
Vol.:(0123456789)1 3

Journal of Electronic Testing (2022) 38:289–302
https://doi.org/10.1007/s10836-022-06008-9

A Source‑code Aware Method for Software Mutation Testing Using
Artificial Bee Colony Algorithm

Bahman Arasteh1 · Parisa Imanzadeh2 · Keyvan Arasteh1 · Farhad Soleimanian Gharehchopogh3 · Bagher Zarei4

Received: 6 February 2022 / Accepted: 1 June 2022 / Published online: 29 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The effectiveness of software test data relates to the number of found faults by the test data. Software mutation test is used
to evaluate the effectiveness of the software test methods and is one of the challenging fields of software engineering. In
order to evaluate the capability of test data in finding the program faults, some syntactical changes are made in the program
source code to cause faulty program; then, the generated mutants (faulty programs) and original program are executing with
the corresponding test data. One of the main drawbacks of mutation testing is its computational cost. Indeed, high execution
time of mutation testing is a challenging research problem. Reducing the time and cost of mutation test is the main objec-
tive of this paper. In the traditional mutation methods and tools the mutants are injected randomly in each instructions of a
program. Meanwhile, in the real-world program, the probability of fault occurrences in the simple locations (instructions and
data) of a program is negligible. With respect to the 80–20 rule, 80% of the faults are found in 20% of the fault-prone code
of a program. In the first stage of the proposed method, Artificial Bee Colony optimization algorithm is used to identifying
the most fault prone paths of a program; in the next stage, the mutation operators (faults) are injected only on the identified
fault-prone instructions and data. Regarding the results of conducted experiments on the standard benchmark programs,
Compared to existing methods, the proposed method reduces 28.10% of the generated mutants. Reducing the number of
generated mutants will reduce the cost of mutation testing. The traditional mutation testing tools (Mujava, Muclipse, Jester,
Jumble) can perform the mutation testing with a lower cost using the method presented in this study.

Keywords Software mutation testing · Mutation reduction · Fault-prone test paths · Artificial bee colony algorithm ·
Mutation score

1 Introduction

One of the most important considerations for software
developers is ensuring the quality of their products. In
this approach, software engineers employ software testing

techniques in order to identify software flaws. The number
of errors found by a test suite is a measure of its efficacy.
One of the most difficult areas of research is determining
the efficiency of software testing methodologies [2, 4, 12].
Mutation testing is a common way for determining the use-
fulness of test data. The success of a test set in terms of
its capacity to find errors is measured using the mutation

Responsible Editor: V. D. Agrawal

 * Bahman Arasteh
 Bahman.arasteh@istinye.edu.tr

 Parisa Imanzadeh
 p.imanzadeh@gmail.com

 Keyvan Arasteh
 keyvan.arasteh@live.com

 Farhad Soleimanian Gharehchopogh
 farahd@iaurmia.ac.ir

 Bagher Zarei
 Zarei.bager@iau.ac.ir

1 Department of Software Engineering, Faculty
of Engineering and Natural Science, Istinye University,
Istanbul, Turkey

2 Department of Computer Engineering, Tabriz Branch,
Islamic Azad University, Tabriz, Iran

3 Department of Computer Engineering, Urmia Branch,
Islamic Azad University, Urmia, Iran

4 Department of Computer Engineering, Shabestar Branch,
Islamic Azad University, Shabestar, Iran

http://orcid.org/0000-0001-5202-6315
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06008-9&domain=pdf

290 Journal of Electronic Testing (2022) 38:289–302

1 3

test [10]. Syntactic modifications are made in the primary
source code using mutation operators in this test. These
modifications are implemented as a fault (bug) injection,
and the resulting program (mutated program) will be defec-
tive. The test data is used to run the created mutants (faulty
programs) and the original program. It can be assumed that
the mutant is eliminated (recognized) by the test data if the
outputs of the main program and a mutated program vary.
The goal is to eliminate all of the mutations that have been
created. The success of the test set in terms of its capacity
to detect injected flaws is measured using the mutation score
(mutants).

The injection of each mutation operator in the pro-
gram source code results in the creation of a different ver-
sion of faulty program; each version simulates a certain
real bug. The number of mutated versions of a program
depends on the number of lines of source code and the
number of injected faults. All of the generated mutants
should be executed by the test set. One of the main draw-
backs of mutation testing is its computational cost. Indeed,
high execution time of mutation testing is a challenging
research problem. Reducing the time and cost of mutation
test is the main objective of this paper. In the traditional
mutation methods and tools the mutants are injected ran-
domly in each instructions of a program. Meanwhile, in the
real-world program, the probability of fault occurrences in
the simple locations (instructions and data) of a program
is negligible. With respect to the 80–20 rule, 80% of the
faults are found in 20% of the fault-prone code of a pro-
gram [3, 11].

A suitable selection of mutations should be chosen from
the created mutants to reduce mutation test costs. As a con-
sequence, introducing mutation operators (faults) into a
program's fault-prone regions yields correct results with a
small number of mutations. Furthermore, inserting flaws in
basic programs results in the generation of stillborn mutants
that are detectable (killed) by all test sets (even poor test
data). The suggested approach analyzes the program's source
code statically to find the program's fault-prone regions. The
suggested technique prevents the modification of non-fault
prone (simple) codes, resulting in a significant reduction
in the number of mutants. There are 2n execution routes
(test path) in a program having n branch instructions. Each
of these pathways' data and codes can be regarded a target
for mutation operators. Identifying a program's fault-prone
(complex) routes is an NP-hard complete. Nowadays, dif-
ferent heuristic algorithms are used to solve various prob-
lems in computer engineering [13, 17, 25]. The Artificial
Bee Colony optimization technique is utilized in the first
step of the proposed method to identify the most fault prone
paths of a program. In the second stage, the mutation opera-
tors (faults) are injected solely on the identified fault-prone

instructions and data. MuJava was used to do the mutation
injection procedures [23].

