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Abstract
A new operational amplifier (op-amp) model has been proposed using a memristor emulator based on the linear TiO2 drift 
model. Simulation studies and numerical analyses of the new op-amp model designed using memristor are given. Frequency, 
unit, switching and electrical characteristic tests of the proposed op-amp model were performed. The parameter compari-
sons of the traditional op-amp and the proposed op-amp model are given in a detail table. In addition, the efficiency of the 
proposed op-amp model was realized with application circuits, and the reliability of the system was verified with the results.
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1 Introduction

Applications such as digital, analog and control systems 
are becoming increasingly important today due to their effi-
ciency, scalability and reliability. Especially in such inte-
grated application circuits, op-amp integrated models that 
act as amplifiers are critical. In the control applications of 
multi-input and multi-output systems, the basic element 
requirement that will enable the required impulse response 
to give the output response in a short time is created by op-
amps [2, 8, 13, 23, 39, 45].

Parameters such as an op-amp's slew rate, common mode 
suppression ratio (CMRR), input and output offset currents 
and voltages, power consumptions, maximum signal pro-
cessing speeds, switching parameters are critical in digital, 
analog and control applications [2, 6, 10, 12, 13, 17, 20, 
23, 24, 35, 39, 42]. Undesirable increases in these param-
eters and high speed demands can cause voltage and current 
oscillations and even harmonics at the output. At this point, 
we come across the memristor, which is a semiconductor 

element. Due to its self-excited characteristics in a circuit, 
the memristor takes circuit theory one step further. The op-
amp model designed using memristor proposes important 
solutions to the above-mentioned problems [19, 29, 30, 32, 
34, 36, 37, 43, 46]. Especially when looking at the stages 
in the op-amp equivalent internal model, it was understood 
that the use of memristor in the level shift stage makes the 
signal transition between the input and output stages faster. 
Another advantage of the proposed op-amp model over tra-
ditional models was that it significantly increased the rate 
of slew parameter. At this stage, the op-amp layers on which 
the memristor can be placed were examined in detail. Ele-
ment values that can work stably with the memristor in each 
layer were calculated. The advantages of the proposed op-
amp model over the existing models were revealed. Finally, 
the accuracy and applicability of the proposed op-amp 
model has been extensively studied theoretically and sup-
ported by experimental and simulation results. In addition, 
some numerical analyses were carried out with the MAT-
LAB program and contributed to the solutions.

2  Linear Dopant Drift Ti02 Memristor 
Emulator Circuit Model

Chua's first emulator circuit, which exhibited memris-
tive behavior, consisted of many analog elements [7, 
41]. Later, many emulator circuits began to be derived  
and implemented [22, 26–30]. In this study, the lin-
ear dopant drift TiO2 memristor emulator circuit given  
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in Fig. 1 was used. This circuit consists of a differential 
amplifier, an integrator circuit and an analog multiplier.

When an AC voltage is applied between the M+ and 
M− points, the voltage expression on the R3 resistor is 
expressed as in Eq. 1.

vR3(t) = vin enters the differential amplifier circuit and 
creates the output voltage vU1 . The output voltage of the 
differential amplifier is shown in Eq. 2.

In this equation, the memristor load and current are 
multiplied by each other. It can be designed using the 
AD633, an analog multiplier whose voltage is propor-
tional to the product of the memristor charge. The output 
of AD633 is vMULTIPLIER = vU1.vU2∕10 according to the 
statement given in the catalog. If it is applied to the cir-
cuit in Fig. 1, the output voltage of the analog multiplier 
is calculated as in Eq. 3.

(1)vR3 = i(t)R3

(2)vU1 = vin
−R2

R1

= i(t)
−R3R2

R1

This voltage is non-linear due to the point product of the 
memristor load and the current. Another non-linearity of the 
memristor emulator, which does not appear in this equation, 
is due to the diode characteristic. The output voltage of the 
multiplier is added to the VR3 voltage as negative feedback. 
Thus, the expression for the memristor emulator input volt-
age or voltage at AB terminals is shown as in Eq. 4.

