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Abstract
Software testing refers to a process which improves the quality of software systems and also is one of time and cost consum-
ing stages in software development. Hence, software test automation is regarded as a solution which can facilitate heavy 
and laborious tasks of testing. Automatic generation of test data with maximum coverage of program branches is regarded 
as an NP-complete optimization problem. Several heuristic and evolutionary algorithms have been proposed for generating 
test suits with maximum coverage. Failure to maximally branch coverage, poor success rate in test data generation with 
maximum coverage and lack of stable results are considered as the major drawbacks of previous methods. Enhancing the 
coverage rate of the generated test data, enhancing the success rate in generating the tests data with maximum coverage 
and enhancing the stability and speed criteria are the major purposes of the present study. In this study, an effective method 
(Traxtor) is proposed to automatically generate tests data by using imperialist competitive algorithms (ICA) optimization 
algorithms. The proposed method is aimed at generating test data with maximum branch coverage in a limited amount of 
time. The results obtained from executing a wide range of experiments indicated that the proposed algorithm, with 99.99% 
average coverage, 99.94% success rate, 2.77 average generation and 0.12 s average time outperformed the other algorithms.

Keywords  Software testing · Automatic test data generation · Imperialist competitive algorithms · Branch coverage · 
Success rate

1  Introduction

Software testing is regarded as one of the most significant 
steps in the process of guaranteeing software quality [1]. Soft-
ware testing may be conducted manually or automatically. 
Whereas manual tests need high time and cost, automatic  
methods reduce time and cost of testing. Given the sig-
nificance of automatic software testing, it is considered 
as one of the remarkable challenges and concerns in this 
research domain. However, in huge real-world software  
systems, applying such a traditional manual testing would 

be extremely costly and time-consuming. Software testing 
at the source-code level may only detect 50% of errors in 
software development. In contrast, applying automatic soft-
ware testing can notably reduce cost and time. Designing 
optimal test cases in the automatic manner at the source-
code level is considered to be the problem addressed in this 
study. Indeed, automatic test data generation with maximum 
branch coverage at the minimum possible time is regarded as 
the main optimization issue. Selecting a small subset from 
the combination of all the possible inputs with maximum  
coverage of program branches is regarded as an NP com-
plete problem.

Given the nature of this research problem, several heu-
ristic and evolutionary algorithms have been proposed for 
generating test datasets with maximum coverage [2–10]. 
Failure to maximally branch coverage, poor average success 
rate in data productions with maximum coverage in different 
executions, lack of stable results in different executions and 
high execution time are considered as the major drawbacks 
of previous methods. The purposes of the present study are 
as follows:
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•	 Enhancing the coverage rate of the generated test data
•	 Enhancing the success rate in generating the tests data 

with maximum coverage
•	 Enhancing the result stability of test data generation 

methods
•	 Enhancing the speed of test data generation along with 

maximum coverage

In this study, an effective method (Traxtor1) is proposed to 
automatically generate tests data by using imperialist compet-
itive algorithms (ICA) optimization algorithms. Indeed, ICA 
as a heuristic algorithm [11] is developed to sort out the test 
data generation problem in this study. The proposed method 
is aimed at generating test data with maximum branch cover-
age in a limited amount of time. The major contributions of 
this study are as follows:

•	 Applying imperialist competitive algorithm (ICA) for gen-
erating optimal test data

•	 Implementing open-source tool for automatic testing of 
a program with high success rate

•	 Producing optimal and stable test data with maximum 
coverage at the minimum time

The rest of the paper is organized as follows: in Sect. 2, 
basic theoretical concepts and a review of the related works 
are briefly discussed. Section 3 reports and elaborates on the 
proposed method in detail. Section 4 discusses the results 
obtained from executing the program via different methods. 
Finally, Sect. 5 draws the conclusion of the study and gives 
directions for further research.

