
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-022-05999-9

Traxtor: An Automatic Software Test Suit Generation Method Inspired
by Imperialist Competitive Optimization Algorithms

Bahman Arasteh1  · Seyed Mohamad Javad Hosseini2

Received: 15 December 2021 / Accepted: 30 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Software testing refers to a process which improves the quality of software systems and also is one of time and cost consum-
ing stages in software development. Hence, software test automation is regarded as a solution which can facilitate heavy
and laborious tasks of testing. Automatic generation of test data with maximum coverage of program branches is regarded
as an NP-complete optimization problem. Several heuristic and evolutionary algorithms have been proposed for generating
test suits with maximum coverage. Failure to maximally branch coverage, poor success rate in test data generation with
maximum coverage and lack of stable results are considered as the major drawbacks of previous methods. Enhancing the
coverage rate of the generated test data, enhancing the success rate in generating the tests data with maximum coverage
and enhancing the stability and speed criteria are the major purposes of the present study. In this study, an effective method
(Traxtor) is proposed to automatically generate tests data by using imperialist competitive algorithms (ICA) optimization
algorithms. The proposed method is aimed at generating test data with maximum branch coverage in a limited amount of
time. The results obtained from executing a wide range of experiments indicated that the proposed algorithm, with 99.99%
average coverage, 99.94% success rate, 2.77 average generation and 0.12 s average time outperformed the other algorithms.

Keywords  Software testing · Automatic test data generation · Imperialist competitive algorithms · Branch coverage ·
Success rate

1  Introduction

Software testing is regarded as one of the most significant
steps in the process of guaranteeing software quality [1]. Soft-
ware testing may be conducted manually or automatically.
Whereas manual tests need high time and cost, automatic
methods reduce time and cost of testing. Given the sig-
nificance of automatic software testing, it is considered
as one of the remarkable challenges and concerns in this
research domain. However, in huge real-world software
systems, applying such a traditional manual testing would

be extremely costly and time-consuming. Software testing
at the source-code level may only detect 50% of errors in
software development. In contrast, applying automatic soft-
ware testing can notably reduce cost and time. Designing
optimal test cases in the automatic manner at the source-
code level is considered to be the problem addressed in this
study. Indeed, automatic test data generation with maximum
branch coverage at the minimum possible time is regarded as
the main optimization issue. Selecting a small subset from
the combination of all the possible inputs with maximum
coverage of program branches is regarded as an NP com-
plete problem.

Given the nature of this research problem, several heu-
ristic and evolutionary algorithms have been proposed for
generating test datasets with maximum coverage [2–10].
Failure to maximally branch coverage, poor average success
rate in data productions with maximum coverage in different
executions, lack of stable results in different executions and
high execution time are considered as the major drawbacks
of previous methods. The purposes of the present study are
as follows:

Responsible Editor: V. D. Agrawal

 *	 Bahman Arasteh
	 Bahman.arasteh@istinye.edu.tr; b_arasteh2001@yahoo.com

1	 Department of Software Engineering, Engineering
and Natural Science Faculty, Istinye University, Istanbul,
Turkey

2	 Department of Computer Engineering, Sofian Branch,
Islamic Azad University, Sofian, Iran

/ Published online: 11 April 2022

Journal of Electronic Testing (2022) 38:205–215

http://orcid.org/0000-0001-5202-6315
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-05999-9&domain=pdf

1 3

•	 Enhancing the coverage rate of the generated test data
•	 Enhancing the success rate in generating the tests data

with maximum coverage
•	 Enhancing the result stability of test data generation

methods
•	 Enhancing the speed of test data generation along with

maximum coverage

In this study, an effective method (Traxtor1) is proposed to
automatically generate tests data by using imperialist compet-
itive algorithms (ICA) optimization algorithms. Indeed, ICA
as a heuristic algorithm [11] is developed to sort out the test
data generation problem in this study. The proposed method
is aimed at generating test data with maximum branch cover-
age in a limited amount of time. The major contributions of
this study are as follows:

•	 Applying imperialist competitive algorithm (ICA) for gen-
erating optimal test data

•	 Implementing open-source tool for automatic testing of
a program with high success rate

•	 Producing optimal and stable test data with maximum
coverage at the minimum time

The rest of the paper is organized as follows: in Sect. 2,
basic theoretical concepts and a review of the related works
are briefly discussed. Section 3 reports and elaborates on the
proposed method in detail. Section 4 discusses the results
obtained from executing the program via different methods.
Finally, Sect. 5 draws the conclusion of the study and gives
directions for further research.

2 � Related Works

In [3], researchers used a random method for producing test
data. Very high time requirement for achieving the intended
coverage and the generation of repetitive data is regarded as
the main drawbacks of this method. Also, desirable results in
terms of the number of discovered faults were not obtained
in these methods. Hence, researchers proposed a method
based on symbolic execution so as to achieve better results
[4, 5]. Symbolic execution is an effective testing technique
that provides a way to automatically generate test data inputs
that trigger software errors Concrete test inputs generation
is one of the major strengths of symbolic execution the
generated test data have high coverage. From a bug-finding
perspective, concrete and high coverage test data triggers
the bug. Symbolic methods are not able to determine array

value and pointer inputs. Consequently, data generation has
turned into a challenging issue. In [6] simulated annealing
algorithm was uses for solving the problem of test-data pro-
duction. In this study, by converting testing data generation
problem into an optimization problem, optimal test-data is
generated by the simulated annealing algorithm. Low per-
formance and low coverage and being placed in local opti-
mum are the main demerits of this method. This method is
appropriate for behavioral testing.

