
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-022-06001-2

FAMCroNA: Fault Analysis in Memristive Crossbars for Neuromorphic 
Applications

Dev Narayan Yadav1  · Phrangboklang Lyngton Thangkhiew2 · Kamalika Datta3 · Sandip Chakraborty1 · 
Rolf Drechsler3,4 · Indranil Sengupta1,5

Received: 2 October 2021 / Accepted: 11 April 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Resistive memories have drawn the attention of researchers due to their low power and single-cycle computation of vector-
matrix multiplication (VMM), which is the main operation performed in neural networks. For performing VMM, one of 
the most desirable architectures is the memristor crossbar that has several advantages over other memory technologies, viz. 
in-memory computation, low power, and high density. However, faults present in the crossbar can introduce errors in the 
inference process during neuromorphic computations. Existing methods to handle faults using retraining and remapping incur 
overheads in terms of hardware, power, and delay. In this paper we explore and analyze the impact of faults on memristor-
based crossbar for overall inference accuracy. We have observed that the accuracy is not significantly affected in the presence 
of a limited number of faults. Also, the inference quality and effect of faults depend on the number of neural network layers 
and storage resolution of memristors present in the crossbar. The introduced approach works in three phases, fault tolerance 
analysis, high-level fault detection, and low-level fault detection. In the first phase, we analyze the fault tolerance capability 
of the crossbar, which identifies how many faults can be tolerated for a given application. In the second phase, we estimate 
the percentage of faults, and if it is below a threshold the third phase can be skipped. In the third phase, an efficient method 
to determine the exact location of the faults is used. The proposed method is capable of performing parallel operations, thus 
requiring fewer read/write steps as compared to existing works. The proposed approach requires O(N) read/write operations 
as compared to O(N2) operations required in existing works.

Keywords Fault diagnosis · Fault tolerance · Memristor crossbar · Neural network · Stuck-at-faults

1 Introduction

Neural networks exhibit properties that imitate the brain 
and demonstrate significant performance improvements 
in various applications such as image, audio, and video 
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recognition. The major computation performed in any neural 
network, both during the training and classification phases, 
is the Vector-Matrix Multiplication (VMM). The computa-
tion of VMM incur high overheads in conventional archi-
tectures both in terms of power consumption and latency.

Resistive memory technologies such as Memristors or 
Resistive Random Access Memory (ReRAM) possesses 
both storage and logic operation capability in a single cell. 
We can use a memristor crossbar to directly perform VMM 
operation in a single cycle and hence accelerate neural net-
work operations. These crossbars do not require explicit 
data transfer between CPU and memory [34, 41]. But we 
require auxiliary circuitry like analog-to-digital converters 
(ADCs) and digital-to-analog converters (DACs) that incur 
both space and energy overheads [3, 15, 27, 29].

In neuromorphic applications, training is an important 
and time-consuming phase. Prior to using the memris-
tor crossbar as a classifier, it must be trained whereby the 
matrix coefficients (i.e., the memristor conductance values) 
get determined. This is generally performed using an off-line 
training phase using a given training set. For large crossbars 
this is a tedious and time-consuming process and may take 
days or even months. To accelerate the process, we can use 
chip-in-the-loop learning method [32], where the neuromor-
phic hardware is used to speed up the calculation. However, 
the focus of the current work is to analyze the impact of 
faults on neural network performance and hence we have 
used an off-line training method.

There are several factors like variation in conductance 
values, operational faults, fabrication defects, etc. [5, 17, 
18], that degrade the performance of a memristor-based neu-
romorphic system. Various approaches have been proposed 
in the literature [6, 16, 23, 24, 35, 36, 38, 42, 43] that try 
to minimize the performance degradation in the presence 
of faults.

Some prior works in the literature include methods like 
retraining, row flipping, parallel redundant synapses, etc. [6, 
16, 23, 24, 35, 36, 38, 42, 43].

It may be noted that the works in [6, 24] perform offline 
training that requires low latency and consume low power 
as compared to online training. This is because the training 
algorithm has no direct interaction with the neural network 
chip, and all computations are carried out by software in 
the host system. Usually, the remapping and row flipping 
approaches use online training and hence incur high latency 
and power overhead as compared to offline training meth-
ods [23, 35, 38, 42]. Moreover, the works that use redundant 
neurons (memristors) further increase the latency, area and 
power overheads [16, 36, 43].

In this work we use VMM operations for detecting fabri-
cation defects in the crossbar. We carry out analyses to deter-
mine the percentage of faults that can be tolerated during 
the learning phase without incurring additional overheads. 

Results are provided for both single-layer and multi-layer 
neural networks for different bit-storage resolutions. A mem-
ristor with 1-bit resolution can store two weights, while one 
with k-bit resolution (for k > 1 ) can store 2k distinct weights.

This paper is an extension of the work reported in [40], 
where the fault tolerance capability of memristor-based sin-
gle-layer fully-connected neural network has been discussed.

The major contributions of this paper are as follows: 

i) The impact of multiple faults on neuromorphic computa-
tion on a memristor crossbar has been analyzed.

ii) A detailed study on the effect of faults in both single-
layer and multi-layer crossbars has been carried out, 
with respect to multiple datasets.

iii) An approach for the fault diagnosis of multiple faults in 
the crossbar has been presented.

The rest of the paper is organized as follows. Section 2 dis-
cusses the background and related works. Section 3 analyzes 
the fault tolerance behavior of the crossbar. Section 4 pre-
sents the fault diagnosis framework, while Sect. 5 presents 
the results in presence of faults on various benchmarks. 
Finally, Sect. 6 concludes the work.

2  Preliminary and Related Works

2.1  Memristor

Memristor is the fourth passive electrical element first postu-
lated by Chua in 1971 [7], which shows non-linear relation-
ship between electrical charge and magnetic flux. In 2008, 
Strukov et al. fabricated a Pt-TiO2-Pt memristor [30]. The 
TiO2 consists of two regions, a doped region with oxygen 
vacancies (TiO2−x ) that is highly conductive, and an undoped 
region (pure TiO2 ) that is highly resistive.

The width of the doped region can be changed by apply-
ing suitable voltages across the two terminals of the device, 
which in turn changes the resistive state of the memris-
tor. The resistance value is retained even after voltage is 
withdrawn, making it a suitable candidate for non-volatile 
memories [8].