The paper is organized as follows: Sect. 2 reviews the
related studies on software mutation testing. Section 3 pre-
sents the proposed method. Section 4 is concerned with the
simulation of the proposed method, the experiments and
evaluation criteria. Also, this section discusses and analy-
ses of the experimental results and the compares the pro-
posed method with other methods. Finally, Sect. 5 concludes
the findings of the study and presents directions for further
research.

2 Background and Related Work

Different methods have been proposed by researchers for
reducing the cost of mutation testing. A brief summary of
some seminal methods is as follows:

• Mutant sampling: mutant sampling is one of the most
straightforward strategies for lowering the number of
mutations [6]. Mutant sampling takes a small selection
of the created mutants and performs mutations on them.
Different scholars have looked into the proportion of dif-
ferent samples ranging from 10 to 40% in 5% increments
[30]. The effect of the 10% sample percentage was only
16 percent smaller than the complete set of produced
mutants, according to the experimental data. As a result,
mutation testing methodologies with a 10% sample per-
centage can be maintained as a viable choice for muta-
tion. This is in line with King and Offutt's findings [19].
Papadakis and Malevris [28] studied the effectiveness
of several mutation sampling methodologies through
experiments (from 10 to 60 percent in 10 percent steps).
The registered test's effectiveness loss varied from 6 to
26%, according to the researchers.

• Selective mutation: it is considered as another approxi-
mate technique which reduces the number of respec-
tive mutants. Random selection mutation, which was
introduced by Acree et al. [1], is aimed at reducing the
number of executive mutations. It randomly analyzes
only a small portion of the mutations. Another strategy,
known as limited mutation [26], examines only a cer-
tain number of mutations and neglects the other ones.
One drawback of this method is related to the manner
of selecting operators; also, they are not able to produce
different good sets based on the specific purposes. Offutt
et al. [26, 27] expanded this idea and investigated the
effectiveness of different mutation operator sets. The
related findings indicated that 5 operators out of 22
operators are sufficient for investigating the efficacy of
mutation test. Barbosa et al. [5] proposed 6 operators for

291Journal of Electronic Testing (2022) 38:289–302

1 3

determining the number of adequate mutation operators.
Using these operators led to a set of 10 operators which
reduced 65% of the mutations and test efficacy was not
lost. Other studies have examined the efficacy of using
mutation with only one or two mutation operators. Wong
[30] examined the efficacy of using mutation with one or
two assignment mutation operators in relation to depend-
ent mutation operator. The experimental evaluation of
this approach indicated that the number of respective
mutations may be reduced up to 67% and only 5% of
the test effectiveness is lost. Also, some experimental
results indicated that using this type of mutations does
not reduce the quality of the produced test cases. Zhang
et al. [33] compared selective mutation with sampling
mutation. They investigated three selective techniques vs.
two sampling techniques. It was observed that sampling
mutation was more effective than selective mutation.
Finally, Zhang et al. [32] recommended that selective
mutation and sampling mutation may be used together
and along with each other so as to obtain promising
results.

• Minimum mutation sets: the results show that by tar-
geting other mutations, a substantial number of muta-
tions may be reductively destroyed [24]. Research-
ers have attempted to estimate the minimal number
of mutations required to cover their whole set, which
would be sufficient for calculating the minimum set's
ability. Kintis et al. [20] were the first to incorporate
the smallest number of alterations in the source code of
programs in an experiment. Even for mutations that are
barely destroyed, the acquired data show that just a tiny
percentage of the created mutations (9%) is necessary
to cover the full set (35%). Kurtz et al. [21] looked at
this topic from both a theoretical and an experimental
standpoint. To reduce the number of mutations, they
adopted dynamic sharing. The x mutation is dynami-
cally transformed to the y mutation given a test set; that
is, the test cases that kill x will also kill y. The dynamic
subset's experimental assessment in C programming lan-
guage revealed that just 12% of the created mutations
are required to cover the whole set. Finally, Kurtz et al.
[21, 22] looked at whether dynamic and static analy-
sis approaches may be utilized to estimate the relation-
ship between common mutations. They discovered that
static and dynamic analysis approaches should be used
together to produce better results.

• Strong, weak and hard mutations: in addition to limiting
the number of respective mutations for managing muta-
tion costs, researchers have developed different techniques
for reducing the implementation cost of all the mutations
in the available test set. One such technique is referred
to as weak mutation technique which was proposed by

Howden [16]. Weak mutation is aimed at reducing the
required computational cost for preventing mutation by
avoiding complete implementation of the main program
and its mutations. For achieving this aim, the weak muta-
tion defines the conditions which should be considered
for the mutation as the killed mutation. For comparing
the final output of the main program and the mutated
program, the internal states of the programs are com-
pared immediately after implementing the mutation or
the mutated components. It should be noted that standard
mutation is known as strong mutation when it is compared
with weak mutation. Woodward and Halewood [31] intro-
duced the concept of hard mutation which is regarded as
the one between strong and weak mutation. They argued
that we can make comparisons on the internal states of
the main program and its mutation at any points between
the first implementation of the mutation and the end of the
program. Different studies acknowledged the efficiency
and productivity of weak mutations. Offutt and Lee
(1991) developed a weak framework for FORTRAN77
program; then, they experimentally examined its perfor-
mance and operation. The obtained results indicated that
weak mutation also leads to the manual efficacy loss of
mutation by considering fewer equal mutations. Offutt
and Lee (1991, 1993) investigated the effectiveness and
efficiency of weak mutations by implementing different
techniques. They found that this method can be consid-
ered as an economical alternative for strong mutation.
According to the conducted implementations, research-
ers proposed that the internal states of the main program
and its mutations should be compared with each other
after the first execution of the mutated expression or the
main block which includes it. Cutigi et al. [7] made a
systematic review that characterizes the state-of-the-art in
mutation testing cost reduction. It examines the progress
of research on this issue, as well as its underlying aims
and methodology, and identifies cost-cutting metrics. The
research is based on a group of 165 peer-reviewed arti-
cles, of which 146 give unique or updated methodologies
and outcomes for lowering the cost of mutation testing.
A list of six key cost-cutting aims is offered, along with
22 approaches. In the past, 18 measures were employed
to quantify the gains and losses reported in experimental
investigations. Table 1 illustrates the main features of the
related methods.

