
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-022-05987-z

Synthesis of Reversible Circuits with Reduced Nearest‑Neighbor Cost
Using Kronecker Functional Decision Diagrams

Dengli Bu1,2 · Junjie Yan1 · Pengjie Tang2 · Haohao Yuan1

Received: 13 October 2021 / Accepted: 16 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Motivated by the importance of fault tolerance in quantum computing, there has been renewed interest in quantum circuits
that are realized with Clifford+T gates. Quantum computers that are based on ion-trap technology, superconducting, and
quantum dots need to fulfill certain nearest-neighbor (NN) constraints. Fault-tolerant implementations of quantum circuits
also require restricted interactions among neighboring quantum bits. The insertion of SWAP-gates is often deployed to make
quantum circuits nearest-neighbor (NN) compliant. As quantum operations are prone to various errors, it is important to
reduce the nearest-neighbor cost (NNC) which is a marker to the number of SWAP-gates needed to make a quantum circuit
NN-compliant. Such an optimization problem arises while synthesizing reversible circuits using the Kronecker functional
decision diagram (KFDD). In this work, we propose a method based on KFDD that reduces NNC during synthesis. Consid-
ering the Clifford+T quantum mapping for NOT, CNOT, and Toffoli (NCT) gates, and mixed-polarity Peres (MPP) gates,
NNC metrics are defined for reversible circuits. Governed by NNC metrics, the nodes are then ranked for reducing NNC in
resulting reversible circuits. Furthermore, local transformations are applied on node functions while mapping a node to a
cascade of reversible gates. Experimental results on several benchmark functions reveal that the proposed synthesis technique
reduces NNC in many cases while slightly impacting the number of qubits, T-depth, and T-count. Compared to prior methods
based on functional decision diagrams or binary decision diagrams, the proposed synthesis technique reduces quantum cost
for NCV-realizations (i.e., with NOT, CNOT, V, and V † gates) in most of the cases.

Keywords Quantum computing · Fault tolerance · Nearest neighbor cost · Reversible circuit · Logic synthesis · Kronecker
functional decision diagram

1 Introduction

With the shrinking of transistor size according to Moore’s
law, the ongoing miniaturization of integrated circuits will
reach soon its limits [2, 5, 28]. Shrinking transistor sizes
has become one of the major barriers in the development
of circuits to provide an exponential increase of computing
power [5, 28]. As a new computation paradigm, quantum

computing, which performs computation using properties
of quantum mechanics and processes information in terms
of quantum bits (or, for short, qubits) instead of just classi-
cal bits, provides a promising alternative to further satisfy
the needs for more computational power [2, 5, 16]. It has
been shown that a quantum computer could efficiently solve
certain problems (e.g., database search, integer factorization,
graph problems) which have no efficient solution on a clas-
sical computer [2, 5, 16, 18, 26].

In recent years, the physical realizations of quantum com-
puters have received significant attention [4]. Companies,
such as IBM, Intel, Google, and Microsoft had started devel-
opments toward the realization of actual quantum computers
for practical purposes [4]. Moreover, IBM, Intel, and Google
have all announced their quantum devices with around 50-70
qubits [12]. Motivated by this, the synthesis of quantum cir-
cuits has become an active research area [2, 4, 5, 9, 12, 18].
As quantum logic synthesis is a complex and challenging

Responsible Editor: B. B. Bhattacharya

 * Dengli Bu
 dengli.bu@vip.163.com

1 School of Electrical, Electronic and Computer Science,
Guangxi University of Science and Technology,
Liuzhou 545006, Guangxi, China

2 School of Electronics and Information Engineering,
Jinggangshan University, Ji’an 343009, Jiangxi, China

/ Published online: 25 March 2022

Journal of Electronic Testing (2022) 38:39–62

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-05987-z&domain=pdf

1 3

problem, Boolean functions, which constitute a major com-
ponent in many quantum algorithms (e.g., the Oracle func-
tion in the Deutsch Algorithm or Grover’s database search
as well as the modular exponentiation in Shor’s factorization
algorithm), are usually treated separately using a two-step
approach [2, 17, 18, 26]. First, a reversible circuit is designed
for the desired Boolean function using established reversible
gate libraries [23, 29]. Then, the resulting reversible circuit
is mapped into a functionally equivalent quantum circuit by
decomposing reversible gates into elementary quantum gates
[4, 17, 18]. Accordingly, how to efficiently realize reversible
circuits has received significant interest [4, 29].

There have been several functional and structural synthe-
sis methods for reversible circuits proposed [29]. Such as
transformation based synthesis methods [15], the positive-
polarity Reed-Muller expansion based synthesis method [8],
the one-pass synthesis method using a quantum multiple-
valued decision diagram to represent the function matrix
for improving the limited scalability of functional synthesis
methods [29], exclusive-sum-of-products expansion based
synthesis methods [7], as well as hierarchical synthesis
methods including lookup-table networks based [21] or deci-
sion diagrams (DD) based synthesis methods [1, 3, 23, 24].
Although functional methods outperform others in terms of
the cost of the synthesized circuits, they are limited to small
functions [1, 29]. Consequently, structural or hierarchical
synthesis methods which can offer satisfactory scalability
have gained more attractions.

DD-based methods are intended for the synthesis of func-
tions with a large number of variables [23, 24]. Compared
to other structural methods, although DD-based methods
incurs a large number of ancilla qubits, they can achieve low
quantum cost, and thus can reduce the cost that makes the
quantum realizations fault tolerant [14, 21]. Furthermore,
for reducing the number of qubits required for the revers-
ible circuits generated from DDs, techniques including using
Davio decompositions [22], applying local transformations
on the function represented by a node [3], as well as sorting
the ordering of nodes to be mapped by using dependency
matrices to express dependencies between nodes [23] or by
using genetic algorithm [1] had been proposed.

The decoherence of quantum states while quantum
systems interact with environment will result in error and
consequent failure of computation, as a result, quantum cir-
cuits need to be fault-tolerant in a practical implementation
[14, 16]. Because the gates can be implemented in a fault-
tolerant way, and the fault-tolerant implementations of the
gates are known for most technologies that are considered
promising for large-scale quantum computing, there has
been renewed interest in using Clifford+T library to realize
quantum circuits [2, 21, 29]. Quantum computers that are
based on ion-trap technology, superconducting, and quan-
tum dots need to fulfill certain physical constraints [4, 5, 26,

27]. Fault-tolerant implementations of quantum circuits also
require restricted interactions among neighboring quantum
bits [4, 14]. While realizing a given quantum functionality to
a given quantum architecture, in order to achieve high fidel-
ity, the so-called nearest-neighbor (NN) constraints imposed
by lattice models, which require that quantum operations
can be performed only between adjacent qubits [5, 26, 27],
or the coupling constraints imposed by IBM quantum archi-
tectures, which are also called CNOT-constraints and allow
quantum operations applied only between certain pairs of
qubits on the coupling graph [4], must be complied with.

Usually, to realize reversible circuits to a quantum archi-
tecture, gate decomposition is first performed to decompose
reversible gates in the circuit into quantum gates from a par-
ticular gate library, and then, qubit placement or qubit map-
ping is conducted to convert the resulting quantum circuits
to satisfy the NN-constraints or coupling constraints at the
quantum circuit level [4, 5, 9, 10, 12, 19, 27]. However,
by combining gate decomposition and qubit mapping, NN-
constraints or coupling constraints can also be addressed at
the reversible logic level by defining proper cost metrics for
the nearest-neighbor cost (NNC) [11, 26], designing nearest-
neighbor templates [19], or computing the optimal combina-
tion of SWAPs and templates [17].

Different from the binary decision diagram (BDD) or the
functional decision diagram (FDD) which are built by carry-
ing out only Shannon decompositions or Davio decomposi-
tions over the variables of a function, the Kronecker FDD
(KFDD) is built by applying Shannon and Davio decompo-
sitions over the variables. The KFDD as a generalization of
the BDD and the FDD always will be more compact than
the two [6]. Hence, the reversible circuits synthesized using
the KFDD are potentially better than which synthesized
using the BDD or the FDD. While synthesizing revers-
ible circuits using the KFDD, although how to reduce the
quantum cost and the number of qubits has been extensively
researched, the restricted interactions between quibts are
rarely considered.

In this work, we focus on the NN-constraints. By using
gates from the Clifford+T library which are also supported
by IBM quantum architectures [4] to realize reversible cir-
cuits, we attempt to handle the NN-constraints at the revers-
ible logic level while synthesizing reversible circuits from
the KFDD using NOT, CNOT, Toffoli and mixed-polarity
Peres (MPP) gates. A common way to make a quantum cir-
cuit nearest-neighbor (NN) compliant is to apply SWAP-
gates for quantum gates over non-adjacent qubits [5, 10, 19].
The insertion of SWAP-gates increases the total number of
quantum gates, and thus affects the operational reliability
of quantum circuits [4, 9]. Therefore, it is necessary to keep
the NNC, which is a marker to the number of SWAP-gates
needed to make a quantum circuit NN-compliant, as low as
possible.