Figure 1 shows the voltage-current (V-I) characteristics of 
an ideal memristor. The V-I curve forms a pinched hyster-
esis loop, and according to Chua and Sung [8], any device 
with this property can be characterized as a memristor. The 
resistive state of the memristor can be switched between two 
distinct states by applying voltages with suitable polarity. This 
property is used in logic applications where the high and low 
resistive states denote logic 0 and logic 1 respectively.

Another interesting property of memristor is its ability 
to retain its resistive state even after the power supply is 
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removed. This makes it a viable candidate for use in non-
volatile resistive memory (ReRAM).

Typically the voltage Vset (Vreset ) is used to expand 
(shrink) the doped region to make it in low (high) resis-
tive state. Apart from this, several voltage levels can be 
applied to set the memristors to multiple intermediate resis-
tive states, making it a viable candidate for neuromorphic 
computing.

2.2  Vector‑Matrix Multiplication using Memristor 
Crossbar

Memristors are typically fabricated in a crossbar struc-
ture where a device is placed between two perpendicular 
wires [1]. Such compact placement leads to more storage 
density as compared to other memory technologies. Such 
crossbars can also be used to build memory systems that 
support scalable in-memory computing [20, 33, 39].

In-memory computing is an approach where both stor-
age and computation are performed in the same hardware 

unit [41]. Figure 2a shows a crossbar structure where we 
can program the memristors to any desired resistance level. 
The structure can be used to perform VMM operations as 
I = V ×M  [27, 28, 34]. The voltages applied along the 
rows can be represented as a vector V = {V0,V1,… ,Vn−1} 
and the current flowing along the columns as the vector 
I = {I0, I1,… , Im−1} . The crossbar M can be represented as 
an n × m matrix, where the (i, j)th co-efficient denotes the 
conductance of the memristor in row Ri and column Cj.

The dot product operation can be performed in a column 
of the crossbar as shown in Fig. 2b. Suppose that the con-
ductance value of memristor Mi is Gi , for 0 ≤ i ≤ (n − 1) . 
The current f lowing through memristor Mi will be 
Ii = Vi ∗ Gi , for 0 ≤ i ≤ (n − 1) . The total current flowing 
in the column will be

which is the dot product of the two vectors { V0,V1,… ,Vn−1 } 
and { G0,G1,… ,Gn−1}.

Many works have been reported in the literature that uses 
memristor crossbars to accelerate neuromorphic computa-
tions [3, 6, 15, 27, 34].

2.3  Fabrication Defects and Fault Models

Circuit defects are anomalies that cause undesired varia-
tions between the actual implemented hardware and the 
anticipated hardware [4, 5]. The defects often occur dur-
ing the fabrication or operation of the device. The vari-
ous defects in the crossbar can be characterized as: (i) 
Imperfect cross-sections – this can cause slow, fast and 

Itotal =

n−1∑

i=0

(
Vi ∗ Gi

)

Fig. 1  Typical V-I characteristic of a memristor: a Actual, b Ideal

Fig. 2  a A memristor cross-
bar for VMM operations, b 
Performing dot product in a 
crossbar column

(a) (b)
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deep faults; (ii) Variable oxide thickness – this can affect 
the normal resistive switching behavior; (iii) Open defects 
– this can break the crossbar structure thereby causing 
access issues of a single cell, a row or multiple rows; (iv) 
Short defects – this causes rows/columns to merge, thereby 
giving rise to coupling faults.

The most general types of faults that may occur can be 
categorized based on the nature of defects in the crossbar, 
and are summarized below. 

1. Stuck-At-Fault (SAF): Here the resistive value of a 
memristor becomes fixed and cannot be altered (i.e. 
non-programmable) [5, 17, 18]. Two types of SAF are 
possible: 

(a) Stuck-At-Low (SAL): The memristor is fixed at low 
conductive state, and arises due to variable oxide 
thickness.

(b) Stuck-At-High (SAH): The memristor is fixed at 
high conductive state, and arises due to variable 
oxide thickness.

2. Transition Fault (TF): This is caused due to irregular 
doping variations, and may prevent a memristor cell 
from undergoing a resistive state change [5, 17, 18]. 
Such faults can be classified into two types: 

(a) Slow-write Fault: This fault affects the transition 
time of a device, making it slower than the ideal 
device. Such a fault can put a memristor in an 
undesired state during training.

(b) Fast-write Fault: Similarly, this fault causes the 
transition time to be faster than the ideal memris-
tor.

3. Address Decoder Fault (ADF/AF): This fault causes the 
rows/columns of the crossbar to merge together, thereby 
causing access to undesired cells in the crossbar.  [5, 17, 
18].

4. Deep Fault: This occurs due to deformity in cross-section 
and alter the ideal area of the doped region, thereby mak-
ing the Vset ( Vreset ) voltage to change the resistance of the 
memristor to ON (OFF) state. But upon applying the Vreset 
( Vset ) voltage, the memristor does not switch back to OFF 
(ON) state due to the high (low) doped region. This is 
referred to as Deep-1 (Deep-0) fault [5, 17, 18].

5. Open Circuit Fault (OCF): This arises due to open 
defects, and makes a memristor unaffected by the cur-
rent flowing in the columns. [5, 17, 18].

6. Coupling Fault (CF): This fault occurs due to the cou-
pling of row or column wires. Upon applying a voltage 
to cause a transition in the affected cell, some other cells 
adjacent to it may also change state [5, 17, 18].

7. Read Disturb Fault (RDF): The RDF is due to the small 
difference between the Vset ( Vreset ) and Vread . This causes 
wrong read operation, as during reading the cell contents 
changes its value [5, 17, 18].

8. Deceptive Read Disturb Fault (DRDF): This occurs due 
to oxide variation, making it more sensitive. This fault 
returns the correct reading value of the target cell but 
changes the value of the target cell [5, 17, 18].