2 � Related Works

In [3], researchers used a random method for producing test 
data. Very high time requirement for achieving the intended 
coverage and the generation of repetitive data is regarded as 
the main drawbacks of this method. Also, desirable results in 
terms of the number of discovered faults were not obtained 
in these methods. Hence, researchers proposed a method 
based on symbolic execution so as to achieve better results 
[4, 5]. Symbolic execution is an effective testing technique 
that provides a way to automatically generate test data inputs 
that trigger software errors Concrete test inputs generation 
is one of the major strengths of symbolic execution the 
generated test data have high coverage. From a bug-finding 
perspective, concrete and high coverage test data triggers 
the bug. Symbolic methods are not able to determine array 

value and pointer inputs. Consequently, data generation has 
turned into a challenging issue. In [6] simulated annealing 
algorithm was uses for solving the problem of test-data pro-
duction. In this study, by converting testing data generation 
problem into an optimization problem, optimal test-data is 
generated by the simulated annealing algorithm. Low per-
formance and low coverage and being placed in local opti-
mum are the main demerits of this method. This method is 
appropriate for behavioral testing.

By capitalizing on genetic algorithm (GA), a method was 
proposed in [2] for producing test data. In this method, GA 
was used for selecting optimal paths. In this research, fitness 
function was entitled similarity function which was aimed 
at determining the degree of similarity of the traveled path 
to the objective path. Path optimality indicates the fact that 
the path is followed in executing test data. That is, the higher 
path follow-up, the higher its optimality. The application of 
GA leads to the reduction of the required time for finding 
optimal path. Another method was proposed in [7] based on 
GA for producing test data. In this research, GA was used 
so as to achieve optimal test data. For enhancing efficiency 
and effectiveness, researchers implemented this algorithm 
in the parallel manner. Then, the coverage of the proposed 
method was analyzed and investigated on six benchmark 
programs. The obtained results indicated improvement in 
test data production.

One of major problem in the GA is that the chromosomes 
do not try to improve themselves and the may improve using 
only mutation operator. In GA, the fitness function evaluates 
only whole of chromosome; evaluating a subsection of a 
chromosome in GA is not possible. This makes the GA to 
be similar to the blind search algorithms. To address these 
problems, an automatic test-data generation method has been 
proposed [8]. In this method, reinforcement learning as a 
memetic search method was augmented to the GA. This aug-
mented GA focuses on best chromosomes of population and 
Q-learning has been used for guiding these search process. 
In method, mutation operator is performed when there are 
duplicated sub-sections within a chromosome. Experimental 
results show that this hybrid method is better than GA in 
terms of the coverage and success rate. In [9], researchers 
applied particle swarm optimization (PSO) algorithm for 
producing test data. In a similar vein, PSO algorithm and 
regression analysis were proposed in [10] for generating test 
data. Moreover, thanks to its simplicity and high convergence 
speed, PSO algorithm was applied in [12] for producing  
the test data with another objective function. Regarding the 
obtained results in these studies, the coverage of critical path 
(fault prone paths) using branch distance functions is poor. 
A PSO search based test-generation method was proposed 
using an improved fitness function to cover the critical path 
of program under test [13].1  Traxtor is the name of a popular Turk football team in the historical 

city of Tabriz.
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A method based on ant colony optimization (ACO) algo-
rithm was proposed in [14] for producing optimal tests data 
which was aimed at maximizing branch coverage. A cov-
erage based specific fitness function was defined in this 
method. The results of the experiments showed that the 
coverage, convergence speed and stability of results are 
higher in this method. In [15] the effectiveness of artificial  
honeybee colony (ABC), genetic, particle swarm, simu-
lated annealing and ant colony (ACO) algorithms have 
been evaluated and compared to each other. In this study, 
distance function based on branch coverage is used as fit-
ness function. The results of conducted experiments of the 
traditional benchmarks revealed that the coverage, success 
rate, average number of iterations in ABS are respectively 
99.94%, 99.92%, 3.36. Indeed, ABC algorithm performed 
better than the other algorithms in producing optimal test 
data. In [16], the shuffled frog leaping algorithm (SFLA) 
was applied to develop an automatic test-data genera-
tion method. In this method, branch coverage was used 
into fitness function. An extensive series of experiments 
have been performed on the seven tradition benchmarks 
for evaluating this method. The results illustrated that this 
method has several merits over the previous evolutionary 
algorithms such GA, PSO, ACO and ABC. The SFLA 
based method can generate test data with 99.99% branch 

coverage with the minimal iterations. Also, its success rate 
in generating the optimal test data is 99.97%.