40 Journal of Electronic Testing (2022) 38:39–62

1 3

The main contributions of this work are listed as follows.

1) The NN-constraints are handled at the reversible logic
level while synthesizing reversible circuits using the
KFDD. It is an attempt to combine reversible logic syn-
thesis, gate decomposition, and qubit mapping in one
synthesis flow.

2) The Clifford+T quantum mappings of different MPP
gates are presented.

3) NNC metrics for the reversible logic level are defined
by considering the Clifford+T quantum mapping for the
Toffoli and MPP gates.

4) Strategies guided by NNC metrics are presented to rank
the ordering of nodes to be mapped for reducing the
NNC while synthesizing reversible circuits using the
KFDD.

The rest of this paper is structured as follows: Section 2
first briefly introduces reversible and quantum circuits, and
then presents the Clifford+T quantum mappings of MPP
gates and the NNC metrics defined for the NOT, CNOT,
Toffoli, and MPP gates. Section 3 describes the KFDD and
dependency matrices. In Sect. 4, the mapping of nodes by
node dependency and by using local transformations are first
introduced to keep the paper self-contained, and then, the
synthesis of reversible circuits using the KFDD by com-
bining the dependency matrix and local transformations is
described, at last, the proposed synthesis method is detailed.
Finally, the obtained experimental results are summarized in
Sect. 5 while the paper is concluded in Sect. 6.

2 Reversible and Quantum Circuits

A reversible gate realizes a reversible function. A revers-
ible circuit is a cascade of reversible gates without fanout
or feedback [28].

In this work, graphic forms are adopted to illustrate a
reversible gate or circuit, also a quantum gate or circuit. In
the graphic form of a gate or circuit, the horizontal lines are
called circuit lines, or, for short, lines. The symbols located
on the left of a line indicate the input of the line. Whereas
the symbols located on the right of a line indicate the output
of the line.

Figure 1 presents the graphic illustrations of the NOT,
CNOT and Toffoli gates which compose the NCT library
[2]. The symbol ‘ ⊕ ’ in Fig. 1 represents the exclusive-or
operation.

For evaluating the quality of reversible circuits, the
number of lines (or, for short, #lines) and quantum cost
which depends on the quantum gate library used while
realizing reversible circuits are often taken into account.
A frequently used quantum gate library is the NCV library

which is composed of the NOT, CNOT, V, and V † gates [2].
Because the gates can be implemented in a fault-tolerant
way and are supported by IBM quantum architectures,
there has been renewed interest in using Clifford+T library
to realize quantum circuits [2, 4, 21, 29].

When the NCV library is used, the quantum cost of a
circuit is usually measured by NCV-cost. The NCV-cost
of a reversible gate is equal to the number of elementary
quantum operations required to implement its functional-
ity [13]. Both the NOT gate and the CNOT gate have an
NCV-cost of 1 [2]. The NCV-cost of the Toffoli gate is 5
[2]. For a reversible circuit, the NCV-cost is the cumula-
tive NCV-cost sum of the reversible gates in the circuit.

When the Clifford+T library is used, the quantum cost of
a circuit is often measured by T-count and also by T-depth
[2, 21, 29]. This is due to the high cost of fault tolerant
implementations of the T gate, exceeding the cost of Clifford
group gates (CNOT, H, S gates) by as much as a factor of a
hundred or more [18]. The T-count of a circuit is the total
number of T and T † gates in the circuit. Whereas the T-depth
of a circuit is the number of T or T † gates that have to be
processed sequentially [2]. In addition, since quantum opera-
tions are prone to various errors, the number of quantum
gates (or, for short, #QG) in the circuit is also an important
cost metric for evaluating a quantum circuit [4, 9].

Figure 2 graphically illustrates the mixed-polarity
Peres (MPP) gates. Using MPP gates to synthesize reversible
circuits helps reduce the quantum cost [3]. The NCV-cost

(a) (b) (c)

Fig. 1 NCT gate library: (a) NOT gate, (b) CNOT gate, (c) Toffoli
gate

(a) (b)

(c) (d)

Fig. 2 MPP gate library: (a) Peres gate, (b) Peres gate with the first
control negated, (c) inverse Peres gate, (d) or-Peres gate

41Journal of Electronic Testing (2022) 38:39–62

1 3

of MPP gates are all 4 [3]. In the graphic forms of NCT or
MPP gates as presented in Fig. 1 or Fig. 2, the lines on which
symbols ‘ ∙ ’, ‘ ◦ ’, ‘ ▴ ’, ‘ ▵ ’, or ‘ ◻ ’ are located are considered
as control lines. They take A or B as the input. The line on
which the symbol ‘ ⊕ ’ is located is the target line. It takes
C as the input.

According to the Clifford+T quantum mappings of Tof-
foli gates with different polarities [2], by using equiva-
lence and permutation, the Clifford+T quantum mappings
of different MPP gates can be derived. Figure 3 presents
the Clifford+T quantum mappings of different MPP gates.
To keep the paper self-contained, Fig. 3(e) presents the
Clifford+T quantum mapping of the Toffoli gate [2]. As
can be seen from Fig. 3, the T-count and the T-depth of the
Toffoli and MPP gates are 7 and 3, respectively. The #QG
of the Peres gate, Peres gate with the first control negated,
and inverse Peres gate are all 15. Whereas, the #QG of the
or-Peres gate and Toffoli gate are both 16.

For making a quantum circuit NN-compliant, a com-
mon way is to apply SWAP-gates for two-qubit quantum
gates over non-adjacent qubits [5, 10, 19]. Accordingly, for
evaluating the effort to convert a quantum gate or quantum
circuit to be NN-compliant, the NNC metrics for a quantum
gate or quantum circuit which are defined as the number of
SWAP-gates applied are proposed [10, 11]. The NNC of a

quantum gate can directly be determined by considering the
distance between the control line and the target line [11, 19].
Obviously, single-qubit quantum gates (e.g., the NOT, T, or
H gates) have an NNC of 0.

By considering NCV quantum mapping for multiple-
control Toffoli gates, Kole et al. [11] proposed NNC metrics
for the reversible logic level. In this work, by considering the
Clifford+T quantum mapping for NCT and MPP gates, the
NNC metrics for NCT and MPP gates for the reversible logic
level are defined.

Assuming a numerical encoding of the circuit lines from
the topmost line to the undermost line. For the CNOT, Tof-
foli, or MPP gates presented in Fig. 1 or Fig. 2, and the
Clifford+T quantum mappings of the Toffoli gate and dif-
ferent MPP gates presented in Fig. 3, suppose that the lines
taking A, B, or C as the input are numerically encoded by
LA , LB , and LC , respectively. In the following, those lines are
called line LA , line LB , and line LC , respectively.

In this work, NCT and MPP gates are used to synthesize
reversible circuits from the KFDD. That is, the reversible
circuits are composed of NOT, CNOT, Toffoli, and MPP
gates. To realize a reversible circuit using gates from the
Clifford+T library, a NOT or CNOT gate in the reversible
circuit is directly mapped to a NOT or CNOT gate, without
the need to be decomposed. Whereas, the Toffoli and MPP
gates in the reversible circuit need to be mapped or decom-
posed into the quantum gate cascades as shown in Fig. 3. If
the Clifford+T quantum mappings presented in Fig. 3 are
considered as templates, the mapping or decomposition of
a Toffoli or an MPP gate is to substitute the reversible gate
by the corresponding template. Single-qubit quantum gates
have an NNC of 0. Thus, for making the resulting quantum
circuits NN-compliant, only whether those CNOT gates are
NN-compliant needs to be considered.

It is usually assumed that two SWAP-gates are required
in order to decrease the distance between the control and
the target line of a two-qubit gate by one (one SWAP-gate
for moving the control and the target line together, another
to restore the original order) [11, 19]. Considering the first
CNOT gate presented in Fig. 3(a) as an example. When the
CNOT gate is not NN-compliant (i.e., |LA − LB| > 1), firstly,
|LA − LB| − 1 SWAP-gates are inserted in front of the CNOT
gate for moving the control and the target line of the CNOT
gate being next to each other, and then, |LA − LB| − 1 SWAP-
gates are inserted behind the CNOT gate for restoring the
original order of lines.

Example 1 Figure 4 presents a trivial circuit with 4 lines
and a CNOT gate which takes line LA as the control line and
line LB as the target line, as well as the transformed circuit
which satisfies the NN-constraints. Assuming that LA = 1
and LB = 4.

