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Abstract
Nowadays, the Internet of Things (IoT) is widely used in the daily lives of humans, which range from tiny wearable devices 
to huge industrial systems. However, designing the IoT application is difficult, because the devices in the IoT network are 
susceptible to security threats (e.g. malicious attacks). Therefore, an effective cryptographic process must be developed with 
a minimum amount of hardware resources. In this paper, an optimized Advanced Encryption Standard (AES) architecture 
is proposed to improve the security between the IoT devices. The following key strategies are involved in the proposed AES 
architecture: 1) Efficient Pseudo Random Number Generator (EPRNG) using the two-level True Random Number Generator 
based key generation module is used to generate a different optimal key value for each clock cycle, 2) the number of logical 
elements used in the AES architecture is minimized because there is no registers are required for storing the generated keys 
as it is automatic key generation. The performances of the EPRNG-AES architecture are analyzed in terms of the number of 
slice registers, flip flops, number of slice Look Up Table (LUT), number of logical elements, slices, bonded Input/ Output 
Block (IOB), power, delay, and operating frequency. The EPRNG-AES architecture is evaluated with five different AES 
architectures such as AES-PNSG, LAES, AES-HLS, AES-CTR and AES-MMC. The EPRNG-AES architecture designed 
in the Kintex 7 uses 153 slices, which is less when compared with the number of slices in LAES and AES-HLS.

Keywords  Advanced encryption standard algorithm · Efficient pseudo random number generator · Internet of things · 
Security threats · Two-level true random number generator

1  Introduction

In recent decades, Internet of Things (IoT) has become a 
popular technology, which interconnects the user with the 
physical world to provide an efficient and dynamic platform 
for communication [3, 7, 12]. The physical objects are inte-
grated with various types of sensors which accomplish vari-
ous tasks such as sensing of environment, data processing, 

and data communication to different destinations through 
internet [18]. There are many applications in the IoT technol-
ogy such as smart cities, supply chain, digital health moni-
tors, and industrial control. IoT technologies adopt different 
types of devices and systems, such as smartphones, sensors 
(i.e., wireless sensor networks), near field communication 
mobiles, radio frequency identification tags, and actuators  
[5, 17]. The IoT device requires adequate memory to send and  
receive the sensor data using a smart device [10].

IoT technology comprises of several interconnected 
objects that are highly susceptible to malicious attacks and 
eavesdropping. If a malicious attack occurs in the IoT sys-
tem, it may affect the functions of the whole network, which 
might result in a risky situation e.g., spoofing the data [1, 22].  
IoT involves certain key functions such as global standard, 
object identification, integration, ownership, trust, regula-
tion, security, and privacy [6, 8]. To overcome the security 
issues in IoT, the cryptographic algorithm needs to be imple-
mented. The cryptographic schemes are hardware independ-
ent, generic, and provide a higher level of robustness to the 
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IoT devices [11]. Moreover, the cryptographic algorithm 
provides a well-built security mechanism and encryption/
decryption operations with low power consumption [21]. 
The AES is one of the frequently used cryptographic algo-
rithms, which gives better security and is cost-efficient. The 
AES has a simple implementation process both in software 
and in hardware [9, 23]. In this research work, optimal key 
generation and key expansion design will be used to design 
the AES with high security.

The important contributions of this research paper are 
given as follows:

•	 The EPRNG-AES architecture processes the 128-bits of 
input, key, and ciphertext values. Here, the EPRNG with 
two-level TRNG module generates different key values 
for each clock cycle, which provides the security for the 
response values. These secured response values improve 
the security between the IoT device and server.

•	 Accordingly, different key values and response values 
create higher dissimilarity between the encrypted val-
ues, which increases the robustness against unauthorized 
users. Hence, the unauthorized users cannot access the 
data transmitted among the IoT devices and server.

•	 The proposed EPRNG-AES architecture is analyzed in 
four different Field Programmable Gate Array (FPGA) 
devices, which are Kintex 7, Virtex 5, Virtex 6 and 
Spartan 6. Moreover, this EPRNG-AES architecture is 
analyzed under different security constraints such as 
Side-Channel Attacks (SCA), Denial of Service (DoS), 
Offline Password Guessing Attack (OPGA), Session Key 
Agreement (SKA), and validity of the strict key.

The overall organization of the paper is given as follows: 
Sect. 2 describes the related works done in the cryptographic 
algorithms and AES architectures. The problem statement 
found from the related work is stated in Sect. 3. Section 4 
provides a clear explanation of the EPRNG-AES architec-
ture. The results and discussion of the EPRNG-AES archi-
tecture are provided in Sect. 5. Finally, the conclusion is 
made in Sect 6.