By capitalizing on genetic algorithm (GA), a method was
proposed in [2] for producing test data. In this method, GA
was used for selecting optimal paths. In this research, fitness
function was entitled similarity function which was aimed
at determining the degree of similarity of the traveled path
to the objective path. Path optimality indicates the fact that
the path is followed in executing test data. That is, the higher
path follow-up, the higher its optimality. The application of
GA leads to the reduction of the required time for finding
optimal path. Another method was proposed in [7] based on
GA for producing test data. In this research, GA was used
so as to achieve optimal test data. For enhancing efficiency
and effectiveness, researchers implemented this algorithm
in the parallel manner. Then, the coverage of the proposed
method was analyzed and investigated on six benchmark
programs. The obtained results indicated improvement in
test data production.

One of major problem in the GA is that the chromosomes
do not try to improve themselves and the may improve using
only mutation operator. In GA, the fitness function evaluates
only whole of chromosome; evaluating a subsection of a
chromosome in GA is not possible. This makes the GA to
be similar to the blind search algorithms. To address these
problems, an automatic test-data generation method has been
proposed [8]. In this method, reinforcement learning as a
memetic search method was augmented to the GA. This aug-
mented GA focuses on best chromosomes of population and
Q-learning has been used for guiding these search process.
In method, mutation operator is performed when there are
duplicated sub-sections within a chromosome. Experimental
results show that this hybrid method is better than GA in
terms of the coverage and success rate. In [9], researchers
applied particle swarm optimization (PSO) algorithm for
producing test data. In a similar vein, PSO algorithm and
regression analysis were proposed in [10] for generating test
data. Moreover, thanks to its simplicity and high convergence
speed, PSO algorithm was applied in [12] for producing
the test data with another objective function. Regarding the
obtained results in these studies, the coverage of critical path
(fault prone paths) using branch distance functions is poor.
A PSO search based test-generation method was proposed
using an improved fitness function to cover the critical path
of program under test [13].1  Traxtor is the name of a popular Turk football team in the historical

city of Tabriz.

206 Journal of Electronic Testing (2022) 38:205–215

1 3

A method based on ant colony optimization (ACO) algo-
rithm was proposed in [14] for producing optimal tests data
which was aimed at maximizing branch coverage. A cov-
erage based specific fitness function was defined in this
method. The results of the experiments showed that the
coverage, convergence speed and stability of results are
higher in this method. In [15] the effectiveness of artificial
honeybee colony (ABC), genetic, particle swarm, simu-
lated annealing and ant colony (ACO) algorithms have
been evaluated and compared to each other. In this study,
distance function based on branch coverage is used as fit-
ness function. The results of conducted experiments of the
traditional benchmarks revealed that the coverage, success
rate, average number of iterations in ABS are respectively
99.94%, 99.92%, 3.36. Indeed, ABC algorithm performed
better than the other algorithms in producing optimal test
data. In [16], the shuffled frog leaping algorithm (SFLA)
was applied to develop an automatic test-data genera-
tion method. In this method, branch coverage was used
into fitness function. An extensive series of experiments
have been performed on the seven tradition benchmarks
for evaluating this method. The results illustrated that this
method has several merits over the previous evolutionary
algorithms such GA, PSO, ACO and ABC. The SFLA
based method can generate test data with 99.99% branch

coverage with the minimal iterations. Also, its success rate
in generating the optimal test data is 99.97%.

According to the previous studies, which are briefly men-
tioned in Table 1, it can be maintained that the method pro-
posed so far have their own pros and cons. In other words,
they have not been fully able to solve the problem of data
generation for automatic software testing. Consequently, in
this research study, an automatic test generation method
using ICA optimization algorithm. The authors of this study
make an effort to address the previous research gap. The
proposed method is discussed and elaborated in Sect. 3.

3 � The Proposed Method

As shown in Fig. 1, an automatic method (Traxtor) was
proposed to generate structural test data. In the first step,
source code of the program under test is statically analyzed
and the required structural information is extracted for the
next steps. In the second step, optimal test data is gener-
ated by means of ICA (imperialist competitive algorithm).
The objective function, applied in this study, was defined
based on the distance function and branch coverage. In
fact, ICA navigates and directs the generated data so as
to enhance the coverage of program branches. The output

Table 1   Merits and demerit different test generation methods

Method Merits Demerits

Random search [3] Simplicity of implementation Lack of sufficient information for generating
test data

Simulated annealing algorithm (SA) [6] Higher speed than random search Dealing with local optimum and low success
rate

Genetic algorithm (GA) [2, 7, 8] Parallel implementation Low success rate and high runtime
Particle swarm optimization algorithm (PSO)

[9, 10, 12, 13]
High speed and simple implementation Different results in numerous repetitions

Ant colony optimization algorithm (ACO) [14] Considering the weights of branches High runtime and highly variable results
Artificial bee colony optimization algorithm

(ABC) [15]
Appropriate coverage of branches and high

speed
High variance in the obtained results for same

applications

Preprocessing of

the input program

Program Source

code

Branch expressions of the

input program

Generating test set

using ICA algorithm

Test sets

Experimental evaluation of the

generated test sets by the

proposed method

Step 1 Step 2 Step 3

Coverage, stability and time

consumption of the proposed

method

Fig. 1   The process of the proposed method

207Journal of Electronic Testing (2022) 38:205–215

1 3

of the second step is the test set (test suit) generated by
the ICA.

