSO, and ACO, the ABC algorithm was able 
to generate a better answer in a shorter time when it came 
to discovering the fault prone (complex) routes of a pro-
gram. The ABC algorithm determined the most failure 
prone routes with 4.230 complexity weight in roughly 35 
iterations for the Reminder application, yielding similar 
results. After 107 rounds, GA was only able to discover 
the path with complexity weight 3.520. In other words, the 
suggested ABC algorithm is more successful and efficient 
than GA, PSO, and ACO in identifying the most compli-
cated paths of programs.

Based on the obtained results (shown in Fig.  6 and 
Table 6), it can be maintained that the proposed ABC algo-
rithm has better convergence than GA, PSO and ACO. As 
shown in these figures, although GA has converged earlier 
than ABC in some benchmark programs, ABC algorithm 
was able to achieve more optimal responses. It was observed 
that after the ABC, the PSO based method produces better 
results.

The achieved outcomes for various executions of each 
algorithm will be different since the starting population 
in evolutionary algorithms is formed randomly and the 
obtained answers in the execution process of each algorithm 
are random. As a result, we cannot analyze and evaluate 
the algorithm's performance based on simply one good or 
negative outcome for a run of the algorithm. As a result, 
after determining the best parameters of the algorithm, 10 
distinct executions of the algorithm with 200 iterations for 
each different execution were considered in this study. The 
objective function of the ABC algorithm gave better replies 
than the GA method, according to findings obtained from 10 
executions for 5 benchmark programs.

As shown in Fig. 7, ABC algorithm has fewer fluctua-
tions in different iterations. That is, the ABC heuristic 
algorithm is more stable than GA. The standard deviations 
(SD) for ABC and GA in different benchmark programs 
were computed which are given in Table 7. It was observed 
that the proposed ABC algorithm has fewer standard devia-
tions than GA. In fact, fewer SD in the obtained results is 
regarded as another evidence for the stability of the ABC 
algorithm in detecting and identifying the most complex 
paths of a given program. In other words, it can be argued 
that the proposed ABC algorithm is more suitable for iden-
tifying the most complex (fault prone) paths and injecting 
mutation.

Table 6  The average finesses of the outputs of ABC, GA, PSO and 
ACO in 10 executions

Program name ABC GA PSO ACO

Cal 4.740 3.066 4.710 4.514
calDay 6.320 5.450 6.048 5.450
isValidDate 6.961 5.509 6.960 6.600
Reminder 4.230 3.526 4.130 4.131
Triangle 6.869 5.590 6.625 5.558
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a) Stability of ABC and GA in cal program b) Stability of ABC and GA in calDay program

c) Stability of ABC and GA in isValidDate program d) Stability of ABC and GA in Reminder program

e) Stability of ABC and GA in Triangle program
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Fig. 7  Stability comparison of ABC and GA in 10 iterations of different benchmark programs
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4.1.3  Mutant Reduction

This criterion is used to determine how successful a test 
set is in detecting errors. Mutation testing is one of the 
most important procedures performed on test cases in order 
to validate and acknowledge them. The mutation score is 
a useful metric for assessing the quality of test cases. It 
is achieved by the operators' frequent executions of the 
created altered programs. Tables 8 and 9 show the total 
mutants created by the proposed technique for all pathways 
of each benchmark program, as well as the total mutants 
generated for solely fault-prone paths. The proposed strat-
egy, as indicated in Table 8, lowers the number of muta-
tions. The suggested technique uses the ABC algorithm 
to identify the source code's fault-prone routes, and then 
only runs mutation operators on those paths. As a result, 
the suggested solution minimizes the number of mutations 
by preventing mutant injection in the program's non-fault 
prone routes. According on the findings of studies con-
ducted on typical benchmark programs, the suggested 

technique eliminates 28.10 percent of the produced mutants 
when compared to existing methods. The cost of mutation 
testing will be reduced if the number of created mutants 
is reduced. The proposed technique has a considerable 
impact on software mutation testing cost reduction. Using 
the approach given in this paper, classic mutation testing 
tools (Mujava, Muclipse, Jester, Jumble) may do mutation 
testing at a lesser cost.

Preventing the mutation of non-error propagating codes 
of a program decreases the number of generated mutants 
and increase the performance of the mutation testing 
techniques. The goal of mutation test is to evaluate the 
effectiveness of a test suite and not to evaluate the program. 
The main demerits of the mutation test methods and tools 
is to inject brute force and unreal mutants. Some of the 
created mutants (faults) does not occur by any program-
mers in the real-world programs. Regarding the compe-
tent programmer hypothesis, the programmer is competent 
which means the programmer will code programs close to 
perfection. Hence, the fault (bug) occurring probability in 
the simple part of a program source code is very low (neg-
ligible). The results of the proposed method tires to make 
real-world faults in the program by avoiding the simple 
code mutation.

Table 7  Comparison of average results and standard deviation among 
the generated results for ABC and GA regarding 10 iterations of 5 
benchmark programs

ABC GA

Program name AVG. Fitness Standard 
Deviation

AVG. Fitness Standard 
Deviation

Cal 643/4 217/0 059/4 836/0
calDay 044/6 418/0 828/5 474/0
isValidDate 561/6 515/0 693/5 090/0
Reminder 069/4 221/0 522/3 459/0
Triangle 382/7 572/0 414/7 130/0

Table 8  The results of mutation testing on all codes and fault-prone codes of 5 benchmark programs in 10 executions

Programs Total Mutants Killed Mutants Live Mutants Mutation Score

Cal Mutation of all codes 98 78 20 79.59%
Mutation of fault-prone codes 43 26 17 60.46%

calDay Mutation of all codes 167 109 58 65.28%
Mutation of fault-prone codes 126 73 53 57.93%

isValidDate Mutation of all codes 111 78 33 70.27%
Mutation of fault-prone codes 106 61 45 57.54%

Reminder Mutation of all codes 155 40 115 25.80%
Mutation of fault-prone codes 119 24 95 20.16%

Triangle Mutation of all codes 445 304 141 68.31%
Mutation of fault-prone codes 302 213 89 70.52%

Table 9  The mutant reduction 
by the proposed method in the 
benchmark programs

Program name ABC

Cal 56.12%
calDay 24.55%
isValidDate 04.50%
Reminder 23.22%
Triangle 32.13%
AVG 28.10%
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5  Conclusion and Directions for Further 
Research

The rationale behind this study was to investigate the 
efficacy of the proposed method in reducing the muta-
tion test by detecting redundant mutations. The proposed 
method was compared with the previous methods in terms 
of convergence speed and stability. As discussed above, 
the obtained results of the proposed ABC algorithm were 
tabulated with respect to the evaluation parameters. The 
comparison results revealed that the proposed method has 
better results than the previous methods. Furthermore, the 
proposed method can be used into the mutation testing 
tool such as MuJava to perform mutation test with lower 
cost. As a direction for further research, other evolution-
ary algorithms, developed for reducing software mutation 
testing, can be used for achieving optimal results. Indeed, 
future studies may focus on overall comparison of evolu-
tionary algorithms for developing an efficient and effective 
method with regard to mutation testing.
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