According to the previous studies, which are briefly men-
tioned in Table 1, it can be maintained that the method pro-
posed so far have their own pros and cons. In other words, 
they have not been fully able to solve the problem of data 
generation for automatic software testing. Consequently, in 
this research study, an automatic test generation method 
using ICA optimization algorithm. The authors of this study 
make an effort to address the previous research gap. The 
proposed method is discussed and elaborated in Sect. 3.

3 � The Proposed Method

As shown in Fig. 1, an automatic method (Traxtor) was 
proposed to generate structural test data. In the first step, 
source code of the program under test is statically analyzed 
and the required structural information is extracted for the 
next steps. In the second step, optimal test data is gener-
ated by means of ICA (imperialist competitive algorithm). 
The objective function, applied in this study, was defined 
based on the distance function and branch coverage. In 
fact, ICA navigates and directs the generated data so as 
to enhance the coverage of program branches. The output 

Table 1   Merits and demerit different test generation methods

Method Merits Demerits

Random search [3] Simplicity of implementation Lack of sufficient information for generating 
test data

Simulated annealing algorithm (SA) [6] Higher speed than random search Dealing with local optimum and low success 
rate

Genetic algorithm (GA) [2, 7, 8] Parallel implementation Low success rate and high runtime
Particle swarm optimization algorithm (PSO)  

[9, 10, 12, 13]
High speed and simple implementation Different results in numerous repetitions

Ant colony optimization algorithm (ACO) [14] Considering the weights of branches High runtime and highly variable results
Artificial bee colony optimization algorithm 

(ABC) [15]
Appropriate coverage of branches and high 

speed
High variance in the obtained results for same 

applications

Preprocessing of 

the input program  

Program Source 

code

Branch expressions of the 

input program

Generating test set 

using ICA algorithm

Test sets

Experimental evaluation of  the 

generated test sets by the 

proposed method

Step 1 Step 2 Step 3

Coverage, stability and time 

consumption of the proposed 

method 

Fig. 1   The process of the proposed method
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of the second step is the test set (test suit) generated by 
the ICA.

3.1 � Test Data Generation via ICA

As mentioned above, an automatic method was proposed 
in this study for generating optimal test data via ICA. In 
this section, we discuss the method of automatically gen-
erating test data by means of ICA. Like other evolutionary 
algorithms, this algorithm starts with a number of random 
initial populations each of which is referred to as a coun-
try. Each member of the population (individual or country) 
is a test data which was randomly generated in the initial 
population. A number of the best individuals, which are 
equal to elites in genetic algorithm, are selected as the 
imperialists. The best member of a population is the indi-
viduals (countries) whose fitness function is higher than 
those of other population members. The policies of assimi-
lation, imperialistic competition and revolution establish 
the foundations of ICA. By imitating the social, economic 
and political evolution of countries and via mathematical 
modeling of some sections of this process, ICA presents 
operators in a regular format as an algorithm. These opera-
tors may facilitate the solving of complicated optimization 
problems. In fact, this algorithm views problem solutions 
in the form of independent countries and tries to gradually 
improve and optimize the solutions throughout a repeti-
tive process; in this way, it is aimed at achieving the final 
optimal solution. As the time passes, colonies will become 
closer to the empires in terms of power. Hence, a sort 
of convergence is realized. The final limit of imperialist 
competition is when there is a unitary empire in the world 
with colonies which are highly close to the imperialist 
country in terms of position. The steps of the proposed 
method are as follows:

Input: programs to be tested and the data generated by 
ICA.

Output: the optimal suite and evaluation criteria (aver-
age coverage, success rate, average convergence and average 
time).

Steps:

1. Selection of a number of random test data as colonies 
and the establishment of initial empires

• Specifying the structure of test data according to 
source code structure.
• Constructing the initial population of countries (test 
data).
• Determining absorption policy.
• Determining revolution policy and revolution rate.
• Defining cost function.

2. The movement of colonies (test data) towards the impe-
rialist country (assimilation policy).
3. Computing the value of fitness function based on each 
test data.
4. In case there is a colony in an empire whose fitness 
function is greater than that of the imperialist, the posi-
tion of the imperialist and the colony is replaced.
5. Computing the total fitness of an empire (by consider-
ing the cost of the imperialist and its colonies).
6. Selecting a colony from the weakest empire and allo-
cating it to the empire with the highest probability of pos-
session.
7. Eliminating weak empires.
8. If only one empire remains, the algorithm is stopped; 
otherwise, steps 2 to 6 are repeated.
9. The remaining elements in the empires are regarded as 
the best obtained test datasets.