3.1 � Test Data Generation via ICA

As mentioned above, an automatic method was proposed
in this study for generating optimal test data via ICA. In
this section, we discuss the method of automatically gen-
erating test data by means of ICA. Like other evolutionary
algorithms, this algorithm starts with a number of random
initial populations each of which is referred to as a coun-
try. Each member of the population (individual or country)
is a test data which was randomly generated in the initial
population. A number of the best individuals, which are
equal to elites in genetic algorithm, are selected as the
imperialists. The best member of a population is the indi-
viduals (countries) whose fitness function is higher than
those of other population members. The policies of assimi-
lation, imperialistic competition and revolution establish
the foundations of ICA. By imitating the social, economic
and political evolution of countries and via mathematical
modeling of some sections of this process, ICA presents
operators in a regular format as an algorithm. These opera-
tors may facilitate the solving of complicated optimization
problems. In fact, this algorithm views problem solutions
in the form of independent countries and tries to gradually
improve and optimize the solutions throughout a repeti-
tive process; in this way, it is aimed at achieving the final
optimal solution. As the time passes, colonies will become
closer to the empires in terms of power. Hence, a sort
of convergence is realized. The final limit of imperialist
competition is when there is a unitary empire in the world
with colonies which are highly close to the imperialist
country in terms of position. The steps of the proposed
method are as follows:

Input: programs to be tested and the data generated by
ICA.

Output: the optimal suite and evaluation criteria (aver-
age coverage, success rate, average convergence and average
time).

Steps:

1. Selection of a number of random test data as colonies
and the establishment of initial empires

• Specifying the structure of test data according to
source code structure.
• Constructing the initial population of countries (test
data).
• Determining absorption policy.
• Determining revolution policy and revolution rate.
• Defining cost function.

2. The movement of colonies (test data) towards the impe-
rialist country (assimilation policy).
3. Computing the value of fitness function based on each
test data.
4. In case there is a colony in an empire whose fitness
function is greater than that of the imperialist, the posi-
tion of the imperialist and the colony is replaced.
5. Computing the total fitness of an empire (by consider-
ing the cost of the imperialist and its colonies).
6. Selecting a colony from the weakest empire and allo-
cating it to the empire with the highest probability of pos-
session.
7. Eliminating weak empires.
8. If only one empire remains, the algorithm is stopped;
otherwise, steps 2 to 6 are repeated.
9. The remaining elements in the empires are regarded as
the best obtained test datasets.

In the proposed method, source-code of the input program
is firstly analyzed and the number of parameters, paths and
the weight of the branches are determined and valued. After
the values of these parameters are specified and the main
variables of ICA are randomly determined, the imperialist
arbitrarily replaces a percentage of its array, which is parts of
test data, with corresponding imperialist data. Then, the next
action in the procedure of implementing ICA is to eliminate
and replace weak colonies (countries) with strong colonizers.
This measure is taken by computing the value of fitness func-
tion and selecting the individuals with a better cost function;
this is technically referred to as the revolution. The imperialist
competition refers to the fact that colonies or imperialists are
doing their bests in absorbing the colonies of other empires.
Throughout the execution of the ICA, low-power countries or
colonies (test data) are randomly given (absorbed) by stronger
empires. This procedure continues so that colonies are con-
formed and assimilated to their empires. In other words, the
values of the imperialist and colonies’ fitness functions gent
closer to each other. In practice, this step is aimed at reaching
a solution out of a large number of solutions. This operation
is realized as a result of removing weak empires.

3.2 � Fitness Function

Selecting an appropriate fitness function is regarded as a
highly significant step in optimization problems. By using
fitness function, the heuristic algorithm manages the popula-
tion members and finally optimizes them. Distance function
has been used as the fitness function in the proposed method.
Since the criterion of branch coverage is considered to be one
of the most effective indexes in investigating the structural
testing of software, it was used in this study for computing
fitness function. In this function, the input program has S

208 Journal of Electronic Testing (2022) 38:205–215

1 3

branches (conditional instruction). Each branch of the pro-
gram is determined by bchi variable. If the number of the
input data (test data) is equal to m, each input will be deter-
mined with Xk ε TS (1 ≤ K ≤ m). TS is the generated test set by
the test generation method. Equation (1) is used for comput-
ing the fitness or optimality of a test data generated by ICA.

In this equation, ∅ is a constant value which is obtained
through trial and error; its value, in this study, was 0.01. w
variable denotes the weight of branches. f indicates distance
function. Equation (2) is used for computing fitness function
of a test dataset produced by ICA.