2 � Related Work

The related works about the recent techniques used in the 
cryptographic process and AES architecture are described 
in this section.

Lara et al. [14] developed a Lightweight Authentication 
and Key Distribution (LAKD) for accomplishing machine-
to-machine communication. The LAKD mainly depended 
on lightweight operations such as subtraction, addition, 
and XOR. This LAKD had two stages that were: registra-
tion and mutual authentication. In that, the sensor node and 

gateway, exchanged the secret in the registration phase, and 
also exchanged the session key, which was generated in 
the mutual authentication phase. The designed LAKD was 
offered high security, but it is vulnerable to side-channel 
attacks for larger networks.

Megouache et al. [16] presented a secure multi-cloud 
architecture for improving the integrity and confidentiality 
of the data. The developed secure cloud has three differ-
ent techniques, which are virtual private network (VPN), 
RSA, and hashing algorithm. Initially, the VPN was created 
between the provider and customer while RSA was used to 
provide the data security. Furthermore, the hashing function 
was used to provide the data integrity, which guaranteed the 
information recovery from the clouds. Here, the VPN was 
used to reduce the risk of data loss during the communica-
tion. However, the developed multi-cloud architecture was 
susceptible to DDoS attacks.

Chen et al. [4] developed the Secured Mutual Authenti-
cation Protocol (SMAP) for edge-based smart grid commu-
nication. This SMAP utilized XOR computations, one-way 
hash functions, and Elliptic Curve Cryptosystem (ECC), to 
accomplish the data security. Moreover, the Burrows-Abadi-
Needham (BAN) logic was used to verify the security of 
the data. The smart meter registration phase, edge node reg-
istration phase, as well as login and authentication phases 
that were used in this SMAP consumed less amount of time 
and were more resistant to the attacks. However, the colli-
sion occurred while processing large volume of data in the 
SMAP.

Zodpe and Sapkal [24] presented the PN Sequence Gen-
erator (PNSG) to create the S-box. The PSNG was used to 
generate a distinct sequence of random numbers by using 
the initial seed value and feedback taps. The characteris-
tics of the PNSG were used to enhance the efficiency of the 
cryptosystem. The AES doesn’t require any external key, 
because it already has an initial key generation method. But, 
the design of AES that used nonpipelined stages, consumed 
high hardware resources during implementation.

Kumar et  al. [13] developed the Lightweight AES 
(LAES) algorithm for securing voice data, and this LAES 
was designed in Kintex-7 and Artix-7 FPGAs. The MixCol-
umns operation was reduced in the LAES algorithm which 
provided less delay. Moreover, the less MixColumns opera-
tion also minimized the logic operation. Hence, the LAES’s 
complexity was reduced during the voice data encryption. 
But, the usage of multipliers was increased by decreasing 
the MixColumns function.

Arul Murugan et al. [2] designed the iterative structure 
of AES-128 encryption to improve security. In S-box, the 
multiplication was accomplished by using the LUT in the 
Composite Field Arithmetic (CFA). The hardware resources 
were minimized by using the Vedic multiplier in the Mix-
Columns function. The sub-byte transformation was rapidly 
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performed by using the CFA. However, the design of Mix-
Columns transformation has higher complexity than the 
shift-row transformation.

Sikka et al. [20] developed the high throughput FPGA 
design of the AES for automotive applications. The AES 
with a 128-bit key and block size of 10 was designed by 
using the Vivado High-Level Synthesis (HLS) tool. The 
HLS depended on the application-specific bit widths utilized 
for designing the FPGA. Moreover, the speed of the AES 
was improved using the HLS. But, the regular recalculation 
of the signal width resulted in excess delay in AES.

Shahbazi and Ko [19] designed the AES algorithm in 
counter (CTR) mode for traffic applications. The following 
two approaches were used to modify the AES, i) shift-Rows 
& sub-bytes were exchanged in the first 9 rounds, and ii) the 
shift rows were combined with add round key. The higher 
throughput was obtained by using the inner pipelining, outer 
pipelining and loop-unrolling approaches. However, the 
design of MixColumns operation over the clock cycle was 
delivered a high latency.

Madhavapandian and MaruthuPandi [15] developed the 
Modified Mix Column (MMC) with gate replacement to 
design a compact structure of AES for transmission control 
protocol/internet protocol. Here, the AES was developed 
with the utilization of efficient mix column Boolean expres-
sion along with resource sharing architecture. The power 
of the AES architecture was minimized by optimizing the 
overall structure. But, the time complexity was required 
to be minimized, because it caused high delay during the 
communication.

3 � Problem Statement

The problems found from the related work along with the 
solutions given by the proposed architecture are stated in 
this section.