(a)

(b)

(c)

(d)

(e)

Fig. 3 Clifford+T quantum mappings of different MPP gates and
the Toffoli gate: (a) Peres gate, (b) Peres gate with the first control
negated, (c) inverse Peres gate, (d) or-Peres gate, (e) Toffoli gate

42 Journal of Electronic Testing (2022) 38:39–62

1 3

Known that |LA − LB| = 3 . Then for converting the CNOT
gate presented in Fig. 4(a) to be NN-compliant, 2 SWAP-
gates are successively inserted in front of the CNOT gate
to make the control and the target line of the CNOT gate
adjacent. After the CNOT operation has been performed,
2 SWAP-gates are successively inserted behind the CNOT
gate to restore the original order of lines. Consequently,
2(|LA − LB| − 1) = 4 SWAP-gates are inserted in the circuit,
the transformed circuit presented in Fig. 4(b) is resulted.

As can be seen from Fig. 3(a), the Clifford+T quantum
mapping of a Peres gate has 6 CNOT gates. To convert
those CNOT gates to be NN-compliant, 4(|LA − LB| − 1) ,
4(|LA − LC| − 1) , and 4(|LB − LC| − 1) SWAP-gates are
required for the two CNOT gates applied between line
LA and line LB , the two CNOT gates applied between
line LC and line LA , and the two CNOT gates applied
between line LB and line LC , respectively. Consequently,
to convert the Clifford+T quantum mapping of a Peres
gate as shown in Fig. 3(a) to be NN-compliant, a total of
4(|LA − LB| − 1) + 4(|LB − LC| − 1) + 4(|LA − LC| − 1)
SWAP-gates are needed. In a similar way, the number of
SWAP-gates needed to make the Clifford+T quantum map-
pings of a Toffoli gate, a Peres gate with the first control
negated, an inverse Peres gate, or an or-Peres gate as shown
in Fig. 3 to be NN-compliant can be derived.

In conclusion, by the CNOT gate presented in Fig. 1(b)
as well as the Clifford+T quantum mappings presented in
Fig. 3, the NNC of the CNOT, Toffoli, and MPP gates can
be evaluated using the equations as follows.

By using the above equations, the NNC of a circuit can be
evaluated at the reversible logic level. The T-count, #QG,

(1)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

NNC(CNOT) = 2(�LA − LC� − 1)

NNC(TOF) = 4(�LA − LC� − 1)

+ 4(�LB − LC� − 1)

+ 6(�LA − LB� − 1)

NNC(MPP) = 4(�LA − LC� − 1)

+ 4(�LB − LC� − 1)

+ 4(�LA − LB� − 1)

or NNC of a reversible circuit is the cumulative sum of the
T-count, #QG, or NNC of the reversible gates in the circuit,
respectively. Similarly, the T-depth of a reversible circuit is
estimated as the cumulative sum of the T-depth of the revers-
ible gates in the circuit.

The insertion of SWAP-gates affects the operational relia-
bility of quantum circuits [9]. Thus, it is important to reduce
the NNC which is a marker to the number of SWAP-gates
needed to make a quantum circuit NN-compliant. By using
the NNC metrics in Eq. (1), the NNC can be reduced (i.e.,
the NN-constraints can be handled) at the reversible logic
level while synthesizing a reversible circuit. Therefore, it is
possible to combine reversible logic synthesis, gate decom-
position, and qubit mapping in one synthesis flow.

At the quantum circuit level, a SWAP-gate is usually real-
ized using 3 CNOT gates [12] as shown in Fig. 5. Therefore,
known the NNC of a circuit, the number of quantum gates
needed to convert the quantum circuit to be NN-compliant
is 3 times of the NNC.

3 KFDD and Dependency Matrices

3.1 KFDD

Let f ∶ Bn
→ B be a totally defined Boolean function and

X = {x1, x2,⋯ , xn} be the corresponding set of primary vari-
ables. The function f can be decomposed over the primary
variable set X using the following well-known decomposi-
tion types [20].

where fx̄i and fxi denote the cofactors of f with respect to
xi = 0 and xi = 1 respectively, ⊕ is the exclusive-OR
operation.

Definition 1 A KFDD for the function f is a rooted DAG
G = (V ,E) with node set V and edge set E.

A KFDD for the function f is built by carrying out
Shannon decomposition, positive or negative Davio

(2)

⎧
⎪
⎨
⎪
⎩

f = x̄ifx̄i ⊕ xifxi Shannon

f = fx̄i ⊕ xi(fx̄i ⊕ fxi) PositiveDavio

f = fxi ⊕ x̄i(fx̄i ⊕ fxi) NegativeDavio

(a) (b)

Fig. 4 SWAP insertion: (a) the original circuit, (b) the transformed
circuit

Fig. 5 Quantum realization of the SWAP-gate

43Journal of Electronic Testing (2022) 38:39–62

1 3

decompositions as shown in Eq. (2) over X, with one type
of decomposition per primary variable. An inner node in
the KFDD is labeled with one of the primary variables and
has exactly two successors, the low and the high successors.
The terminal nodes of a KFDD indicate constant 0 or 1 and
have no successors. The primary variable that labels an inner
node vi ∈ V is denoted as var(vi) (var(vi) ∈ X). The level at
which node vi is positioned in the KFDD is denoted as lev(vi)
(lev(vi) ≥ 1). The root of the KFDD is positioned at the top
level, the terminal 0 or 1 nodes are positioned at the (n + 1)

-th level. If node vj ∈ V is one of the descendants of node vi
(i.e., vi is a paraent node of vj), lev(vj) > lev(vi) . Since vari-
able xj ∈ X labels all of the nodes positioned at one level in
the KFDD, the level at which xj is positioned in the KFDD
is denoted as lev(xj).

In this work, the conventions for a KFDD presented in [6]
are complied with. Only the edge from node vi to its high
successor (i.e., this edge takes node vi and its high successor
as the tail and the head, respectively) can be a complemented
edge, and only the terminal 1 node is used in a KFDD. The
terminal 0 node is represented by a terminal 1 node pointed
to by a complemented edge.

Suppose the low and high successors of node vi are nodes
vj and vk , respectively. Then the following definitions are
presented.

Definition 2 The function represented by node vi , which
is denoted by fvi , can be derived by the following equa-
tions depending on the decomposition type of the variable
xl = var(vi).

where fvj and fvk are the functions represented by nodes vj
and vk , respectively. If the edge from node vi to node vk is a
complemented edge, the function fvk in above equations is
complemented.

Definition 3 For an inner node vi , if the function fvi can be
expressed as fvi = var(vi)⊕ g or fvi = var(vi)⊕ g , where the
function g is independent of variable var(vi) , then vi is called
a linear node.

Fig. 6 presents sub-graphs for linear nodes in the KFDD.
Note that in Fig. 6, a dashed (solid) edge having node vi as a
tail means an edge from node vi to the low (high) successor
of vi . A white dot on a solid edge means that the edge is a
complemented edge.

⎧
⎪
⎨
⎪
⎩

fvi = x̄lfvj ⊕ xlfvk Shannon

fvi = fvj ⊕ xlfvk PositiveDavio

fvi = fvj ⊕ x̄lfvk NegativeDavio

As shown in Fig. 6, if vi is a linear node, by Definition 2
and Definition 3, it is known that its high successor (node vk)
must be the terminal 1 node and the edge from node vi to the
terminal 1 node must not be a complemented edge when the
decomposition type of variable var(vi) is a Davio decompo-
sition, or there is vj = vk and the edge from node vi to node vk
must be a complemented edge when the decomposition type
of variable var(vi) is a Shannon decomposition.

Variable nodes defined in the following are special kinds
of linear nodes.

Definition 4 For a linear node vi , if vj is the terminal 1 node,
vi is called a variable node, due to the fact that fvi = var(vi)
or fvi = var(vi).

FDDs are special kinds of the KFDD [6]. An FDD for the
function f is built by carrying out positive or negative Davio
decompositions as shown in Eq. (2) over X, with one type
of decomposition per primary variable.

3.2 Dependency Between Nodes and Dependency
Matrices

Due to the sharing of nodes in FDDs or KFDDs, while map-
ping a node to a cascade of reversible gates (or, for sim-
plicity, a reversible gate cascade or reversible cascade),
an ancilla line is generally added to the circuit to store the
result of the node function. In order to reduce the number
of circuit lines required for the resulting circuits by reus-
ing ancilla lines, Stojković et al. [23] proposed dependency
between nodes in FDDs for ranking the ordering of nodes
to be mapped and dependency matrices for expressing
the dependency between nodes. In this work, dependency
between nodes and dependency matrices are generalized to
KFDDs.

For inner nodes vi , vj , and vk in a KFDD, suppose that
node vk is a successor of both node vi and node vj . Then the
definitions of dependency between nodes are presented in
the following.

(a) (b)

Fig. 6 Sub-graphs for linear nodes. The decomposition type of varia-
ble var(vi) is a: (a) Davio decomposition, (b) Shannon decomposition

44 Journal of Electronic Testing (2022) 38:39–62

1 3

Definition 5 Nodes vi and vj are strongly dependent on node
vk.

