
Vol.:(0123456789)1 3

Journal of Electronic Testing (2022) 38:279–288 
https://doi.org/10.1007/s10836-022-06009-8

Research on Analog Integrated Circuit Test Parameter Set Reduction 
Based on XGBoost

Yindong Xiao1 · Yutong Zeng1  · Qiong Wu1 · Ke Liu1 · Yanjun Li1 · Chong Hu2

Received: 26 December 2021 / Accepted: 6 June 2022 / Published online: 24 June 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
As the scale of integrated circuits continues to increase and their test cost increases with test time, how to optimize the test 
parameters is an important topic. In analog integrated circuits, the implicit dependency among test parameters makes it pos-
sible to apply the XGBoost technique based on decision trees in machine learning to optimize the test parameters. In this 
paper, an optimization algorithm is proposed based on the XGBoost decision tree model. By modeling the representational 
relationships of each test parameter in the historical test data set, the list of those to be optimized is obtained according to 
the descending order of the escape rate in the prediction results. According to this list, the test parameters to be deleted are 
selected in turn, the prediction results of the remaining test parameters on those test parameters are obtained, and the escape 
rate after screening out the target parameters is evaluated, and the test parameters are optimized based on this list to reduce 
the test time and test cost.

Keywords Machine learning · Decision tree · Integrated circuit testing

1 Introduction

With the level of integration and complexity of chips hav-
ing increased significantly, their cost is getting much more 
attention. Due to the limitation of chip integration, Automatic 

Test Equipment(ATE) is used to automate the testing pro-
cess. However, as the level of integration improves, required 
testing time grows with it, and the use of ATE is billed by 
usage time. As for that, the reduction of testing time means 
the reduction of the overall cost of the test. It has been proved 
that optimizing the test parameters or adopting a new test 
mode can effectively reduce the test time [10, 28] Brockman 
and Director [7] proposed a method to reduce the number of 
test parameters needed to verify all performances by min-
ing the correlations between test parameters in 1989. Milor 
and Sangiovanni-Vincentelli [18] reduce number of tests by 
select test set according to fault model. A binary decision tree 
model approach is implemented in [5], which also compressed 
the test set effectively [1, 12, 19]. Adaptive test optimization 
methods based on a statistical analysis of data correlation have 
also gained widespread attention in reducing test time. Benner 
and Boroffice [2] proposed an adaptive test method based on 
a statistical method to determine whether the test parameters 
should stay, in [27] the test set is adjusted separately according 
to the characteristics of each device, [26] schedules tests based 
on offline statistics obtained from the circuit and instant sta-
tistics from each chip under test, reduces test time with effect 
while keeping the escape rate virtually constant.

Not only the number of test parameters has great impor-
tance in test time, but also the sorting of them. Detecting as 
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many faults as possible at an early stage can greatly opti-
mize test time. A two-phased adaptive test method based 
on the correlation between parameters is proposed in [8] for 
parameter test, where the test items successfully reduced in 
the first stage are ranked in the second stage to maximize the 
overall probability of early fault detection. In [14] they don’t 
reduce the number of test parameters, but only use the fault 
coverage information generated by the samples to perform a 
heuristic ranking of the test parameters, which also signifi-
cantly reduces the test time. Li et al. [15] proposed a way 
to reduce test time by using mutual information to evaluate 
the utility of the next test in the queue of the fault detec-
tion circuit, based on the interrelationship between the next 
and current performed test. They also proposed a new sort-
ing algorithm for the test list in [16], which allows a larger 
amount of information to be obtained in the early stages of 
the test, thereby further reducing the test time and error rate. 
However, the adaptive test optimization method is mainly 
based on Bayesian theory to optimize the values of differ-
ent test parameters of a single sample. The optimized test 
time is uncertain, which will cause difficulty in scheduling 
in practical applications.