Collision occurs in the SMAP [4] when it processes a 
huge amount of data during the communication. The data 
loss occurs in the communication system when the collision 
occurs between the devices. The design of AES architecture 
using the nonpipelined stages leads to higher hardware utili-
zation [24]. Moreover, the usage of multiplexers is increased 
along with the reduction in the MixColumns operation [13]. 
The frequent recalculation of the signal width increases the 
delay that minimizes the operating frequency [20].

Solution:   In this EPRNG-AES architecture, the security 
between the IoT device and server is improved by generat-
ing different key values in each clock cycle. The bit-by-bit 
process of the AES architecture avoids collision during the 
communication process. Additionally, the optimized struc-
ture of AES is used to minimize the hardware utilization 

while designing the EPRNG-AES architecture. The EPRNG-
AES architecture doesn’t require any registration to store the 
intermediate key values as they are simultaneously gener-
ated and processed within the circuit itself. Hence, the use 
of hardware resources is minimized for the EPRNG-AES 
architecture.

4 � EPRNG‑AES Architecture

In the EPRNG-AES architecture, the security of the IoT 
devices are improved by using optimal key generation. 
The response value generated for the IoT device is secured 
by using the modified AES architecture. Moreover, this 
response value is different for each cycle whereas the chal-
lenge value is the same for all clock cycles. Further, the 
EPRNG-AES based key generation provides a different key 
for each clock cycle. Hence, the ciphertexts are highly dif-
ferent from each other, which improves the security of the 
communication established through the IoT devices. On the 
other hand, the hardware utilization of the EPRNG-AES 
architecture is minimized by optimizing the AES architec-
ture. Figure 1 shows the process of securing IoT communica-
tion using EPRNG-AES.

4.1 � Setup Phase

The IoT device sends the Identity (ID) and requests, to the 
server while initializing the setup phase. Next, the challenge 
is randomly generated by the server, once the request is 
received in the server. The generated challenges are used for 
performing the communication with the IoT device. Next, 
the response that is generated by using the IoT device, is 
secured by using the AES algorithm.

Subsequently, the response values generated by the IoT 
device are stored in the server, which are represented as 
R1, R2,…Rn . Further, the server generates an Alias Identity 

Fig. 1   Process of securing IoT communication using EPRNG-AES
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(AID), Master Key (MK), Fake Identity (FI), and synchro-
nization Key (SK), which depends on the response value. 
The generated MK, FI, and SK are saved in the IoT devices.

Equation (1) shows the generation of AID by using the 
MK and response value.

where, the h defines the one-way hash function; R is the 
response value and MK is the master key of the server.

Next, the unique fake identity and pairs of synchroniza-
tion keys are created by the server as expressed in Eq. (2).

where the fake identities are represented as fid1, fid2,… , fidn  
and synchronization keys are represented as k1, k2,… , kn 
and the amount of IoT devices considered during the com-
munication is n.

4.1.1 � AES Algorithm

The AES algorithm is operated with the 128-bit of plaintext 
and it utilizes the identical key to accomplish the encryp-
tion and decryption processes. This algorithm is processed 
on the data block, which contains a 4 × 4 byte matrix (i.e., 
State). The fundamental processes of the AES are conducted 
through the state. Figure 2 shows the operations performed 
by the AES encryption process [24]. In general, the AES-
128 algorithm is separated into three stages as the addition 
of the initial round key, rounds 1–9 and the final round. The 
plaintext is Exclusive-ORed with the initial key at the first 
round. In a two dimensional 4 4 × 4 bytes, the transforma-
tions of the SubBytes(), ShiftRows(), MixColumns() and 
AddRoundKeys() are performed for each cipher round. 
Further, the operations of the SubBytes(), ShiftRows(), and 
AddRoundKeys() are accomplished in the states at the final 
round.

4.1.1.1  SubBytes Transformation  In this phase, the nonlin-
ear transformation is performed over the individual byte of 
the input state. Each byte from the state matrix is substituted 
with the value saved in the S-box. This SubBytes transfor-
mation creates an effective robustness against the attacks. 
The multiplicative inverse is taken in the finite field GF(28) 
is used to compute the values of the S-box. In finite field, 
the input element with bits equal to zero is mapped and the 
affine transformation is applied on the GF(2). Equation (3) 
expresses the multiplicative inverse at finite field GF(28) and 
the affine transformation on the GF(2) is shown in Eq. (4).