Figure 2 shows the hysteresis curve of the memristor emu-
lator circuit at different frequencies. It has been stated that 
as the frequency is increased, the hysteresis curve gradually 
decreases and shows a memristive behavior. In addition, in 
many memristor emulator circuits, the behavior of the mem-
ristor can be changed by changing the values of especially 
capacitive values or other passive circuit elements [9, 16, 26, 

(3)vMULTIPLIER = −

(
R2R3

R1

)2
1

R7C1

q(t)i(t)

(4)vAB = vmem =

(
R3 −

(
R2R3

R1

)2
1

R7C1

q(t)

)
i(t)

Fig. 1  Linear dopant drift Ti02 memristor emulator circuit diagram

Fig. 2  Hysteresis curves of the 
memristor emulator fed with 
sinusoidal voltage at different 
frequencies; a) 8 Hz, b) 9 Hz 
and c) 150 Hz
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29, 31, 33, 40, 44]. This flexibility shows us that the memris-
tor has a working area not only at low frequencies but also at 
higher frequencies.

3  Proposed Op‑Amp Model

In Fig. 3, the op-amp circuit designed using the memris-
tor created in the PSpice program is shown. The memris-
tor emulator is integrated with the op-amp as a subsystem. 
The effects of the memristor emulator placed in the op-amp 
internal circuit on the op-amp's output responses and speci-
fication tests are discussed in this section.

In general, the internal model of an op-amp consists of 5 
basic stage as differential amplifier, bias current mirror, gain, 
level shift and output stage. The responses of the memris-
tor emulator to be placed in the op-amp internal circuit were 
examined one by one at the specified stages and it was deter-
mined that the stage placement that would give the most opti-
mum output response could be placed instead of the R5 resistor 
of the level change stage. Each stage of this proposed op-amp 
model is discussed in detail in the subsections [1, 3, 5, 8].

3.1  Difference Amplifier Stage

The input stage consists of a cascaded differential amplifier 
and a current mirror active load. This creates a transconduct-
ance amplifier that converts a differential voltage signal at 
bases Q1 and Q2 to a current signal at base Q15.

A voltage difference Vin at the op-amp inputs (pins 2 and 
3) causes a small differential current iin ≈ Vin∕

(
2hiehfe

)
 in the 

bases Q1 and Q2 . This differential base current causes a change 
in differential collector current in each leg by iinhfe . When Q1 
is entered into the transconductance of gm = hfe∕hie , if the cur-
rent at the base of Q15 is regulated by Eq. 5;

This current takes Q7 further to conduction, which turns on 
the current mirror Q5∕Q6 . Thus, an increase in emitter current 
Q3 is reflected in an increase in collector current Q6 . Increas-
ing collector currents shunts more from the collector node and 
cause a decrease in base drive current for Q15 [2, 5, 11, 13, 23].

3.2  Gain Stage

The voltage gain stage (class A amplifier) consists of two 
NPN transistors Q15∕Q19 connected in a darlington con-
figuration and uses the output side of the current mirror 
Q12∕Q13 as the collector load to achieve high voltage 
gain.

A current signal of IB15 at the base of Q15 causes a current 
of order IB15�2 ≈ IC19 in Q19 . This current signal creates 
a voltage at the bases Q14∕Q20 of the output transistors 

(5)

Vin = V+ − V−

iin ≈
Vin

2hiehfe
≈ IC11

IB15 =
Vingm

2

Fig. 3  Op-amp circuit designed using memristor
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proportional to the hie of the respective transistor. If we rear-
range Eq. 5 according to the emitter and collector currents of 
transistor Q19 , Eq. 6 is obtained. [2, 5, 11, 13, 23].

3.3  Current Mirror Stage

It determines Q11 and Q12 and the supplied supply voltage 
(resistor connectingVS+ − VS−, (39KΩ) ), the current in cur-
rent mirrors (matched pairs) Q10∕Q11 andQ12∕Q13 . The 
collector current of Q11 is found as in Eq. 7.

The constant current in Q11∕Q12 (as well as Q13 ) will 
be ≈ 1mA . For a typical 741 of about 2mA , a supply cur-
rent dominates the quiescent supply current of these two  
bias currents [2, 5, 11, 13, 23]. In this circuit, if the collector 
current of Q11 , which is obtained by placing a memristor 

imitation circuit instead of 39KΩ , is rearranged using Eq. 4, 
and then Eq. 8 is obtained.