Definition 6 When the decomposition type of variable
var(vi) is a Davio decomposition and node vk is the low
successor of node vi , or the decomposition type of variable
var(vi) is a Shannon decomposition and vi is a linear node.
If the decomposition type of variable var(vj) is a Davio
decomposition and node vk is the high successor of vj , or the
decomposition type of variable var(vj) is a Shannon decom-
position and vj is not a linear node, then node vi is weakly
dependent on node vj.

Figure 7 presents sub-graphs in which node vi weakly
depends on node vj . According to Definitions 5 and 6, if
node vi strongly or weakly depends on node vj , it is called
that node vi depends on node vj . Otherwise, it is called that
node vi does not depend on node vj , or node vi is independ-
ent of node vj.

Suppose there are w inner nodes in a KFDD which consti-
tute a set V = {vi|1 ≤ i ≤ w} . Then for using a dependency
matrix to express the dependency between those w nodes,
V is mapped onto the set J = {j|1 ≤ j ≤ w} . In other words,
every node in V is encoded by one and only one integer in
the set J and every integer in the set J corresponds to one
and only one node in V. Suppose that node vi is encoded
by j ∈ J which is also the row index or column index of
the dependency matrix. Then in the dependency matrix, the
j-th row and the j-th column are both correlated to node
vi . The j-th row indicates that node vi strongly or weakly
depends on which nodes. Whereas the j-th column indicates
which nodes weakly or strongly depend on node vi . In the

following, in the context of dependency matrices, node j or
Node(j) is referred to as the node which is encoded by the
integer j ∈ J . For a KFDD, suppose that wl is the number of
nodes positioned at level l in the KFDD and w is the number
of inner nodes in the KFDD. Then based on Definitions 5
and 6, the dependency matrix [23] is generalized to express
the dependency between nodes in the KFDD as follows.

Definition 7 The level dependency matrix (LDM) with
respect to the l-th level in the KFDD is a wl × wl matrix,
whose element dij is set to 1 when node i weakly depends
on node j, or set to 0 when node i is independent of node j.

Definition 8 The diagram dependency matrix (DDM) for
the KFDD is a w × w matrix, whose element dij is set to 2
when node i strongly depends on node j, set to 1 when node
i weakly depends on node j, or set to 0 when node i is inde-
pendent of node j.

In a dependency matrix, if all of the elements of the i-th
row have an value of 0, the row is called a zero row. The i-th
row being a zero row implies that the mapping conditions
for node i are satisfied. That is, node i can be mapped to a
cascade of reversible gates.

4 Synthesis of Reversible Circuits With
Reduced NNC Using the KFDD

4.1 Mapping Nodes By Node Dependency

For inner nodes vi and vj in a KFDD, when node vi strongly
depends on node vj , node vi has to be mapped after node vj
[23]. Strong dependency between nodes assures the func-
tional equivalence of the resulting reversible circuit to the
original function by applying strong constraint on the order-
ing of nodes to be mapped. When node vi weakly depends on
node vj , node vi is preferred to be mapped after node vj [23].
Weak dependency aims at reusing ancilla lines by applying
weak constraint on the ordering of nodes to be mapped.

Example 2 presented in the following is used to dem-
onstrate the mapping of nodes by node dependency. Note
that, if a node has been mapped into a reversible cascade, it
is called a mapped node. Otherwise, it is called a node not
mapped.

Example 2 Figure 8 presents a sub-graph for nodes v1 and
v2 which is extracted from a KFDD and reversible cascades
mapped for nodes v1 and v2 by using different ordering of
nodes to be mapped. Following the conventions presented in
Sect. 2, in Fig. 8(b) and (c), the symbols located on the left
of a line indicate the input of the line, whereas the symbols
located on the right of a line indicate the output of the line.

(a) (b)

(c) (d)

Fig. 7 Sub-graphs in which node vi weakly depends on node vj : (a)
the decomposition types of var(vi) and var(vj) are both Davio decom-
positions, (b) the decomposition types of var(vi) and var(vj) are Davio
and Shannon decompositions, respectively, and node vj is not a linear
node, (c) the decomposition types of var(vi) and var(vj) are Shannon
and Davio decompositions, respectively, (d) the decomposition types
of var(vi) and var(vj) are both Shannon decompositions and node vj is
not a linear node

45Journal of Electronic Testing (2022) 38:39–62

1 3

In addition, the reversible cascade indicated by symbol ‘ vi ’
(1 ≤ i ≤ 2) is the mapping result for node vi . For the sake of
the simplicity of description, suppose that Lv3 , Lv4 , and Lv5
indicate the numerical encoding of the lines taking fv3 , fv4 ,
and fv5 as the input, respectively. Then the lines taking fv3 ,
fv4 , and fv5 as the input are called line Lv3 , line Lv4 , and line
Lv5 , respectively.

The sub graph presented in Fig. 8(a) consists of 5 nodes
which are all inner nodes in the complete KFDD. Assum-
ing that var(v1) = var(v2) = x1 , and the decomposition type
of x1 is a positive Davio decomposition. Moreover, in the
complete KFDD, there is not any other node which takes
node v5 as a successor excepting node v2 , and there is not
any other node which takes node v4 as a successor excepting
nodes v1 and v2.

Known by Definitions 5 and 6, node v1 strongly depends
on nodes v3 and v4 , node v2 strongly depends on nodes v4 and
v5 , and node v1 weakly depends on node v2 . According to
Definition 2, there are fv1 = fv4 ⊕ x1fv3 and fv2 = fv5 ⊕ x1fv4.

Node v1 strongly depends on nodes v3 and v4 . Thus, nodes
v3 and v4 should be mapped before node v1 . Similarly, nodes
v4 and v5 should be mapped before node v2 . Here, we focus
on the effect of mapping nodes by weak dependency. That
is, we focus on the ordering of nodes v1 and v2 to be mapped.

Assuming that nodes v3 , v4 , and v5 have been mapped into
reversible cascades (which are not presented in Fig. 8(b) and
(c)), and lines Lv3 , Lv4 , and Lv5 have been used to store the
results of the functions fv3 , fv4 , and fv5 , respectively. Next,
the impact of the ordering of nodes v1 and v2 to be mapped
on the number of required lines is demonstrated.

If node v1 is mapped before node v2 , by the expressions
of the functions fv1 and fv2 , the reversible cascade as shown
in Fig. 8(b) is constructed. When mapping node v1 , because
node v4 has another parent node not mapped (i.e., node v2),
line Lv4 can not be reused to store the result of fv1 . An ancilla
line with the initial value of 0 needs to be first added to the
circuit, and then, the function h1 = x1fv3 ⊕ 0 is synthesized
to a Peres gate and a CNOT gate as shown in Fig. 8(b). The
CNOT gate (the first CNOT gate presented in Fig. 8(b)) is
used to recover the value on line Lv3 , becuase there may
be other nodes not mapped in the complete KFDD which
take v3 as a successor in addition to node v1 . After that,
the function fv1 = fv4 ⊕ h1 is synthesized to a CNOT gate
(the second CNOT gate presented in Fig. 8(b)) and the
added ancilla line is used to store the result of function fv1
as shown in Fig. 8(b). Node v4 has two parent nodes (i.e.,
the nodes v1 and v2) in the complete KFDD, but node v1
is a mapped node when mapping node v2 . Hence, while
mapping node v2 , there is not any other node not mapped
which takes node v4 as a successor excepting node v2 . Mean-
while, there is not any other node in the complete KFDD
which takes node v5 as a successor excepting node v2 . Con-
sequently, the function fv2 = x1fv4 ⊕ fv5 is synthesized to a
Peres gate by reusing line Lv5 to store the result of function
fv2 . Note that, the output of line Lv4 becomes a garbage out-
put indicated by the symbol ‘ g ’. The reversible cascade pre-
sented in Fig. 8(b) is composed of 2 Peres gates, 2 CNOT
gates, and 5 lines.

However, since node v1 weakly depends on node v2 , node
v1 is preferred to be mapped after node v2 . Therefore, by
weak dependency, node v2 is first mapped, and then node v1 .
While mapping node v2 , because there is not any other node
in the complete KFDD which takes node v5 as a successor
excepting node v2 , the function fv2 = x1fv4 ⊕ fv5 is synthe-
sized to a Peres gate and a CNOT gate by reusing line Lv5 to
store the result of function fv2 . Node v4 has two parent nodes
(i.e., the nodes v1 and v2) in the complete KFDD, but node
v2 is a mapped node when mapping node v1 . Hence, while
mapping node v1 , there is not any other node not mapped in
the complete KFDD which takes v4 as a successor except-
ing node v1 . As a result, fv1 = x1fv3 ⊕ fv4 is synthesized to a
Peres gate and a CNOT gate by reusing line Lv4 to store the
result of function fv1 . The reversible cascade as shown in
Fig. 8(c) is constructed. This reversible cascade is composed
of 2 Peres gates, 2 CNOT gates, and 4 lines.

As can be seen from above, mapping nodes by weak
dependency, excepting that line Lv5 is reused to store the
result of function fv2 while mapping node v2 , line Lv4 is also
reused to store the result of function fv1 while mapping node
v1 , no extra ancilla lines need to be added to the circuit. As
a result, the number of required lines is reduced.