(1)AID = h(R||MK)

(2)(FD, SK) = {
(
fid1, k1

)
,
(
fid2, k2

)
,… , (fidn, kn)}

(3)S(y) = Affine transformation (y−1)

4.1.1.2  ShiftRows Transformation  The row positions 1, 2 
and 3 of the state matrix are shifted periodically towards the 
left positions by 1, 2 and 3 respectively. Here, the number 
of rows defines the offset value. Accordingly, the 1st row 
remains unchanged in the state matrix. Hence, the diffusion 
property is created in the AES by using the cyclic rotation 
of rows. Figure  3 shows the illustration of the ShiftRows 
transformation [24].

(4)

Affine transformation =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0
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1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i7
i6
i5
i4
i3
i2
i1
i0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

1

0

0
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Fig. 2   Plaintext encryption using AES
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4.1.1.3  MixColumns Transformation  In this phase, the trans-
formation of MixColumns is conducted in each column of 
the state matrix. This MixColumns operation is a linear dif-
fusion process and it is performed in each column individu-
ally. Moreover, each column of the state matrix is assumed as 
a four-term polynomial on GF(28 ). Next, the modulo (y4 + 1) 
is used to multiply the column value with a polynomial con-
stant a(y) as shown in Eq. (5).

The matrix multiplication of Eq. (5) is shown in Eq. (6) 
and the matrix representation is shown in Eq. (7).

4.1.1.4  AddRoundKey Transformation  In AES algorithm, 
the transformation of the AddRoundKey is the the final 
transformation for each round. In this phase, the obtained 
round key is XORed with the state based on the bitwise 
operation. Here, the XOR operation is performed between 
the Nb words obtained from the key schedule of each Round 
Key and columns of the state value. This XOR operation is 
shown in the Eq. (8).

where, the words from key schedule are represented as [
Wround

]
 , round indicates the value between the range 

0 ≤ round ≤ Nr and Nr defines the number of round.

4.2 � Key Generation Using EPRNG‑AES Architecture

In the EPRNG architecture, the two-level TRNG is used as 
input to generate an optimal key value of 128-bit for improv-
ing the security against the various threats. The overall key 

(5)a(y) = {03}y3 + {01}y2 + {01}y1 + {02}

(6)p�(y) = a(y) × p(y)

(7)

⎡⎢⎢⎢⎣

P�
0,c

P�
1,c

P�
2,c

P�
3,c

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

P0,c

P1,c

P2,c

P3,c

⎤⎥⎥⎥⎦

(8)

[
P�

0,c,P
�
1,c,P

�
2,c,P

�
3,c

]
=
[
P0,c,P1,c,P2,c,P3,c

]
⊕

[
Wround∗Nb+C

]

generation process uses the two-level TRNG and combi-
national blocks, so it is defined as Efficient Pseudo Ran-
dom Number Generator (EPRNG). This EPRNG generates 
a different number (i.e., key) for each clock cycle. Here, 
the two levels of the TRNG modules are used to generate a 
random number, which is given as input for generating the 
optimal key. This developed EPRNG key generation module 
shown in the Fig. 4, is used to generate a 20-bit key value. 
Therefore, six EPRNG key generation modules are used to 

Fig. 3   ShiftRows transforma-
tion

Fig. 4   The architecture of the EPRNG key generation module
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generate six 20-bit key values resulting in 120-bit key val-
ues. The value of zero is added in the MSB 8-bit for the 
remaining 8-bit values. Then, the key values are combined 
together {8-bit values of zero and 120-bit keys from the 
EPRNG key generation module}, which are used to accom-
plish the encryption/ decryption process.

For example, the generation of 20-bit key value i.e., key1 
using the EPRNG key generation module is explained as 
follows:

	 1.	 At first, two TRNG modules are used to generate two 
20-bit values, which are considered as input values 
for the key generation. The two 20-bit values from the 
TRNG are TR1[19 ∶ 0] and TR2[19 ∶ 0] . Subsequently, 
these 20-bit values are given into the MUX, which pro-
vides the output based on the selection line as shown 
in Table 1.

	 2.	 The output of the MUX m1 = TR1[19 ∶ 0] , when the 
selection line is 00 . Otherwise, the MUX output is 
m1 = TR2[19 ∶ 0].

	 3.	 The MUX provides the 20-bit output value i.e., 
m1[19 ∶ 0] and it is processed under truncation pro-
cess. This truncation divides the 20-bit input value into 
four 5-bits as shown in the Eq. (9).

where, T1, T2, T3 and T4 are the four 5-bit truncated 
values obtained from the MUX output.