In case TS (test suit) can cover all the branches, Eq. (2) will
be measured as 1/∅ and the highest fitness is achieved. In
this issue, we intend to maximize the value of fitness func-
tion. According to Eq. (3), fitness function is made up of
distance function; this function indicates the degree of pre-
sumed deviance of a conditional instruction after values of
component inputs are assigned. According to studies [9],
distance values of the branch predicates that are used in the
conditional expression of a program is shown in Table 2.
In case the conditional expression has true values based on
the produced data, the value of distance function will be
zero; otherwise, the value of δ variable will be added to the
value of conditional expression. In this study, the value of
variable was 0.1.

3.3 � Weight of Branches

Weight of branches indicates the accessibility degree of
program branches which are tested. The higher the weight

(1)Fitness
�

Xk

�

=
1

�

∅ +
∑s

i=1
wi.f (bchi,Xk)

�2

(2)Fitness (TS) = 1∕
�

∅ +
∑s

i=1
wi. min{f (bchi,Xk)}mk=1

�2

of branches, the more should the algorithm try to reach
the branch. The effective factors which have an impact on
branch weight are as follows [9]:

•	 Nesting weight of the branches
•	 Predicate weight of the branches

The nesting weight which indicates the level of branches
is determined by Eq. (3). The higher nesting weight, the
more the difficulty of access to that branch.

In this equation, variable i refers to the number of the ith
branch. nli variable stands for the nesting level of the ith
branch. nlmin denotes the lowest nesting level in the program
and nlmax indicates the maximum nesting level in the pro-
gram. Equation (4) was also used for normalizing the nest-
ing weight of the branches. In this equation, the ith branch
weight is divided on the total weight of the branches.

Predicate weight indicates the complexity degree of the
predicates of the branches. The predicates should have true
values based on the produced input data (test data) so that
they can be covered. Equation (5) and Table 3 were used for
obtaining predicate weight. In this equation, the following
two states may occur:

•	 If the respective branch includes h conditions which have
been combined with each other via and operator, the total
weight of the predicate will be equal to the square root of
the total weights of the predicates.

•	 If the respective branch has h conditions which have
been combined with each other via or operator, the low-
est value out of the weight of the condition predicates
will be selected.

(3)wn
(

bchi
)

=
nli − nlmin + 1

nlmax − nlmin + 1

(4)wn�
�

bchi
�

=
wn

�

bchi
�

∑s

i=1
wn

�

bchi
�

(5)wp
�

bchi
�

=

⎧

⎪

⎨

⎪

⎩

�

∑u

j=1
w2
r

�

cj
�

, if conjunction is and

min
�

wr

�

cj
��

, if conjunction is or

min{wr

�

cj
�

}h
j=1

, other wise

Table 2   Branch function for different kinds of branch predicates

No. Predicate Branch distance function f (bchi)

1 Boolean If true then 0 else k
2  ~ a Negation is propagated over a
3 a = b If abs(a − b) = 0 then 0 else abs(a − b) + k
4 a ≠ b If abs(a − b) = 0 then 0 else k
5 a < b If a − b < 0 then 0 else abs(a − b) + k
6 a ≤ b If a − b ≤ 0 then 0 else abs(a − b) + k
7 a > b If b − a < 0 then 0 else abs(b − a) + k
8 a ≥ b If b − a ≥ 0 then 0 else abs(b − a) + k
9 a and b f (a) + f (b)
10 a or b min(f (a), f (b))

Table 3   Weight of operators
for determining the value of
predicate weight

Operator Weight

 =  =  0.9
 ≥ , > , ≤ , <  0.6
Boolean 0.5
! =  0.2

209Journal of Electronic Testing (2022) 38:205–215

1 3

In Eq. 5, bchi,(1 ≤ i ≤ s) indicates the ith branch. For comput-
ing the weight of the ith predicate, h variable states the num-
ber of available conditions within the branch. cj,(1 ≤ j ≤ ℎ)
indicates the ith condition and wr refers to the condition
weight whose value is determined based on Table 3. Also,
Eq. (6) was used for normalizing the weight of predicates
in which the predicate weight of the respective branch is
divided on the total weight of the predicates.

Finally, Eq. (7) was used for computing the weight of each
branch. This equation indicates that the weight of each
branch is made up of the nesting weight plus the predicate
weight of the branch. wi refers to the ith branch weight and α
is the balance coefficient. In this study, the impact of nesting
weight and predicate weight were assumed to be equal. The
value α was 0.05.

4 � Results and Discussion

4.1 � Implementation System

Matlab program was used for implementing the proposed
method. Indeed, Matlab is a practical and applied language
for computational operations. It provides the opportunity
for carrying out numerous computational, programming and
demonstrational operations. A wide majority of computa-
tional techniques and problems, particularly the ones dealing
with vector and matrix formulas can be easily implemented
in Matlab program. In this study, the proposed method as
well as other method based on ABC, ACO, PSO, GA and
SA algorithms were implemented in Matlab for generating
test data. The proposed method and the other methods were
all implemented on the same computer system with 8 GB
memory and Intel Corei7 CPU. The evaluation criteria used
in this study are as follows:

(6)wp�
�

bchi
�

=
wp

�

bchi
�

∑s

i=1
wp

�

bchi
�

(7)wi =∝ .wn�
(

bchi
)

+ (1− ∝).wp�(bchi)

1.	 AC (average coverage): it denotes the degree of branch
coverage of program branches by the generated test data-
set. The higher the value of this criterion, the better the
effectiveness of the respective method (effectiveness
criterion).