3 The Proposed Method

Because software mutation testing is time-consuming
and expensive, several recent research efforts have con-
centrated on this topic in order to resolve it. Indeed, the

292 Journal of Electronic Testing (2022) 38:289–302

1 3

primary goal of such research is to reduce the amount of
mutations. We suggested an effective technique for soft-
ware mutation testing in this paper by utilizing an artifi-
cial bee colony algorithm. Only the codes and data of the
identified fault-prone paths of the program source code
were subjected to mutation operators in this procedure.
Indeed, the suggested strategy prevents mutation of the
program's non-fault prone (simple) codes, resulting in a
significant reduction in the number of mutants. The pro-
posed technique is depicted in Fig. 1.

3.1 Control Flow Graph

In the proposed method, the most fault prone paths of
the program should be identified befor injecting muta-
tion operators. As shown in Fig. 1, at the first step, the
corresponding control flow graph (CFG) of the program
source code should be generated. A CFG is a demonstra-
tion of all the possible paths and branches of a program.
The graph includes a set of nodes and edges. Each node
is defined as a block which includes a set of operators
and operands that are executed continuously. In fact, in
case an instruction is executed in the block, the entire
block will be executed. The presence of directional edge
among nodes indicates a possible executing path in the
graph. If a node has more than one output edge, it is
called branch. The CFG of a program is illustrated in
Fig. 2.

The fault prone (complexity) of a path in a CFG is a
function of its nodes’ complexity. Hence, calculating the
weight of nodes (fault prone metric of nodes) is required
for calculating the weight of paths (fault prone metric of
paths) in the CFG.

3.2 Node Weight

Node weight is utilized in this study to define the fault
proneness (complexity) of a node in a CFG. The larger the
weight of a node, the more complicated and fault-prone it is.
The weight of nodes is calculated by adding the normalized
weights of operators and operands. Node weight is indicated
via Formula (1). The number of accessible operators and
operands in a node are the most important elements that
influence the weight of nodes.

The weight of available operators in each node is denoted
by W

(

N1

)

 which indicates the total number of available
operators in that node. The weight of available operands
in each node is denoted by W(Mi) which indicates the total
number of available operands in that node. Then, the nor-
malized weight of each of them is obtained and their total
is measured. We used Formula (2) for normalizing opera-
tors’ weights where the number of available operators in the

(1)
W �

(

BBi

)

= W �
(

Ni

)

+W �
(

Mi

)

+ �

{

� = 0.5, Node have if instruction.

� = 1, Node have not if instruction.

Table 1 Merits and demerits of the proposed related works for reducing the number of mutations

The methods Procedure Merits Demerits

Mutation sampling:
(Offutt and Lee 1993) [1, 6, 19, 29,

30]

Selecting a subset of the generated
mutations

Simplicity of conducting the test Reduced test efficacy

Selective mutation, limited mutation:
(DeMillo et al. 1980) [5, 8, 15, 20,

26–28, 30, 32, 33]

Selection of a small set of mutation
operators

Maintenance of test effectiveness by
reducing 65% of mutations

Low performance of this
method alone and the
need for combining it
with mutation sampling

Minimum mutation sets:
[9, 14, 20–22, 24]

It reductively destroys a large number
of mutations by targeting other
mutations

It requires a small section of produced
mutations for covering the entire set

It is imprecise

Strong, weak and hard mutations:
(Offutt and Lee 1991) [15, 16, 20,

31]

Weak mutation: it reduces the
number of mutations by avoiding
complete execution of the program.
Strong mutation: it reduces the
number of mutations by comparing
the final output of the main
program and the mutated program

Hard mutation: it is an approach
between strong and weak mutation

They are economical and require
fewer computational resources

They need comparison and
they might be imprecise
if the total program is not
executed

293Journal of Electronic Testing (2022) 38:289–302

1 3

respective node is divided on the total number of operators
of the nodes.

For normalizing the weight of operands, we used For-
mula (3) in which the number of available operands in the
respective node is divided on the total number of operands
of the nodes.

3.3 Branch Weight

A branch's reachability is determined by its weight. The
algorithm should strive harder to obtain the branch with a

(2)W �
�

Ni

�

=
W
�

Ni

�

∑
�
pi�

i=1
W
�

Ni

�

(3)W �
�

Mi

�

=
W
�

Mi

�

∑
�
pi�

i=1
W
�

Mi

�

greater branch weight. The branch weight is affected by the
complexity of the propositions of the decision node. Propo-
sition weight was calculated using Formula (4) and Table 2.
The following two states are created by this formula:

• If the respective decision node includes h conditions
which have combined with each other through AND
operator, the square root of the total weight of the prop-
ositions will be considered to be the selection condition.

Generating the control �low

graph of the program

Evaluating the number of

mutants and mutation score in

the proposed method

Performing the mutation testing

on the fault-prone codes and all

codes of the program

Test set

Second Step : Selecting the

codes of the identi�ied fault-

prone paths to inject mutation

operators

First Step : Finding the most

fault prone paths of the

program by the proposed

Arti�icial Bee Colony algorithm

P
ro

p
o

se
d

 M
e

th
o

d

Java Source
code

Fig. 1 Steps of the proposed method

Fig. 2 A control flow graph of a program

Table 2 Weights of the
operators for computing
proposition weight

Operator Weight

 == 0.9
<, <=, >, >= 0.6
Boolean 0.5
!= 0.2

294 Journal of Electronic Testing (2022) 38:289–302

1 3

• If the respective decision node includes h conditions
which have been combined with each other through OR
operator, the lowest weight of the propositions’ weight
will be regarded as the selection condition.