(6)
IE19 ≈ IC19 ≈

Vingm

2
�2

⏟⏞⏟⏞⏟
IB15

(7)IC11x39K = VS+ − VS− − 2VBE,VS = ±20V

(8)

IC11xM(q) = Vmem = VS+ − VS− − 2VBE,VS = ±20V

IC11 =
vmem(

R3 −
(

R2R3

R1

)2
1

R7C1

q(t)

) imem ≈ IC11

3.4  Level Shift Stage

In the circuit containing Q16 , if VBE16 ≈ VR7.5K ≈ 0.7V is 
accepted and voltage divider rule is applied to the base of 
the Q16 transistor, the collector–base voltages of the Q16 
transistor are expressed as in Eq. 9.

From the current differences in the voltage divider resis-
tors of the Q16 transistor, the current value in the base can 
be obtained as in Eq. 10.

Then the output voltage expression can be derived as in 
Eq. 11.

Equation 12 can be obtained by placing the memristor 
current and voltage expressions into Eq. 11 by making use 
of the Eq. 8 expression.

3.5  Output Stage

The output stage is Class AB complementary symmetry 
amplifier. It provides an output with an impedance of 
≈ 50Ω with current gain. Transistor Q16 provides the qui-
escent current for the output transistors and Q17 limits the 
output current.

(9)VCB16 ≈ 0.45V ⇒ VCE16 ≈
||VBE14 − VBE20

|| ≈ 1.0V

(10)IR4.5K − IR7.5K ≈ IB16

(11)
Vout = ||VBE14 − V

BE20
|| + R50ΩIE20 − R25Ω

(
βIB14 − IB17

)

Vout = ||VBE14 − V
BE20

|| + R50ΩIE20 − R25Ω

(
β
(
IC11 − IB16 − IC17

)
− IB17

)

(12)Vout = ��VBE14 − VBE20
�� + R50ΩIE20 − R25Ω

⎛
⎜⎜⎜⎜⎝
β

⎛
⎜⎜⎜⎜⎝

vmem�
R3 −

�
R2R3

R1

�2
1

R7C1

q(t)

� − IB16 − IC17

⎞
⎟⎟⎟⎟⎠
− IB17

⎞⎟⎟⎟⎟⎠

Fig. 4  Slew rate test circuit simulation and experimental setup of op-amp designed using memristor
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4  Experimental Setup

In Fig. 4, the memristor emulator application circuit has 
been made into an integrated and ergonomic structure with 
surface mountable devices (SMD). Then, it was combined 
with op-amp layers for use in analog studies. One of the 
biggest challenges of the op-amp designed using memris-
tor was the choice of transistor. When choosing both NPN 
and PNP transistors, attention was paid to ensure that the 
same catalog values of the same company were identi-
cal. Based on beta values, current–voltage characteristics, 
operating temperature range and the most stable output 
response in the pre-application circuits, BC237 transistor 
was preferred for NPN and BC307 transistor was preferred 

for the identical PNP. The circuits in Figs. 1 and 3 were 
combined into a single structure. Appropriate element 
values were selected according to the analog application 
desired to work with. Some of the crucial points in the 
experimental setup are as follows: using an electrolyte 
capacitor in the memristor emulator and choosing approxi-
mately 100nF allows you to work in a wider frequency 
range. There are different analog multipliers in the market. 
In the literature, the use of analog multiplier chip AD633 
is generally preferred in the memristor emulators for sta-
ble outputs especially for application circuits. Non-static 
protective paint was used on the experimental setup to 
minimize the capacitive effects that may occur due to the 
Miller Effect during the high frequency tests. Making the 

Fig. 5  Bode diagrams of op-amp designed using memristor and traditional op-amp model; a) simulation results and b) experimental result
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proposed op-amp model with 8 connectors (green region) 
makes it more widely used. The red region shows the inner 
layers of the op-amp circuit. The memristor emulator (yel-
low region) was placed in the middle to provide an ergo-
nomic structure with the op-amp.

4.1  Op‑Amp Specification Parameters

In order to reveal the general behavior of an op-amp, its 
response on the specification parameters must be known [2, 
6, 13, 17, 20, 23, 35, 39, 42]. In this section, both simulation 
and application tests of the parameters specified in this sec-
tion were performed. These tests were carried out under nom-
inal test conditions, that is, at ideal temperature and pressure.

Before the op-amp specification parameter tests given 
above were performed on the test circuit given in Fig. 4, 
the proposed op-amp model was subjected to the slew rate 
test. This test was accepted as a prerequisite for the speci-
fied parameters and the predictability of the desired results 
was discussed.

