
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-022-05997-x

Low Area FPGA Implementation of AES Architecture with EPRNG
for IoT Application

N. Siva Balan1 · B. S. Murugan2

Received: 28 August 2021 / Accepted: 18 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Nowadays, the Internet of Things (IoT) is widely used in the daily lives of humans, which range from tiny wearable devices
to huge industrial systems. However, designing the IoT application is difficult, because the devices in the IoT network are
susceptible to security threats (e.g. malicious attacks). Therefore, an effective cryptographic process must be developed with
a minimum amount of hardware resources. In this paper, an optimized Advanced Encryption Standard (AES) architecture
is proposed to improve the security between the IoT devices. The following key strategies are involved in the proposed AES
architecture: 1) Efficient Pseudo Random Number Generator (EPRNG) using the two-level True Random Number Generator
based key generation module is used to generate a different optimal key value for each clock cycle, 2) the number of logical
elements used in the AES architecture is minimized because there is no registers are required for storing the generated keys
as it is automatic key generation. The performances of the EPRNG-AES architecture are analyzed in terms of the number of
slice registers, flip flops, number of slice Look Up Table (LUT), number of logical elements, slices, bonded Input/ Output
Block (IOB), power, delay, and operating frequency. The EPRNG-AES architecture is evaluated with five different AES
architectures such as AES-PNSG, LAES, AES-HLS, AES-CTR and AES-MMC. The EPRNG-AES architecture designed
in the Kintex 7 uses 153 slices, which is less when compared with the number of slices in LAES and AES-HLS.

Keywords  Advanced encryption standard algorithm · Efficient pseudo random number generator · Internet of things ·
Security threats · Two-level true random number generator

1  Introduction

In recent decades, Internet of Things (IoT) has become a
popular technology, which interconnects the user with the
physical world to provide an efficient and dynamic platform
for communication [3, 7, 12]. The physical objects are inte-
grated with various types of sensors which accomplish vari-
ous tasks such as sensing of environment, data processing,

and data communication to different destinations through
internet [18]. There are many applications in the IoT technol-
ogy such as smart cities, supply chain, digital health moni-
tors, and industrial control. IoT technologies adopt different
types of devices and systems, such as smartphones, sensors
(i.e., wireless sensor networks), near field communication
mobiles, radio frequency identification tags, and actuators
[5, 17]. The IoT device requires adequate memory to send and
receive the sensor data using a smart device [10].

IoT technology comprises of several interconnected
objects that are highly susceptible to malicious attacks and
eavesdropping. If a malicious attack occurs in the IoT sys-
tem, it may affect the functions of the whole network, which
might result in a risky situation e.g., spoofing the data [1, 22].
IoT involves certain key functions such as global standard,
object identification, integration, ownership, trust, regula-
tion, security, and privacy [6, 8]. To overcome the security
issues in IoT, the cryptographic algorithm needs to be imple-
mented. The cryptographic schemes are hardware independ-
ent, generic, and provide a higher level of robustness to the

Responsible Editor: S. Bhunia

 *	 N. Siva Balan
	 Balan.mtech@outlook.com; Balan.mtech@gmail.com

	 B. S. Murugan
	 muruganbs@gmail.com

1	 Research Scholar, Department of CSE, Kalasalingam
Academy of Research and Education, Srivilliputtur,
Tamil Nadu 626128, India

2	 Department of CSE, Kalasalingam Academy of Research
and Education, Srivilliputtur, Tamil Nadu 626128, India

/ Published online: 6 April 2022

Journal of Electronic Testing (2022) 38:181–193

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-05997-x&domain=pdf

1 3

IoT devices [11]. Moreover, the cryptographic algorithm
provides a well-built security mechanism and encryption/
decryption operations with low power consumption [21].
The AES is one of the frequently used cryptographic algo-
rithms, which gives better security and is cost-efficient. The
AES has a simple implementation process both in software
and in hardware [9, 23]. In this research work, optimal key
generation and key expansion design will be used to design
the AES with high security.

The important contributions of this research paper are
given as follows:

•	 The EPRNG-AES architecture processes the 128-bits of
input, key, and ciphertext values. Here, the EPRNG with
two-level TRNG module generates different key values
for each clock cycle, which provides the security for the
response values. These secured response values improve
the security between the IoT device and server.

•	 Accordingly, different key values and response values
create higher dissimilarity between the encrypted val-
ues, which increases the robustness against unauthorized
users. Hence, the unauthorized users cannot access the
data transmitted among the IoT devices and server.

•	 The proposed EPRNG-AES architecture is analyzed in
four different Field Programmable Gate Array (FPGA)
devices, which are Kintex 7, Virtex 5, Virtex 6 and
Spartan 6. Moreover, this EPRNG-AES architecture is
analyzed under different security constraints such as
Side-Channel Attacks (SCA), Denial of Service (DoS),
Offline Password Guessing Attack (OPGA), Session Key
Agreement (SKA), and validity of the strict key.

The overall organization of the paper is given as follows:
Sect. 2 describes the related works done in the cryptographic
algorithms and AES architectures. The problem statement
found from the related work is stated in Sect. 3. Section 4
provides a clear explanation of the EPRNG-AES architec-
ture. The results and discussion of the EPRNG-AES archi-
tecture are provided in Sect. 5. Finally, the conclusion is
made in Sect 6.

2 � Related Work

The related works about the recent techniques used in the
cryptographic process and AES architecture are described
in this section.

Lara et al. [14] developed a Lightweight Authentication
and Key Distribution (LAKD) for accomplishing machine-
to-machine communication. The LAKD mainly depended
on lightweight operations such as subtraction, addition,
and XOR. This LAKD had two stages that were: registra-
tion and mutual authentication. In that, the sensor node and

gateway, exchanged the secret in the registration phase, and
also exchanged the session key, which was generated in
the mutual authentication phase. The designed LAKD was
offered high security, but it is vulnerable to side-channel
attacks for larger networks.