2.	 AG (average generation convergence): this criterion
indicates the average number of required iterations
for covering all the program branches by the respec-
tive algorithm. The lower the value of this criterion, the
higher the performance of the respective algorithm (per-
formance criterion).

3.	 AT (average time): this index refers to the average time
needed for covering all the program branches. This cri-
terion is measured in milliseconds (ms). Regarding this
index, lower values demonstrate a desirable performance
for the related algorithm (performance criterion).

4.	 SR (success rate): it denotes the coverage probability
of all the program branches through the generated test
data. The higher the value of this criterion, the better
the effectiveness of the respective method (effectiveness
criterion).

The number of iterations is considered to be the termi-
nation condition in the above-mentioned algorithms with
respect to generating optimal test data. Maximum number
of the iterations of the algorithms is 300. Furthermore, for
computing the average value for these criteria, each algo-
rithm was executed on each benchmark program for 10
times. Then, the average values and standard deviation were
computed and compared with each other.

4.2 � Benchmark Programs

In this study, 6 benchmark programs with differing degrees
of complexity were used. Table 4 gives the characteristics
of each of these benchmark programs which have been also
used in other previous works. Source-codes of the bench-
mark programs are written in C +  + programming language.
ICA, ABC, ACO, PSO, GA and SA algorithms were used
for generating test data of these benchmark programs. The
real-world program’s source code is portioned into the

Table 4   Characteristics of the 6
benchmark programs

Program #Arg #Arg.type LOC Description

TriangleType 3 Integer 31 Type classification for a triangle
calDay 3 Integer 72 Calculate the day of the week
IsValidDate 3 Integer 41 Check a date is valid or not
cal 6 Integer 26 Compute the days between two dates reminder
Reminder 2 Integer 7 Calculate the reminder of an integer division
printCalender 2 Integer 124 Print calendar according to the input of year and month

210 Journal of Electronic Testing (2022) 38:205–215

1 3

components, classes and functions; indeed, the large pro-
grams with million lines of code composed of modules and
finally functions. On the other hand, regarding the program-
ing standards, the size of a function should be about 20 to
100 lines of code. The benchmark programs used in this
study are the most traditional and frequently used benchmark
programs in the software test studies. Also, these bench-
marks include all programing structures that can be used
in the real-world complex software. All conditional, loop,
arithmetic, logical and jump operators and instructions are
used in these benchmark programs. Regarding the generated
control flow graph of these programs (structural viewpoint),
algorithm and computation of these programs (behavioral
viewpoint), the source code complexity, similar results can
be generated by the proposed method on the real-world
programs.

4.3 � Evaluation of the Results

A wide range of experiments were conducted for investigat-
ing and evaluating the proposed method based on the above-
mentioned specific criteria which are discussed in Sect. 4.2.
As mentioned above, one of these criteria is the average
coverage of the program branches by the generated test data.
Each test generation method was executed for 10 times for
obtaining the average coverage of branches. Table 5 shows
the average coverage of branches for different benchmark
programs by the generated test data. According to the
obtained results, in most benchmark programs, the gener-
ated test data by the proposed method (Traxtor) has higher
branch coverage. Indeed, the data with higher branch cov-
erage is more capable of detecting and discovering errors.
It was found that the test data generated by the proposed
method is more efficient and effective with respect to the
criteria. In the first set of experiments, the proposed method
along with five other methods was executed on the bench-
mark programs. Then, the average coverage of the generated
data by each method was examined. The average coverage of
the generated test suit in different executions of each algo-
rithm is given in Table 5. The proposed algorithm achieved
100% coverage in Remider, Cal, printCalendar, isValiDate
and triangleType benchmark programs. It obtained 99.98%

coverage in calDay program; regarding calDay benchmark
program, the proposed algorithm obtained 99.96% coverage
meanwhile ACO algorithm had 0.04% better coverage than
the proposed algorithm in calDay program. Also, regarding
CalDay program, PSO algorithms had slightly better cover-
age than the proposed algorithm. It should be noted that the
obtained values by this criterion for evaluating the methods
depend on the program to be tested, the number of program
branches and branch weight. The proposed algorithm outper-
formed the other methods in 5 out of 6 benchmark programs.
Figure 2 depicts the average coverage of the generated test
by different methods. The average coverage of the test data
generated by the proposed algorithm is 99.99% which is
higher than the average value obtained by the other methods.

As mentioned above, success rate (SR) is another cri-
terion in test data generation with 100% coverage. In this
study, another set of experiments was carried out with
respect to this criterion. Each test data generation method
was executed on each benchmark program for 10 times.
Average number of the times that the test data genera-
tion method achieved 100% coverage indicates SR of that
method. Table 6 gives the results of experiments regarding
SR criterion. As it may be inferred from the results, the pro-
posed algorithm achieved 100% success rate in triangleType,
CalDay, Cal and Reminder programs. Regarding isValidDat
benchmark program, the proposed algorithm had high a SR
which was close to 100%. ICA performed better than the

Table 5   The branch coverage
(%) of the generated test suits
by different methods in different
benchmark program

Benachmark GA SA PSO ACO ABC ICA Best Method

triangleType 95.00 99.88 99.94 100 99.93 100 ACO,ICA
calDay 96.31 99.97 100 100 99.8 99.96 PSO,ACO
isValidDate 99.95 97.68 100 99.98 99.90 100 PSO,ICA
Cal 99.02 99.27 100 100 100 100 PSO,ACO,ABC,ICA
Reminder 94.7 99.85 100 100 100 100 PSO,ACO,ABC,ICA
printCalendar 95.06 94.31 99.72 99.85 100 100 ABC,ICA

GA SA PSO ACO ABC ICA

AVG AC 96.67 98.49 99.94 99.97 99.93 99.99

95
95.5
96

96.5
97

97.5
98

98.5
99

99.5
100

AV
G.