In Fig. 5, the op-amp's gain bandwidth, maximum signal 
frequency and slew rate tests were performed at different 
voltages and frequencies [4, 13, 14, 21, 23, 25]. These tests 
were carried out under nominal conditions by creating a 
simulation environment where the environment temperature, 
pressure and other physical conditions are the most ideal.

The maximum signal frequency at which an op-amp can 
operate depends on both its bandwidth (BW) and the slew 
rate of signal [14, 15, 18, 25, 38, 47]. In the simulation and 

experimental tests performed in Fig. 6, a sinusoidal signal 
such as Vo = Ksin(2�ft) was used. The K and f  values for 
this signal were gradually increased until the output signal 
of the op-amp crossovered. Then input signals from 1 mV to 
10 V and from 10 Hz to 20 MHz and 100 MHz were given to 
traditional op-amp and proposed op-amp models.

When the simulation and application studies of different 
op-amp models were examined in the light of the predicted 
parameters [4, 13–15, 17, 21, 23, 25], it was observed that the 
proposed op-amp improved the regions where the traditional 
op-amp crossovered at high frequency and low voltages. The 
results obtained are comprehensively given in Table 1.

In another test parameter [13, 20, 23, 32] the operating 
point was determined by increasing the proposed op-amp 
input differential voltages under nominal conditions. Then, 
by giving dual (symmetrical) supply voltages, the output 
responses were examined under these conditions. When the 
catalogs of the manufacturers are examined, it is seen that 
the maximum rated tests of the op-amps are performed at 
±18V  source voltage and ±15V  differential input voltage. 
These conditions were created for different op-amp models 
in the simulation environment. In the simulation environ-
ment, the source voltages were increased up to ±22V  . The 
optimum power points are shown in Fig. 7 by connecting 
active and reactive loads on the test circuit.

When the simulation and experimental studies of different 
op-amp models were examined in the light of the predicted 
parameters, it was seen that the proposed op-amp had less 
power consumption compared to the traditional op-amp, 

Fig. 6  The op-amp designed using a memristor and the slew rate 
operating regions of the traditional op-amp model; a) �a741 op-amp 
chip (approximate model), b) �a741 op-amp chip simulation, c) pro-

posed op-amp simulation, d) �a741 op-amp chip (physical model), e) 
�a741 op-amp chip experimental and f) proposed op-amp experimen-
tal
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especially considering the experimental results. The results 
obtained are comprehensively given in Table 2.

In this part, the output switching responses of different 
op-amp models under the same input voltages and under 
the same physical conditions; the rise and fall times were 
measured. First of all, a square signal was given to the input 
at a certain frequency and input voltage, and cut-off and 
turn-on conditions of the op-amps were examined. In Fig. 8, 
the times defined between 10 and 90% of the peak value of 
the input and output signals in both the rise and fall times 
[5, 13, 23] were determined by measuring.

When the simulation and experimental studies of different 
op-amp models were examined in the light of the predicted 
parameters [13, 20, 23], it was observed that the proposed 
op-amp improved the regions where the traditional op-amp 
crossovered at high frequency and low voltages. The results 
obtained are comprehensively given in Table 3.

Input voltage imbalances occurring at the input of the 
op-amp can cause the voltage occurring at the output of 
the op-amp to change. Input unbalance voltage; it depends 
on temperature, open loop gain and unbalance voltage. If 
the relationship between output voltage 

(
VO

)
 and offset 

voltage 
(
VIO

)
 according to the circuit in Fig. 9 is calculated 

according to Eq. 13;

If the equation is solved for the VO offset voltage, the 
voltages for each op-amp are calculated as follows.

(13)VO = AVi = A

(
VIO − VIO

Rin

Rin + Rf

)

21x10−3V ≈ VIO

20kΩ + 1kΩ

1kΩ
→ VIO(ua741 op−amp simulation) ≈ 1mV

2.1x10−3V ≈ VIO
20kΩ + 1kΩ

1kΩ
→ VIO(proposed op−amp simulation) ≈ 100�V

15x10−3V ≈ VIO
20kΩ + 1kΩ

1kΩ
→ VIO(ua741 op−amp experimental) ≈ 714.28�V

IB is the input offset current flowing through the bases of  
the input transistors in bipolar circuits. The value of this cur-
rent depends on the current of the input stage and the gains  
of the input transistors �F . Its typical value is between 10nA 
and 500nA for most BJT operational amplifiers [13, 23, 39]. In  
NPN transistors, since the input current flows from the base 
to the emitter (into the operational amplifier), it is positive, 
and for PNP transistors it is negative. In Fig. 10, the input 
bias currents at the inverting and non-inverting inputs of the 
operational amplifier are shown.