In this formula, Bchj variable stands for the jth decision
node which is determined as (1 ≤ j ≤ pj). In computing
the proposition weight of the jth node, h variable refers
to the available conditions within the decision node. Cg
denotes the gth condition which is determined as (1 ≤ g ≤
h). Wr variable refers to condition weight which was speci-
fied by Table 2. We used Formula (5) for normalizing the
weight of propositions in which the proposition weight of
the respective branch is divided on the total weight of the
propositions.

Also, Table 2 gives all the operators which may be
involved in the condition. Indeed, they determine the weight
of the propositions. Finally, Formula (6) indicates objective
(fitness) function.

In this formula, the expression
∑
�
pi�

i=1
BBi denotes the total

complexity of the nodes into pathi in which pi indicates the
number of nodes; also, the expression

∑
�
pj�

j=1
Bchj refers to the

total complexity of decision nodes in which pj stands for the
number of available decision nodes in the program. In this

(4)

W
�

BCHj

�

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

h
∑

g=1

W2
r

�

Cg

�

. if conjuction is AND

���

�

h

g = 1
Wr

�

Cg

��

. other wise

(5)W �
�

BCHj

�

=
W
�

BCHj

�

∑
�
pj�

j=1
W
�

BCHj

�

(6)

Fitness
(

Pathi
)

=

|
pi|
∑

i=1

W �
(

BBi

)

× � +

|
pj|
∑

j=1

W �
(

BCHj

)

× (1 − �)

formula, α was used as an impact factor; it was applied as
the efficacy degree of complexity criteria. In this paper, the
value of α was assumed to be 0.5.

3.4 Artificial Bee Colony Algorithm (ABC)

Karaboga and Basturk [18] proposed the Artificial Bee Col-
ony (ABC) method. Its goal was to achieve true parameter
optimization. This technique was developed as an optimi-
zation algorithm that replicates the unrestricted exploring
behavior of a bee colony in terms of optimization difficulties.
One limitation-handling approach is paired with this algo-
rithm to solve optimization issues with limitations. There
are responsibilities carried out by specialist personnel in a
real honeybee colony. That is, the specialized bees use labor
division and effective self-organization to strive to optimize
the amount of stored nectar in the hive. The program has
adapted the minimal food selection search strategy used by
smart bee groups in the honeybee colony, which contains
three categories of bees: worker bees, observer bees, and
precursor bees. The worker bees make up half of the colony,
while the observer bees make up the other half. Worker bees
are in charge of collecting nectar from previously discovered
sources. They should also advise other bees (waiting obser-
vation bees in the hive) about the quality and location of the
nectar supply being harvested. Observer bees remain in the
hive and make food-related decisions based on the informa-
tion provided by worker bees. To identify new food sources,
precursor bees explore the surroundings instinctively, ran-
domly, or based on other external indications.

3.4.1 Steps of the algorithm

The main steps of the ABC algorithm are as follows:

1. Giving an initial value to food source locations.
2. Each worker bee produces a new food source in its own

food source location and extracts the better source.
3. Each precursor bee selects a source depending on its

solution quality. Then, it produces a new food source in

Fig. 3 Steps of the ABC algo-
rithm

Step 1: producing initial solutions and computing their quality by precursor bees

Step 2: optimizing the presented solutions and re-computing quality

Step3: computing the probability of solution selection and greedy selection of them

Step 4: optimizing selected solutions and re-computing their quality

Step 5: saving the selected solutions

Step 6: presenting a new solution by precursor bee in case the old solution is abandoned

Step 7: return to the 2nd step if the algorithm is not ended

Step 8: showing the selected solutions

295Journal of Electronic Testing (2022) 38:289–302

1 3

the location of the selected food source and extracts the
better source.

4. The food source which should be abandoned is deter-
mined and some worker bees are allocated as precursor
bees that should search for new food sources.

5. The best food source which has been discovered up to
now is remembered.

6. The steps 2–5 are repeated until the stop criterion
becomes appropriate.

In the first step of the algorithm,
(

i = 1.… .SN
)

Xi , solu-
tions are randomly produced. SN refers to the number of
food sources. In the second step of the algorithm, a new

food source is produced by Formula (7) for each worker bee,
whose population is equal to the half of the total number of
food sources.

A random number was uniformly distributed within
[-1, 1] interval which controls location production of
neighboring food sources around xij. K is the solution
index which was randomly selected from the colony.
j = 1.… .D = int(rand ∗ SN) + 1 and D are problem dimen-
sions. After Vi is produced, this new solution is compared
with Xi and the worker bee extracts the better source. In the
third stage of the algorithm, an observer bee selects a food
source with (2) probability and produces a new source in
the location of the food source selected by (1). In the same
way as the worker bee, decision is made about extracting a
better source. Fiti refers to the fitness degree of Xi solution.
After all the observer bees are distributed in the sources,
sources are examined to find out whether or not they should
be abandoned. If the number of the cycles of a source which
are not optimized is greater than the predetermined limit,
that source will be regarded as a terminated source. The
worker bee related to the terminated source becomes a pre-
cursor bee which starts a random search within the problem
area by using Formula (8). The operating procedure of the
ABC algorithm is depicted in Figs. 3 and 4.

The paths of the CFG are regarded as the input of the ABC
algorithm. Each graph path illustrates a honey bee which is
specified by an array. The length of the graph stands for the
path length. Each member of the array indicates an available
node on the path. Based on honey bee structure shown in
Fig. 5, each honeybee has 2 characteristics:

• Honeybee position is specified by array.
• Nectar quality in the food source is the amount of the

respective target function.