The analog integrated circuit has great nonlinearity in 
theory. In the manufacturing and testing process, the accu-
rate prediction of this type of nonlinear interval can reduce 
the number of test parameters required for the test, thereby 
reducing the test cost. Machine learning technology has 
unique advantages in nonlinear data fitting. In recent years, 
machine learning has been widely used in test compres-
sion, fault diagnosis, outlier detection, etc. [20] and has 
achieved great results. As mentioned in [22, 24, 25], the 
use of machine learning methods to assist chip design, test 
set compression, and test plan design, already has relatively 
mature applications. The experimental comparison based on 
the production test data of a single radio frequency device 
in [21] also shows that the more complex and advanced 
machine learning algorithm ontology neural network com-
pared with the traditional direct maximum coverage algo-
rithm or more simple nearest neighbor algorithm and linear 
discriminant analysis has a greater advantage in reducing the 
test time of radio frequency integrated circuits. In [13], the 
minimum redundancy and maximum correlation algorithm 
are used to select important test parameters and put the data 
into the BP feedback neural network to use some test param-
eters to predict the faulty chips, which effectively reduces 
the test cost and escape rate.

In this paper, a machine learning method based on 
XGBoost [9] is proposed. An independent model is estab-
lished for each test parameter, and the ability of the test 
parameter to be jointly predicted by other test parameters is 
evaluated, and according to the predictive ability, the priority 
of optimizing test parameters is determined. We use the key 
parameter in the analog IC to test the escape rate, namely 

Defective Parts Per Million(DPPM), as the main criterion of 
the model. And the corresponding loss rate is defined as the 
number of lost products per million ( Loss Parts Per Million, 
LPPM) to balance the aggressive strategy in the training pro-
cess and reduce the probability of overfitting. This method 
is optimized according to the test parameters, and the result 
has the characteristic of a fixed test time, which is suitable 
to apply in the actual analog IC production process.

This paper is structured as follows: Sect. 2 will give a 
general and concise description of XGBoost and the hyper-
parameter optimization principle. Section 3 will detail the 
data preprocessing methods and training process. Section 4 
will show the experiment process, results, and analysis for it, 
followed by the conclusion and prospect in Sect. 5

2  Basic Theory

The purpose of analog integrated circuit testing is to deter-
mine whether the test parameters of the tested chip meet the 
product specifications and whether it is a good or defective 
product. If the test value or test conclusion of a test param-
eter in all tested chips can be accurately predicted, then this 
test parameter can be deleted from the test process, thereby 
deleting test parameters can reduce the test time.

Machine learning uses historical data to make predic-
tions about samples in different situations, and its models 
are mainly classified into two types: regression and classifi-
cation. The regression model mainly provides the numerical 
fitting ability of the sample, and the classification model 
mainly completes the label prediction of the sample. The 
purpose of integrated circuit testing is to determine whether 
the chip under test meets the product specification require-
ments and should be classified as a classification problem. 
Since the method to be implemented involves numerous 
parameter features, long training time and high accuracy 
requirements, XGBoost decision tree is chosen as the base 
model.

The above two models can all be used in the optimization 
of IC test parameters. Assuming that a certain test param-
eter is expected to be optimized, a regression model can be 
trained to learn the relationship between the remaining test 
parameters and the target parameter, and predict the value 
of this parameter for all chips, check whether the predicted 
value meets the product specifications, finally verify its 
influence on the test conclusion. If a classification model 
is used, the remaining test parameters need to be used to 
directly predict the test conclusion, and the algorithm perfor-
mance is judged based on the prediction accuracy of the test 
conclusion. As the method of using the regression model to 
predict the test parameters of analog ICs has better interpret-
ability and can further reveal the relationship between test 
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parameters, this paper is mainly based on this type of model 
for in-depth research.

On the other hand, XGBoost algorithm is an excellent 
general learning algorithm. This paper uses this algorithm 
as a basis to expand its application in the analysis of analog 
IC test parameters sets. It should be pointed out that in the 
machine learning algorithm, the tested chip is called a sam-
ple, its test parameter is referred to like the feature, and the 
test conclusion is called the label.