(a)

(b) (c)

Fig. 8 Sub-graph for nodes v1 and v2 as well as the constructed revers-
ible cascades by using different ordering of nodes v1 and v2 to be
mapped: (a) the sub graph for nodes v1 and v2 , (b) node v1 is mapped
before node v2 , (c) node v2 is mapped before node v1

46 Journal of Electronic Testing (2022) 38:39–62

1 3

4.2 Mapping Nodes By Applying Local
Transformations

While mapping a node, Bu and Wang [3] had detailed that
which type of local transformations can be applied on the
node function and the conditions to be satisfied for applying
the local transformations, as well as the reversible cascades
constructed for the node by applying different local trans-
formations on the node function in their paper. More details
about local transformations are referred to Ref. [3]. How-
ever, to keep the paper self-contained, Example 3 presented
in the following is used to demonstrate the construction of a
reversible cascade by applying local transformations on the
node function while mapping a node.

Example 3 Figure 9 presents the sub-graph for node v1
and the reversible cascades mapped for v1 . Suppose that
var(v1) = x1 and the decomposition type of x1 is a Shannon
decomposition. In addition, nodes v2 and v3 are both inner
nodes in the complete KFDD, and have been mapped into
reversible cascades (which are not presented in Fig. 9) by
using lines taking fv2 and fv3 as the input to store the results
of function fv2 and function fv3 , respectively, as shown in
Fig. 9(b)-(f).

Known from Definition 2, fv1 = x̄1fv2 ⊕ x1fv3 , which is the
original form of the expression of function fv1 . When map-
ping node v1 by this expression of function fv1 , an ancilla
line with the initial value of 0 is first appended to the circuit.
And then, the functions h1 = x1fv3 ⊕ 0 and fv1 = x̄1fv2 ⊕ h1
are successively synthesized to reversible gates as shown in
Fig. 9(b). The function h1 is realized using a Toffoli gate.
Whereas, the function fv1 = x̄1fv2 ⊕ h1 is realized using a
Peres gate with the first control negated and a CNOT gate.
Note that, the CNOT gate is used to recover the value on the
line taking fv2 as the input. The #lines, T-depth, T-count, and

#QG of the reversible cascade presented in Fig. 9(b) are 4,
6, 14, and 32, respectively.

However, by applying local transformations on function
fv1 , the expression fv1 = x1(fv2 ⊕ fv3)⊕ fv2 can be derived.
Node v1 can be mapped into different reversible cascades by
further applying local transformations on function fv1 as the
four cases described in the following.

 (i) Case I. When nodes v2 and v3 both have other parent
nodes not mapped in the complete KFDD in addition
to node v1 , by successively synthesizing the func-
tions h2 = fv2 ⊕ fv3 , h3 = x1h2 ⊕ 0 , fv1 = fv2 ⊕ h3 ,
and fv3 = fv2 ⊕ h2 , the reversible cascade as shown
in Fig. 9(c) is constructed. An ancilla line with the
initial value of 0 is added to the circuit when synthe-
sizing the function h3 and is used to store the result
of function fv1 when synthesizing fv1 = fv2 ⊕ h3 . The
#lines, T-depth, T-count, and #QG of the reversible
cascade presented in Fig. 9(c) are 4, 3, 7, and 19,
respectively.

 (ii) Case II. When node v2 has other parent nodes
not mapped in the complete KFDD in addition to
node v1 , but node v3 does not have any other parent
node not mapped excepting node v1 , node v1 can be
mapped in a similar way as the above case. However,
while mapping node v1 in this case, node v3 does not
have any other parent node not mapped excepting
node v1 . Hence, a Peres gate instead of a Toffoli gate
is used to realize the function h3 , and the last function
fv3 = fv2 ⊕ h2 , which is used to recover the value on
the line taking fv3 as the input, does not need to be
realized. As a result, the output of the line taking fv3
as the input becomes a garbage output indicated by
the symbol ‘ g ’. The constructed reversible cascade is
presented in Fig. 9(d). The #lines, T-depth, T-count,
and #QG of this reversible cascade are 4, 3, 7, and
17, respectively.

 (iii) Case III. When node v3 has other parent nodes not
mapped in the complete KFDD in addition to node v1 ,
but node v2 does not have any other parent node not
mapped excepting node v1 , by successively synthe-
sizing the functions h4 = fv2 ⊕ 0 , h2 = fv3 ⊕ fv2 , and
fv1 = x1h2 ⊕ h4 , the reversible cascade as shown in
Fig. 9(e) is constructed. An ancilla line with the ini-
tial value of 0 is appended to the circuit when synthe-
sizing the function h4 and is used to store the result
of function fv1 when synthesizing fv1 = x1h2 ⊕ h4 .
Moreover, the output of the line taking fv2 as the
input becomes a garbage output indicated by the
symbol ‘ g ’. The #lines, T-depth, T-count, and #QG
of the reversible cascade presented in Fig. 9(e) are 4,
3, 7, and 17, respectively.

(a) (b)

(d) (e) (f)

(c)

Fig. 9 Sub-graph for node v1 and reversible cascades mapped for v1 :
(a) the sub graph for node v1 , (b) reversible cascade constructed by
using the original form of the expression of function fv1 , (c) Case I,
(d) Case II, (e) Case III, (f) Case IV

47Journal of Electronic Testing (2022) 38:39–62

1 3

 (iv) Case IV. When neither of nodes v2 and v3 have
any other parent node not mapped in the complete
KFDD excepting node v1 , by successively synthesiz-
ing the functions h2 = fv2 ⊕ fv3 and fv1 = x1h2 ⊕ fv2 ,
the reversible cascade as shown in Fig. 9(f) is con-
structed. Note that, when synthesizing the func-
tion fv1 = x1h2 ⊕ fv2 , the line taking fv2 as the input
is reused to store the result of function fv1 . Hence,
no ancilla line is added for mapping node v1 in this
case. Moreover, the output of the line taking fv3 as
the input becomes a garbage output indicated by the
symbol ‘ g ’. The #lines, T-depth, T-count, and #QG
of the reversible cascade presented in Fig. 9(f) are 3,
3, 7, and 16, respectively.

Known from Example 3 in the above and the descrip-
tions of local transformations presented in Ref. [3], when
synthesizing reversible circuits using the KFDD by mapping
a node into a reversible cascade, applying local transforma-
tions on the node function helps reduce the quantum cost
of the resulting circuit, even helps reduce the number of
required lines by reusing ancilla lines. Nevertheless, due to
the sharing of a node in the KFDD (i.e., a node may have
more than one parent node in the KFDD), there are different
types of local transformations which can be applied on the
node function. In fact, while mapping a node, the type of
local transformations applied on the node function depends
on the ordering of the node to be mapped [3].

4.3 Reversible Circuit Synthesis By Combining
the Dependency Matrix and Local
Transformations

Performing local transformations on the node function when
mapping a node into a reversible cascade helps reduce the
quantum cost, even the number of lines of reversible circuits
synthesized using the KFDD [3]. On the other hand, the
ordering of nodes in a KFDD to be mapped influences the
number of lines, T-count, T-depth, and NNC of the circuit
synthesized using the KFDD. Consequently, combining the
dependency matrix and local transformations for synthesiz-
ing reversible circuits using the KFDD helps improve the
quality of the resulting circuits.

For a node vi , there are different types of local transfor-
mations which can be applied on function fvi [3]. Neverthe-
less, the type of local transformations applied on function
fvi can be determined only after the ordering of node vi to
be mapped has been determined [3]. Consequently, in this
work, the dependency matrix and local transformations are
combined in a two-step way. Firstly, the ordering of nodes
to be mapped is ranked by using dependency matrices. And
then, local transformations are applied on the node func-
tion while mapping a node into a reversible cascade [3].

However, dependency matrices only apply constraint on the
ordering of nodes to be mapped which have dependencies
between each other. The ordering of nodes to be mapped
which do not depend on each other also influences the qual-
ity of the resulting circuit.

Example 4 Figure 10 presents a KFDD for an exemplar
function with 3 inputs and 3 outputs as well as the circuit
synthesized by using the DDM for that KFDD. Whereas,
Fig. 11 presents two other reversible circuits synthesized
from the KFDD presented in Fig. 10(a).

In the KFDD presented in Fig. 10(a), the variable labeling
those nodes positioned at one level is placed on the left. The
decomposition types of variables x1 , x3 , and x2 are positive
Davio decomposition, Shannon decomposition, and negative
Davio decomposition, respectively.

According to the KFDD presented in Fig. 10(a) as well as
the definitions of dependency between nodes and diagram
dependency matrix, the DDM for the KFDD is created as
follows.