Megouache et al. [16] presented a secure multi-cloud
architecture for improving the integrity and confidentiality
of the data. The developed secure cloud has three differ-
ent techniques, which are virtual private network (VPN),
RSA, and hashing algorithm. Initially, the VPN was created
between the provider and customer while RSA was used to
provide the data security. Furthermore, the hashing function
was used to provide the data integrity, which guaranteed the
information recovery from the clouds. Here, the VPN was
used to reduce the risk of data loss during the communica-
tion. However, the developed multi-cloud architecture was
susceptible to DDoS attacks.

Chen et al. [4] developed the Secured Mutual Authenti-
cation Protocol (SMAP) for edge-based smart grid commu-
nication. This SMAP utilized XOR computations, one-way
hash functions, and Elliptic Curve Cryptosystem (ECC), to
accomplish the data security. Moreover, the Burrows-Abadi-
Needham (BAN) logic was used to verify the security of
the data. The smart meter registration phase, edge node reg-
istration phase, as well as login and authentication phases
that were used in this SMAP consumed less amount of time
and were more resistant to the attacks. However, the colli-
sion occurred while processing large volume of data in the
SMAP.

Zodpe and Sapkal [24] presented the PN Sequence Gen-
erator (PNSG) to create the S-box. The PSNG was used to
generate a distinct sequence of random numbers by using
the initial seed value and feedback taps. The characteris-
tics of the PNSG were used to enhance the efficiency of the
cryptosystem. The AES doesn’t require any external key,
because it already has an initial key generation method. But,
the design of AES that used nonpipelined stages, consumed
high hardware resources during implementation.

Kumar et al. [13] developed the Lightweight AES
(LAES) algorithm for securing voice data, and this LAES
was designed in Kintex-7 and Artix-7 FPGAs. The MixCol-
umns operation was reduced in the LAES algorithm which
provided less delay. Moreover, the less MixColumns opera-
tion also minimized the logic operation. Hence, the LAES’s
complexity was reduced during the voice data encryption.
But, the usage of multipliers was increased by decreasing
the MixColumns function.

Arul Murugan et al. [2] designed the iterative structure
of AES-128 encryption to improve security. In S-box, the
multiplication was accomplished by using the LUT in the
Composite Field Arithmetic (CFA). The hardware resources
were minimized by using the Vedic multiplier in the Mix-
Columns function. The sub-byte transformation was rapidly

182 Journal of Electronic Testing (2022) 38:181–193

1 3

performed by using the CFA. However, the design of Mix-
Columns transformation has higher complexity than the
shift-row transformation.

Sikka et al. [20] developed the high throughput FPGA
design of the AES for automotive applications. The AES
with a 128-bit key and block size of 10 was designed by
using the Vivado High-Level Synthesis (HLS) tool. The
HLS depended on the application-specific bit widths utilized
for designing the FPGA. Moreover, the speed of the AES
was improved using the HLS. But, the regular recalculation
of the signal width resulted in excess delay in AES.

Shahbazi and Ko [19] designed the AES algorithm in
counter (CTR) mode for traffic applications. The following
two approaches were used to modify the AES, i) shift-Rows
& sub-bytes were exchanged in the first 9 rounds, and ii) the
shift rows were combined with add round key. The higher
throughput was obtained by using the inner pipelining, outer
pipelining and loop-unrolling approaches. However, the
design of MixColumns operation over the clock cycle was
delivered a high latency.

Madhavapandian and MaruthuPandi [15] developed the
Modified Mix Column (MMC) with gate replacement to
design a compact structure of AES for transmission control
protocol/internet protocol. Here, the AES was developed
with the utilization of efficient mix column Boolean expres-
sion along with resource sharing architecture. The power
of the AES architecture was minimized by optimizing the
overall structure. But, the time complexity was required
to be minimized, because it caused high delay during the
communication.

3 � Problem Statement

The problems found from the related work along with the
solutions given by the proposed architecture are stated in
this section.

Collision occurs in the SMAP [4] when it processes a
huge amount of data during the communication. The data
loss occurs in the communication system when the collision
occurs between the devices. The design of AES architecture
using the nonpipelined stages leads to higher hardware utili-
zation [24]. Moreover, the usage of multiplexers is increased
along with the reduction in the MixColumns operation [13].
The frequent recalculation of the signal width increases the
delay that minimizes the operating frequency [20].

Solution:   In this EPRNG-AES architecture, the security
between the IoT device and server is improved by generat-
ing different key values in each clock cycle. The bit-by-bit
process of the AES architecture avoids collision during the
communication process. Additionally, the optimized struc-
ture of AES is used to minimize the hardware utilization

while designing the EPRNG-AES architecture. The EPRNG-
AES architecture doesn’t require any registration to store the
intermediate key values as they are simultaneously gener-
ated and processed within the circuit itself. Hence, the use
of hardware resources is minimized for the EPRNG-AES
architecture.

4 � EPRNG‑AES Architecture

In the EPRNG-AES architecture, the security of the IoT
devices are improved by using optimal key generation.
The response value generated for the IoT device is secured
by using the modified AES architecture. Moreover, this
response value is different for each cycle whereas the chal-
lenge value is the same for all clock cycles. Further, the
EPRNG-AES based key generation provides a different key
for each clock cycle. Hence, the ciphertexts are highly dif-
ferent from each other, which improves the security of the
communication established through the IoT devices. On the
other hand, the hardware utilization of the EPRNG-AES
architecture is minimized by optimizing the AES architec-
ture. Figure 1 shows the process of securing IoT communica-
tion using EPRNG-AES.

4.1 � Setup Phase

The IoT device sends the Identity (ID) and requests, to the
server while initializing the setup phase. Next, the challenge
is randomly generated by the server, once the request is
received in the server. The generated challenges are used for
performing the communication with the IoT device. Next,
the response that is generated by using the IoT device, is
secured by using the AES algorithm.

Subsequently, the response values generated by the IoT
device are stored in the server, which are represented as
R1, R2,…Rn . Further, the server generates an Alias Identity

Fig. 1   Process of securing IoT communication using EPRNG-AES

183Journal of Electronic Testing (2022) 38:181–193

1 3

(AID), Master Key (MK), Fake Identity (FI), and synchro-
nization Key (SK), which depends on the response value.
The generated MK, FI, and SK are saved in the IoT devices.