2.1  XGBoost

XGBoost is a decision tree based model.A common struc-
ture of a decision tree model is shown in Fig. 1, where each 
non-leaf node represents a feature and a leaf node represents 
a label or decision outcome.a branch represents a judgment 
condition. When applying this decision tree, the sample to be 
predicted is checked for a decision condition by the feature 
value corresponding to the node, which determines the next 
node position and decision condition, and so on and so forth 
until a definite decision result is obtained.

which selects features that are significant for the task 
based on the current learning objective, i.e., for distinguish-
ing between different item properties, as the root node, 
searches for the feature with the maximum information 
entropy among the remaining features as the next child node, 
and repeats in this order until a structure of attributes satis-
fying the initial classification requirements is constructed.

Information entropy is a common metric used to measure 
the purity of a sample set and is defined as:

where pk(k = 1, 2,… , |y| ) is the proportion of samples of 
class k in the current sample set D. The smaller the value of 
information entropy, the higher the “purity” of the sample 
set, that is, the samples in the sample set of the node belong 
to the same class as much as possible. Information gain is 
defined as:

Ent(D) =
∑|y|

k=1
pk log2 pk

where Dv is the sample where the vth branch node contains 
all attributes in D that take the value av on a, D

v|
|D| is the weight 

of the branch node, which means that the higher the number 
of samples the higher the impact caused by the branch node. 
The higher information gain means the higher the purity 
obtained by dividing with attribute a. The information gain 
is calculated at each branch node to select the next branch 
and finally a complete decision tree is obtained.

Although the simple decision tree structure is simple and 
logical, it is prone to overfitting, i.e., the trained model per-
forms very well for the training set but performs poorly for 
the prediction of unknown samples. Therefore, pruning and 
random forest-based methods have been derived to mitigate 
overfitting. Random forests use bootstrap sampling to con-
struct multiple random training sets and respectively train a 
weak learner decision tree based on them, and then aggre-
gates these decision trees into a strong learner decision tree 
with significantly superior performance to avoid over-fitting, 
but the integrated decision trees are independent of each 
other and have no feedback effect with each other, which 
derives the gradient descent decision tree method (Gradient 
Boosting Decision Tree, GBDT).

Each tree in GBDT is fitted using the residuals (i.e., 
observations of the error) from the previous tree, and the 
final result is determined by the sum of the results of all 
trees, but this feature also makes it impossible to perform 
parallel operations. The main improvement of XGBoost 
over GBDT is the addition of a regularization term in the 
cost function to reduce overfitting, and the use of column 
subsampling in random forest [6], which not only further 
reduces the risk of overfitting, but also accelerates the paral-
lel computation.

2.2  Hyperparameter Tuning

The parameters obtained in the process of model training 
are called model parameters, and those whose ranges or val-
ues are specified before the model is established are called 
hyperparameters, which are used as guidance for model 
training. For example, the learning rate and depth of the 
tree in the decision tree model training are all hyperparam-
eters. The setting of hyperparameters will affect the perfor-
mance of the model, and more accurate prediction results 
can be obtained by adjusting them. The current mainstream 
auto-tuning algorithms include random search and Bayesian 
optimization.

HyperOptSeach is a search algorithm supported by the 
HyperOpt library [4]. The tree-structured Parzen Estimators 
(TPE) algorithm [3] implemented in it has the characteristic 
of high accuracy of the output model. It’s an algorithm based 

Gain(D, a) = Ent(D) −
∑V

v=1

|Dv|
|D|

Ent(Dv)

Fig. 1  Decision Tree Model
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on Sequential Model-based Global Optimization(SMBO), 
which models the conditional probability model p(x, y) of 
loss function y and hyperparameter x based on the Gaussian 
process. We use two density functions to define:

these two functions use observed samples and remaining 
samples to construct probability density functions sepa-
rately, and y∗ is the threshold of loss. g(x)

l(x)
 can be obtained 

after fitting g(x) and l(x), and taking g(x)
l(x)

 as the optimization 
target to minimize it can we get the expected maximum x∗.

In the model training process, all hyperparameters are 
tuned by the automatic tuning algorithm, and the search 
basis is determined by the loss function.