 A
C

Fig. 2   Average coverage of test data generated by different methods

211Journal of Electronic Testing (2022) 38:205–215

1 3

other algorithms in printCalendar benchmark program; the
results revealed that ACO algorithm has slightly better SR
criterion. As shown in Fig. 3, the proposed algorithm, on the
whole, had higher SR in achieving 100% branch coverage of
the programs. Hence, by considering SR criterion, it can be
argued that the proposed method generates more effective
test data than the other methods.

Convergence speed is the next criterion which underscores
the time and cost in generating test data. The number of
required repetitions for a heuristic method in generating test
data with maximum branch coverage indicates lower conver-
gence speed of that algorithm. In fact, a method which can
produce optimal test data within a fewer number of repetitions
will be more efficient and effective. Table 7 gives the average
convergence speed of different methods during 10 executions.
The results indicated that the proposed algorithm had lower
average convergence on all benchmark programs except for
isValidDate program. Hence, it can be maintained that ICA

demonstrated higher performance on this criterion. In other
words, the proposed method can produce optimal test data with
maximum coverage via fewer numbers of repetitions. Figure 4
shows the number of required repetitions for generating opti-
mal test data (maximum coverage) on 10 different executions.
Based on the obtained results, it can be concluded that the
proposed method, via 2.7 average number of repetitions, was
able to produce optimal test data. In this study, optimal test
data refers to data which has maximum branch coverage. As
a result, the proposed algorithm has high efficiency and effec-
tiveness in terms of convergence speed.

Average execution time of each method in automatic test
generation was taken into consideration as another criterion.
Table 8 reports average time for 10 executions of different
methods on different programs. Hence, the proposed method
and the other ones were investigated in terms of average

Table 6   The success rate (%) of
different methods in generating
test suit with 100% branch
coverage

Benachmark GA SA PSO ACO ABC ICA Best Method

triangleType 76.40 99.40 99.80 100 99.90 100 ACO,ICA
calDay 65.00 99.60 100 100 99.74 100 PSO,ACO,ICA
isValidDate 99.40 95.30 100 99.80 99.90 99.96 PSO,ICA
Cal 98.70 96.50 100 100 100 100 PSO,ACO,ABC,ICA
Reminder 82.50 98.60 100 100 100 100 PSO,ACO,ABC,ICA
printCalendar 61.60 20. 1 99.10 99.20 100 99.74 ABC,ICA

GA SA PSO ACO ABC ICA
AVG SR 80.6 97.88 99.81 99.83 99.92 99.95

0

20

40

60

80

100

AV
G.

SR

Fig. 3   Average success rate of different methods in achieving 100%
branch coverage

Table 7   Required average
generation to produce test suite
with maximum branch-coverage
by different methods

Benachmark GA SA PSO ACO ABC ICA Best Method

triangleType 13.79 42.17 5.36 5.76 1.94 1.7 ICA
calDay 35.80 28.29 10.37 9.51 4.99 3.6 ICA
isValidDate 21.69 15.37 11.90 15.16 0.99 2.4 ABC
Cal 15.24 10.26 8.33 9.58 4.06 3.1 ICA
Reminder 16.31 13.66 5.35 2.01 3.50 1.9 ICA
printCalendar 42.03 53.6 12.59 17.42 4.70 3.9 ICA

GA SA PSO ACO ABC ICA
AVG 24.14 27.22 8.98 9.9 3.36 2.76

0

5

10

15

20

25

30

AV
G.

AG

Fig. 4   Average number of executed repetitions by different methods
for generating test data with maximum coverage

212 Journal of Electronic Testing (2022) 38:205–215

1 3

execution time. It was observed that the proposed method
had shorter execution time for all the tested benchmark pro-
grams except for printCalendar program; ABC algorithm
had relatively better performance only on this program. In
general, it can be pointed out that the proposed method had
successful performance on this criterion.

Here, the average obtained results of the proposed method
and other methods are compared with each other with respect
to 4 evaluation criteria on the benchmark programs which are
given in Table 9. The analysis of the results reveals that the
proposed method had better effectiveness (AC and SR) and
performance (AG and AT) than the other methods on four
evaluation criteria (AC, SR, AG, AT). Given the nature of
heuristic algorithms, the stability of the results produced by
them should be investigated. In this study, the standard devia-
tions of the test data produced by different methods were
measured and evaluated. Table 10 shows the standard devia-
tion values regarding the coverage of the generated test data.
They were computed and measured on 10 different execu-
tions based on the criterion of coverage degree. Lower stand-
ard deviation values in different executions indicate higher
stability of the respective method. As shown in Table 10,

the proposed method has lower average standard deviation
than ACO, PSO, GA and SA. Consequently, in line with
the results, it can be mentioned that the proposed method
(Traxtor) is more reliable in generating optimal test data.
Furthermore, Table 11 gives the generated test suite for Cal
benchmark program by the proposed method (Traxtor). This
benchmark program has 6 input parameters which measures
the number of days between two specific dates. The code of
the implemented tool (Traxtor) was uploaded in [17] to use
freely by the software testers.