The architecture of the memristor crossbar and random-access 
memory (RAM) are similar, due to which a similar fault rate can 
be anticipated. According to the RAM fault models, the memris-
tor-based crossbar can have ≈30% of faults in it [5]. For instance, 
experiments with the HfO2 based crossbar show that about 66% 
of fault-free memristors are available in the crossbar [5]. The 
major contribution of the faults in the implemented crossbar 
are: TF ( ≈14%), SAF ( ≈10%), ADF ( ≈3%), RDF and DRDF ( ≈
1.5%), and other faults ( ≈5.5%).

It can be observed that SAF, TF, and DF may arise due 
to variable oxide thickness and imperfect cross-section [17, 
18], and as such share similar characteristics in terms of the 
defect source. Also, OCF has similar characteristics as SAL, 
since a memristor with SAL is in a high resistive state.

2.4  Related Works on Fault Diagnosis and Fault 
Tolerance

Though the crossbar structure is similar to traditional RAM, 
the storage technique is different. Nevertheless, similar fault 
detection techniques used for conventional RAM also apply 
for ReRAM. Several techniques available in the literature to 
mitigate faulty memristors are described as follow: 

(a) March C* Testing: The authors in [5] proposed an approach 
to diagnose faulty memristors in the crossbar, which is 
similar to testing traditional RAM. To diagnose the faulty 
memristors, the approach selects one row at a time and 
tests each cell of the row in sequence. To test a single cell 
the approach requires 6 read and 4 write operations.

(b) Sneak-path Based Solution: The authors in [18] pro-
posed a technique to detect faults in the crossbar using 
sneak-path current. The fault detection is based on the 
assumption that SAF in memristors generate currents in 
the anticipated region of the crossbar. This approach is 
more applicable to the memristor crossbar as compared 
to March C* based approach, requiring at least 30% 
fewer cycles.

(c) Divide-and-Conquer Testing: The authors in [13] pro-
posed a divide-and-conquer technique to test for SAF. 
The crossbar is divided into multiple regions, and the 
individual regions are tested for faults. However, this 
technique suffers from sneak-path issues. During test-
ing a particular region, the sneak-path current from 
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some other region may cause the testing of the region 
to return as faulty.

Several methods have been discussed in the literature to 
handle performance degradation due to faults [6, 23, 24, 35, 
36, 38, 42, 43]. The methods can be broadly classified into 
three approaches. 

i) Retraining: The authors in [6, 24] proposed an approach 
by adjusting the network training, in which low (high) 
weight is adjusted with SAL (SAH) faulty memristor. 
The adjustment continues till the crossbar attains the 
accuracy levels of an ideal array.

ii) Row Flipping: The authors in [23, 35, 38, 42] proposed 
rows interchanging method to minimize the overall 
error. This process is repeated to minimize the error. In 
the worst case, the process must be reverted if the solu-
tion is undesirable from the previous steps.

iii) Redundant Neurons: The authors in [36, 43] proposed 
a solution by using additional memristors in place of 
the faulty memristors to handle performance degrada-
tion. However, this approach requires complex connec-
tions among the memristors and requires initializing the 
weight in the new additional memristor.

The fault diagnosis approaches available in the literature 
require significant number of read/write operations, which 
causes the latency to increase and in turn increases the 
power consumption. However, this statement is not true for 
approaches that require offline training, as the neural net-
work chips are not involved during training.

The main objective of this paper is to propose a solution 
with fewer read/write operations. Due to the architectural 
advantage of the crossbar, we propose a solution that can 
perform parallel operations for fault diagnosis.

State-of-the-art methods have reported that in order to 
overcome the performance degradation caused by faults, 
8-37% energy overhead and 9-50% area overhead are 
incurred [16, 23, 35, 36, 42].

To reduce the overhead required for fault diagnosis, we 
analyze the tolerance level of faults that will not degrade 
the performance.

3  Fault Tolerance Analysis

There exists several works in the literature [6, 23, 24, 35, 
36, 38, 42, 43], that try to handle performance degradation 
caused by various physical faults. However, these meth-
ods require additional operations and hardware overhead, 
thereby resulting in higher power consumption and delay 
during both training and inference operations.

It may be noted that for digital operations, even a single 
fault can cause the outputs to become erroneous. However, 
neuromorphic computation on a crossbar is essentially an 
analog operation, where an analog vector is multiplied with 
a weight matrix. The presence of one or more faults may 
not always result in erroneous outputs, as the fault effects 
may get canceled or masked. Since any explicit solution 
incurs overheads, an analysis is needed to assess the degree 
of performance degradation. Fault diagnosis approaches 
for conventional RAMs require large number of read/write 
operations.

In this work, we have utilized the VMM operations for 
fault diagnosis in order to reduce the number of time steps 
and energy consumption.

In the following section, we analyze the percentage of 
faults in a given crossbar that can be implicitly tolerated, 
and then propose a fault diagnosis approach.

3.1  General Analysis on Effect of  SAFs

To illustrate the effect of SAFs in a crossbar, we consider a 
single column of the crossbar with 4 memristors. We assume 
that each memristor can store multiple weights as integer 
values in the range 0 − 3 , where 0 represents low conduc-
tive, 1 and 2 the intermediate, and 3 the high conductive 
states. We assume that the goal is to achieve output as ≥ 6 
when we apply 1’s to all the rows, making the output equal 
to 
∑

1× weight of memristor. If the output is more than 6, we 
can say that the goal is satisfied. We discuss below several 
cases depending upon the number of faulty memristors and 
the type of faults. 

1. Case 1: There are no faults in the crossbar (Fig. 3(case 
1)). We can set the weights in 44 = 256 ways out of 
which 150 will produce desired output ( ≥ 6 ). This has a 
probability of 150∕256 ∗ 100 = 58.59%.

2. Case 2: One memristor has a SAL fault (Fig. 3(case 2)). 
We can set the weights in 43 = 64 ways out of which 
20 will produce desired output, with a probability of 
20∕64 ∗ 100 = 31.25%.

3. Case 3: Two of the memristors have SAL faults 
(Fig. 3(case 3)). We can set the weights in 16 ways out 
of which 1 will produce correct output, and the prob-
ability is 1∕16 ∗ 100 = 6.25%.

4. Case 4: Three of the memristors have SAL faults 
(Fig. 3(case 4)). Here, it is not possible to get the desired 
output, and the probability will be 0%.