3  Methodology

The main means to optimize the test process of analog ICs 
in this paper is to reduce the number of parameters that need 
to be tested as much as possible while ensuring the test con-
clusion constant. This goal is equivalent to searching for 
the smallest feature set that can correctly predict the test 
conclusion in a machine learning problem. The search pro-
cess is a problem with the complexity of A. To speed up the 
problem-solving process, the method we proposed is carried 
out according to the steps shown in Fig. 2

As is shown in Fig. 2, the data pre-processing proce-
dure is to normalize test parameters according to product 
specifications. A single parameter scan will establish a 

p(x, y) =

{
l(x) if y < y∗,

g(x) if y > y∗.

learning model for each test parameter, use the remaining 
test parameters to predict the corresponding target param-
eter, and obtain its loss function value. Sort all test param-
eters according to the loss function value, we can get the 
list of test parameters to be deleted. The test parameters are 
sequentially deleted in the order of the list, and the deleted 
parameters will be modeled and predicted using the remain-
ing test parameters after each deletion, and a new model set 
can be obtained. Lastly, evaluate the impact of the models 
in the set on the test conclusions.

Therefore, there are two aspects needed to be focused on: 
1. Define the model loss function unique to the simulated IC 
test dataset as the optimization target; 2. Select a parameter 
that can reflect the characterization ability of the test param-
eter to be deleted as the sorting basis.

3.1  Loss Function

The loss function is used to define the degree of inconsist-
ency between the predicted value and the true value of the 
model, it determines the effect of the training model. Choose 
the composition of the loss function according to the appli-
cation characteristics of the analog IC:

where DPPM is the number of defective units per million 
units, which reflects the escape rate of the test, which is 
calculated as:

where n′ represents the number of defective products, and 
n represents the total number of products with a good test 
result.

LPPM, Loss Parts Per Million, is the attrition rate, we 
define it as the number of good products among the products 
whose test conclusion is defective, it reflects the model’s 
misjudgment rate of good products. This is the loss caused 
by the application of the optimization algorithm. Adding 
this part of the parameter to the loss function can prevent 
the learning algorithm from predicting a large number of 
good products as defective products in order to reduce the 
test escape rate.

� is a cost ratio that responds to the acceptable level of 
attrition, i.e., the level of acceptability of discarding good 
products. When 𝛼 < 1 indicates that the model places more 
emphasis on reducing the escape rate, therefore, in this 
paper, the empirical value � = 0.5 emphasizes the impor-
tance that the model gives to the escape rate.

It is worth noting that the XGBoost algorithm has a series 
of built-in objective functions, which are the sum of the loss 
function and the regularization term, and do not support 

loss = DPPM + �LPPM

n
�

n
∗ 1000000

Fig. 2  Flow Chart of the Opti-
mization Algorithm



283Journal of Electronic Testing (2022) 38:279–288 

1 3

custom objective functions. As we point out before, the 
purpose of model training is to obtain a fit to those target 
test parameters. Therefore, when training a single model, an 
objective function based on Mean Squared Error (MSE) is 
selected. The loss function defined in this section is mainly 
used for model evaluation during hyperparameter tuning.

3.2  Model Training Process

The most important objective of this overall model training 
is to obtain the best ranking of the features for subsequent 
redundant term removal.

As shown in Fig. 3, the overall training process of the 
model is divided into four main parts.

1 ∶ Set all features as an overall feature set 
A = {ai}, i = 1, 2,… , n , n is the total number of test 
parameters, ai is the measurement value set of the i-th 
test parameter of all tested chips, which represents a sin-
gle test parameter.The test parameter ai is separated from 
A,and the remaining parameter sets form a new feature set 
A

�

= {a_j}, j = 1, 2,… , n, j ≠ i.
2 ∶ Perform regional model training on all i = 1, 2,… , n , 

obtain the prediction models of the remaining test parameter 
set A′ on the target parameter ai , and the related loss function 
value lossi .