After initial population is randomly produced, the
values of the target function defined in Formula (6) are
computed for each honey bee. The target function for the
proposed algorithm is of the maximization type. Then, by
capitalizing on ABC algorithm, high-complexity (most
fault prone) paths are selected from the control flow graph.
This subset of paths is applied for injecting mutation on
the mutation test. These paths are the most fault prone

(7)vij = xij + φij

(

xij − xkj
)

φij

(8)xij = xjmin +
(

xjmax − xjmin
)

∗ rand

Fig. 4 Stages of the ABC algorithm

Fig. 5 Honey bee structure
Cost BB BB BB

296 Journal of Electronic Testing (2022) 38:289–302

1 3

locations of the program. the remaining paths are execu-
tive paths which have no impact or minimum impact on the
output. As a result, injecting mutation operators on such
routes is fruitless and ineffective. Optimization algorithms,
random search and evolutionary methods are regarded
as modern and efficient methods which are particularly
applied for finding global optimal responses for the prob-
lems. The randomness feature of these algorithms prevents
them from being trapped in local optimal points. Most
algorithms have been inspired from biological systems.
Honey bee colony algorithm is considered to be an exam-
ple of such biological systems. It models the behavior of
honeybees and assigns a value in accordance to the fitness
of the location of each bee for the quality of bees; in this
way, by updates bees’ locations in consecutive iterations
of the algorithm, the algorithm seeks optimal response for
the problem. The output of ABC algorithm for each input
algorithm is the most fault-prone (most complex) executive
paths. The input of the proposed algorithm is the control
flow graph and its output is a subset of executive routes
with maximum complexity.

4 The Experiments of the Proposed ABC
Algorithm

On a 64-bit Win7 operating system, the suggested method
was evaluated and implemented in Matlab 2018. The exper-
iments were carried out on a machine with an Intel Core
i7 CPU and 4 GB of RAM. The suggested approach was
implemented in Matlab, and mutations were injected using

the MUJAVA tool. This problem has been solved using a
variety of evolutionary techniques. We utilized the ABC
technique to discover the program's fault-prone places
in this article. As previously stated, an effort was made
to identify the program's most complicated (fault-prone)
routes. It should be noted that benchmark programs are
essential for evaluating the suggested method's efficiency
and efficacy. The elements of the benchmark software are
listed in Table 3.

One of the shortcomings of evolutionary algorithms is
the value specification of the parameters of each method.
In many cases, parameters play an essential role in bringing
the algorithm closer to the optimal response. ABC algo-
rithm has 2 parameters. Appropriate values for these two
parameters within the approximate interval were defined
by Karaboga and Basturk [18]. Like other algorithms, the
parameters of ABC algorithm are calibrated experimentally
through trial and error. Table 4 gives the adjusted parameters
of ABC algorithm in this study. The features of the bench-
mark programs are described in Table 4. All of the program-
ming structures that may be used in real-world software are
included in these programs, including:

• if-else structure
• for structure
• while structure
• switch structure
• I/O structure
• Operators for arithmetic and logic

The source code of huge real-world applications (with
millions of lines of code), which is made up of modules and

Table 3 Benchmark programs
used in the study

Program name Input parameters Code lines
(LOC)

Program objective

Triangle Type 3 31 Specifying triangle type
CallDay 3 72 Specifying weekday
isValidDate 3 41 Checking the validity of the inserted date
Cal 6 26 Calculating the number of days between two dates
Reminder 2 17 Calculating the remainder integer number

Table 4 Adjusted parameters for ABC algorithm with regard to
benchmark programs

Benchmark Program Population size Pm

cal 3 0.03
CallDay 3 0.03
isValidDate 6 0.02
reminder 6 0.006
triangle 80 0.03

Table 5 Success rate
comparisons of ABC and GA
algorithms in 5 benchmark
programs

Program name ABC GA

Cal 70% 10%
calDay 60% 30%
isValidDate 70% 60%
Reminder 90% 40%
Triangle 90% 10%

297Journal of Electronic Testing (2022) 38:289–302

1 3

a) Convergence of the proposed method and GA for cal program b) Convergence of the proposed method and GA for calDay
program

c) Convergence of the proposed method and GA for isValidDate
program

d) Convergence of the proposed method and GA for Reminder
program

e) Convergence of the proposed method and GA for Triangle program

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

1 21 41 61 81 101 121 141 161 181

Va
lu

e
of

 Fi
�n

es
s F

un
c�

on

Itera�on

ABC GA PSO ACO

0
1
2
3
4
5
6
7

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

ABC GA PSO ACO

0
1
2
3
4
5
6
7
8

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

ABC GA PSO ACO

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

ABC GA PSO ACO

0

1

2

3

4

5

6

7

8

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

ABC GA PSO ACO

Fig. 6 Comparing the convergence of FA and GA algorithms for 5 benchmark programs

298 Journal of Electronic Testing (2022) 38:289–302

1 3

routines. Functions in real-world applications are typically
between 10 and 60 lines of code in length. Hundreds of lines
of code are not conventional or intelligible, and should be
split down into smaller functions.

4.1 Results and Discussion

4.1.1 Success Rate

The collected findings for the performances of ABC and
genetic algorithm (GA) algorithms are detailed in the next
section in relation to the assessed criteria in five benchmark
programs. The optimal value for the fitness function of each
program is determined for computing success rate in 10
executions of the method. Table 5 shows ABC and GA's
success rate in determining the most error prone routes of
each benchmark program in ten executions; this table shows
how many executions out of ten have attained the best fitness
function value.