(a)

(b)

Fig. 10 The KFDD and reversible circuit for an exemplar function:
(a) the KFDD, (b) the reversible circuit

48 Journal of Electronic Testing (2022) 38:39–62

1 3

By the above DDM, according to ‘ Algorithm 3 ’ in Ref. [23],
the ordering of nodes to be mapped is determined as (v1 ,
v2 , v5 , v4 , v3 , v7 , v6) , the reversible circuit presented in
Fig. 10(b) is generated by applying local transformations
on the node function while mapping a node into a reversible
gate cascade [3]. The number of lines, T-count, T-depth, and
NNC of that circuit is 6, 35, 15, and 92, respectively. Note
that the symbols ‘1’ or ‘0’ located on the left of a circuit line
imply that the initial value of the circuit line is 1 or 0. The
symbol ‘ g ’ located on the right of a circuit line indicates
that the output of the circuit line is a garbage output [2].
The reversible gate cascade indicated by symbol ‘ vi ’ is the
mapping result for node vi.

On the other hand, according to the definitions of weak
dependency between nodes and level dependency matrix,
the LDMs for the KFDD presented in Fig. 10(a) are created
as follows.

By the above LDMs, according to ‘ Algorithm 2 ’ in Ref.
[23], the ordering of nodes to be mapped is determined as
(v1, v2, v4, v3, v5, v7, v6) , the reversible circuit presented in
Fig. 11(a) is resulted by applying local transformations on
the node function while mapping a node into a reversible
gate cascade [3]. The number of lines, T-count, T-depth,
and NNC of the circuit is 6, 35, 15, and 64, respectively.
Compared to the circuit presented in Fig. 10(b), the NNC of
the circuit presented in Fig. 11(a) is reduced by 28.

Nodes v5 , v6 , and v7 positioned at level lev(x1) in the
KFDD presented in Fig. 10(a) do not depend on each other.
When mapping nodes in a BFS manner, in other words, level
by level from the bottom to the top level, the ordering of the
nodes v5 , v6 , and v7 to be mapped does not impact the func-
tionality of the resulting circuit, but may influence the qual-
ity of the resulting circuit. If those three nodes are mapped
in order of (v7, v5, v6) , a reversible circuit with the NNC of 56
as shown in Fig. 11(b) can be obtained. Compared to the cir-
cuit presented in Fig. 11(a), the NNC is further reduced by 8.

Note that, the symbols Lx2 , Lx3 , Lv2 , Lv4 , Lx1 , and Lv7 pre-
sented in Fig. 11(b) indicate the numerical encoding of the
circuit lines from the topmost line to the undermost line
(e.g., Lx2 indicates the numerical encoding of the line taking
x2 as the input). They will be used in Example 5 presented
in Sect. 4.4.2 to describe the construction of the circuit pre-
sented in Fig. 11(b).

4.4 Synthesis of Reversible Circuits With Reduced
NNC

From Example 4 presented in Sect. 4.3, it can be seen that
the ordering of nodes in a KFDD to be mapped influences
the NNC of the resulting circuit. Since NN-constraints
require the control and the target line of a reversible gate to
be adjacent, it is necessary to reduce the distance between
the control and the target line of a reversible gate for reduc-
ing the NNC of reversible circuits.

Ranking the ordering of nodes to be mapped for reducing
the NNC is a combinational optimization problem. Many
discrete optimization algorithms (e.g., integer programming,
genetic algorithm, etc.) can be used to solve this problem.
However, in this work, a method by using strategies guided
by NNC metrics is proposed for solving this problem. In the
following, the strategies for ranking the ordering of nodes
to be mapped are first elaborated. And then, the reversible
circuit synthesis method is presented.

4.4.1 Strategies for Ranking the Ordering of Nodes to Be
Mapped

For an inner node vi , suppose that var(vi) = xl , and the
low and high successors of node vi are inner nodes vj

(a)

(b)

Fig. 11 Other reversible circuits synthesized for the exemplar
function by using different ordering of nodes to be mapped: (a)
(v1, v2, v4, v3, v5, v7, v6) , (b) (v1, v2, v4, v3, v7, v5, v6)

49Journal of Electronic Testing (2022) 38:39–62

1 3

and vk , respectively. Although local transformations will
be applied on function fvi while mapping node vi into a
reversible cascade. However, as mentioned in Sect. 4.2,
due to the sharing of node vi in the KFDD, the type of
local transformations applied on function fvi can not be
determined before the ordering of node vi to be mapped
has been determined. Consequently, in order to be able to
provide directive rules for ranking the ordering of nodes
to be mapped, the reversible cascades mapped for node vi
by using the original form of the expression of function fvi
are discussed in the following.

Figure 12 presents the reversible cascades mapped
for node vi by using the original form of the expression
of function fvi when the decomposition type of variable
xl is a Shannon or positive Davio decomposition. When
the decomposition type of variable xl is a negative Davio
decomposition, the reversible cascade mapped for node vi
is similar to the reversible cascade presented in Fig. 12(b).

For the sake of description, assuming that symbols Lvi ,
Lvj , Lvk , and Lxl indicate the numerical encoding of the lines
presented in Fig. 12 which take 0, fvj , fvk , and xl as the
input, respectively. In the following, those lines are called
line Lvi , line Lvj , line Lvk , and line Lxl , respectively.

Lines Lvj , Lvk , and Lvi are used to store the results of
functions fvj , fvk , and fvi , and paired with nodes vj , vk , and
vi , respectively. Line Lxl is used to trace the value of vari-
able xl before it is reused to store the result of a node func-
tion. Since nodes vj and vk are mapped before node vi , and
line Lxl is added to the circuit while the first node posi-
tioned at level lev(xl) in the KFDD is mapped. There are
Lvi > Lvj , Lvi > Lvk , Lxl > Lvj , Lxl > Lvk , and Lvi > Lxl.

Let NNC(vi) indicate the NNC of the reversible cas-
cade mapped for node vi . For simplicity, NNC(vi) is
also referred to as the NNC for node vi . By Eq. (1) and
Fig. 12(a), the following approximate equations can be
derived if the decomposition type of variable xl is a Shan-
non decomposition.

When the decomposition type of variable xl is a Davio
decomposition, there is fvi = fvj ⊕ x̃lfvk , where x̃l ∈ {xl, x̄l} .
Then by Eq. (1) and Fig. 12(b), the following approximate
equations can be derived.

Guided by the NNC metrics as shown in Eqs. (3) and (4),
the strategies for ranking the ordering of nodes to be mapped
are described in the following.

Above all, as can be seen from Fig. 12 and Eqs. (3) and
(4), for reducing the NNC of the reversible cascade mapped
for node vi , line Lvi should be near to lines Lvj and Lvk .
Because lev(vj) = lev(vk) and lev(vi) = lev(vj) − 1 in many
cases, mapping nodes level by level in a BFS manner helps
reduce the NNC compared to mapping nodes in a DFS man-
ner. Consequently, it is better to use LDM rather than DDM
to rank the ordering of nodes to be mapped.

Secondly, the weak dependency between nodes posi-
tioned at level lev(xl) in the KFDD is common when the
decomposition type of variable xl is a Davio decomposition.
The ordering of those nodes to be mapped is determined by
using LDM [23].

However, when the decomposition type of variable xl
is a Shannon decomposition, only a linear node is weakly
dependent on other nodes positioned at level lev(xl) which
are not linear nodes. In other words, most of those nodes
positioned at level lev(xl) do not depend on each other
according to the definitions of dependency presented in
Sect. 3.2, the ordering of those nodes to be mapped can not
be determined by using LDM. Accordingly, for reducing
the NNC of the resulting circuit, when the decomposi-
tion type of variable xl is a Shannon decomposition, the

(3)

NNC(vi) =NNC(TOF) + NNC(MPP)

+ NNC(CNOT)

=6(Lxl − Lvk − 1) + 4(Lvi − Lxl − 1)

+ 4(Lvi − Lvk − 1) + 6(Lxl − Lvj − 1)

+ 4(Lvi − Lxl − 1) + 4(Lvi − Lvj − 1)

∝ 4Lxl + 16Lvi − 10(Lvj + Lvk)

∝ 2Lxl + 8Lvi − 5(Lvj + Lvk)

=2(Lxl − Lvi) + 5(Lvi − Lvj)

+ 5(Lvi − Lvk)

(4)

NNC(vi) =NNC(TOF) + NNC(CNOT)

=6(Lxl − Lvk − 1) + 4(Lvi − Lxl − 1)

+ 4(Lvi − Lvk − 1) + 2(Lvi − Lvj − 1)

∝2Lxl + 10Lvi − 2(Lvj + 5Lvk)

∝Lxl + 5Lvi − (Lvj + 5Lvk)

=Lxl + 5(Lvi − Lvk) − Lvj

(a) (b)

Fig. 12 Reversible gate cascades mapped for node vi labeled with
variable xl . The decomposition type of variable xl is a: (a) Shannon
decomposition, (b) positive Davio decomposition

50 Journal of Electronic Testing (2022) 38:39–62

1 3

ordering of nodes positioned at level lev(xl) to be mapped
should be cautiously considered. For ranking the order-
ing of those nodes to be mapped, a look-ahead strategy is
adopted. That is, the impact of the ordering of nodes posi-
tioned at level lev(xl) to be mapped on the NNC for nodes
positioned at level lev(xl) − 1 is considered. Suppose that
variable xt is positioned at level lev(xl) − 1 in the KFDD.
Then the look-ahead strategy is as follows.