In the proposed method, source-code of the input program 
is firstly analyzed and the number of parameters, paths and 
the weight of the branches are determined and valued. After 
the values of these parameters are specified and the main 
variables of ICA are randomly determined, the imperialist 
arbitrarily replaces a percentage of its array, which is parts of 
test data, with corresponding imperialist data. Then, the next 
action in the procedure of implementing ICA is to eliminate 
and replace weak colonies (countries) with strong colonizers. 
This measure is taken by computing the value of fitness func-
tion and selecting the individuals with a better cost function; 
this is technically referred to as the revolution. The imperialist 
competition refers to the fact that colonies or imperialists are 
doing their bests in absorbing the colonies of other empires. 
Throughout the execution of the ICA, low-power countries or 
colonies (test data) are randomly given (absorbed) by stronger 
empires. This procedure continues so that colonies are con-
formed and assimilated to their empires. In other words, the 
values of the imperialist and colonies’ fitness functions gent 
closer to each other. In practice, this step is aimed at reaching 
a solution out of a large number of solutions. This operation 
is realized as a result of removing weak empires.

3.2 � Fitness Function

Selecting an appropriate fitness function is regarded as a 
highly significant step in optimization problems. By using 
fitness function, the heuristic algorithm manages the popula-
tion members and finally optimizes them. Distance function 
has been used as the fitness function in the proposed method. 
Since the criterion of branch coverage is considered to be one 
of the most effective indexes in investigating the structural 
testing of software, it was used in this study for computing 
fitness function. In this function, the input program has S 
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branches (conditional instruction). Each branch of the pro-
gram is determined by bchi variable. If the number of the 
input data (test data) is equal to m, each input will be deter-
mined with Xk ε TS (1 ≤ K ≤ m). TS is the generated test set by 
the test generation method. Equation (1) is used for comput-
ing the fitness or optimality of a test data generated by ICA.

In this equation, ∅ is a constant value which is obtained 
through trial and error; its value, in this study, was 0.01. w 
variable denotes the weight of branches. f indicates distance 
function. Equation (2) is used for computing fitness function 
of a test dataset produced by ICA.

In case TS (test suit) can cover all the branches, Eq. (2) will 
be measured as 1/∅ and the highest fitness is achieved. In 
this issue, we intend to maximize the value of fitness func-
tion. According to Eq. (3), fitness function is made up of 
distance function; this function indicates the degree of pre-
sumed deviance of a conditional instruction after values of 
component inputs are assigned. According to studies [9], 
distance values of the branch predicates that are used in the 
conditional expression of a program is shown in Table 2. 
In case the conditional expression has true values based on 
the produced data, the value of distance function will be 
zero; otherwise, the value of δ variable will be added to the 
value of conditional expression. In this study, the value of 
variable was 0.1.

3.3 � Weight of Branches

Weight of branches indicates the accessibility degree of 
program branches which are tested. The higher the weight 

(1)Fitness
�

Xk

�

=
1

�

∅ +
∑s

i=1
wi.f (bchi,Xk)

�2
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�
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i=1
wi. min{f (bchi,Xk)}mk=1

�2

of branches, the more should the algorithm try to reach 
the branch. The effective factors which have an impact on 
branch weight are as follows [9]:

•	 Nesting weight of the branches
•	 Predicate weight of the branches

The nesting weight which indicates the level of branches 
is determined by Eq. (3). The higher nesting weight, the 
more the difficulty of access to that branch.

In this equation, variable i refers to the number of the ith 
branch. nli variable stands for the nesting level of the ith 
branch. nlmin denotes the lowest nesting level in the program 
and nlmax indicates the maximum nesting level in the pro-
gram. Equation (4) was also used for normalizing the nest-
ing weight of the branches. In this equation, the ith branch 
weight is divided on the total weight of the branches.

Predicate weight indicates the complexity degree of the 
predicates of the branches. The predicates should have true 
values based on the produced input data (test data) so that 
they can be covered. Equation (5) and Table 3 were used for 
obtaining predicate weight. In this equation, the following 
two states may occur:

•	 If the respective branch includes h conditions which have 
been combined with each other via and operator, the total 
weight of the predicate will be equal to the square root of 
the total weights of the predicates.