5. Case 5: One of the memristors has a SAH fault 
(Fig. 3(case 5)). We can set the weights in 64 ways out 
of which 54 will produce desired output, with a prob-
ability of 54∕64 ∗ 100 = 84.37% (better than ideal case).

6. Case 6: Two of the memristors have SAH faults 
(Fig. 3(case 6)). We can set the weights in 16 ways, 
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where all of them will produce desired output. This 
gives a probability of 100% (better than ideal case).

7. Case 7: One memristor has SAL fault, and one has SAH 
fault (Fig. 3(case 7)). We can set the weights in 16 ways 
out of which 10 will give desired output, with probabil-
ity 10∕16 ∗ 100 = 62.50% (better than ideal case).

8. Case 8: Two memristors have SAL fault, and one has 
SAH fault (Fig. 3(case 8)). We can set the weights in 4 
ways out of which 3 will produce desired output, with 
a probability of 1∕4 ∗ 100 = 25.00% . (better than only 
two SAL fault).

From Fig.   3, it is clear that the occurrence of SAF 
reduces the programming capability in the crossbar, as 
some memristors are stuck permanently in the low or high 
conductive states. Specifically, with a single fault (cases 2 
and 5), the programming capability reduces from 256 to 64, 
and with two faults (cases 3, 6 and 7) it reduces to 16. For 
this particular example where our objective is to achieve 
the target as ≥ 6 , we observe that the SAL faults reduce 
the probability of achieving the desired output (cases 2-4), 
whereas the SAH faults increase the probability (cases 5-6). 
However, if our objective is to have an output of ≤ 6 (i.e., the 
reverse), then SAL faults will be more beneficial than SAH 
faults. We can also observe that in the cases where both SAL 
and SAH faults co-exist (case 7-8), the fault effects get can-
celled. This is mainly because the probability improves com-
pared to cases where only SAL exists (cases 2-4), and the 

probability degrades as compared to cases where only SAH 
exists (cases 5-6). In general, an in-depth analysis is needed 
to identify the percentage of faults that can be tolerated.

3.2  Analysis of Fault Tolerance Capability 
of Crossbar

Among the various memristor models available in the lit-
erature, some have linear switching characteristics, while 
some others are non-linear. The switching characteristics of 
two popular memristor models [21, 26] are shown in Fig. 4.

We can observe that model of [26] switches between two 
states relatively faster, whereas that of [21] shows slower 
and linear switching. The linear switching property has the 
advantage that multiple intermediate resistive states can be 
set by applying suitable voltage. This is referred to as multi-
bit storage resolution [12, 14, 25, 31]. For instance, 1-bit 
resolution can have 21 = 2 resistive states, 2-bit resolution 
can have 22 = 4 states, and so on. Clearly, an increase in the 
storage resolution provides greater programming flexibility 
and higher accuracy but also increases the hardware com-
plexity. In this paper, we consider devices with up to 5-bit 
resolution, which translates into 25 = 32 resistive states.

To carry out experimentation on fault tolerance, we have 
chosen the following datasets: MNIST, Extended-MNIST, 
Fashion MNIST,  HAR and Cifar-10 [2, 9, 11, 19, 22, 37]. 
We have used direct downloading method  [32], where 
the training is done offline, and the computed weights are 

Fig. 3  Possible faulty cases for 
four memristors in a column

Fig. 4  Switching characteristics 
in: a Stanford model [26], b 
VTEAM model [21]

(a) (b)
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downloaded to the crossbar for testing. The framework for 
analysis is depicted in Fig. 5.

As shown in Fig. 5, the application dataset (AP) and the 
network parameters (NP) are applied as inputs to the Host 
System (HS). NP consists of various crossbar characteristics 
like bit-capacity, size of crossbar, Ron to Roff  ratio, etc. HS 
will perform three tasks: 

a) Training: The application is trained by performing all 
necessary computations and the weights generated.

b) Evaluation: With the generated weights, evaluation is 
performed to find the accuracy of the network for an 
ideal crossbar.

c) Add Faults: By varying the percentage of injected faults, 
training and evaluation are carried out again, and the 
evaluated accuracy is compared against the ideal case. 
If the accuracy lies within ±1, the number of faults is 
increased and step (c) is repeated. If the accuracy of 
faulty crossbar reduces by more than 1%, then the fault 
percentage is returned as Fault Tolerance Threshold 
( Fth ) for the application.

The key advantage of off-line training is that we can use any 
suitable algorithm for training. However, in off-line training, 
small errors in the given parameters can create large differ-
ences in the accuracy values. Thus, a verification step is 
needed for host-based off-line training. The off-line training 
and analysis framework has been implemented in Python 
and run on an Intel i7 based desktop with 2.6 GHz clock and 
8GB RAM running Ubuntu. We have used the back-propa-
gation algorithm to train the applications, and modified it to 
meet the required constraints (viz. non-negative weights, the 
weights of SAF memristors should not be modified during 
weight change, etc.). We have used the Stanford memristor 
model [26] to simulate the crossbar, which has been carried 
out under Cadence Virtuoso environment.

All the chosen datasets are trained using fully-connected 
neural networks, with the size of crossbar being Na × Nc , 
where Na and Nc respectively denote the number of attributes 
and number of classes. For example, to train with the dataset 
for MNIST handwritten digits, 784 × 10 crossbar is used on 
which VMM operations are performed.

The main objective of this paper is to analyse the effect 
of fault, where the analysis is mostly carried out on a single 
layer crossbar. We have extended it for multi-layer crossbar 
as well; however the hardware connection across layers is 
beyond the scope of this paper.

Figure 6 shows training loss of MNIST data set for up to 
5-bit resolution for an ideal crossbar. We observe that the 
training loss reduces with increase in the storage resolution. 
Table 1 summarizes the percentage test accuracy for dif-
ferent datasets with respect to various storage resolutions.

From Table 1 we observe that with every bit increase in 
resolution, the accuracy increases by ≈ 1% for all datasets. 
However, the training time and hardware complexity will 
increase for higher resolutions.

For evaluating the fault tolerance capability, faults are 
injected in the crossbar and training is performed again in 
order to analyze the effect of faults. Figure 7 shows variation 
in training loss for various % of faults using MNIST dataset 
with 1-bit resolution.