 (i) When the decomposition type of variable xt is a
Davio decomposition, known from Eq. (4), the
weight of Lvk with respect to the NNC for nodes posi-
tioned at level lev(xt) in the KFDD is larger than that
of Lvj . That is, the larger the value of Lvi − Lvk is, the
NNC of the reversible cascades mapped for nodes
positioned at level lev(xt) in the KFDD is also larger.
For reducing the NNC, at first, every node vi posi-
tioned at level lev(xl) is assigned a weight which is
indicated by wtvi and computed as the number of
nodes that take vi as the high successor. And then,
nodes positioned at level lev(xl) are sorted by the
value of wtvi in ascending order. Doing that helps
reduce the value of the component 5(Lvi − Lvk) in Eq.
(4), and thus the NNC.

 (ii) When the decomposition type of variable xt is a
Shannon decomposition, known from Eq. (3), the
weight of Lvk with respect to the NNC for nodes posi-
tioned at level lev(xt) in the KFDD is the same as that
of Lvj . As a result, the ordering of nodes positioned
at level lev(xl) is left unchanged.

Once more, while mapping nodes positioned at level
lev(xl) by using LDM(lev(xl)) , there may be more than one
row in LDM(lev(xl)) being zero row. In other words, the
mapping conditions for more than one node are satisfied.
The ordering of those nodes to be mapped also influences
the NNC of the resulting circuit. In that case, one of those
nodes is selected to be first mapped by using the best map-
ping node selecting strategy described as follows. Suppose
the nodes whose mapping conditions are satisfied consti-
tute a set denoted by S.

 (i) When the decomposition type of variable xl is a
Shannon decomposition, from Eq. (3), it is known
that the weight of Lvk with respect to the NNC is the
same as that of Lvj . To reduce the NNC, for a node
vi ∈ S with the non-terminal low successor vj and the
non-terminal high successor vk , the number of nodes

that take node vj or node vk as a successor and are
positioned at level lev(xl) is first counted and indi-
cated by wsvi . Then the node for which the value of
wsvi is the largest is selected from the set S as the
node to be first mapped. The reason for doing that is
to reduce the component 5(Lvi − Lvj) and the compo-
nent 5(Lvi − Lvk) in Eq. (3).

 (ii) When the decomposition type of variable xl is a Davio
decomposition, by Eq. (4), it is known that the weight of
Lvk with respect to the NNC is larger than that of Lvj . Sup-
pose the index of the first zero row in LDM(lev(xl)) is r,
the low successor of node r is node vj , and nodes in the
set S which take node vj as the low successor constitute a
set indicated by N. If there is not any other node not
mapped which takes node vj as the low successor except-
ing nodes in N, then the node vi ∈ N with the high suc-
cessor vk for which the paired line Lvk has the largest
numerical value is greedily selected from the set N as the
node to be first mapped. Otherwise, node r is selected as
the node to be first mapped.

Lastly, for nodes positioned at level lev(xl) which take node vj
as the low successor when the decomposition type of variable
xl is a Davio decomposition, or for linear nodes positioned at
level lev(xl) which take node vj as a successor when the decom-
position type of variable xl is a Shannon decomposition, the
last node to be mapped can reuse line Lvj to store the result of
the function represented by this node [3, 23]. For reducing
the NNC as well as the number of required lines, if there is a
variable node positioned at level lev(xl) , the variable node is
selected as the last node to be mapped for using line Lxl to store
the result of the function represented by it. Otherwise, the last
linear node in the set of nodes that are positioned at level
lev(xl) is selected as the last node to be mapped.

Note that, always selecting a linear node (e.g., linear node
vi which takes node vj as the low successor) as the last node to
be mapped may help reduce the the number of CNOT gates in
some cases [3]. However, doing that will increase the NNC.
Because node vi can be mapped only after all the other nodes
positioned at level lev(xl) have been mapped, the distance
between line Lvj and line Lxl will be increased.

4.4.2 The Proposed Synthesis Method

Following the strategies described in Sect. 4.4.1, the KFDD
based method of synthesizing reversible circuits with reduced
NNC is presented as Algorithm 1 in the following.

51Journal of Electronic Testing (2022) 38:39–62

1 3

In Step 7 of Algorithm 1, ‘DT’ implies decomposition
type, ‘SD’ and ‘DD’ indicate Shannon and Davio decompo-
sition, respectively. In Step 8, the implication of wtvi has been
described in Sect. 4.4.1. In Step 11, in a level dependency
matrix LDM(l), if there is a row which does not have an ele-
ment with the value of −1 , ‘HasValidRow(LDM(l))’ returns
true, otherwise it returns false. In Step 12, ‘GetAllZero-
Rows’ returns the indices of the zero rows in LDM(l) which

constitute a set R. In Step 14, ‘GetMaxColumn’ returns the
index of the column in LDM(l) which does not have an ele-
ment with the value of −1 and has a maximal number of
non-zero elements [23]. In Step 18, the mapping technique by
performing local transformations on node functions and by
using NCT and MPP gates proposed in Ref. [3] is used. In
Step 19, the elements of the j-th column in LDM(l) take
the value 0 [23]. In Step 20, the value of the element djj in
LDM(l) is set to −1 [23]. In Step 22, the strategy proposed
in Ref. [3] is used.

Subsequently, the KFDD presented in Fig. 10(a) is con-
sidered as a running example for demonstrating Algorithm
1. Remember that, the symbols Lx2 , Lx3 , Lv2 , Lv4 , Lx1 , and Lv7
presented in Fig. 11(b) indicate the numerical encoding of
the circuit lines from the topmost line to the undermost line.

Example 5 The nodes of the KFDD presented in Fig. 10(a)
are partitioned into 3 levels. As can be seen from Fig. 10(a),
lev(x2) = 3 , lev(x3) = 2 , and lev(x1) = 1 . From level 3 to level
1, the nodes will be mapped into reversible cascades for
generating a reversible circuit.

1) Map nodes positioned at level 3. The decomposition
type of x2 is a negative Davio decomposition. Node v1 is
positioned at level 3. That is, V = {v1} . A line encoded
by Lx2 = 1 (the topmost horizontal line in the circuit pre-
sented in 11(b) which takes x2 as the input) is added to
the circuit in Step 4. Because node v1 is a variable node,
it is selected as the last node to be mapped in Step 5.
That is, u = v1 . Because V = V�{u} = ∅ , the algorithm
goes to Step 22. Since fv1 = x2 , there is no need to add
any gate in this round.

2) Map nodes positioned at level 2. The decomposition
type of x3 is a Shannon decomposition. Nodes v2 , v3 ,
and v4 are positioned at level 2. That is, V = {v2, v3, v4} .
A line encoded by Lx3 = 2 (the second horizontal line
in the circuit presented in Fig. 11(b) which takes x3
as the input) is added to the circuit in Step 4. Since
fv3 = x3 ⊕ fv1 , node v3 is a linear node. Because node v3
is the only linear or variable node positioned at level 2, it
is selected as the last node to be mapped in Step 5. That
is, u = v3 . After that, V = {v2, v4} . Because DT(x3) = SD
and DT(x1) = DD , nodes in V are sorted by the value
of wtvi in ascending order in Step 8. Since wtv2 = 0 and
wtv4 = 2 , V = {v2, v4} is resulted. In Step 10, the LDM
for level 2 is created as follows

 In Step 12, there are R = {1, 2} , Node(1) = v2 , and
Node(2) = v4 . Node v2 has the non-terminal high suc-
cessor v1 . Whereas node v4 has the non-terminal low

52 Journal of Electronic Testing (2022) 38:39–62

1 3

successor v1 . Because there are two nodes (i.e., nodes
v2 and v4) in the set V which take node v1 as a succes-
sor, wsv2 = 2 and wsv4 = 2 . Consequently, v2 is selected
as Node(j) in Step 16 by using the best mapping node
selecting strategy. In Step 18, known that fv2 = 1⊕ x3 f̄v1 ,
an ancilla line encoded by Lv2 = 3 (the third horizontal
line in the circuit presented in Fig. 11(b)) which has the
initial value of 1 is first added to the circuit, and then
node v2 is mapped into the reversible cascade indicated
by the symbol ‘ v2 ’ as shown in Fig. 11(b). The revers-
ible cascade is composed of an inverse Peres gate and a
CNOT gate. The inverse Peres gate realizes function fv2 .
The CNOT gate is used to recover the value on line Lx2 ,
because node v1 has two parent nodes not mapped (i.e.,
nodes v3 and v4). Thereafter, LDM(2) becomes

 The algorithm goes to Step 11. Because R = {2} and
fv4 = x̄3fv1 , an ancilla line encoded by Lv4 = 4 (the fourth
horizontal line in the circuit presented in Fig. 11(b))
which has the initial value of 0 is first added to the cir-
cuit, and then node v4 is mapped into the reversible cas-
cade indicated by the symbol ‘ v4 ’ as shown in Fig. 11(b).
The reversible cascade is composed of a Peres gate with
the first control negated and a CNOT gate. The Peres
gate with the first control negated realizes function fv4 .
The CNOT gate is used to recover the value on line Lx2 ,
because node v1 has one parent node not mapped (i.e.,
node v3). In Step 22, known that fv3 = x3 ⊕ fv1 , node v3
is mapped into a CNOT gate using line Lx3 as the target
line which is indicated by the symbol ‘ v3 ’ as shown in
Fig. 11(b).