•	 If the respective branch has h conditions which have 
been combined with each other via or operator, the low-
est value out of the weight of the condition predicates 
will be selected.
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Table 2   Branch function for different kinds of branch predicates

No. Predicate Branch distance function f (bchi)

1 Boolean If true then 0 else k
2  ~ a Negation is propagated over a
3 a = b If abs(a − b) = 0 then 0 else abs(a − b) + k
4 a ≠ b If abs(a − b) = 0 then 0 else k
5 a < b If a − b < 0 then 0 else abs(a − b) + k
6 a ≤ b If a − b ≤ 0 then 0 else abs(a − b) + k
7 a > b If b − a < 0 then 0 else abs(b − a) + k
8 a ≥ b If b − a ≥ 0 then 0 else abs(b − a) + k
9 a and b f (a) + f (b)
10 a or b min( f (a), f (b))

Table 3   Weight of operators 
for determining the value of 
predicate weight

Operator Weight

 =  =  0.9
 ≥ , > , ≤ , <  0.6
Boolean 0.5
! =  0.2
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In Eq. 5, bchi,(1 ≤ i ≤ s) indicates the ith branch. For comput-
ing the weight of the ith predicate, h variable states the num-
ber of available conditions within the branch. cj,(1 ≤ j ≤ ℎ) 
indicates the ith condition and wr refers to the condition 
weight whose value is determined based on Table 3. Also, 
Eq. (6) was used for normalizing the weight of predicates 
in which the predicate weight of the respective branch is 
divided on the total weight of the predicates.

Finally, Eq. (7) was used for computing the weight of each 
branch. This equation indicates that the weight of each 
branch is made up of the nesting weight plus the predicate 
weight of the branch. wi refers to the ith branch weight and α 
is the balance coefficient. In this study, the impact of nesting 
weight and predicate weight were assumed to be equal. The 
value α was 0.05.

4 � Results and Discussion

4.1 � Implementation System

Matlab program was used for implementing the proposed 
method. Indeed, Matlab is a practical and applied language 
for computational operations. It provides the opportunity 
for carrying out numerous computational, programming and 
demonstrational operations. A wide majority of computa-
tional techniques and problems, particularly the ones dealing 
with vector and matrix formulas can be easily implemented 
in Matlab program. In this study, the proposed method as 
well as other method based on ABC, ACO, PSO, GA and 
SA algorithms were implemented in Matlab for generating 
test data. The proposed method and the other methods were 
all implemented on the same computer system with 8 GB 
memory and Intel Corei7 CPU. The evaluation criteria used 
in this study are as follows:

(6)wp�
�

bchi
�

=
wp

�

bchi
�

∑s

i=1
wp

�

bchi
�

(7)wi =∝ .wn�
(

bchi
)

+ (1− ∝).wp�(bchi)

1.	 AC (average coverage): it denotes the degree of branch 
coverage of program branches by the generated test data-
set. The higher the value of this criterion, the better the 
effectiveness of the respective method (effectiveness 
criterion).

2.	 AG (average generation convergence): this criterion 
indicates the average number of required iterations 
for covering all the program branches by the respec-
tive algorithm. The lower the value of this criterion, the 
higher the performance of the respective algorithm (per-
formance criterion).

3.	 AT (average time): this index refers to the average time 
needed for covering all the program branches. This cri-
terion is measured in milliseconds (ms). Regarding this 
index, lower values demonstrate a desirable performance 
for the related algorithm (performance criterion).

4.	 SR (success rate): it denotes the coverage probability 
of all the program branches through the generated test 
data. The higher the value of this criterion, the better 
the effectiveness of the respective method (effectiveness 
criterion).

The number of iterations is considered to be the termi-
nation condition in the above-mentioned algorithms with 
respect to generating optimal test data. Maximum number 
of the iterations of the algorithms is 300. Furthermore, for 
computing the average value for these criteria, each algo-
rithm was executed on each benchmark program for 10 
times. Then, the average values and standard deviation were 
computed and compared with each other.