3 ∶ Sort the test parameters according to lossi,.and obtain 
S = {si}, i = 1, 2,… , n,which is the list of test parameters to 
be deleted, where si is the sorted test parameter.

4 ∶ Divide S into parameter set Tk = {si}, i = 1, 2,… , k , 
and remaining parameter set Rk = {sj}, j = k + 1,… n , take 
Tk as the target, and then train the model whose input is Rk . 
Then models can be obtained for k = 1, 2,… , n . Their cor-
responding DPPM and LPPM can reflect the influence of the 
optimized model on the test conclusion.

Based on the predicted results, the analogue IC test engi-
neer can select the number of test parameters to be optimised 
according to the test escape rate and loss rate.

3.3  Hyperparameters

The hyperparameters that need to be set before training are 
divided into General Parameters, Booster Parameters, and 
Learning Task Parameters. In this paper, according to the 
type, the parameters that need to be set are General Param-
eters: 1. Booster, which indicates the type of weak learner 
applied, can choose three models: linear model gblinear, tree 
model dart [23], gbtree; 2. num_threads, which indicates the 
number of parallel threads in the training process.

Booster parameters: 1. learning_rate, also available as eta, 
represents the learning rate; 2. min_split_loss, also available 

Fig. 3  Schematic Diagram of Model Establishment
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as gamma, represents the minimum loss value required for 
the tree to perform the next branching operation; 3. max_
depth, represents the maximum depth of the tree model; 4. 
min_child_ weight, denotes the sum of the instance weights 
required for the smallest leaf node, if the sum of the instance 
weights of the leaf nodes generated during further division 
of the tree is less than min_child_weight then the tree does 
not generate new branches; 5, subsample, denotes the pro-
portion of subsamples of training instances; 6, colsample_
bytree, with colsample_bylevel and colsample_bynode, is 
a set of parameters that control the secondary sampling of 
columns, which controls the proportion of subsamples of 
the columns when each tree is constructed; 7. grow_policy, 
which controls the method of adding new nodes to the tree, 
with the option of branching from the node closest to the 
root node (depthwise) and branching at the node with the 
largest change in loss (lossguide).

Learning Task Parameter: objective: defines the objective 
function to be minimized, we can choose from reg:squared 
error, reg: logistic, etc.

The configuration range of hyperparameters is shown 
below Table 1:

4  Experiment, Results and Analysis

In this section we explicit the experimental environment, 
preparation for the data set, the model training results, and 
the analysis of the experimental results.

4.1  Dataset

The test data of integrated circuits usually involve high-
level commercial secrets, and there is currently no pub-
lic dataset available for comparison. The data used in the 
experiment in this article comes from an analog integrated 

circuit manufacturer, containing two types of chips, one is an 
analog circuit with wireless function; the other is an analog 
circuit with mixed-signal function. The test datasets of the 
two circuits are referred to as dataset A and dataset B in the 
subsequent articles.

Among all the test parameters of a single tested chip in 
the dataset, if there is a test parameter whose value exceeds 
the range of product specifications, the chip is classified as 
a defective product. The types of test parameters include 
power supply voltage, current, output signal voltage ampli-
tude, offset, etc.

Dataset A contains 80000 chips, and each chip has 70 
test parameters. Among them, good products (negative sam-
ples), that is chips that passed the test, have a total of 70000; 
the rest are defective products that failed the test (positive 
samples), and the yield is about 87.5%. Dataset B contains 
118000 chips, and each chip has 42 test parameters. Among 
them, there are 113000 good products, and the yield is about 
95.8%.

4.2  Experimental Environment and Process

Due to the large amount of data, the calculations required 
for the training process increases, and the requirements for 
the hardware environment are also higher. Therefore, this 
experimental environment uses both GPU and CPU. We use 
2 Intel Xeon E5-2673 v3 CPUs with a main frequency of 
2.40GHz, 4 GTX 1080 Ti graphics cards from NVIDIA, and 
128GB DDR4 SDRAM high-bandwidth memory to set up 
the experimental platform.