4.1.2 Convergence

Figure 6 shows the convergence of the ABC, Genetic
Algorithm (GA), Particle Swarm Optimization Algo-
rithm (PSO), and Ant Colony Optimization Algorithm
(ACO) algorithms in five benchmark applications. The
same benchmark programs were used to run all of the
algorithms. The convergence of ABC and GA algorithms
in five benchmark programs is shown in Fig. 6. The sug-
gested technique surpasses the previous algorithms in
terms of discovering the most error prone routes of the
input program and also in terms of convergence speed, as
shown in Fig. 6. Table 6 illustrates the average fitness of
the algorithms' produced outputs in 10 executions (ABS,
GA, PSO, and ACO). The fitness (complexity) of the final

generated output (program executing path) created by the
ABC algorithm after 44 iterations is around 4.740 in the
cal benchmark. After 21 rounds on the calDay benchmark,
the ABC algorithm earned the best result of 6.320. In com-
pared to GA, PSO, and ACO, the ABC algorithm was able
to generate a better answer in a shorter time when it came
to discovering the fault prone (complex) routes of a pro-
gram. The ABC algorithm determined the most failure
prone routes with 4.230 complexity weight in roughly 35
iterations for the Reminder application, yielding similar
results. After 107 rounds, GA was only able to discover
the path with complexity weight 3.520. In other words, the
suggested ABC algorithm is more successful and efficient
than GA, PSO, and ACO in identifying the most compli-
cated paths of programs.

Based on the obtained results (shown in Fig. 6 and
Table 6), it can be maintained that the proposed ABC algo-
rithm has better convergence than GA, PSO and ACO. As
shown in these figures, although GA has converged earlier
than ABC in some benchmark programs, ABC algorithm
was able to achieve more optimal responses. It was observed
that after the ABC, the PSO based method produces better
results.

The achieved outcomes for various executions of each
algorithm will be different since the starting population
in evolutionary algorithms is formed randomly and the
obtained answers in the execution process of each algorithm
are random. As a result, we cannot analyze and evaluate
the algorithm's performance based on simply one good or
negative outcome for a run of the algorithm. As a result,
after determining the best parameters of the algorithm, 10
distinct executions of the algorithm with 200 iterations for
each different execution were considered in this study. The
objective function of the ABC algorithm gave better replies
than the GA method, according to findings obtained from 10
executions for 5 benchmark programs.

As shown in Fig. 7, ABC algorithm has fewer fluctua-
tions in different iterations. That is, the ABC heuristic
algorithm is more stable than GA. The standard deviations
(SD) for ABC and GA in different benchmark programs
were computed which are given in Table 7. It was observed
that the proposed ABC algorithm has fewer standard devia-
tions than GA. In fact, fewer SD in the obtained results is
regarded as another evidence for the stability of the ABC
algorithm in detecting and identifying the most complex
paths of a given program. In other words, it can be argued
that the proposed ABC algorithm is more suitable for iden-
tifying the most complex (fault prone) paths and injecting
mutation.

Table 6 The average finesses of the outputs of ABC, GA, PSO and
ACO in 10 executions

Program name ABC GA PSO ACO

Cal 4.740 3.066 4.710 4.514
calDay 6.320 5.450 6.048 5.450
isValidDate 6.961 5.509 6.960 6.600
Reminder 4.230 3.526 4.130 4.131
Triangle 6.869 5.590 6.625 5.558

299Journal of Electronic Testing (2022) 38:289–302

1 3

a) Stability of ABC and GA in cal program b) Stability of ABC and GA in calDay program

c) Stability of ABC and GA in isValidDate program d) Stability of ABC and GA in Reminder program

e) Stability of ABC and GA in Triangle program

0.000

1.000

2.000

3.000

4.000

5.000

6.000

1 3 5 7 9

ABC Gene�c

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

1 3 5 7 9

ABC Gene�c

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

1 3 5 7 9

ABC Gene�c

0.000

1.000

2.000

3.000

4.000

5.000

1 3 5 7 9

ABC Gene�c

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1 3 5 7 9

ABC Gene�c

Fig. 7 Stability comparison of ABC and GA in 10 iterations of different benchmark programs

300 Journal of Electronic Testing (2022) 38:289–302

1 3

4.1.3 Mutant Reduction

This criterion is used to determine how successful a test
set is in detecting errors. Mutation testing is one of the
most important procedures performed on test cases in order
to validate and acknowledge them. The mutation score is
a useful metric for assessing the quality of test cases. It
is achieved by the operators' frequent executions of the
created altered programs. Tables 8 and 9 show the total
mutants created by the proposed technique for all pathways
of each benchmark program, as well as the total mutants
generated for solely fault-prone paths. The proposed strat-
egy, as indicated in Table 8, lowers the number of muta-
tions. The suggested technique uses the ABC algorithm
to identify the source code's fault-prone routes, and then
only runs mutation operators on those paths. As a result,
the suggested solution minimizes the number of mutations
by preventing mutant injection in the program's non-fault
prone routes. According on the findings of studies con-
ducted on typical benchmark programs, the suggested

technique eliminates 28.10 percent of the produced mutants
when compared to existing methods. The cost of mutation
testing will be reduced if the number of created mutants
is reduced. The proposed technique has a considerable
impact on software mutation testing cost reduction. Using
the approach given in this paper, classic mutation testing
tools (Mujava, Muclipse, Jester, Jumble) may do mutation
testing at a lesser cost.

Preventing the mutation of non-error propagating codes
of a program decreases the number of generated mutants
and increase the performance of the mutation testing
techniques. The goal of mutation test is to evaluate the
effectiveness of a test suite and not to evaluate the program.
The main demerits of the mutation test methods and tools
is to inject brute force and unreal mutants. Some of the
created mutants (faults) does not occur by any program-
mers in the real-world programs. Regarding the compe-
tent programmer hypothesis, the programmer is competent
which means the programmer will code programs close to
perfection. Hence, the fault (bug) occurring probability in
the simple part of a program source code is very low (neg-
ligible). The results of the proposed method tires to make
real-world faults in the program by avoiding the simple
code mutation.