4.2 � Benchmark Programs

In this study, 6 benchmark programs with differing degrees 
of complexity were used. Table 4 gives the characteristics 
of each of these benchmark programs which have been also 
used in other previous works. Source-codes of the bench-
mark programs are written in C +  + programming language. 
ICA, ABC, ACO, PSO, GA and SA algorithms were used 
for generating test data of these benchmark programs. The 
real-world program’s source code is portioned into the 

Table 4   Characteristics of the 6 
benchmark programs

Program #Arg #Arg.type LOC Description

TriangleType 3 Integer 31 Type classification for a triangle
calDay 3 Integer 72 Calculate the day of the week
IsValidDate 3 Integer 41 Check a date is valid or not
cal 6 Integer 26 Compute the days between two dates reminder
Reminder 2 Integer 7 Calculate the reminder of an integer division
printCalender 2 Integer 124 Print calendar according to the input of year and month
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components, classes and functions; indeed, the large pro-
grams with million lines of code composed of modules and 
finally functions. On the other hand, regarding the program-
ing standards, the size of a function should be about 20 to 
100 lines of code. The benchmark programs used in this 
study are the most traditional and frequently used benchmark 
programs in the software test studies. Also, these bench-
marks include all programing structures that can be used 
in the real-world complex software. All conditional, loop, 
arithmetic, logical and jump operators and instructions are 
used in these benchmark programs. Regarding the generated 
control flow graph of these programs (structural viewpoint), 
algorithm and computation of these programs (behavioral 
viewpoint), the source code complexity, similar results can 
be generated by the proposed method on the real-world 
programs.

4.3 � Evaluation of the Results

A wide range of experiments were conducted for investigat-
ing and evaluating the proposed method based on the above-
mentioned specific criteria which are discussed in Sect. 4.2. 
As mentioned above, one of these criteria is the average 
coverage of the program branches by the generated test data. 
Each test generation method was executed for 10 times for 
obtaining the average coverage of branches. Table 5 shows 
the average coverage of branches for different benchmark 
programs by the generated test data. According to the 
obtained results, in most benchmark programs, the gener-
ated test data by the proposed method (Traxtor) has higher 
branch coverage. Indeed, the data with higher branch cov-
erage is more capable of detecting and discovering errors. 
It was found that the test data generated by the proposed 
method is more efficient and effective with respect to the 
criteria. In the first set of experiments, the proposed method 
along with five other methods was executed on the bench-
mark programs. Then, the average coverage of the generated 
data by each method was examined. The average coverage of 
the generated test suit in different executions of each algo-
rithm is given in Table 5. The proposed algorithm achieved 
100% coverage in Remider, Cal, printCalendar, isValiDate 
and triangleType benchmark programs. It obtained 99.98% 

coverage in calDay program; regarding calDay benchmark 
program, the proposed algorithm obtained 99.96% coverage 
meanwhile ACO algorithm had 0.04% better coverage than 
the proposed algorithm in calDay program. Also, regarding 
CalDay program, PSO algorithms had slightly better cover-
age than the proposed algorithm. It should be noted that the 
obtained values by this criterion for evaluating the methods 
depend on the program to be tested, the number of program 
branches and branch weight. The proposed algorithm outper-
formed the other methods in 5 out of 6 benchmark programs. 
Figure 2 depicts the average coverage of the generated test 
by different methods. The average coverage of the test data 
generated by the proposed algorithm is 99.99% which is 
higher than the average value obtained by the other methods.

As mentioned above, success rate (SR) is another cri-
terion in test data generation with 100% coverage. In this 
study, another set of experiments was carried out with 
respect to this criterion. Each test data generation method 
was executed on each benchmark program for 10 times. 
Average number of the times that the test data genera-
tion method achieved 100% coverage indicates SR of that 
method. Table 6 gives the results of experiments regarding 
SR criterion. As it may be inferred from the results, the pro-
posed algorithm achieved 100% success rate in triangleType, 
CalDay, Cal and Reminder programs. Regarding isValidDat 
benchmark program, the proposed algorithm had high a SR 
which was close to 100%. ICA performed better than the 

Table 5   The branch coverage 
(%) of the generated test suits 
by different methods in different 
benchmark program

Benachmark GA SA PSO ACO ABC ICA Best Method

triangleType 95.00 99.88 99.94 100 99.93 100 ACO,ICA
calDay 96.31 99.97 100 100 99.8 99.96 PSO,ACO
isValidDate 99.95 97.68 100 99.98 99.90 100 PSO,ICA
Cal 99.02 99.27 100 100 100 100 PSO,ACO,ABC,ICA
Reminder 94.7 99.85 100 100 100 100 PSO,ACO,ABC,ICA
printCalendar 95.06 94.31 99.72 99.85 100 100 ABC,ICA

GA SA PSO ACO ABC ICA

AVG AC 96.67 98.49 99.94 99.97 99.93 99.99

95
95.5
96

96.5
97

97.5
98

98.5
99

99.5
100

AV
G.