When the output voltage of the op-amp is or is Vo = 0V  , 
the difference of the absolute values of the IB+ and IB− cur-
rents is called the input unbalance current and the IOS current 
is defined as in Eq. 14.

According to this;

In operational amplifiers, when the input signal is the 
same, the operational amplifier should not produce an 
output. However, in practice, a very small output signal 
is produced in response to the common signal. The dif-
ference mode signal gain of the operational amplifier is 
quite large compared to the common mode signal gain. 
In this case, the CMRR value, which is the ratio of the 
difference-mode voltage gain to the common-mode volt-
age gain, is an important parameter [13, 42]. Figure 11 

13.82x10−3V ≈ VIO

20kΩ + 1kΩ

1kΩ
→ VIO(proposed op−amp experimental) ≈ 658.09�V

(14)IOS =
||IB+|| − ||IB−||

IOS(ua741 op−amp simulation) =
||IIB+ − IIB−

|| = |80nA − 60nA| ≈ 20nA

IOS(proposed op−amp simulation) =
||IIB+ − IIB−

|| = |365nA − 364nA| ≈ 1nA

IOS(ua741 op−amp experimental) =
||IIB+ − I

IB−
|| = |5.88nA − 10.94nA| ≈ 5.06nA

IOS(proposed op−amp experimental) =
||IIB+ − I

IB−
|| = |455.2nA − 455.8nA| ≈ 0.6nA

Table 1  Frequency 
characteristic analysis of the 
proposed op-amp and �a741 
op-amp

Frequency characteristic Proposed op-amp �a741 op-amp

Parameter Simulation Experimental Simulation Experimental

Gain bandwidth 4.78MHz 4.06MHz 4.66MHz 3.76MHz

Maximum signal frequency 500KHz∕1V 500KHz∕0.632V 50KHz∕1.6V 100KHz∕1.2V

Slew Rate (SR) 3.1V∕�s 2.95V∕�s 0.51V∕�s 0.7V∕�s

Table 2  Unit characteristic 
analysis of the proposed op-amp 
and �a741 op-amp

Unit characteristic Proposed op-amp �a741 op-amp

Parameter Simulation Experimental Simulation Experimental

Total power  
consumption-P

D

112.5mW 118.1mW 112.5mW 125.2mW
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shows the schematic used to measure the conventional 
CMRR measurement test circuit value. If R2 ≫ R1 ; 
CMRR;

(15)CMRR =
Ad

Ac

=
Vd

Vc

≈
R2

R1

Vs

Vo

CMRR(ua741 op−amp simulation) ≈ 20log
(
100MΩ

1Ω

1mV

24.60

)
≈ 72.18dB

CMRR(proposed op−amp simulation) ≈ 20log
(
100MΩ

1Ω

1mV

13.61

)
≈ 77.32dB

CMRR(ua741 op−amp experimental) ≈ 20log
(
100MΩ

1Ω

1mV

19.38

)
≈ 74.25dB

CMRR(proposed op−amp experimental) ≈ 20log
(
100MΩ

1Ω

1mV

15.23

)
≈ 76.34dB

Fig. 7  Power consumption analysis of the proposed op-amp and traditional op-amp model; a) simulation result and b) experimental result
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Fig. 8  The rise and fall times of the output signals of the traditional op-amp model with the proposed op-amp; a) simulation result and b) experimental result
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When the simulation and experimental studies of differ-
ent op-amp models were examined in the light of the pre-
dicted parameters, it was seen that the proposed op-amp 

had significant improvements in the input offset voltage and 
current, as well as the CMRR value compared to the tradi-
tional op-amp. It has been observed that the input and output 
impedance values of the proposed op-amp model are higher 
than the traditional op-amp model. In particular, it is desir-
able that the input impedance be high. The results obtained 
are comprehensively given in Table 4.