The pre-processing of data is crucial before the training 
of the learning machine. The wafer’s test data is stored in 
matrix form, each row represents a chip, and each column 
represents a test parameter. Since these data involve com-
mercial secrets, they need to be normalized first and then 
they can be used for model training and learning progress. 
The data within the range of the product specification is 
normalized to the closed interval of [0,1] through linear 
transformation, and the data beyond the range will fall out-
side the interval, so the chip can be judged as a defective 
product. Because part of the test parameters of the tested 
chip already meets the product specification, therefore they 
only contain little information and will not cause the tested 
chip to be judged as a defective product, there is no need for 
further analysis and optimization of such test parameters, 
so they can be deleted in advance. After excluding such test 
parameters, there are only 29 candidate test parameters to 
be analyzed in dataset A and 38 candidate test parameters 
in dataset B.

To prevent over-fitting, it is impossible to directly use all 
data to train the model, so the concept of cross-validation is 
adopted to cross-validate the dataset. This concept was first 
proposed by Seymour Geisser. The basic idea is to divide 

Table 1  Parameter Setting

Hyperparameter name Configuration range type
booster dart/gbtree General Parameter

num_thread Maximum number of 
threads available

learning_rate [10−4, 1] Booster Parameter
min_split_loss [10−8, 10]

max_depth [1,11], take integer
min_child_weight [1, 8], take integer
subsample [0.5, 1.0]
colsample_bytree [0.3, 0.7]
grow_policy depthwise/lossguide
objective reg: squarederror Learning Task 

Parameter
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the dataset into a training set and a validation set according 
to certain rules. The training set is used to train the model, 
and the validation set is used to test various indicators of the 
model. In this experiment, to ensure a balanced distribution 
of positive and negative samples, during the segmentation 
process of the training set, validation set, and test set, the 
proportions of good and defective products are the same as 
the overall ratio.

In our model training, all test chips are divided into train-
ing set and validation set according to a 4:1 ratio by Strati-
fied cross-validation. Stratified cross-validation can ensure 
the balanced distribution of positive and negative samples 
between the training set and the validation set by stratified 
sampling. The training set is used for model training, and 
the validation set is used to verify the generalization and 
adaptability of the model. At the same time, during the train-
ing process, it is necessary to obtain the effect of tuning the 
hyperparameters on the model. As for that, the algorithm 
will randomly split part of the test chip data from the train-
ing set as the test set, which is specifically used to verify 
the effect of hyperparameter changes on the objective func-
tion. This segmentation and training will be repeated mul-
tiple times to ensure the stability of the algorithm, the final 
objective function will be determined by the model with the 
largest loss.

The hyper-parameter optimisation of the model is carried 
out using the pre-processed dataset. As mentioned above, 
in this experiment, the HyperOptSeach in the distributed 
reinforcement learning module Ray. tune [17] is used for 
hyperparameter’s autonomous tuning. This module can run 
multiple sets of hyperparameter configurations in parallel. 
Since the range of hyperparameter configurations may be 
large and needs to be tested frequently during the training 
process, this method will undoubtedly save a lot of time.

After the hyperparameter training is configured, the 
segmented training set is used for model training. After 
the overall training of the model is completed, the test set 
data is put into the model to verify the testing effect after 
the test parameters are deleted as planed. The reduction of 
test parameters is the process of eliminating redundant test 
parameters and also the process of test parameters selection. 
The information contained in redundant test parameters can 
be fitted by other test parameters, so they are irrelevant test 
parameters in the learning task. Feature selection can allevi-
ate the curse of dimensionality [11] to a certain extent while 
removing a few features usually reduces the difficulty of 
machine learning problems and improves efficiency.

4.3  Experimental Result

This paper is based on two sets of simulated IC test data for 
test verification.

The first step of model training is to use all the remaining 
test parameters in the training set and fit each test parameter 
in turn to form a local training model. The test parameters 
are numbered according to the final censoring order and 
labeled as parameter numbers, and the DPPM, LPPM, and 
least squared error (MSE) values of the test parameters in 
the training set are obtained and arranged in ascending order 
of loss as defined above. DPPM and LPPM take one valid 
number after the decimal point, while MSE takes two valid 
numbers after the decimal point. The results are shown in the 
table below. Only the first 7 items are shown Tables 2 and 3.