From the figure we observe that the variation in training 
loss is similar to that of an ideal crossbar for up to 4% of 
faults. In other words, the overall accuracy is not affected 
by up to 4% of faults. In order to speed up the analysis, we 
carry out testing by injecting faults in random positions in 
the crossbar, and repeat the process multiple times to average 
out the statistical variations.

Figure 8 shows variation in test accuracy for 1% faults with 
1-bit resolution for the MNIST dataset. For some test run, 

Host

System

Train

(1)

Add Fault (3)

Train Evaluation

Evaluation

(2)

FTh

NP

AP

Fig. 5  Framework for fault tolerance analysis (AP: Application/data-
set, NP: Network parameter, F 

Th
 : Fault tolerance threshold

Fig. 6  Training loss for MNIST dataset
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presence of fault improves the performance of the network, 
whereas for some cases it decreases the performance. Also 
the average variation in test accuracy is ±1. For some cases, 
the test accuracy reduces by more than 5% as compared to 
ideal case. After detailed analysis we found that this is caused 
because most of the faults ( ≥40%) are mapped to the same 
crossbar column. This results in classification error for the 
class corresponding to that column, thereby reducing the over-
all accuracy. However, the proposed fault diagnosis approach 
can identify such column(s), and we can avoid mapping of any 
class to such column(s).

Figure 9 shows the average variation in test accuracy for 
the MNIST dataset for different storage resolutions.

In the Fig 9, the y-axis shows variation in accuracy with 
respect to the ideal case (as represented by line 0). If the 
accuracy of the faulty crossbar reduces by more than 1 (lies 
outside the green lines), then the fault percentage is returned 
as Fault Tolerance Threshold ( FTh ) for the application.

It can be observed that for resolution of 1 or 2, the varia-
tion in test accuracy with number of faults is not significant. 
However, the faulty memristors can affect crossbars with 
higher resolution to a greater extent. From Fig. 9 we can 
conclude that up to 4% of the faults can be tolerated if we 

are considering 1-bit resolution. However, for higher resolu-
tions the figure drops to 3% for the MNIST dataset. Similar 
behavior have been observed for other datasets as well.

Table 1  Percentage accuracy 
for ideal crossbars

No. of Bits MNIST [22] EMNIST [9] HAR [2] CIFAR-10 [19] FMNIST 
Bits [37]

1-bit 74.06 67.32 82.33 70.18 71.45
2-bit 77.92 72.41 87.02 72.75 73.29
3-bit 79.06 72.93 88.92 74.29 74.78
4-bit 80.23 74.64 90.52 75.83 75.45
5-bit 81.40 75.28 91.15 76.54 76.80

Fig. 7  Training loss for MNIST dataset (Faulty Crossbar)

Fig. 8  Variation in test accuracy for MNIST dataset with 1-bit resolu-
tion. The x-axis (Number of Test) indicates the number of analyses 
the dataset undergoes with random fault positions

Fig. 9  Average variation in accuracy with faults for MNIST dataset in 
multi-bit crossbar
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Based on the average variations from single to multi-bit 
resolutions, the threshold value for fault tolerance for vari-
ous datasets have been calculated and depicted in Table 2.

From the table we observe that for any dataset imple-
mented with 1-bit resolution there may not be any perfor-
mance degradation if the memristors in the crossbar are 
≤ 4 % faulty. For 2-bit resolution, it will be ≤ 3 %; and for 
more than 2-bit resolution, it reduces to ≤ 2 %. It is obvious 
that the faults will not be in exact ratio, and hence we have 
performed testing by considering different ratios of SAL/
SAH faults.

We use the notation K1:K2, where K1 and K2 respectively 
denote the proportion of SAFs for low conductance and high 
conductance respectively. Through experimental analyses, it 
has been observed that the threshold characteristics of 1:10 
and 10:1 are very similar to 1:1.

3.3  Fault Tolerance Analysis for Multi‑layer 
and Other Faults

For many large and complex datasets, we have to use multi-
layer neural networks for better performance. With this moti-
vation, we have also analyzed the effect of faults in multi-
layer neural networks.

Table 3 shows the percentage accuracy and threshold 
values generated by neural networks with 1 and 2 hidden 
layers respectively for MNIST dataset, with various stor-
age resolutions. The threshold values shown in the table is 
the average of fault tolerance capabilities across all the lay-
ers. However, it has been observed that the last layer of the 
crossbar is more sensitive to faults. This is because in the 

last layer, any error in the crossbar can directly affect the 
classification accuracy.

We have analyzed the effects of slow and fast write faults 
for higher resolution crossbars. This is done by applying 
suitable voltage to switch the memristor state to the next 
conductance level, and then reading the state and comparing 
it with that of an ideal memristor. Experimental results show 
that the fault tolerance capability does not change much for 
slow/fast write faults.

4  Fault Diagnosis Framework

Existing approaches to fault diagnosis in the crossbar are 
either based on conventional approaches used for RAMs, or 
rely on additional circuitry. In this work, we have used cross-
bar VMM operations directly to identify different types of 
faults, which incurs less power consumption and number of 
cycles. We proceed in two steps. In the first step of high-level 
fault detection, we only identify the percentage of faults and 
not their locations. For higher percentage of faults that may 
cause performance issues, the exact locations of the faults 
are identified in the second step, referred to as low-level 
fault detection. We consider stuck-at faults in the crossbar 
for fault diagnosis.

Figure 10 shows the overall approach for fault diagnosis. 
We first carry out high-level fault detection to identify the 
percentage of faults (say, Fperc ). If Fperc ≤ FTh , where FTh 
denotes the fault tolerance threshold for the application, the 
weights as learnt are loaded to the crossbar. This signifi-
cantly reduces the energy/delay overheads.