Table 3  Switching 
characteristic analysis of 
proposed op-amp and �a741 
op-amp

Switching  
characteristic

Proposed op-amp �a741 op-amp

Parameter Simulation Experimental Simulation Experimental

t
r

Rise time
420ns 80us 1.6us 60us

t
d

Fall time
290ns 28us 1.6us 32us

Fig. 9  V
IO

 offset voltage test circuit schematic

Fig. 10  Input offset current test 
circuit schematic of inverting 
and non-inverting inputs

Fig. 11  CMRR measuring test circuit schematic
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5  Conclusion

In this study, a detailed comparison between the op-amp 
model designed using memristor and the traditional op-
amp model is presented. When the input unbalance volt-
ages and currents of the proposed op-amp are calculated 
respectively, it is seen that they are smaller than the 
traditional op-amp model. The small unbalance voltage 
and current increase the efficiency of the system. It was 
observed that the CMRR value was higher in the pro-
posed op-amp model. If this value is high, it absorbs in 
the environment noise better and prevents it from being 
transferred to the output. It has been observed that the 
input and output impedance values are partially higher 
than the traditional op-amp in the proposed op-amp model. 
It was seen that these values were not an important crite-
rion in the speed or performance of the op-amp, but made 
a difference in terms of low current. In future studies, in 
order to further reduce the output impedance value, the 
transistors used in the proposed op-amp model should be 
from the same catalog and company, transistors with lower 
base current should be preferred, adding an impedance 
matching circuit to the output layer of the proposed op-
amp model or optimizing the load resistors in the output 
layer can be recommended. In the gain bandwidth test, 
which is one of the frequency parameters, it was observed 
that there was a sharp increase at very low frequencies 
in the traditional op-amp model, and this transition was 
smoother in the proposed op-amp model. In the maximum 
signal frequency determination test, it was observed that 
the operating region of the traditional op-amp model was 
increased. In the simulation studies, it was determined that 
the proposed op-amp model improved the regions where it 
crossovered at high frequency and low voltages compared 
to the traditional op-amp model. While the slew rate of the 
proposed op-amp model was 3.1V∕�s in simulation stud-
ies, it was calculated as 2.95V∕�s in experimental studies 
and 0.51V∕�s and 0.68V∕�s in traditional op-amp model, 

respectively. It was observed that slew rate of the proposed 
op-amp model was higher than that of the traditional op-
amp model. It has been observed that the proposed op-
amp model in the absolute maximum rated test, which is 
one of the unit parameters, works smoothly up to ±22V  at 
source voltages in both simulation and experimental envi-
ronments. As for the total power consumption under these 
conditions, it has been seen that the proposed op-amp 
model consumes approximately the same power as the tra-
ditional op-amp model in simulation studies, but when the 
experimental results are compared, the proposed op-amp 
model consumes approximately %6 less power. Finally, 
when the rise and fall times of both op-amp models are 
examined in the test of the rise/fall times of the output 
signal, which is the switching parameter; it has been seen 
that the op-amp model with the fastest output response 
for use in switching circuits is proposed op-amp model. 
It was determined that the rise and fall times improved 
approximately 4 and 5 times, respectively. In experimen-
tal studies, it has been seen that the response time of the 
proposed op-amp model to the input signal at rise time 
is more advantageous than the traditional op-amp model, 
as in simulation studies. Considering the rise time, it was 
determined that the proposed op-amp model was approxi-
mately %25 slower than the traditional op-amp model, but 
despite this difference in rise time, the response time delay 
of the traditional op-amp model to the reference signal was 
slower than the proposed op-amp model. At the fall time, 
the proposed op-amp model was found to be approximately 
%14 faster than traditional op-amp model. Considering the 
response of the reference in signal on–off states, it was 
determined that the proposed op-amp model was faster, but 
when the rise and fall times were considered, traditional 
op-amp model was more advantageous. Also, the unpre-
dictable parameters of the traditional op-amp model and 
modeling difficulties give an idea of the sensitivity of the 
proposed op-amp. This study presents important param-
eters in terms of preference op-amps according to usage 

Table 4  Electrical characteristic 
analyses of the proposed 
op-amp and �a741 op-amp

Electrical Characteristic Proposed op-amp �a741 op-amp

Parameter Simulation Experimental Simulation Experimental

V
IO

Input offset voltage
100�V 658.09�V 1mV 714.28�V

I
IO

Input offset current
1nA 0.6nA 20nA 5.06nA

CMRR

Common mode rejection ratio
77.32dB 76.34dB 72.18dB 74.25dB

r
i

Input impedance
2.77MΩ 3.51MΩ 2MΩ 2.43MΩ

r
o

Ouput impedance
755Ω 980Ω 110Ω 748Ω
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areas. It is expected that the proposed op-amp model will 
make significant contributions to the analog, digital and 
control circuits to be realized from now on.
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