Table 7 Comparison of average results and standard deviation among
the generated results for ABC and GA regarding 10 iterations of 5
benchmark programs

ABC GA

Program name AVG. Fitness Standard
Deviation

AVG. Fitness Standard
Deviation

Cal 643/4 217/0 059/4 836/0
calDay 044/6 418/0 828/5 474/0
isValidDate 561/6 515/0 693/5 090/0
Reminder 069/4 221/0 522/3 459/0
Triangle 382/7 572/0 414/7 130/0

Table 8 The results of mutation testing on all codes and fault-prone codes of 5 benchmark programs in 10 executions

Programs Total Mutants Killed Mutants Live Mutants Mutation Score

Cal Mutation of all codes 98 78 20 79.59%
Mutation of fault-prone codes 43 26 17 60.46%

calDay Mutation of all codes 167 109 58 65.28%
Mutation of fault-prone codes 126 73 53 57.93%

isValidDate Mutation of all codes 111 78 33 70.27%
Mutation of fault-prone codes 106 61 45 57.54%

Reminder Mutation of all codes 155 40 115 25.80%
Mutation of fault-prone codes 119 24 95 20.16%

Triangle Mutation of all codes 445 304 141 68.31%
Mutation of fault-prone codes 302 213 89 70.52%

Table 9 The mutant reduction
by the proposed method in the
benchmark programs

Program name ABC

Cal 56.12%
calDay 24.55%
isValidDate 04.50%
Reminder 23.22%
Triangle 32.13%
AVG 28.10%

301Journal of Electronic Testing (2022) 38:289–302

1 3

5 Conclusion and Directions for Further
Research

The rationale behind this study was to investigate the
efficacy of the proposed method in reducing the muta-
tion test by detecting redundant mutations. The proposed
method was compared with the previous methods in terms
of convergence speed and stability. As discussed above,
the obtained results of the proposed ABC algorithm were
tabulated with respect to the evaluation parameters. The
comparison results revealed that the proposed method has
better results than the previous methods. Furthermore, the
proposed method can be used into the mutation testing
tool such as MuJava to perform mutation test with lower
cost. As a direction for further research, other evolution-
ary algorithms, developed for reducing software mutation
testing, can be used for achieving optimal results. Indeed,
future studies may focus on overall comparison of evolu-
tionary algorithms for developing an efficient and effective
method with regard to mutation testing.

Author Contribution All authors contributed to the study conception and
design. Thesis statement, data collection and analysis were performed by
Bahman Arasteh. Experiments have been performed by Bahman Arasteh,
Parisa Imanzadeh, Keyvan Arasteh, Farhad Soleimanian Gharehchopogh
and Bagher Zarei and also, the first draft of the manuscript was written
by Parisa Imanzadeh. All authors commented on previous versions of
the manuscript. Bahman Arasteh read and approved the final manuscript.

Funding The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Data Availability The datasets generated during and the implemented
code during the current study is available in the google.drive can be
freely accessed by the following link: https:// drive. google. com/ drive/
folde rs/ 1XFId 09ZM8 8thDH CRWNo TkJWN Biokk- S_? usp= shari ng.

Declarations

Conflicts of Interests The authors have no relevant financial or non-
financial interests to disclose.

References

 1. Acree A, Budd T, DeMillo R, Lipton R, Sayward F (1980) Muta-
tion Analysis. School of Information and Computer Science,
Georgia Institute of Technology

 2. Aghdam ZK, Arasteh B (2017) An efficient method to generate
test data for software structural testing using artificial bee colony
optimization algorithm. Int J Softw Eng Knowl Eng 27(6):2017

 3. Arasteh B (2019) ReDup: A software-based method for detecting
soft-error using data analysis. Comput Electr Eng 78:89–107

 4. Arasteh B, Hosseini SMJ (2022) Traxtor: An Automatic Software
Test Suit Generation Method Inspired by Imperialist Competitive

Optimization Algorithms. J Electron Test. https:// doi. org/ 10. 1007/
s10836- 022- 05999-9

 5. Barbosa EF, Maldonado JC, Vincenzi AMR (2001) Toward the
determination of sufficient mutant operators for C. Softw Test
Verification Reliab 11(2):113–136

 6. Budd TA (1980) Mutation Analysis of Program Test Data. Yale
University

 7. Cutigi F, Viola Pizzoleto A, Offutt J (2018) A Systematic Review
of Cost Reduction Techniques for Mutation Testing: Preliminary
Results. In: Proc. IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp
1–10. https:// doi. org/ 10. 1109/ ICSTW. 2018. 00021

 8. Delgado-Pérez P, Medina-Bulo I (2018) Search-based mutant
selection for efficient test suite improvement: Evaluation and
results. Inf Softw Technol 104(2018):130–143

 9. Deng L, Offutt J, Ammann P, Mirzaei N (2017) Mutation operators
for testing Android apps. Inf Softw Technol 81(2017):154–168

 10. Dominguez-Jimenez JJ, Estero-Botaro A, Garcia-Dominguez A,
Medina-Bulo I (2011) Evolutionary mutation testing. Inf Softw
Technol 53(10):1108–1123

 11. Fenton NE, Ohlsson N (2000) Quantitative analysis of faults and
failures in a complex software system. IEEE Trans Softw Eng
26(8):797–814

 12. Ghaemi A, Arasteh B (2020) SFLA-based heuristic method to
generate software structural test data. J Softw Evol Proc 32:e2228.
https:// doi. org/ 10. 1002/ smr. 2228

 13. Gharehpasha S, Masdari M, Jafarian A (2021) Power efficient vir-
tual machine placement in cloud data centers with a discrete and
chaotic hybrid optimization algorithm. Cluster Comput 24:1293–
1315. https:// doi. org/ 10. 1007/ s10586- 020- 03187-y

 14. Gheyi R, Ribeiro M, Souza B, Guimarães M, Fernandes L,
d’Amorim M, Alves V, Teixeira L, Fonseca B (2021) (2021),
Identifying method-level mutation subsumption relations using
Z3. Inf Softw Technol 132:106496

 15. Hosseini S, Arasteh B, Isazadeh A, Mohsenzadeh M, Mirzarezaee
M (2021) An error-propagation aware method to reduce the soft-
ware mutation cost using genetic algorithm. Data Technol Appl
55(1):118–148. https:// doi. org/ 10. 1108/ DTA- 03- 2020- 0073