Equation (1) shows the generation of AID by using the
MK and response value.

where, the h defines the one-way hash function; R is the
response value and MK is the master key of the server.

Next, the unique fake identity and pairs of synchroniza-
tion keys are created by the server as expressed in Eq. (2).

where the fake identities are represented as fid1, fid2,… , fidn
and synchronization keys are represented as k1, k2,… , kn
and the amount of IoT devices considered during the com-
munication is n.

4.1.1 � AES Algorithm

The AES algorithm is operated with the 128-bit of plaintext
and it utilizes the identical key to accomplish the encryp-
tion and decryption processes. This algorithm is processed
on the data block, which contains a 4 × 4 byte matrix (i.e.,
State). The fundamental processes of the AES are conducted
through the state. Figure 2 shows the operations performed
by the AES encryption process [24]. In general, the AES-
128 algorithm is separated into three stages as the addition
of the initial round key, rounds 1–9 and the final round. The
plaintext is Exclusive-ORed with the initial key at the first
round. In a two dimensional 4 4 × 4 bytes, the transforma-
tions of the SubBytes(), ShiftRows(), MixColumns() and
AddRoundKeys() are performed for each cipher round.
Further, the operations of the SubBytes(), ShiftRows(), and
AddRoundKeys() are accomplished in the states at the final
round.

4.1.1.1  SubBytes Transformation  In this phase, the nonlin-
ear transformation is performed over the individual byte of
the input state. Each byte from the state matrix is substituted
with the value saved in the S-box. This SubBytes transfor-
mation creates an effective robustness against the attacks.
The multiplicative inverse is taken in the finite field GF(28)
is used to compute the values of the S-box. In finite field,
the input element with bits equal to zero is mapped and the
affine transformation is applied on the GF(2). Equation (3)
expresses the multiplicative inverse at finite field GF(28) and
the affine transformation on the GF(2) is shown in Eq. (4).

(1)AID = h(R||MK)

(2)(FD, SK) = {
(
fid1, k1

)
,
(
fid2, k2

)
,… , (fidn, kn)}

(3)S(y) = Affine transformation (y−1)

4.1.1.2  ShiftRows Transformation  The row positions 1, 2
and 3 of the state matrix are shifted periodically towards the
left positions by 1, 2 and 3 respectively. Here, the number
of rows defines the offset value. Accordingly, the 1st row
remains unchanged in the state matrix. Hence, the diffusion
property is created in the AES by using the cyclic rotation
of rows. Figure 3 shows the illustration of the ShiftRows
transformation [24].

(4)

Affine transformation =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i7
i6
i5
i4
i3
i2
i1
i0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

1

0

0

0

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2   Plaintext encryption using AES

184 Journal of Electronic Testing (2022) 38:181–193

1 3

4.1.1.3  MixColumns Transformation  In this phase, the trans-
formation of MixColumns is conducted in each column of
the state matrix. This MixColumns operation is a linear dif-
fusion process and it is performed in each column individu-
ally. Moreover, each column of the state matrix is assumed as
a four-term polynomial on GF(28 ). Next, the modulo (y4 + 1)
is used to multiply the column value with a polynomial con-
stant a(y) as shown in Eq. (5).

The matrix multiplication of Eq. (5) is shown in Eq. (6)
and the matrix representation is shown in Eq. (7).

4.1.1.4  AddRoundKey Transformation  In AES algorithm,
the transformation of the AddRoundKey is the the final
transformation for each round. In this phase, the obtained
round key is XORed with the state based on the bitwise
operation. Here, the XOR operation is performed between
the Nb words obtained from the key schedule of each Round
Key and columns of the state value. This XOR operation is
shown in the Eq. (8).

where, the words from key schedule are represented as [
Wround

]
 , round indicates the value between the range

0 ≤ round ≤ Nr and Nr defines the number of round.

4.2 � Key Generation Using EPRNG‑AES Architecture

In the EPRNG architecture, the two-level TRNG is used as
input to generate an optimal key value of 128-bit for improv-
ing the security against the various threats. The overall key

(5)a(y) = {03}y3 + {01}y2 + {01}y1 + {02}

(6)p�(y) = a(y) × p(y)

(7)

⎡⎢⎢⎢⎣

P�
0,c

P�
1,c

P�
2,c

P�
3,c

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

P0,c

P1,c

P2,c

P3,c

⎤⎥⎥⎥⎦

(8)

[
P�

0,c,P
�
1,c,P

�
2,c,P

�
3,c

]
=
[
P0,c,P1,c,P2,c,P3,c

]
⊕

[
Wround∗Nb+C

]

generation process uses the two-level TRNG and combi-
national blocks, so it is defined as Efficient Pseudo Ran-
dom Number Generator (EPRNG). This EPRNG generates
a different number (i.e., key) for each clock cycle. Here,
the two levels of the TRNG modules are used to generate a
random number, which is given as input for generating the
optimal key. This developed EPRNG key generation module
shown in the Fig. 4, is used to generate a 20-bit key value.
Therefore, six EPRNG key generation modules are used to

Fig. 3   ShiftRows transforma-
tion

Fig. 4   The architecture of the EPRNG key generation module

185Journal of Electronic Testing (2022) 38:181–193

1 3

generate six 20-bit key values resulting in 120-bit key val-
ues. The value of zero is added in the MSB 8-bit for the
remaining 8-bit values. Then, the key values are combined
together {8-bit values of zero and 120-bit keys from the
EPRNG key generation module}, which are used to accom-
plish the encryption/ decryption process.

For example, the generation of 20-bit key value i.e., key1
using the EPRNG key generation module is explained as
follows:

	 1.	 At first, two TRNG modules are used to generate two
20-bit values, which are considered as input values
for the key generation. The two 20-bit values from the
TRNG are TR1[19 ∶ 0] and TR2[19 ∶ 0] . Subsequently,
these 20-bit values are given into the MUX, which pro-
vides the output based on the selection line as shown
in Table 1.