	 4.	 Next, the four 5-bit truncated values (T1, T2, T3 and T4) 
are processed under left shift operation. There are 
two left shift operations that are performed over the 
T1, T2, T3 and T4 values, which are ≪ 1 and≪ 2 . Here, 
the values of T1 & T3 are processed over the ≪ 1 left shift 

T1 = m1[19 ∶ 15]

T2 = m1[14 ∶ 10]

T3 = m1[9 ∶ 5]

(9)T4 = m1[5 ∶ 0]

operation and the values of T2 & T4 are processed over 
the ≪ 2 left shift operation. This left shift operation over 
the truncated values is shown in the Eq. (10).

where, the LS1, LS2, LS3, and LS4 are the four 5-bit 
values obtained from the left shift operation.

	 5.	 The pairs of LS1 − LS2 and LS3 − LS4 are added to 
each other by using the adder as shown in Eq. (11).

where, A1 and A2 are the 5-bit output values of the 
adder.

	 6.	 The output values of the adders A1 and A2 are given as 
input to the NOT gate. In general, the logical negation 
is accomplished over the input by using the NOT gate. 
If the input is true, the NOT gate delivers the output as 
false. Similarly, the true output is obtained for the false 

LS1 = T1 × 21

LS2 = T2 × 22

LS3 = T3 × 21

(10)LS4 = T4 × 22

A1 = LS1 + LS2

(11)A2 = LS3 + LS4

Table 1   Output of 2:1 MUX Selection line Output

00 TR1[19 ∶ 0]

01 TR2[19 ∶ 0]

Table 2   Output of 4:1 MUX Counter Output

0 TR1[4 ∶ 0]

1 OR1

2 OR2

3 TR2[4 ∶ 0]

Table 3   Simulation parameters

Parameter Values

Clock period 100 ns
Duty cycle 50 ns
Initial edge Rise
Rst,enb,enb1,enb2 1
Input data, key, the output bit 128 bit
Total simulation run time 1200 ns

Table 4   Hardware utilization of EPRNG-AES architecture for Kintex 
7 FPGA device

FPGA performances Total resources Occupied 
resources

% of utilization

Number of slice  
registers

407,600 46 1%

Flip Flops 407,600 39 1%
Number of slice LUTs 203,800 153 1%
Number of logical  

elements
203,800 143 1%

Slices 50,950 59 1%
Bonded IOB 400 26 6%
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input. The 5-bit output values from the NOT gate are 
represented in Eq. (12).

where, NG1 and NG2 are two 5-bit values obtained 
from the NOT gate.

	 7.	 The MSB values from the TRNG and NOT gate output 
are given to the OR gate to generate two 5-bit values. 
Here, the 5-bit MSB value is taken from the two TRNG 
modules as TR1[19 ∶ 15] and TR2[19 ∶ 15] . The pairs 
of TR1[19 ∶ 15] − NG1 and TR2[19 ∶ 15] − NG2 are 
processed through the OR gate to generate two 5-bit 
values as shown in Eq. (13).

where, the OR1 and OR2 are the two 5-bit output values 
taken from the OR gate.

	 8.	 Next, this OR1 and OR2 are given as inputs to the 4:1 
MUX along with two more input values, which are 
LSB values of the two TRNG modules. The 5-bit 

NG1 = A1

(12)NG2 = A2

OR1 = TR1[19 ∶ 15] + NG1[4 ∶ 0]

(13)OR2 = TR2[19 ∶ 15] + NG2[4 ∶ 0]

LSB values of the TRNG module are TR1[4 ∶ 0] and 
TR2[4 ∶ 0] . From these four 5-bit values, a single 5-bit 
value is taken as output (m2) based on the counter. 
The output from the 4:1 MUX is taken as specified in 
Table 2.

	 9.	 Next, the 5-bit output from the 4:1 MUX (m2) is given 
as input to the NOT gate and it delivers the output 
(NG3) as shown in the Eq. (14).

		    Moreover, one more TRNG is used in this key gen-
eration module to generate a 5-bit value (TR3).

	10.	 Finally, there are four inputs are given to the concat-
enation process for generating the 20-bit key. The 
four inputs given to the concatenation process are 
TR1[10 ∶ 6],NG3, TR3 and TR2[10 ∶ 6] . Equation (15) 
shows the 20-bit key generation of the key generation 
module.

Similarly, the five 20-bit key values are generated from 
the five more EPRNG key generation modules. The 20-bit 
key values obtained from the five more EPRNG key genera-
tion modules are key2, key3, key4, key5 and key6 . Equa-
tion (16) shows the concatenation of all key values and the 
8-bit values of zero in MSB.