 16. Howden WE (1982) Weak mutation testing and completeness of
test sets. IEEE Trans Softw Eng 8(4):371–379

 17. Jafarian T, Masdari M, Ghaffari A et al (2021) A survey and clas-
sification of the security anomaly detection mechanisms in soft-
ware defined networks. Cluster Comput 24:1235–1253. https://
doi. org/ 10. 1007/ s10586- 020- 03184-1

 18. Karaboga D, Basturk B (2007) Artificial bee colony (ABC) opti-
mization algorithm for solving constrained optimization problems.
Advances in Soft Computing: Foundations of Fuzzy Logic and
Soft Computing, vol 4529. Springer, Berlin, pp 789–798

 19. King KN, Offutt AJ (1991) A Fortran language system for mutation-
based software testing. Softw Pract Exper 21(7):685–718

 20. Kintis M, Papadakis M, Malevris N (2010) Evaluating mutation
testing alternatives: a collateral experiment. In: Proceedings of the
17th Asia-Pacific Software Engineering Conference (APSEC)

 21. Kurtz B, Ammann P, Delamaro M, Offutt J, Deng L (2014) Mutant
subsumption graphs. In: 2014 IEEE Seventh International Confer-
ence on Software Testing, Verification and Validation Workshops
(ICSTW)

 22. Kurtz B, Ammann P, Offutt J (2015) Static analysis of mutant sub-
sumption. In: IEEE Eighth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW)

 23. Ma YS, Offutt J, Kwon YR (2006) MuJava: A Mutation System
for Java. In: 28th International Conference on Software Engineer-
ing (ICSE ’06)

 24. Malevris N, Yates D (2006) The collateral coverage of data flow
criteria when branch testing. Inf Softw Technol 48(8):676–686

https://drive.google.com/drive/folders/1XFId09ZM88thDHCRWNoTkJWNBiokk-S_?usp=sharing
https://drive.google.com/drive/folders/1XFId09ZM88thDHCRWNoTkJWNBiokk-S_?usp=sharing
https://doi.org/10.1007/s10836-022-05999-9
https://doi.org/10.1007/s10836-022-05999-9
https://doi.org/10.1109/ICSTW.2018.00021
https://doi.org/10.1002/smr.2228
https://doi.org/10.1007/s10586-020-03187-y
https://doi.org/10.1108/DTA-03-2020-0073
https://doi.org/10.1007/s10586-020-03184-1
https://doi.org/10.1007/s10586-020-03184-1

302 Journal of Electronic Testing (2022) 38:289–302

1 3

 25. Masdari M, Khezri H (2020) Efficient VM migrations using
forecasting techniques in cloud computing: a comprehensive
review. Cluster Comput 23:2629–2658. https:// doi. org/ 10. 1007/
s10586- 019- 03032-x

 26. Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C (1996) An
experimental determination of sufficient mutant operators. ACM
Trans Softw Eng Methodol 5(2):99–118

 27. Offutt AJ, Rothermel G, Zapf C (1993) An experimental evalu-
ation of selective mutation. In: Proceedings of the 15th Inter-
national Conference on Software Engineering, ICSE ’93. IEEE
Computer Society Press, Los Alamitos, CA

 28. Papadakis M, Malevris N (2010) An empirical evaluation of the
first and second order mutation testing strategies. In: 2010 Third
International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW)

 29. Wei C, Yao X, Gong D, Liu H (2021) Spectral clustering
based mutant reduction for mutation testing. Inf Softw Technol
132:106502

 30. Wong WE (1993) On mutation and data flow. Purdue University
(Ph.D. dissertation)

 31. Woodward M, Halewood K (1998) From weak to strong, dead or
alive? An analysis of some mutation testing issues. In: Proceed-
ings of the Second Workshop on Software Testing, Verification,
and Analysis

 32. Zhang L, Gligoric M, Marinov D, Khurshid S (2013) Operator-
based and random mutant selection: better together. In: Proc.
IEEE/ACM 28th International Conference on Automated Soft-
ware Engineering (ASE)

 33. Zhang L, Hou S-S, Hu J-J, Xie T, Mei H (2010) Is operator-
based mutant selection superior to random mutant selection? In:

Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Bahman Arasteh was born in Tabriz. Currently, he is associated pro-
fessor in Istinye University in Turkey. His research interests include
software engineering, software testing, software fault tolerance and
software-implemented fault injection.

Parisa Imanzadeh received master’s degree in Software engineering
from Azad University of Tabriz. His research interests include Software
development, maintenance and testing.

Keyvan Arasteh is instructor in Istinye University. He received master’s
degree in software engineering from Azad University of Tabriz. His
research interests include software engineering, web Application secu-
rity, full-stack programing.

Farhad Soleimanian Gharehchopogh is associated professor in Urmia
Azad University in Iran. His research interest includes search-based
computer engineering, complex networks, optimization problems and
meta heuristic algorithms.

Bagher Zarei is assistant professor in Shabestar branch of Islamic Azad
university in Iran. His research interest includes complex networks,
evolutionary algorithms and their function in computer engineering.

https://doi.org/10.1007/s10586-019-03032-x
https://doi.org/10.1007/s10586-019-03032-x

	A Source-code Aware Method for Software Mutation Testing Using Artificial Bee Colony Algorithm
	Abstract
	1 Introduction
	2 Background and Related Work
	3 The Proposed Method
	3.1 Control Flow Graph
	3.2 Node Weight
	3.3 Branch Weight
	3.4 Artificial Bee Colony Algorithm (ABC)
	3.4.1 Steps of the algorithm

	4 The Experiments of the Proposed ABC Algorithm
	4.1 Results and Discussion
	4.1.1 Success Rate
	4.1.2 Convergence
	4.1.3 Mutant Reduction

	5 Conclusion and Directions for Further Research
	References