	 2.	 The output of the MUX m1 = TR1[19 ∶ 0] , when the
selection line is 00 . Otherwise, the MUX output is
m1 = TR2[19 ∶ 0].

	 3.	 The MUX provides the 20-bit output value i.e.,
m1[19 ∶ 0] and it is processed under truncation pro-
cess. This truncation divides the 20-bit input value into
four 5-bits as shown in the Eq. (9).

where, T1, T2, T3 and T4 are the four 5-bit truncated
values obtained from the MUX output.

	 4.	 Next, the four 5-bit truncated values (T1, T2, T3 and T4)
are processed under left shift operation. There are
two left shift operations that are performed over the
T1, T2, T3 and T4 values, which are ≪ 1 and≪ 2 . Here,
the values of T1 & T3 are processed over the ≪ 1 left shift

T1 = m1[19 ∶ 15]

T2 = m1[14 ∶ 10]

T3 = m1[9 ∶ 5]

(9)T4 = m1[5 ∶ 0]

operation and the values of T2 & T4 are processed over
the ≪ 2 left shift operation. This left shift operation over
the truncated values is shown in the Eq. (10).

where, the LS1, LS2, LS3, and LS4 are the four 5-bit
values obtained from the left shift operation.

	 5.	 The pairs of LS1 − LS2 and LS3 − LS4 are added to
each other by using the adder as shown in Eq. (11).

where, A1 and A2 are the 5-bit output values of the
adder.

	 6.	 The output values of the adders A1 and A2 are given as
input to the NOT gate. In general, the logical negation
is accomplished over the input by using the NOT gate.
If the input is true, the NOT gate delivers the output as
false. Similarly, the true output is obtained for the false

LS1 = T1 × 21

LS2 = T2 × 22

LS3 = T3 × 21

(10)LS4 = T4 × 22

A1 = LS1 + LS2

(11)A2 = LS3 + LS4

Table 1   Output of 2:1 MUX Selection line Output

00 TR1[19 ∶ 0]

01 TR2[19 ∶ 0]

Table 2   Output of 4:1 MUX Counter Output

0 TR1[4 ∶ 0]

1 OR1

2 OR2

3 TR2[4 ∶ 0]

Table 3   Simulation parameters

Parameter Values

Clock period 100 ns
Duty cycle 50 ns
Initial edge Rise
Rst,enb,enb1,enb2 1
Input data, key, the output bit 128 bit
Total simulation run time 1200 ns

Table 4   Hardware utilization of EPRNG-AES architecture for Kintex
7 FPGA device

FPGA performances Total resources Occupied
resources

% of utilization

Number of slice
registers

407,600 46 1%

Flip Flops 407,600 39 1%
Number of slice LUTs 203,800 153 1%
Number of logical

elements
203,800 143 1%

Slices 50,950 59 1%
Bonded IOB 400 26 6%

186 Journal of Electronic Testing (2022) 38:181–193

1 3

input. The 5-bit output values from the NOT gate are
represented in Eq. (12).

where, NG1 and NG2 are two 5-bit values obtained
from the NOT gate.

	 7.	 The MSB values from the TRNG and NOT gate output
are given to the OR gate to generate two 5-bit values.
Here, the 5-bit MSB value is taken from the two TRNG
modules as TR1[19 ∶ 15] and TR2[19 ∶ 15] . The pairs
of TR1[19 ∶ 15] − NG1 and TR2[19 ∶ 15] − NG2 are
processed through the OR gate to generate two 5-bit
values as shown in Eq. (13).

where, the OR1 and OR2 are the two 5-bit output values
taken from the OR gate.

	 8.	 Next, this OR1 and OR2 are given as inputs to the 4:1
MUX along with two more input values, which are
LSB values of the two TRNG modules. The 5-bit

NG1 = A1

(12)NG2 = A2

OR1 = TR1[19 ∶ 15] + NG1[4 ∶ 0]

(13)OR2 = TR2[19 ∶ 15] + NG2[4 ∶ 0]

LSB values of the TRNG module are TR1[4 ∶ 0] and
TR2[4 ∶ 0] . From these four 5-bit values, a single 5-bit
value is taken as output (m2) based on the counter.
The output from the 4:1 MUX is taken as specified in
Table 2.

	 9.	 Next, the 5-bit output from the 4:1 MUX (m2) is given
as input to the NOT gate and it delivers the output
(NG3) as shown in the Eq. (14).

		  Moreover, one more TRNG is used in this key gen-
eration module to generate a 5-bit value (TR3).

	10.	 Finally, there are four inputs are given to the concat-
enation process for generating the 20-bit key. The
four inputs given to the concatenation process are
TR1[10 ∶ 6],NG3, TR3 and TR2[10 ∶ 6] . Equation (15)
shows the 20-bit key generation of the key generation
module.

Similarly, the five 20-bit key values are generated from
the five more EPRNG key generation modules. The 20-bit
key values obtained from the five more EPRNG key genera-
tion modules are key2, key3, key4, key5 and key6 . Equa-
tion (16) shows the concatenation of all key values and the
8-bit values of zero in MSB.