(14)NG3 = m2

(15)
key1 = {TR1[10 ∶ 6],NG3[4 ∶ 0], TR3[4 ∶ 0], TR2[10 ∶ 6]}

Table 5   Hardware utilization of EPRNG-AES architecture for Virtex 
5 FPGA device

FPGA performances Total resources Occupied 
resources

% of utilization

Number of slice  
registers

28,800 38 1%

Flip Flops 28,800 38 1%
Number of slice LUTs 28,800 174 1%
Number of logical  

elements
28,800 166 1%

Slices 7200 62 1%
Bonded IOB 480 26 5%

Table 6   Hardware utilization of EPRNG-AES architecture for Virtex 
6 FPGA device

FPGA performances Total resources Occupied 
resources

% of utilization

Number of slice  
registers

7168 38 1%

Flip Flops 7168 37 1%
Number of slice LUTs 7168 229 3%
Number of logical  

elements
7168 224 3%

Slices 3584 122 3%
Bonded IOB 140 26 18%

Table 7   Hardware utilization of EPRNG-AES architecture for Spar-
tan 6 FPGA device

FPGA performances Total resources Occupied 
resources

% of utilization

Number of slice  
registers

11,440 56 1%

Flip Flops 11,440 49 1%
Number of slice LUTs 5720 165 2%
Number of logical  

elements
9112 131 1%

Slices 1430 55 3%
Bonded IOB 102 26 25%

Table 8   Analysis of delay, power and operating frequency for EPRNG-
AES

FPGA devices Power (W) Delay (ns) Operating 
frequency 
(MHz)

Kintex 7 0.038 4.383 305.761
Virtex 5 0.010 1.094 658.288
Virtex 6 0.022 2.981 266.902
Spartan 6 0.014 1.986 301.231
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4.3 � Authentication Phase

In this authentication phase, an authorization is provided 
to the IoT device, when both the server and device nonce 
are matched together. The random number request is used 
to verify the AID and the communication is established 
by transmitting the request message to the server. If the 
AID is matched in the authentication phase, the response 
value, challenge and master key are saved during the com-
munication. Otherwise, the respective request is discarded 
through the IoT device. Next, the server generates the 
server nonce and hash key response. Hence, the authori-
zation is provided to the IoT device by using the server, 
when the key hash function contains the server and device 
nonce values. After receiving the authentication, the data 
transmission is accomplished between the IoT device and 
server. Subsequently, the next IoT device (Device 2) also 
performs the same authentication process performed by 
Device 1. Accordingly, the setup and authentication pro-
cess is performed for each IoT device.

In nutshell, the overall research has two main phases 
such as setup phase and authentication phase. The server 
receives the requests and ID of the IoT device in the setup 
phase. Subsequently, the challenge values are created to 
enable the communication the IoT device whereas the 
response from the IoT is secured using the EPRNG-AES 

(16)
key = {00000000, key1, key2, key3, key4, key5, key6} architecture. The designed EPRNG provides a different 

key value for each clock cycle and these keys used to 
protect the response from the IoT device. In authentica-
tion phase, the server nonce and hash key response are 
generated by the server. The EPRNG-AES architecture 
doesn’t required registers to store the generated keys which 
used to minimize the number of logical elements. Next, 
the server provides the authorization to the IoT device to 
enable the data broadcasting between the IoT device and 
server. Here, the security among the IoT device and server 
is improved based on the secured response values. Con-
sequently, a different key and response values generates a 
dissimilarity between the encrypted values that maximizes 
the robustness against unauthorized users. Therefore, the 
designed EPRNG-AES architecture achieves higher secu-
rity between the server and IoT device, while minimizing 
the logical elements of AES.

5 � Results and Discussion

The proposed EPRNG-AES architecture has been imple-
mented by using the Xilinx 14.4 software where the sys-
tem is operated with 4 GB RAM and a 500 GB hard disk. 
This Xilinx software is used to analyze the hardware utili-
zation of the EPRNG-AES architecture. Additionally, the 
Modelsim 10.5 software is used to analyze the EPRNG-
AES architecture using the simulation waveform. The 
designed EPRNG-AES architecture is used to process the 

Fig. 5   Simulation waveform for response output

Fig. 6   Simulation waveform for AES
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128-bits of the input data, key and output data. The follow-
ing Table 3 provides the simulation parameters considered 
for this EPRNG-AES architecture.

5.1 � Performance Analysis of EPRNG‑AES 
Architecture

The performance of the EPRNG-AES architecture is ana-
lyzed by using four different FPGA devices namely Kintex 
7, Virtex 5, Virtex 6 and Spartan 6. Here, the performances 
are analyzed in terms of the number of slice registers, flip 
flops, the number of slice LUTs, the number of logical 
elements, slices, bonded IOB, power, delay, and operat-
ing frequency. The following hardware utilization defines 
the number of logical elements used by AES architecture.