 A
C

Fig. 2   Average coverage of test data generated by different methods
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other algorithms in printCalendar benchmark program; the 
results revealed that ACO algorithm has slightly better SR 
criterion. As shown in Fig. 3, the proposed algorithm, on the 
whole, had higher SR in achieving 100% branch coverage of 
the programs. Hence, by considering SR criterion, it can be 
argued that the proposed method generates more effective 
test data than the other methods.

Convergence speed is the next criterion which underscores 
the time and cost in generating test data. The number of 
required repetitions for a heuristic method in generating test 
data with maximum branch coverage indicates lower conver-
gence speed of that algorithm. In fact, a method which can 
produce optimal test data within a fewer number of repetitions 
will be more efficient and effective. Table 7 gives the average 
convergence speed of different methods during 10 executions. 
The results indicated that the proposed algorithm had lower 
average convergence on all benchmark programs except for 
isValidDate program. Hence, it can be maintained that ICA 

demonstrated higher performance on this criterion. In other 
words, the proposed method can produce optimal test data with 
maximum coverage via fewer numbers of repetitions. Figure 4 
shows the number of required repetitions for generating opti-
mal test data (maximum coverage) on 10 different executions. 
Based on the obtained results, it can be concluded that the 
proposed method, via 2.7 average number of repetitions, was 
able to produce optimal test data. In this study, optimal test 
data refers to data which has maximum branch coverage. As 
a result, the proposed algorithm has high efficiency and effec-
tiveness in terms of convergence speed.

Average execution time of each method in automatic test 
generation was taken into consideration as another criterion. 
Table 8 reports average time for 10 executions of different 
methods on different programs. Hence, the proposed method 
and the other ones were investigated in terms of average 

Table 6   The success rate (%) of 
different methods in generating 
test suit with 100% branch 
coverage

Benachmark GA SA PSO ACO ABC ICA Best Method

triangleType 76.40 99.40 99.80 100 99.90 100 ACO,ICA
calDay 65.00 99.60 100 100 99.74 100 PSO,ACO,ICA
isValidDate 99.40 95.30 100 99.80 99.90 99.96 PSO,ICA
Cal 98.70 96.50 100 100 100 100 PSO,ACO,ABC,ICA
Reminder 82.50 98.60 100 100 100 100 PSO,ACO,ABC,ICA
printCalendar 61.60 20. 1 99.10 99.20 100 99.74 ABC,ICA

GA SA PSO ACO ABC ICA
AVG SR 80.6 97.88 99.81 99.83 99.92 99.95
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Fig. 3   Average success rate of different methods in achieving 100% 
branch coverage

Table 7   Required average 
generation to produce test suite 
with maximum branch-coverage 
by different methods

Benachmark GA SA PSO ACO ABC ICA Best Method

triangleType 13.79 42.17 5.36 5.76 1.94 1.7 ICA
calDay 35.80 28.29 10.37 9.51 4.99 3.6 ICA
isValidDate 21.69 15.37 11.90 15.16 0.99 2.4 ABC
Cal 15.24 10.26 8.33 9.58 4.06 3.1 ICA
Reminder 16.31 13.66 5.35 2.01 3.50 1.9 ICA
printCalendar 42.03 53.6 12.59 17.42 4.70 3.9 ICA

GA SA PSO ACO ABC ICA
AVG 24.14 27.22 8.98 9.9 3.36 2.76
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Fig. 4   Average number of executed repetitions by different methods 
for generating test data with maximum coverage
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execution time. It was observed that the proposed method 
had shorter execution time for all the tested benchmark pro-
grams except for printCalendar program; ABC algorithm 
had relatively better performance only on this program. In 
general, it can be pointed out that the proposed method had 
successful performance on this criterion.