(14)NG3 = m2

(15)
key1 = {TR1[10 ∶ 6],NG3[4 ∶ 0], TR3[4 ∶ 0], TR2[10 ∶ 6]}

Table 5   Hardware utilization of EPRNG-AES architecture for Virtex
5 FPGA device

FPGA performances Total resources Occupied
resources

% of utilization

Number of slice
registers

28,800 38 1%

Flip Flops 28,800 38 1%
Number of slice LUTs 28,800 174 1%
Number of logical

elements
28,800 166 1%

Slices 7200 62 1%
Bonded IOB 480 26 5%

Table 6   Hardware utilization of EPRNG-AES architecture for Virtex
6 FPGA device

FPGA performances Total resources Occupied
resources

% of utilization

Number of slice
registers

7168 38 1%

Flip Flops 7168 37 1%
Number of slice LUTs 7168 229 3%
Number of logical

elements
7168 224 3%

Slices 3584 122 3%
Bonded IOB 140 26 18%

Table 7   Hardware utilization of EPRNG-AES architecture for Spar-
tan 6 FPGA device

FPGA performances Total resources Occupied
resources

% of utilization

Number of slice
registers

11,440 56 1%

Flip Flops 11,440 49 1%
Number of slice LUTs 5720 165 2%
Number of logical

elements
9112 131 1%

Slices 1430 55 3%
Bonded IOB 102 26 25%

Table 8   Analysis of delay, power and operating frequency for EPRNG-
AES

FPGA devices Power (W) Delay (ns) Operating
frequency
(MHz)

Kintex 7 0.038 4.383 305.761
Virtex 5 0.010 1.094 658.288
Virtex 6 0.022 2.981 266.902
Spartan 6 0.014 1.986 301.231

187Journal of Electronic Testing (2022) 38:181–193

1 3

4.3 � Authentication Phase

In this authentication phase, an authorization is provided
to the IoT device, when both the server and device nonce
are matched together. The random number request is used
to verify the AID and the communication is established
by transmitting the request message to the server. If the
AID is matched in the authentication phase, the response
value, challenge and master key are saved during the com-
munication. Otherwise, the respective request is discarded
through the IoT device. Next, the server generates the
server nonce and hash key response. Hence, the authori-
zation is provided to the IoT device by using the server,
when the key hash function contains the server and device
nonce values. After receiving the authentication, the data
transmission is accomplished between the IoT device and
server. Subsequently, the next IoT device (Device 2) also
performs the same authentication process performed by
Device 1. Accordingly, the setup and authentication pro-
cess is performed for each IoT device.

In nutshell, the overall research has two main phases
such as setup phase and authentication phase. The server
receives the requests and ID of the IoT device in the setup
phase. Subsequently, the challenge values are created to
enable the communication the IoT device whereas the
response from the IoT is secured using the EPRNG-AES

(16)
key = {00000000, key1, key2, key3, key4, key5, key6} architecture. The designed EPRNG provides a different

key value for each clock cycle and these keys used to
protect the response from the IoT device. In authentica-
tion phase, the server nonce and hash key response are
generated by the server. The EPRNG-AES architecture
doesn’t required registers to store the generated keys which
used to minimize the number of logical elements. Next,
the server provides the authorization to the IoT device to
enable the data broadcasting between the IoT device and
server. Here, the security among the IoT device and server
is improved based on the secured response values. Con-
sequently, a different key and response values generates a
dissimilarity between the encrypted values that maximizes
the robustness against unauthorized users. Therefore, the
designed EPRNG-AES architecture achieves higher secu-
rity between the server and IoT device, while minimizing
the logical elements of AES.

5 � Results and Discussion

The proposed EPRNG-AES architecture has been imple-
mented by using the Xilinx 14.4 software where the sys-
tem is operated with 4 GB RAM and a 500 GB hard disk.
This Xilinx software is used to analyze the hardware utili-
zation of the EPRNG-AES architecture. Additionally, the
Modelsim 10.5 software is used to analyze the EPRNG-
AES architecture using the simulation waveform. The
designed EPRNG-AES architecture is used to process the

Fig. 5   Simulation waveform for response output

Fig. 6   Simulation waveform for AES

188 Journal of Electronic Testing (2022) 38:181–193

1 3

128-bits of the input data, key and output data. The follow-
ing Table 3 provides the simulation parameters considered
for this EPRNG-AES architecture.

5.1 � Performance Analysis of EPRNG‑AES
Architecture

The performance of the EPRNG-AES architecture is ana-
lyzed by using four different FPGA devices namely Kintex
7, Virtex 5, Virtex 6 and Spartan 6. Here, the performances
are analyzed in terms of the number of slice registers, flip
flops, the number of slice LUTs, the number of logical
elements, slices, bonded IOB, power, delay, and operat-
ing frequency. The following hardware utilization defines
the number of logical elements used by AES architecture.

The analysis of hardware resource utilization for the
EPRNG-AES architecture, designed in the Kintex 7, Vir-
tex 5, Virtex 6 and Spartan 6 FPGA devices, are provided
in the Tables 4, 5, 6, and 7 respectively. Moreover, the
examination of the power, delay, and operating frequency
for EPRNG-AES architecture, is given in Table 8. The
hardware utilization is analyzed for the EPRNG-AES
architecture with the 128-bits of input, key, and cipher
text. The designed EPRNG-AES architecture utilizes
1–3% resources of slices, LUT, registers, flip flops and
logical elements. For example, the EPRNG-AES architec-
ture designed in the Kintex-7 FPGA device uses the 1%
of slices, LUT, registers, flip flops and logical elements.

Figure 5 shows the simulation waveform for the response
that is generated by using the IoT device. The control sig-
nals that are used for the response value generation are clk
and rst . Moreover, the challenges and responses generated
by the IoT device are challenge and response respectively.

Fig. 7   Floorplanning design for EPRNG-AES architecture

Table 9   Analysis of system estimation

Design Security (%) Complexity
(%)

Cost (%) Integrity (%)

LAKD [14] 88 8 13 88
RSA [16] 85 10 15 85
SMAP [4] 74 24 36 71
EPRNG-AES 93 5 10 92

Fig. 8   Comparison graph of
system estimation

189Journal of Electronic Testing (2022) 38:181–193

1 3

From Fig. 5, it is known that the response generated in each
clock cycle is different from each other, which shows that
the EPRNG-AES architecture provides higher security.
The simulation waveform for AES is shown in Fig. 6. In
that, clk, en, and rst are the control signals. The plain text
(i.e., response value), key and cipher text are represented as
plain [127 ∶ 0], key [127 ∶ 0] and cipher [127 ∶ 0] respec-
tively. From Fig. 6, it is known that the difference between
key-value and cipher text is high in the EPRNG-AES archi-
tecture. Hence, the EPRNG-AES architecture provides
higher security against different security threats.