However, if Fperc > FTh , we use the low-level fault detec-
tion approach instead of the conventional fault diagnosis 

Table 2  Percentage of faults 
that can be tolerated

No. of Bits MNIST [22] EMNIST [9] HAR [2] CIFAR-10 
[19]

FMNIST [37]

1-bit ≤4 ≤4 ≤5 ≤3 ≤3
2-bit ≤4 ≤3 ≤4 ≤3 ≤3
3-bit ≤3 ≤3 ≤4 ≤2 ≤2
4-bit ≤3 ≤2 ≤3 ≤2 ≤2
5-bit ≤2 ≤1 ≤2 ≤1 ≤2

Table 3  Percentage accuracy and threshold value for multi-layer net-
works

No. of Bits Percentage Accuracy Percentage Threshold

1 layer 2 layers 1 layer 2 layers

1-bit 80.60 82.45 ≤5 ≤5
2-bit 84.52 87.12 ≤4 ≤4
3-bit 85.24 88.85 ≤3 ≤4
4-bit 86.54 91.26 ≤2 ≤3
5-bit 88.32 92.74 ≤2 ≤2

Fig. 10  Framework for fault diagnosis
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algorithms [5, 13, 18]. Subsequently, learning can be per-
formed using retraining/remapping algorithms [6, 23, 35, 
36, 42].

states. By applying read voltage ( Vread ) along the rows and 
measuring the currents in the columns, we can estimate the 
value of Fperc

Table 4  Parameters for 
simulation

Parameter Xon Xoff Won Woff Ron Roff

Value 9 nm 0 nm 5 nm 0.5 nm 3 K Ω 1.66 M Ω

4.1  High‑Level Fault Detection

The classification accuracy of a neuromorphic system 
depends on the weights as computed during the learning 
phase. However, in the presence of faults some of the cells 
may be rendered non-programmable, thereby resulting in 
degradation of accuracy. However, as discussed in the pre-
vious section, this may not always be true, as the effects of 
some set of multiple faults may cancel each other.

The value of Fperc can be determined directly using VMM 
operation. First we set (or reset) all the memristors in the 
crossbar, where the faulty memristors will not change their 

The currents in the crossbar columns after performing 
VMM operation is given by V × G (vide Fig. 2b). For an 
N ×M crossbar, in the fault-free case the total column cur-
rents after reset operation will be:

where Goff  is the low-conductance value of a memristor.
Similarly, total column currents after set operation will 

be:

(1)IRread
= N ∗ Vread ∗ Goff

(2)ISread = N ∗ Vread ∗ Gon

154 Journal of Electronic Testing (2022) 38:145–163



1 3

where Gon denotes the high-conductance value of a 
memristor.

In general, if the number of high-conductance and low-
conductance memristors in any column are x and y respec-
tively, the current injected in the column will be:

Since Gon >> Goff  , we can write Iactual ≈ A ∗ Vread ∗ Gon . 
The number of SAH and SAL memristors in the column can 
be calculated as:

(3)Iactual =
(
x ∗ Vread ∗ Gon

)
+
(
y ∗ Vread ∗ Goff

)

(4)Nsah =IRread
∕(Vread ∗ Gon)

Using Eqs. (4) and (5) we can calculate Vperc . This find-
ing has been verified through simulation under the Cadence 
Virtuoso environment for a 16 × 16 crossbar, where we have 
used the Stanford memristor model [26] with the parameters 
given as in Table 4 and read voltage of 100mV.

Fig. 11 shows the currents in two different columns of 
a 16 × 16 crossbar with varying number of faulty memris-
tors. The currents injected is approximately proportional 
to the product of number of high-conductance memristors, 
Vread and Gon . The currents generated by low-conductance 
and high-conductance memristors are 0.06�A and 33.28�A 
respectively. The blue bars represent the currents injected 
by Vread after set operation, whereas orange bars represent 
the currents injected by Vread after reset operation. From 
the figure we can observe that after set operation, the total 
current injected is 532.48�A and 499.26�A for fault-free 
and single SAH fault cases respectively. This may be veri-
fied as follows: 

(a) The current 532.48�A is actually the sum of those 
generated by 16 high-conductance memristors (i.e. 
16 ∗ 33.28�A);

(b) The current 499.26�A is the sum of those generated by 
15 high-conductance and 1 low-conductance memris-
tors (i.e. ≈ 15 ∗ 33.28 + 0.06);

and so on.
For small crossbars, we may ignore the currents generated 

by SAL conductance memristors; however, for large cross-
bars the overall error contribution can be significant. For 
instance, 555 low-conductance memristors in a column will 
contribute to current 555 ∗ 0.06 = 33.3�A , which becomes 
comparable to the current for a high-conductance memristor.

(5)Nsal =N − ISread∕(Vread ∗ Gon)

Fig. 11  Total injected current in different columns consist various 
number of SAFs after Set/Reset operation

Fig. 12  Current variations due 
to SAH memristors

(a) (b)
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Similar calculations can be carried out for the detection of 
stuck-at high conductance memristors. Consider the orange 
bars that indicate the currents injected by Vread after reset 

operation. For the fault-free case it will generate 0.96�A 
current, whereas a single SAH memristor will cause a high 
current of 34.18�A.

Fig. 13  Current variations due 
to SAL memristors

(a) (b)
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4.2  Low‑Level Fault Detection: Fault Diagnosis

For Fperc > FTh , we need to identify the exact locations of 
the faulty memristors in the crossbar. All the faulty memris-
tors in a row can be determined in a single cycle.

To identify the SAH conductance memristors, we reset 
the crossbar, apply read voltage to one row(say Ri ) at a time, 
and measure the currents in each column. If a column (say 
Cj ) shows high current, it means that the memristor located 
at the junction ( Ri , Cj ) is faulty. A current comparator circuit 
as proposed in [10] can be used for the purpose (see Fig. 12). 
As can be seen from the plot, the currents generated in the 

faulty columns ( 33� A) are much greater as compared to the 
fault-free columns ( 0.06�A).

The same process can be repeated, where we set the 
crossbar, and identify columns with low currents for detect-
ing SAL memristors as shown in Fig. 13. Here, the currents 
generated in SAL faulty columns ( 0.06� A) are very less as 
compared to those in non-faulty columns ( 33.26�A).

For an N ×M crossbar, the process to identify all the 
faulty memristors will take 2N time steps, where N time 
steps will be required to detect SAH memristors, and N time 
steps for SAL memristors. The steps are formally stated in 
Algorithm 4.2.
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4.3  Multiple Fault Diagnosis with VMM

In the previous subsections, we have discussed the high-
level and low-level fault diagnosis techniques with respect 
to stuck-at faults in the memristors. However, the VMM 

operations that are used for fault diagnosis can also detect 
other types of faults as explained below. 