From the results of single test parameter scanning, it can 
be seen that the MSE of the test parameters has no decisive 
effect on DPPM and is generally irrelevant. This proves the 
necessity of choosing different loss functions for hyperpa-
rameter tuning in this method.

After performing model training on the two datasets, the 
variation trends of DPPM and LPPM after subtracting dif-
ferent numbers of test parameters are shown in Figs. 4 and 5 
respectively.

4.4  Analysis of Results

We can see that the DPPM had been kept at zero when the 
number of the deleted parameter was lower than 5 from 
the experimental results of dataset A. With the number 
of deleted test parameters increased, the DPPM generally 

Table 2  Single Test parameter Fitting Results of Dataset A

Parameter 
number

DPPM LPPM PPM MSE

26 0.0 0.0 0.0 1.07 × 103

25 0.0 0.0 0.0 1.32 × 106

27 0.0 0.0 0.0 8.12 × 107

33 0.0 116.4 58.2 2.42 × 10−3

28 58.2 0.0 58.2 2.36 × 10−2

32 116.4 0.0 116.4 6.51 × 10−3

24 116.4 0.0 116.4 7.77 × 101

Table 3  Single Test parameter Fitting Results of Dataset B

Parameter 
number

DPPM LPPM PPM MSE

58 0.0 0.0 0.0 1.45
57 0.0 42.5 21.25 1.60
62 42.5 0.0 42.5 1.35
64 42.5 0.0 42.5 1.37
60 0.0 127.4 63.7 1.59
46 84.8 0.0 84.8 0.08
37 84.9 42.5 106.15 0.15
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showed a fluctuating upward trend. As for LPPM, when 
deleting the first 2 parameters there was a big fluctuation on 
its curve. But until the number of deleted parameters reached 
11, it maintained a slightly fluctuating low value, after that 
the LPPM appeared an almost straight upward trend.

Concerning the results of dataset B, the LPPM main-
tained a rather stable low value when the number of deleted 
test parameters was less than 11, when the number of deleted 
parameters was greater than 11, large irregular fluctuations 
occurred. DPPM also maintained a low value when the num-
ber of deleted test parameters was less than 9, but then it 
increased exponentially.

Reducing the test parameter set can undoubtedly save 
test time. However, it can be seen from the figures that as 
the number of deleted test parameters increases, the number 

of defective chips in the products whose test conclusion is 
good also increases exponentially, good products misjudged 
as defective ones are also increasing. In the meantime, we 
can see from the experimental result of dataset A, when 
the deleted test parameters are too few, LPPM is relatively 
large. This happens because we set to emphasize the influ-
ence of DPPM on the model. Therefore, when selecting the 
final deletion test parameters, it is necessary to make a joint 
decision based on DPPM and LPPM.

If we set the acceptable test escape rate under 20PPM, 
the test parameters that can be deleted in the two sets of data 
can reach 5 and 6, accounting for 17.24% and 15.79% of all 
analyzable parameters respectively.

5  Summary and Outlook

The method we proposed in this paper can provide a basis 
for deleting the test parameters of analog integrated circuits 
and can reduce the cost of time and money for analog IC 
testing. Experiments show that its performance is outstand-
ing and can provide no more than 15.79% test parameter 
optimization. At the same time, as the method can optimize 
test parameters statically, it has a better scope of application 
than adaptive tests.

Meanwhile, the method described in this article needs to 
be retrained when applied to products of different manufac-
turers and designs because different processes in the produc-
tion process have different effects on-chip parameters. This 
is also the limitation of methods based on the data optimiza-
tion method.

The core of the method is the test parameter censoring 
priority ranking, which is one of the research areas in the 
direction of feature engineering in machine learning. There 
is still room for exploration in this direction, and it can be 
further optimized in the future with the help of interpret-
ability measures in machine learning.
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