Figure 7 shows the floor planning design obtained for
EPRNG-AES architecture. An accurate connection of
EPRNG-AES architecture is verified by using this floor
planning design. However, this floor planning output can be
taken only when there is no error in the connections of the
EPRNG-AES architecture. Therefore, the connections of the
EPRNG-AES architecture are connected without any error.

5.2 � Security Analysis of the EPRNG‑AES
Architecture

This section provides the security analysis of the EPRNG-
AES architecture under different security threats. There are
five different security threats such as Side-Channel Attacks
(SCA), Denial of Service (DoS), Offline Password Guess-
ing Attack (OPGA), Session Key Agreement (SKA), and
validity of strict key.

a.	 SCA
	  SCA uses the data leaks from the system, which are

categorized as noninvasive and passive attacks. Gener-
ally, this SCA retrieves any type of confidential data
from the IoT network. This SCA doesn’t concentrate on
the AES algorithm instead of that it affects the physical

device for obtaining the secured information. Here, the
information can be retrieved by evaluating and investi-
gating the leaked data such as power, electromagnetic
analysis, timing, and so on.

b.	 DoS Attacks
	  DoS attacks generally try to stop the network or any

resources from using the protector. This attack is cre-
ated based on requests obtained from the registered user,
messages, processor cycle for games, download requests
and so on. The data traffic stream is stopped by the DoS
attack and the network becomes unstable because of the
DoS attack. The DoS attack sends malicious data to only
one device, however, the DDoS attack sends the mali-
cious data to multiple users.

c.	 OPGA
	  OPGA is generally a brute force attack that tries iden-

tifying the password based on the systematic checking
process by using all the options. The attacker device
accesses the password hash in offline and tries the com-
bination of a key without any interference. Here, the
complexity and the length of the password defines the
time, which is required to crack the password. However,
this EPRNG-AES architecture creates a different key
value for every clock cycle. Moreover, the EPRNG uses
the high confusion property of the circuit, which makes
it highly difficult for the attackers to crack the key.

d.	 SKA
	  A session key is a temporary key that is utilized only

once for encryption and decryption of the data at the
next clock cycle. This session key behaves like a pass-
word that is being reset for every log-in time. Hence, the
end-to-end security is provided by the EPRNG module
without any additional security substructure.

e.	 Validity of strict key avalanche criteria
	  The input data is encrypted by using the 128-bit

AES algorithm for analyzing the strict key validation.
Moreover, anyone bit of the 128-bit key is altered during

Table 10   Performance comparison for Spartan 6

Methods Slices Operating
frequency
(MHz)

AES-PNSG [24] 5566 237.45
EPRNG-AES 55 301.231

Table 11   Performance comparison for Kintex 7

Methods Slice LUTs Flip flops IOBs Operating
frequency
(MHz)

LAES [13] 9468 - 384 -
AES-HLS [20] 577 449 265 297.3
EPRNG-AES 153 39 26 305.761

Table 12   Performance comparison for Virtex 5

Methods Slice registers Slice LUTs Slices Operating
frequency
(MHz)

AES-CTR [19] 19,123 14,966 5974 622.4
EPRNG-AES 38 174 62 658.288

Table 13   Performance comparison for Virtex 6

Methods Slice registers Slice LUTs Delay (ns) Power (W)

AES-MMC
[15]

2688 9393 3.167 3.725

EPRNG-AES 38 229 2.981 0.022

190 Journal of Electronic Testing (2022) 38:181–193

1 3

the decryption process. The EPRNG-AES architecture
doesn’t provide the decrypted value at the output, when
the key is changed in the decryption process. Therefore,
it shows that the EPRNG-AES architecture provides
robustness against the changes in the key.

Additionally, the system estimation in terms of security,
complexity, cost and integrity is evaluated for the LAKD
[14], RSA [16], SMAP [4] and EPRNG-AES. This evalua-
tion is shown in the following Table 9 and Fig. 8.

5.3 � Comparative Analysis

This section shows the comparative analysis of the EPRNG-
AES architecture. The proposed EPRNG-AES architecture is
compared with five existing AES architectures such as AES-
PNSG [24], LAES [13], AES-HLS [20], AES-CTR [19] and

AES-MMC [15]. Here, the comparison is made between four
different FPGA devices such as Spartan 6, Kintex 7, Virtex
5 and Virtex 6.

The comparison of the EPRNG-AES architecture for the
FPGA devices of the Spartan 6, Kintex 7, Virtex 5 and Vir-
tex 6 are provided in Tables 10, 11, 12 and 13 respectively.
In that, AES-PNSG [24] is used for Spartan 6, LAES [13]
& AES-HLS [20] are used for Kintex 7, AES-CTR [19]
is used for the Virtex 5 and AES-MMC [15] for Virtex 6
device comparisons. Moreover, the graphical illustration
of slice LUTs and operating frequency are shown in Fig. 9
and Fig. 10 respectively. From the analysis, it is concluded
that the EPRNG-AES architecture provides better perfor-
mance than the AES-PNSG [24], LAES [13], AES-HLS
[20], AES-CTR [19] and AES-MMC [15]. For example,
the EPRNG-AES architecture designed in the Virtex 5 uses
62 slices, whereas the AES-CTR [19] uses 5974 slices. The

Fig. 9   Graphical illustration of
slice LUTs

Fig. 10   Graphical illustration of
operating frequency

191Journal of Electronic Testing (2022) 38:181–193

1 3

existing AES architectures such as AES-PNSG [24], LAES
[13], AES-HLS [20], AES-CTR [19] and AES-MMC [15]
require a high amount of registers to store the keys obtained
from the manual key generation. If there is a high amount
of registers, the existing architecture requires a high amount
of logical elements. However, the EPRNG-AES architec-
ture requires only less amount of registers, because this
optimized AES uses the automatic key generation using
the EPRNG key generation module. This EPRNG key gen-
eration module doesn’t require any register to save the key
values, which minimizes the logical elements used in the
EPRNG-AES architecture. Additionally, the security of the
AES architecture is improved by using the EPRNG module.
This EPRNG module generates a different key for each clock
cycle, which improves the security against various threats
such as SCA, DoS, OPGA, and SKA.