Here, the average obtained results of the proposed method 
and other methods are compared with each other with respect 
to 4 evaluation criteria on the benchmark programs which are 
given in Table 9. The analysis of the results reveals that the 
proposed method had better effectiveness (AC and SR) and 
performance (AG and AT) than the other methods on four 
evaluation criteria (AC, SR, AG, AT). Given the nature of 
heuristic algorithms, the stability of the results produced by 
them should be investigated. In this study, the standard devia-
tions of the test data produced by different methods were 
measured and evaluated. Table 10 shows the standard devia-
tion values regarding the coverage of the generated test data. 
They were computed and measured on 10 different execu-
tions based on the criterion of coverage degree. Lower stand-
ard deviation values in different executions indicate higher 
stability of the respective method. As shown in Table 10, 

the proposed method has lower average standard deviation 
than ACO, PSO, GA and SA. Consequently, in line with 
the results, it can be mentioned that the proposed method 
(Traxtor) is more reliable in generating optimal test data. 
Furthermore, Table 11 gives the generated test suite for Cal 
benchmark program by the proposed method (Traxtor). This 
benchmark program has 6 input parameters which measures 
the number of days between two specific dates. The code of 
the implemented tool (Traxtor) was uploaded in [17] to use 
freely by the software testers.

In order to evaluate the effectiveness of the generated test 
data by the proposed method, the mutation test [18, 19] have 
been performed. In this series of experiments, a set of faults 
(bugs) have been automatically injected by Mujava tool [20] 
into each benchmark program; then the generated test data by 
the proposed method was used to find the injected bugs in each 
program. Mujava calculates the mutation score of the gener-
ated data for each program. The Mutation score depicts the 
capability of each test set in finding the injected bugs. Table 12 
shows the mutation score (fault detection capability) of gener-
ated data for each program. The results confirm the effective-
ness of the proposed method in generating bug detecting data.

Table 8   Average required 
time to generate test suit with 
maximum branch-coverage in 
different methods (Second)

Benachmark GA SA PSO ACO ABC ICA Best Method

triangleType 10.83 3.77 0.19 6.22 0.1758 0.1027 ICA
calDay 35.73 1.79 0.35 12.84 0.2375 0.1165 ICA
isValidDate 11.68 2.43 0.54 19.94 0.1944 0.1629 ICA
Cal 11.41 0.73 0.50 11.18 0.1367 0.0921 ICA
Reminder 6.09 1.01 0.17 10.49 0.0931 0.0725 ICA
printCalendar 35.48 35.38 1.41 96.27 0.1826 0.1912 ABC

Table 9   Overall average results 
for the proposed ICA and other 
methods based on 4 criteria 

Criteria GA SA PSO ACO ABC Proposed 
method 
(ICA)

Best method

Average coverage (AC %) 96.57 98.49 99.94 99.97 99.94 99.99 ICA
Success rate (SR %) 80.60 84.92 99.82 99.83 99.92 99.94 ICA
Average generation (AG) 24.14 27.23 8.98 9.91 3.36 2.77 ICA
Average time (AT) 18.5367 7.5183 0.5267 26.1567 0.1700 0.1229 ICA

Table 10   Standard deviation of the generated tests suit’s coverage in different methods

Criteria triangleType calDay isValidDate Cal Reminder printCalendar Best method

Standard Deviation of the generated test suit’s cover-
age in 10 times execution

0.37 0.11 0.21 0.13 0.02 0.019 ICA
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5 � Conclusion

Heuristic algorithms are used for solving the problem of opti-
mal test data generation of software. However, each heuristic 
algorithm has its own pros and cons with respect to this prob-
lem. In this study, ICA algorithm was used for automatic test 
data generation of software. Four criteria, namely average 
branch coverage, success rate, average number of genera-
tions and average execution time were used for evaluating 
the results. The results obtained from executing a wide range 
of experiments indicated that the proposed method (Traxtor) 
performed more efficiently than the other algorithms with 
regard to average coverage, success rate, average generation 
convergence and average execution time. As a direction for 
further research, other evolutionary algorithms and the com-
bination of them may be applied for solving the problem of 
automatic test data generation of software. Also, fitness func-
tion can be varied and modified in future studies for develop-
ing more optimal methods for addressing this problem.
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