In order to evaluate the effectiveness of the generated test
data by the proposed method, the mutation test [18, 19] have
been performed. In this series of experiments, a set of faults
(bugs) have been automatically injected by Mujava tool [20]
into each benchmark program; then the generated test data by
the proposed method was used to find the injected bugs in each
program. Mujava calculates the mutation score of the gener-
ated data for each program. The Mutation score depicts the
capability of each test set in finding the injected bugs. Table 12
shows the mutation score (fault detection capability) of gener-
ated data for each program. The results confirm the effective-
ness of the proposed method in generating bug detecting data.

Table 8   Average required
time to generate test suit with
maximum branch-coverage in
different methods (Second)

Benachmark GA SA PSO ACO ABC ICA Best Method

triangleType 10.83 3.77 0.19 6.22 0.1758 0.1027 ICA
calDay 35.73 1.79 0.35 12.84 0.2375 0.1165 ICA
isValidDate 11.68 2.43 0.54 19.94 0.1944 0.1629 ICA
Cal 11.41 0.73 0.50 11.18 0.1367 0.0921 ICA
Reminder 6.09 1.01 0.17 10.49 0.0931 0.0725 ICA
printCalendar 35.48 35.38 1.41 96.27 0.1826 0.1912 ABC

Table 9   Overall average results
for the proposed ICA and other
methods based on 4 criteria

Criteria GA SA PSO ACO ABC Proposed
method
(ICA)

Best method

Average coverage (AC %) 96.57 98.49 99.94 99.97 99.94 99.99 ICA
Success rate (SR %) 80.60 84.92 99.82 99.83 99.92 99.94 ICA
Average generation (AG) 24.14 27.23 8.98 9.91 3.36 2.77 ICA
Average time (AT) 18.5367 7.5183 0.5267 26.1567 0.1700 0.1229 ICA

Table 10   Standard deviation of the generated tests suit’s coverage in different methods

Criteria triangleType calDay isValidDate Cal Reminder printCalendar Best method

Standard Deviation of the generated test suit’s cover-
age in 10 times execution

0.37 0.11 0.21 0.13 0.02 0.019 ICA

213Journal of Electronic Testing (2022) 38:205–215

1 3

5 � Conclusion

Heuristic algorithms are used for solving the problem of opti-
mal test data generation of software. However, each heuristic
algorithm has its own pros and cons with respect to this prob-
lem. In this study, ICA algorithm was used for automatic test
data generation of software. Four criteria, namely average
branch coverage, success rate, average number of genera-
tions and average execution time were used for evaluating
the results. The results obtained from executing a wide range
of experiments indicated that the proposed method (Traxtor)
performed more efficiently than the other algorithms with
regard to average coverage, success rate, average generation
convergence and average execution time. As a direction for
further research, other evolutionary algorithms and the com-
bination of them may be applied for solving the problem of
automatic test data generation of software. Also, fitness func-
tion can be varied and modified in future studies for develop-
ing more optimal methods for addressing this problem.

Funding  The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Data Availability  The datasets generated during and the implemented
code during the current study is available in the google.drive can be
freely accessed by [17].

Declarations 

Disclosure  The authors have no relevant financial or non-financial
interests to disclose. All authors contributed to the study conception
and design.

References

	 1.	 Ammann P, Offutt J (2017) Introduction to Software Testing. Cam-
bridge University Press, ISBN 978–1–107–17201–2

	 2.	 Lin JC, Yeh PL (2001) Automatic Test Data Generation for Path
Testing using GAs. J Inform Sci 131(1):47–64

	 3.	 Khatun S, Rabbi KF, Yaakub CY, Klaib MFJ (2011) A Random
search based effective algorithm for pairwise test data generation.
Int Conf Electrical Control Comput Eng 2011 (InECCE), 293–
297. https://​doi.​org/​10.​1109/​INECCE.​2011.​59538​94.

	 4.	 Eler MM, Endo AT, Durelli VH (2016) An empirical study to quan-
tify the characteristics of Java programs that may influence symbolic
execution from a unit testing perspective. J Syst Softw 121:281–297,
ISSN. 0164–1212

Table 11   Generated test dataset
for Cal benchmark program by
the proposed method

#test data Input1 Input2 Input3 Input4 Input5 Input6

1 13 1 1566 0 3 1525
2 12 11 1808 20 1 2109
3 1 12 1754 9 12 1921
4 0 2 1487 16 2 619
5 21 0 3000 31 10 3000
6 23 0 164 10 3 1803
7 10 3 0 17 7 1730
8 31 8 588 25 2 1939
9 2 1 2514 6 0 2852
10 9 12 143 20 5 1141
11 0 7 1228 21 5 2726
12 11 5 1337 10 12 645
13 0 12 0 5 10 1757
14 22 6 1873 14 6 2939
15 14 5 2625 25 12 2571
16 8 6 1996 24 12 1462
17 0 10 1687 11 12 1044
18 5 8 2435 6 6 3000
19 17 7 2665 2 0 1153
20 20 1 535 0 0 105