6 � Conclusion

In this research paper, the EPRNG-AES architecture
improves the security between the IoT device and server
while minimizing the hardware resources. The EPRNG with
two-level TRNG key generation module generates different
key values for each clock cycle, which improves the security
of the response value. Moreover, different challenge and key
response values, which are obtained for each clock cycle,
help to improve the dissimilarity between the ciphertexts of
all clock cycles. This helps to improve the security against
various security threats such as SCA, DoS, OPGA, SKA,
and key attacks. On the other hand, the hardware resources
are minimized by optimizing the AES architecture. Here,
the register used to store the intermediate key values are not
required during the encryption/decryption process. There-
fore, the EPRNG-AES architecture consumes less hardware
resources during the implementation. From the analysis, it
is concluded that the EPRNG-AES architecture achieves
better performance than the LAKD, RSA, SMAP, AES-
PNSG, LAES, AES-HLS, AES-CTR and AES-MMC. The
EPRNG-AES architecture designed in the Kintex 7 uses 153
slices, which is lesser than the number of slices in LAES
and AES-HLS.

Funding  This research received no external funding.

Data Availability  Data sharing not applicable to this article as no data-
sets were generated or analysed during the current study.

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Akbarzadeh A, Bayat M, Zahednejad B, Payandeh A, Aref MR
(2019) A lightweight hierarchical authentication scheme for
internet of things. J Ambient Intell Hum Comput 10:2607–2619.
https://​doi.​org/​10.​1007/​s12652-​018-​0937-6

	 2.	 Arul Murugan C, Karthigaikumar P, SathyaPriya S (2020) FPGA
implementation of hardware architecture with AES encryptor using
sub-pipelined S-box techniques for compact applications. Automa-
tika 61:682–693. https://​doi.​org/​10.​1080/​00051​144.​2020.​18163​88

	 3.	 Braeken A, Liyanage M, Jurcut AD (2019) Anonymous lightweight
proxy based key agreement for IoT (ALPKA). Wireless Pers Com-
mun 106:345–364. https://​doi.​org/​10.​1007/​s11277-​019-​06165-9

	 4.	 Chen CM, Chen L, Huang Y, Kumar S, Wu JMT (2021) Light-
weight authentication protocol in edge-based smart grid environ-
ment. EURASIP J Wirel Commun Netw 2021:68. https://​doi.​org/​
10.​1186/​s13638-​021-​01930-6

	 5.	 Chikouche N, Cayrel PL, Mboup EHM, Boidje BO (2019) A
privacy-preserving code-based authentication protocol for inter-
net of things. J Supercomput 75:8231–8261. https://​doi.​org/​10.​
1007/​s11227-​019-​03003-4

	 6.	 Das ML, Kumar P, Martin A (2020) Secure and Privacy-Preserving
RFID authentication scheme for internet of things applications.
Wireless Pers Commun 110:339–353. https://​doi.​org/​10.​1007/​
s11277-​019-​06731-1

	 7.	 De Smet R, Vandervelden T, Steenhaut K, Braeken A (2021)
Lightweight PUF based authentication scheme for fog archi-
tecture. Wireless Netw 27:947–959. https://​doi.​org/​10.​1007/​
s11276-​020-​02491-0

	 8.	 Dhanda SS, Singh B, Jindal P (2020) Lightweight Cryptography:
A Solution to Secure IoT. Wireless Pers Commun 112:1947–1980.
https://​doi.​org/​10.​1007/​s11277-​020-​07134-3

	 9.	 Farooq U, Hasan NU, Baig I, Shehzad N (2019) Efficient adaptive
framework for securing the internet of things devices. EURA-
SIP J Wirel Commun Netw 2019:210. https://​doi.​org/​10.​1186/​
s13638-​019-​1531-0

	10.	 Jang S, Lim D, Kang J, Joe I (2016) An efficient device authentica-
tion protocol without certification authority for internet of things.
Wireless Pers Commun 91:1681–1695. https://​doi.​org/​10.​1007/​
s11277-​016-​3355-0

	11.	 Jebri S, Amor AB, Abid M, Bouallegue A (2021) Enhanced light-
weight algorithm to secure data transmission in IOT systems.
Wireless Pers Commun 116:2321–2344. https://​doi.​org/​10.​1007/​
s11277-​020-​07792-3

	12.	 Khalid U, Asim M, Baker T, Hung PCK, Tariq MA, Rafferty L
(2020) A decentralized lightweight blockchain-based authentica-
tion mechanism for IoT systems. Clust Comput 23:2067–2087.
https://​doi.​org/​10.​1007/​s10586-​020-​03058-6

	13.	 Kumar K, Ramkumar KR, Kaur A (2020) A lightweight AES
algorithm implementation for encrypting voice messages using
field programmable gate arrays. J King Saud University-Computer
Inform Sci. https://​doi.​org/​10.​1016/j.​jksuci.​2020.​08.​005

	14.	 Lara E, Aguilar L, Sanchez MA, García JA (2020) Lightweight
authentication protocol for m2m communications of resource-
constrained devices in industrial internet of things. Sensors
20:501. https://​doi.​org/​10.​3390/​s2002​0501

	15.	 Madhavapandian S, MaruthuPandi P (2020) FPGA implementa-
tion of highly scalable AES algorithm using modified mix column
with gate replacement technique for security application in TCP/
IP. Microprocess Microsyst 73:102972

	16.	 Megouache L, Zitouni A, Djoudi M (2020) Ensuring user authenti-
cation and data integrity in multi-cloud environment. HCIS 10:15.
https://​doi.​org/​10.​1186/​s13673-​020-​00224-y