1. Deceptive Read Destructive Fault (DRDF): To identify 
these faults in the crossbar, we require two read opera-
tions instead of one. The first read operation is used to 

Table 5  Analysis of the 
variability in resistance with 
one SAF memristor

FT I i  ( �A) Varp % Var Ivar ( �A) |Ivar − Ii| ( �A)

Iiset Iireset Ivarset Ivarset I
′

set
I
′

reset

1 SAF with 1 Variable Memristor
-20 506.67 – 7.41 –
-20 506.67 – 7.41 –
-15 504.53 – 5.27 –
-10 502.51 – 3.25 –

SAL 499.26 – Ron -5 501.71 – 2.45 –
+5 498.25 – 1.01 –
+10 495.55 – 3.71 –
+ 15 494.48 – 4.78 –
+ 20 494.27 – 4.99 –
-20 – 34.41 – 0.23
-15 – 34.31 – 0.13
-10 – 34.28 – 0.10
-5 – 34.22 – 0.04

SAH – 34.18 Roff +5 498.25 – 1.01 –
+10 495.55 – 3.71 –
+ 15 494.48 – 4.78 –
+ 20 494.27 – 4.99 –

1 SAF with 2 Variable Memristors (Both memristors showing same type of variability on Ron∕Roff )
-5,-20 509.93 – 10.67 –
-5,-15 507.04 – 7.78 –
-5,-10 505.29 – 6.03 –

SAL 499.26 – Ron +5,+10 495.12 – 4.14 –
+5,+15 493.91 – 5.35 –
+5,+20 492.66 – 6.60 –
-5,-20 – 34.42 – 0.24
-5,-15 – 34.37 – 0.19
-5, -10 – 34.35 – 0.17

SAH – 34.18 Roff +5,+10 – 33.34 – 0.84
+5,+15 – 33.20 – 0.98
+5,+20 – 33.17 – 1.01
+5,+15 – 33.20 – 0.98
+5,+20 – 33.17 – 1.01

1 SAF with 2 Variable Memristors (Both memristors showing  opposite variability on Ron∕Roff )
-5,+5 499.26 – 0.00 –

SAL 499.26 – Ron -5,+10 498.29 – 0.97 –
-5,+15 497.09 – 2.17 –
-5,+20 495.98 – 3.28 –

SAH – 34.18 Roff -5,+5 – 34.18 – 0.00
-5,+10 – 34.22 – 0.04
-5,+15 – 34.21 – 0.03
-5,+20 – 34.19 – 0.01
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sensitize all DRDF faults present in a row, while the 
second read operation confirms the presence or absence 
of the faults. If Iij,1 and Iij,2 denote the currents through 
the memristor at position (i, j) in the crossbar after the 
first and second read operations respectively, then the 
memristor will have DRDF fault if Iij,1 ≠ Iij,2 . The pro-
cess can be integrated with stuck-at fault detection as 
shown in Algorithm 1, which leads to a 2 × increase in 
complexity as compared to Algorithm 4.2. 

2. Slow/Fast Write Fault: For a memristor with 1-bit reso-
lution, the conductance value that can be stored is two-
valued. The voltages Vset and Vreset are applied across a 
memristor to change its conductance value to high and 
low levels, respectively. The presence of slow/fast write 
faults in the crossbar does not affect the performance for 
1-bit resolution devices; however, for k-bit resolution 
( k > 1 ) there can be some performance degradation. To 
diagnose the slow/fast write affected memristive cells, 
we apply a voltage that is sufficient to change the state 
of memristors by +1 in a row-by-row manner, and ver-
ify whether read operation is successful. If a memristor 
shows different current value than the others, it indicates 
that it is suffering from slow/fast write fault. The pro-
cess is summarized in Algorithm 4.3. If we integrate this 
approach with Algorithm 4.2, the complexity increases 
O(2k)× , where k is the storage resolution of the memris-
tors.

Memristor-based crossbars are prone to various kind of 
failures; however, all of them cannot be detected using VMM 
operations alone. Also some faults such as RDF that occur 
due to the small differences between Vset ( Vreset ) and Vread 
can be minimized by making the difference larger. Other 
faults such as coupling faults result in state change in pairs 
of adjacent cells, and are bidirectional in nature. Detection 
of the faulty cells in this case cannot be done using VMM 
operation, and would require writing of certain patterns on 
the adjacent memory cells that can excite the faulty behavior.

4.4  Effect of Process Variation

It may be noted that the memristors that constitute the cross-
bar are prone to process variations that can in turn affect 
the process of diagnosis and identification of faulty mem-
ristors. One of the common types of process variation is 
device-to-device variation, which describes the variability 
in the switching behaviour of the memristor cells. In this 
section, we analyze the effect of variations in Ron and Roff  

values (up to ±20 %) in the proposed high-level fault detec-
tion approach.

Table 5 shows the currents injected in a column of a 16 × 16 
crossbar, with one cell having SAF and one or more cells hav-
ing variations in Ron/Roff  values. The first column ( FT ) shows 
the type of fault, while the second column shows the current 
( Ii ) flowing in the ith column. It is assumed that one of the 
memristors in column i is faulty, while all others have ideal 
Ron and Roff  values. The second column consists of two parts 
which represent the currents Iiset and Iireset injected in the col-
umn i by applying Vread after Set and Reset operations, respec-
tively. The third column (Varp ) shows which of Ron or Roff  has 
variations. The fourth column (%Var) denotes the % resist-
ance variation ranging from −20 to +20 %. The fifth column 
( Ivar ) shows the injected current by applying Vread in the ith 
column of the crossbar considering a SAF memristor along 
with memristor(s) showing variability. This column consists 
of two parts as Ivarset and Ivarreset which represents read after the 
Set and Reset operations respectively. The last column shows 
the difference between the ideal and the actual current.

For the case with one SAF memristor and no variations, 
the total currents injected after Set and Reset operations are 
499.26� A and 34.18� A (see Fig. 11). For analysis, we com-
pare this case with the currents injected after Set and Reset 
operations, considering one or more memristors having resis-
tive variability.