Table 12   The mutation score of the generated test data by the proposed method calculated by Mujava tool

triangleType calDay isValidDate Cal Reminder printCalendar

Mutation Score of the generated test data by the Traxtor 99.72% 92.20% 99.02% 99.00% 93.80 99.07

214 Journal of Electronic Testing (2022) 38:205–215

https://doi.org/10.1109/INECCE.2011.5953894

1 3

	 5.	 Cristian C, Koushik SS (2013) Symbolic Execution For Software
Testing: Three Decades Later. Commun ACM 56(2):82–90

	 6.	 Cohen MB, Colbourn CJ, Ling AC (2003) Augmenting Simulated
Annealing to Build Interaction Test Suites. Proc Fourteenth Int
Symp Softw Reliab Eng (ISSRE'03), 394–405

	 7.	 Sharma C, Sabharwal S, Sibal R (2014) A Survey on Software
Testing Techniques using Genetic Algorithm. Int J Comput Sci
10(1):381–393

	 8.	 Esnaashari M, Damia AH (2021) Automation of software test
data generation using genetic algorithm and reinforcement learn-
ing. Expert Syst Appl 183:115446

	 9.	 Mao C (2014) Generating Test Data for Software Structural
Testing Based on Particle Swarm Optimization. Arab J Sci Eng
39(6):4593–4607

	10.	 Kaur A, Bhatt D (2011) Hybrid particle swarm optimization for
regression testing. Int J Comput Sci Eng 3(5):1815–1824

	11.	 Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive
algorithm: An algorithm for optimization inspired by imperialis-
tic competition. Proc IEEE Congress Evol Comput (CEC 2007),
Singapore, 4661–4667

	12.	 Ahmed BS, Zamli KZ (2011) A variable strength interaction test
suites generation strategy using particle swarm optimization. J
Syst Softw 84:2171–2185

	13.	 Sahoo RR, Ray M (2020) PSO based test case generation for critical
path using improved combined fitness function. J King Saud Univ
Comput Inf Sci 32(4):479–490

	14.	 Mao C, Xiao L, Yu X, Chen J (2015) Adapting Ant Colony Optimiza-
tion to Generate Test Data for Software Structural Testing. J Swarm
Evol Comput 20:23–36

	15.	 Aghdam ZK, Arasteh B (2017) An Efficient Method to Generate
Test Data for Software Structural Testing Using Artificial Bee
Colony Optimization Algorithm. Int J Softw Eng Knowl Eng
27(6):951–966

	16.	 Ghaemi A, Arasteh B (2020) SFLA-based heuristic method to
generate software structural test data. J Softw Evol 32(1)

	17.	 https://​drive.​google.​com/​drive/​folde​rs/1-​i2k86j-​PIio3​CqwTsH-​
PSMLh​1zGU3​a4?​usp=​shari​ng

	18.	 Hosseini MJ, Arasteh B, Isazadeh A, Mohsenzadeh M, Mirzarezaee
M (2020) An error-propagation aware method to reduce the soft-
ware mutation cost using genetic algorithm. Data Technol Appl
55(1):118–148. https://​doi.​org/​10.​1108/​DTA-​03-​2020-​0073

	19.	 Shomali N, Arasteh B (2020) Mutation reduction in soft-
ware mutation testing using firefly optimization algorithm.
Data Technol Appl 54(4):461480. https://​doi.​org/​10.​1108/​
DTA-​08-​2019-​0140

	20.	 https://​cs.​gmu.​edu/​~offutt/​mujava

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Bahman Arasteh  was born in Tabriz. He received master degree in
software engineering from Azad University of Arak, Iran and the Ph.D.
degree in software engineering from Islamic Azad University, Tehran
Science and Research Branch, respectively. Currently, he is associated
professor in Istinye University. His research interests include Software
Engineering, Software testing, and Software Fault Tolerance.

Seyed Mohamad Javad Hosseini   was born in Tabriz and received his
master’s degree from Arak Azad University and Ph.D. degree from
Islamic Azad University, Tehran Science and Research Branch, respec-
tively. He is faculty member in Islamic Azad University. His research
interest include software test.

215Journal of Electronic Testing (2022) 38:205–215

https://drive.google.com/drive/folders/1-i2k86j-PIio3CqwTsH-PSMLh1zGU3a4?usp=sharing
https://drive.google.com/drive/folders/1-i2k86j-PIio3CqwTsH-PSMLh1zGU3a4?usp=sharing
https://doi.org/10.1108/DTA-03-2020-0073
https://doi.org/10.1108/DTA-08-2019-0140
https://doi.org/10.1108/DTA-08-2019-0140
https://cs.gmu.edu/~offutt/mujava

	Traxtor: An Automatic Software Test Suit Generation Method Inspired by Imperialist Competitive Optimization Algorithms
	Abstract
	1 Introduction
	2 Related Works
	3 The Proposed Method
	3.1 Test Data Generation via ICA
	3.2 Fitness Function
	3.3 Weight of Branches

	4 Results and Discussion
	4.1 Implementation System
	4.2 Benchmark Programs
	4.3 Evaluation of the Results

	5 Conclusion
	References