192 Journal of Electronic Testing (2022) 38:181–193

https://doi.org/10.1007/s12652-018-0937-6
https://doi.org/10.1080/00051144.2020.1816388
https://doi.org/10.1007/s11277-019-06165-9
https://doi.org/10.1186/s13638-021-01930-6
https://doi.org/10.1186/s13638-021-01930-6
https://doi.org/10.1007/s11227-019-03003-4
https://doi.org/10.1007/s11227-019-03003-4
https://doi.org/10.1007/s11277-019-06731-1
https://doi.org/10.1007/s11277-019-06731-1
https://doi.org/10.1007/s11276-020-02491-0
https://doi.org/10.1007/s11276-020-02491-0
https://doi.org/10.1007/s11277-020-07134-3
https://doi.org/10.1186/s13638-019-1531-0
https://doi.org/10.1186/s13638-019-1531-0
https://doi.org/10.1007/s11277-016-3355-0
https://doi.org/10.1007/s11277-016-3355-0
https://doi.org/10.1007/s11277-020-07792-3
https://doi.org/10.1007/s11277-020-07792-3
https://doi.org/10.1007/s10586-020-03058-6
https://doi.org/10.1016/j.jksuci.2020.08.005
https://doi.org/10.3390/s20020501
https://doi.org/10.1186/s13673-020-00224-y

1 3

	17.	 Melki R, Noura HN, Chehab A (2020) Lightweight multi-factor
mutual authentication protocol for IoT devices. Int J Inf Secur
19:679–694. https://​doi.​org/​10.​1007/​s10207-​019-​00484-5

	18.	 Rao V, Prema KV (2021) A review on lightweight cryptog-
raphy for internet-of-things based applications. J Ambient
Intell Hum Comput 12:8835–8857. https://​doi.​org/​10.​1007/​
s12652-​020-​02672-x

	19.	 Shahbazi K, Ko SB (2020) High throughput and area-efficient
FPGA implementation of AES for high-traffic applications. IET
Comput Digital Tech 14:344–352. https://​doi.​org/​10.​1049/​iet-​cdt.​
2019.​0179

	20.	 Sikka P, Asati AR, Shekhar C (2021) High-throughput field-
programable gate array implementation of the advanced
encryption standard algorithm for automotive security appli-
cations. J Ambient Intell Hum Comput 12:7273–7279. https://​
doi.​org/​10.​1007/​s12652-​020-​02403-2

	21.	 Singh S, Sharma PK, Moon SY, Park JH (2017) Advanced light-
weight encryption algorithms for IoT devices: survey, challenges
and solutions. J Ambient Intell Hum Comput. 1-18. https://​doi.​
org/​10.​1007/​s12652-​017-​0494-4

	22.	 Xu L, Wu F (2019) A lightweight authentication scheme for
multi-gateway wireless sensor networks under IoT concep-
tion. Arab J Sci Eng 44:3977–3993. https://​doi.​org/​10.​1007/​
s13369-​019-​03752-7

	23.	 Zhang F, Liang ZY, Yang BL, Zhao XJ, Guo SZ, Ren K (2018)
Survey of design and security evaluation of authenticated encryp-
tion algorithms in the CAESAR competition. Frontiers of Infor-
mation Technology & Electronic Engineering 19:1475–1499.
https://​doi.​org/​10.​1631/​FITEE.​18005​76

	24.	 Zodpe H, Sapkal A (2020) An efficient AES implementation using
FPGA with enhanced security features. J King Saud Univ Eng Sci
32:115–122. https://​doi.​org/​10.​1016/j.​jksues.​2018.​07.​002

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

N. Siva Balan  is pursuing his PhD at Department of CSE, Kalasalingam
Academy of Research and Education, Srivilliputtur, Virudhunagar under
the guidance of Dr. B. S. Murugan. He has received the Undergraduate
Degree (BE) in Computer Science and Engineering from Anna Uni-
versity, and the Post Graduate degree (ME) in Information Technology
from Bangalore University. He has over 16 years of teaching experience.
His areas of interest include Artificial Intelligence and Machine Learn-
ing, Cloud Computing, Data Structures and Algorithms.

B. S. Murugan   received the Undergraduate Degree (B.Tech.) in Infor-
mation Technology from Anna University, the Post Graduate degree
(M.Tech) in Information Technology from SRM University, and Ph.D.
in Information Technology (Cloud Computing) from Kalasalingam
University. He has more than 20 publications in National and Inter-
national Conferences and International Journal proceedings. He has
over 12 years of teaching experience. His areas of interest include Arti-
ficial Intelligence, Cloud Computing, Operating Systems, and DBMS.
He is currently working as Associate Professor in the Department
of Computer Science and Engineering at Kalasalingam Academy of
Research and Education, Krishnankoil, Tamil Nadu, India.

193Journal of Electronic Testing (2022) 38:181–193

https://doi.org/10.1007/s10207-019-00484-5
https://doi.org/10.1007/s12652-020-02672-x
https://doi.org/10.1007/s12652-020-02672-x
https://doi.org/10.1049/iet-cdt.2019.0179
https://doi.org/10.1049/iet-cdt.2019.0179
https://doi.org/10.1007/s12652-020-02403-2
https://doi.org/10.1007/s12652-020-02403-2
https://doi.org/10.1007/s12652-017-0494-4
https://doi.org/10.1007/s12652-017-0494-4
https://doi.org/10.1007/s13369-019-03752-7
https://doi.org/10.1007/s13369-019-03752-7
https://doi.org/10.1631/FITEE.1800576
https://doi.org/10.1016/j.jksues.2018.07.002

	Low Area FPGA Implementation of AES Architecture with EPRNG for IoT Application
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 EPRNG-AES Architecture
	4.1 Setup Phase
	4.1.1 AES Algorithm
	4.1.1.1 SubBytes Transformation
	4.1.1.2 ShiftRows Transformation
	4.1.1.3 MixColumns Transformation
	4.1.1.4 AddRoundKey Transformation

	4.2 Key Generation Using EPRNG-AES Architecture
	4.3 Authentication Phase

	5 Results and Discussion
	5.1 Performance Analysis of EPRNG-AES Architecture
	5.2 Security Analysis of the EPRNG-AES Architecture
	5.3 Comparative Analysis

	6 Conclusion
	References