The analysis of hardware resource utilization for the 
EPRNG-AES architecture, designed in the Kintex 7, Vir-
tex 5, Virtex 6 and Spartan 6 FPGA devices, are provided 
in the Tables 4, 5, 6, and 7 respectively. Moreover, the 
examination of the power, delay, and operating frequency 
for EPRNG-AES architecture, is given in Table 8. The 
hardware utilization is analyzed for the EPRNG-AES 
architecture with the 128-bits of input, key, and cipher 
text. The designed EPRNG-AES architecture utilizes 
1–3% resources of slices, LUT, registers, flip flops and 
logical elements. For example, the EPRNG-AES architec-
ture designed in the Kintex-7 FPGA device uses the 1% 
of slices, LUT, registers, flip flops and logical elements.

Figure 5 shows the simulation waveform for the response 
that is generated by using the IoT device. The control sig-
nals that are used for the response value generation are clk 
and rst . Moreover, the challenges and responses generated 
by the IoT device are challenge and response respectively. 

Fig. 7   Floorplanning design for EPRNG-AES architecture

Table 9   Analysis of system estimation

Design Security (%) Complexity 
(%)

Cost (%) Integrity (%)

LAKD [14] 88 8 13 88
RSA [16] 85 10 15 85
SMAP [4] 74 24 36 71
EPRNG-AES 93 5 10 92

Fig. 8   Comparison graph of 
system estimation
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From Fig. 5, it is known that the response generated in each 
clock cycle is different from each other, which shows that 
the EPRNG-AES architecture provides higher security. 
The simulation waveform for AES is shown in Fig. 6. In 
that, clk, en, and rst are the control signals. The plain text 
(i.e., response value), key and cipher text are represented as 
plain [127 ∶ 0], key [127 ∶ 0] and cipher [127 ∶ 0] respec-
tively. From Fig. 6, it is known that the difference between 
key-value and cipher text is high in the EPRNG-AES archi-
tecture. Hence, the EPRNG-AES architecture provides 
higher security against different security threats.

Figure 7 shows the floor planning design obtained for 
EPRNG-AES architecture. An accurate connection of 
EPRNG-AES architecture is verified by using this floor 
planning design. However, this floor planning output can be 
taken only when there is no error in the connections of the 
EPRNG-AES architecture. Therefore, the connections of the 
EPRNG-AES architecture are connected without any error.

5.2 � Security Analysis of the EPRNG‑AES 
Architecture

This section provides the security analysis of the EPRNG-
AES architecture under different security threats. There are 
five different security threats such as Side-Channel Attacks 
(SCA), Denial of Service (DoS), Offline Password Guess-
ing Attack (OPGA), Session Key Agreement (SKA), and 
validity of strict key.

a.	 SCA
	   SCA uses the data leaks from the system, which are 

categorized as noninvasive and passive attacks. Gener-
ally, this SCA retrieves any type of confidential data 
from the IoT network. This SCA doesn’t concentrate on 
the AES algorithm instead of that it affects the physical 

device for obtaining the secured information. Here, the 
information can be retrieved by evaluating and investi-
gating the leaked data such as power, electromagnetic 
analysis, timing, and so on.

b.	 DoS Attacks
	   DoS attacks generally try to stop the network or any 

resources from using the protector. This attack is cre-
ated based on requests obtained from the registered user, 
messages, processor cycle for games, download requests 
and so on. The data traffic stream is stopped by the DoS 
attack and the network becomes unstable because of the 
DoS attack. The DoS attack sends malicious data to only 
one device, however, the DDoS attack sends the mali-
cious data to multiple users.

c.	 OPGA
	   OPGA is generally a brute force attack that tries iden-

tifying the password based on the systematic checking 
process by using all the options. The attacker device 
accesses the password hash in offline and tries the com-
bination of a key without any interference. Here, the 
complexity and the length of the password defines the 
time, which is required to crack the password. However, 
this EPRNG-AES architecture creates a different key 
value for every clock cycle. Moreover, the EPRNG uses 
the high confusion property of the circuit, which makes 
it highly difficult for the attackers to crack the key.

d.	 SKA
	   A session key is a temporary key that is utilized only 

once for encryption and decryption of the data at the 
next clock cycle. This session key behaves like a pass-
word that is being reset for every log-in time. Hence, the 
end-to-end security is provided by the EPRNG module 
without any additional security substructure.

e.	 Validity of strict key avalanche criteria
	   The input data is encrypted by using the 128-bit 

AES algorithm for analyzing the strict key validation. 
Moreover, anyone bit of the 128-bit key is altered during 

Table 10   Performance comparison for Spartan 6

Methods Slices Operating 
frequency 
(MHz)