From Table 5 we observe that if we have a few memristors 
that show variability in their resistance, then the difference 
between Ii and Ivar is very small, and will not cause any error 
in high-level fault detection. The error arises if |Ivar − Ii| is 
greater than the current injected by a single high conductance 
memristor (say, Iread).

From Fig. 11 we can observe that, each fault affects the 
overall injected current by ≈ 33 � A = Iread.

For instance, the bar representing one SAF shows total 
injected current 499.26� A ( 34.18� A) by applying Vread after 
Set (Reset) operations, indicating that there is one SAL (SAH) 
faulty memristor available in that column. Now consider that 
due to variation, if the current injected by Vread after set opera-
tion becomes ≥ 532 � A ≈ 16 × Iread indicating the approach 
will report zero SAL memristor instead of one. Similarly, if the 
current injected by Vread after reset operation becomes ≥ 67 � A 
≈ 2 × Iread indicating that the approach will report two SAHs 
memristor instead of one.

Thus, if |Ivar − Ii| is larger than Iread , then the approach will 
generate an error of ±1 . Similarly, if |Ivar − Ii| is larger than 
n× Iread , then we can have an error of ±n . This can be general-
ized as:

(6)ESAL =|Ivarset − Iiset |∕Iread

(7)ESAH =|Ivarreset − Iireset |∕Iread
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We also observe that a small variation in Ron increases the 
overall current by a substantial amount, but the same is not 
true for small variations in Roff .

In our study, we have analysed the currents for a column 
with one SAF and up to two variable memristors considering 
±20 % resistive variability. A detailed analysis is required to 
understand the effects of process variations in multiple mem-
ristors, which can be taken up as future work.

5  Results and Discussion

In this section, we compare the read/write operations and 
latency required by the proposed work with respect to 
existing methods in the literature.

Let Tset , Treset , and Tread denote the times required to set, 
reset and read a memristor in the crossbar respectively. 
For a n × m crossbar which consist of N memristors, the 
authors in [5] has shown that 2N Reset, 2N Set, and 6N 
Read operations are required to diagnose multiple faults 
in the crossbar. Though their main purpose was to detect 
various types of coupling faults, detection of a single cell 
stuck-at fault requires 2 Reset, 2 Set, and 3 Read opera-
tions. Similarly, in the work reported in [18], diagnosis 
of multiple faults require 2N Reset, 2N Set, and 4N Read 
operations, and single cell SAFs with 2 Reset, 2 Set, and 2 
Read operations. The diagnosis approach proposed in  [5, 
18] dose not support parallel execution of operations and 
thus requires one cycle for each operation.

In [13], the authors proposed a method where the faulty 
columns are identified first followed by a divide-and-con-
quer approach to diagnose the SAL faults first, and then 
the SAH faults. Although the number of cycles required 
has not been reported in the work, we can make a rough 
estimation as follows.

• Before detection of faulty memristors firstly the cross-
bar is Set/Reset, which requires total of N Set and N 
Reset operations. However, all memristors can be Set 
or Reset in a single cycle; thus we need 2 cycles for this 
(1 cycle for Set and 1 cycle for Reset).

• After Set/Reset operation, read operation is performed 
to identify faulty columns. The N read operations 

required can be done in parallel, and thus requires 2 
cycles (1 cycle to read after Set, and 1 cycle to read 
after Reset).

• Based on the region of the fault, crossbar is split using 
divide-and-conquer approach to identify locations of faulty 
memristors; this is performed twice (once to identfy SAL 
and once for SAH memristors). This requires 2N logN read 
operations that can be done with 2N logN cycles.

The method proposed in this paper requires 1 Reset, 1 
Set, and 2 Read operations to detect single cell SAF, and 
1 Reset, 1 Set, and 2N Read operations for detecting SAFs 
in N memristors. However, as all the memristors present in 
a row can be diagnosed in single cycle, we require 2 + 2n 
cycles to perform these operations.

In general, the Set and Reset operations are considered 
as write operation.

Table 6 compares the read/write operations, and also the 
corresponding number of cycles, of the proposed method as 
compared to the works reported in [5, 13, 18].

The table shows that the proposed approach requires 50% 
less write operations as compared to [5, 18], and ≈30% less 
read operations as compared to [5, 13]. In our approach, 
a crossbar write can be done in 2 cycles, and read in 2n 
cycles for an n × m crossbar. The proposed work requires 
O(n) cycles for fault detection, whereas [5, 13, 18] requires 
O((nm)2) cycles. However, the proposed approach incurs the 
additional overhead of one comparator in each column.

If we assume that read and write cycles requires same 
amount of time (say, 1 unit), then latency for   [5, 13] 
and  [18] will be ≈ N logN ((nm) log(nm)), ≈ 7N (7nm) and 
≈ 6N (6nm) respectively. Whereas, latency for the proposed 
work will be ≈ 2n.

The methods proposed in [16, 23, 35, 36, 42] requires 
about 20-50% more computation to compensate performance 
degradation caused by faults, and incur 8-37% energy and 
9-50% area overhead. In contrast, the proposed approach 
trains the crossbar directly if it finds that Fperc ≤ FTh , thereby 
reducing power consumption and time overheads.

6  Conclusion

Resistive RAM crossbars have drawn the attention of 
researchers for neuromorphic computing due to their capa-
bility of low-power VMM operation. SAFs in the crossbar can 
affect the programmability of the memristors and degrade the 
accuracy of VMM operations. For handling performance deg-
radation, the state-of-the-art solutions require additional com-
putation and circuitry and hence consume more power and 
delay. In the crossbar, it is possible that the effects of several 
faults may cancel each other, thus leading to fault tolerance 

Table 6  Comparative study for N ×M crossbar

Parameter Fault Diagnosis Approach

In [13] In [5] In [18] Proposed

Read Operation 2N + N log(N) 3N 2N 2N
Write Operation 2N 4N 4N 2N
Read Cycle 2 + N log(N) 3N 2N 2n
Write Cycle 2 4N 4N 2
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capability. The proposed work analyses the percentage of such 
faults that can be tolerated. We have proposed a fault diagno-
sis approach that analyzes the VMM operation to diagnose 
the faulty crossbar cells, which have linear time complexity in 
terms of the number of rows. Thus overall reduction in delay 
and power can be achieved using this approach.
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