AES-PNSG [24] 5566 237.45
EPRNG-AES 55 301.231

Table 11   Performance comparison for Kintex 7

Methods Slice LUTs Flip flops IOBs Operating 
frequency 
(MHz)

LAES [13] 9468 - 384 -
AES-HLS [20] 577 449 265 297.3
EPRNG-AES 153 39 26 305.761

Table 12   Performance comparison for Virtex 5

Methods Slice registers Slice LUTs Slices Operating 
frequency 
(MHz)

AES-CTR [19] 19,123 14,966 5974 622.4
EPRNG-AES 38 174 62 658.288

Table 13   Performance comparison for Virtex 6

Methods Slice registers Slice LUTs Delay (ns) Power (W)

AES-MMC 
[15]

2688 9393 3.167 3.725

EPRNG-AES 38 229 2.981 0.022
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the decryption process. The EPRNG-AES architecture 
doesn’t provide the decrypted value at the output, when 
the key is changed in the decryption process. Therefore, 
it shows that the EPRNG-AES architecture provides 
robustness against the changes in the key.

Additionally, the system estimation in terms of security, 
complexity, cost and integrity is evaluated for the LAKD 
[14], RSA [16], SMAP [4] and EPRNG-AES. This evalua-
tion is shown in the following Table 9 and Fig. 8.

5.3 � Comparative Analysis

This section shows the comparative analysis of the EPRNG-
AES architecture. The proposed EPRNG-AES architecture is 
compared with five existing AES architectures such as AES-
PNSG [24], LAES [13], AES-HLS [20], AES-CTR [19] and 

AES-MMC [15]. Here, the comparison is made between four 
different FPGA devices such as Spartan 6, Kintex 7, Virtex 
5 and Virtex 6.

The comparison of the EPRNG-AES architecture for the 
FPGA devices of the Spartan 6, Kintex 7, Virtex 5 and Vir-
tex 6 are provided in Tables 10, 11, 12 and 13 respectively. 
In that, AES-PNSG [24] is used for Spartan 6, LAES [13] 
& AES-HLS [20] are used for Kintex 7, AES-CTR [19] 
is used for the Virtex 5 and AES-MMC [15] for Virtex 6 
device comparisons. Moreover, the graphical illustration 
of slice LUTs and operating frequency are shown in Fig. 9 
and Fig. 10 respectively. From the analysis, it is concluded 
that the EPRNG-AES architecture provides better perfor-
mance than the AES-PNSG [24], LAES [13], AES-HLS 
[20], AES-CTR [19] and AES-MMC [15]. For example, 
the EPRNG-AES architecture designed in the Virtex 5 uses 
62 slices, whereas the AES-CTR [19] uses 5974 slices. The 

Fig. 9   Graphical illustration of 
slice LUTs

Fig. 10   Graphical illustration of 
operating frequency
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existing AES architectures such as AES-PNSG [24], LAES 
[13], AES-HLS [20], AES-CTR [19] and AES-MMC [15] 
require a high amount of registers to store the keys obtained 
from the manual key generation. If there is a high amount 
of registers, the existing architecture requires a high amount 
of logical elements. However, the EPRNG-AES architec-
ture requires only less amount of registers, because this 
optimized AES uses the automatic key generation using 
the EPRNG key generation module. This EPRNG key gen-
eration module doesn’t require any register to save the key 
values, which minimizes the logical elements used in the 
EPRNG-AES architecture. Additionally, the security of the 
AES architecture is improved by using the EPRNG module. 
This EPRNG module generates a different key for each clock 
cycle, which improves the security against various threats 
such as SCA, DoS, OPGA, and SKA.

6 � Conclusion

In this research paper, the EPRNG-AES architecture 
improves the security between the IoT device and server 
while minimizing the hardware resources. The EPRNG with 
two-level TRNG key generation module generates different 
key values for each clock cycle, which improves the security 
of the response value. Moreover, different challenge and key 
response values, which are obtained for each clock cycle, 
help to improve the dissimilarity between the ciphertexts of 
all clock cycles. This helps to improve the security against 
various security threats such as SCA, DoS, OPGA, SKA, 
and key attacks. On the other hand, the hardware resources 
are minimized by optimizing the AES architecture. Here, 
the register used to store the intermediate key values are not 
required during the encryption/decryption process. There-
fore, the EPRNG-AES architecture consumes less hardware 
resources during the implementation. From the analysis, it 
is concluded that the EPRNG-AES architecture achieves 
better performance than the LAKD, RSA, SMAP, AES-
PNSG, LAES, AES-HLS, AES-CTR and AES-MMC. The 
EPRNG-AES architecture designed in the Kintex 7 uses 153 
slices, which is lesser than the number of slices in LAES 
and AES-HLS.
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