3) Map nodes positioned at level 1. The decomposition
type of x1 is a positive Davio decomposition. Node v5 , v7 ,
and v6 are positioned at level 1. That is, V = {v5, v7, v6} .
A line encoded by Lx1 = 5 (the fifth horizontal line in
the circuit presented in Fig. 11(b) which takes x1 as the
input) is added to the circuit in Step 4. Known from
Fig. 10(a), there is not a linear or variable node in V.
Furthermore, the decomposition type of x1 is a positive
Davio decomposition. Subsequently, the algorithm goes
to Step 10, the LDM for level 1 is created as follows

 In Step 12, there are R = {1, 2, 3} , Node(1) = v5 ,
Node(2) = v7 , and Node(3) = v6 . The index of the first
zero row in LDM(1) is 1. As can be seen from Fig. 10(a),
nodes v5 and v7 share the low successor v2 . That is,

N = {v5, v7} . The high successors of nodes v5 and v7 are
nodes v1 and v4 , respectively. In addition, there is not
any other node not mapped which takes v2 as the low
successor excepting nodes in N, and there is Lv4 > Lv1
where Lv1 = Lx2 . Thus, by the best mapping node select-
ing strategy, node v7 is greedily selected as the node
to be first mapped in Step 16. In Step 18, known that
fv7 = fv2 ⊕ x1 f̄v4 , an ancilla line encoded by Lv7 = 6
(the sixth horizontal line in the circuit presented in
Fig. 11(b)) which has the initial value of 0 is first added
to the circuit, and then node v7 is mapped into the revers-
ible cascade indicated by the symbol ‘ v7 ’ as shown in
Fig. 11(b). The reversible cascade is composed of an
inverse Peres gate and two CNOT gates. The inverse
Peres gate realizes the function h1 = x1 f̄v4 ⊕ 0 . The first
CNOT gate is used to recover the value on line Lv4 . The
second CNOT gate realizes the function fv7 = fv2 ⊕ h1 .
Thereafter, LDM(1) becomes

 Subsequently, according to the functions fv5 = x1fv1 ⊕ fv2
and fv6 = x1fv4 ⊕ fv3 , nodes v5 and v6 are both mapped
into a Peres gate indicated by the symbol ‘ v5 ’ and
the symbol ‘ v6 ’ as shown in Fig. 11(b), respectively.
Because neither of nodes v2 and v3 have parent nodes
not mapped, line Lv2 and line Lx3 are reused to store the
results of functions fv5 and fv6 , respectively. In addition,
since neither of nodes v1 and v4 have parent nodes not
mapped, the values on line Lx2 and line Lv4 do not need
to be recovered, and the outputs of line Lx2 and line Lv4
become garbage outputs indicated by the symbol ‘ g’.

4) Add a NOT gate for every root node of G which has an
incoming complemented edge. Since all the nodes in the
KFDD presented in Fig. 10(a) have been mapped into
reversible cascades, the algorithm goes to Step 24. The
KFDD presented in Fig. 10(a) has 3 root nodes which
are nodes v5 , v6 , and v7 . As can be seen from Fig. 10(a),
nodes v5 and v6 both have incoming complemented
edges. Consequently, two NOT gates are added on lines
Lv2 and Lx3 , respectively. Thereafter, the circuit is gener-
ated completely, the algorithm terminates.

According to the circuit presented in Fig. 11(b), by Eq. (1),
the NNC of the reversible gate cascade mapped for every
node can be computed as follows.

NNC(v1) = 0 , NNC(v2) = 4 , NNC(v4) = 12 , NNC(v3) = 0 ,
NNC(v7) = 8 , NNC(v5) = 20 , and NNC(v6) = 12.

The NNC of the circuit presented in Fig. 11(b) is 56 which
is the cumulative sum of the NNC of the reversible gate
cascades in the circuit. In addition, the circuit is composed

53Journal of Electronic Testing (2022) 38:39–62

1 3

of 5 MPP gates, 5 CNOT gates, and 2 NOT gates. Conse-
quently, the T-count of the circuit is 5 × 7 = 35 , which is the
cumulative sum of the T-count of the 5 MPP gates. Whereas
the T-depth of the circuit is estimated as 5 × 3 = 15 , which
is the cumulative sum of the T-depth of the 5 MPP gates.
Since the MPP gates all consist of 15 quantum gates except-
ing the or-Peres gate, the number of quantum gates of the
circuit presented in Fig. 11(b) before SWAP insertion is
#QG = 5 × 15 + 5 + 2 = 82 . Let #QG_A indicate the num-
ber of quantum gates of a circuit after SWAP insertion. Then
there is #QG_A = #QG + 3 × NNC = 82 + 3 × 56 = 250 for
the circuit presented in Fig. 11(b).

The costs of the circuits presented Fig. 10(b) and Fig. 11
are summarized in Table 1. As can be seen from Table 1,
the circuit as shown in Fig. 11(b) which is achieved with
Algorithm 1 has lower NNC and lower #QG_A compared
to two other circuits as shown in Fig. 10(b) and Fig. 11(a).

5 Experimental Evaluations

Algorithm 1 has been implemented in C++ on the top of Revkit
[30]. With regard to the KFDD data structure, the PUMA pack-
age [6] has been used. The experimental evaluations have been
carried out on an Intel Core i7-10700 Processor with 32 GB of
main memory running Ubuntu 16.04 64bit OS.

5.1 Evaluating the Effect of the Proposed Method
On NNC

For reducing the NNC, the proposed synthesis method uses
strategies governed by NNC metrics to rank the ordering
of nodes in the KFDD to be mapped. In order to evaluate
the effect of the proposed method on the NNC of the syn-
thesized reversible circuits, two other algorithms named
by FDD+DDM and KFDD+DDM have been designed.
FDD+DDM synthesizes a reversible circuit from an
FDD and uses the DDM to rank the ordering of nodes in
the FDD to be mapped as described in Ref. [23]. Simi-
larly, KFDD+DDM synthesizes a reversible circuit from
a KFDD and also uses the DDM to rank the ordering of
nodes in the KFDD to be mapped as described in Ref. [23].
While mapping a node into a reversible cascade, algorithms
FDD+DDM and KFDD+DDM both apply local transforma-
tions on node functions [3] and both use the NCT and MPP

gates to generate reversible cascades. Similarly to Algorithm
1, the KFDDs used by KFDD+DDM are generated by using
the PUMA package and sifting techniques [6]. As FDDs are
special kinds of the KFDD, the FDDs used by FDD+DDM
are also generated by using the PUMA package and sifting
techniques [6].

Algorithms FDD+DDM, KFDD+DDM, and Algorithm
1 have been used to synthesize reversible circuits for 31
functions available in the RevLib benchmark suite [25]
which were also used by Stojković et al. [23] to evaluate
their FDD-based synthesis method or used by Abdalhaq
et al. [1] to evaluate their BDD-based synthesis method. In
the following, Table 2 presents the results with respect to
#lines, #QG, NNC, #QG_A, and #nodes. Table 3 presents
the percentage reduction (improvement) in those results
achieved by comparing KFDD+DDM to FDD+DDM and
by comparing Algorithm 1 to KFDD+DDM. In Table 2, the
column indicated by ‘#in/#out’ gives the number of inputs
and outputs of the functions. Note that #nodes indicates
the number of nodes in the FDD or KFDD, #QG indicates
the number of Clifford+T quantum gates before SWAP
insertion, and #QG_A indicates the number of Clifford+T
quantum gates after SWAP insertion. Because a SWAP-
gate is commonly realized using 3 CNOT gates, there is
#QG_A = #QG + 3 × NNC . In addition, Fig. 13 illustrates
the improvement results of those functions presented in
Table 2 for which KFDD+DDM achieves results different
from FDD+DDM. Figure 14 illustrates the improvement
results of those functions presented in Table 2 for which
Algorithm 1 achieves results different from KFDD+DDM.

As can be seen from Tables 2 and 3, KFDD+DDM can
achieve #lines, #QG, NNC, and #QG_A not inferior to
FDD+DDM for all of the functions excepting function
mini- alu_84 and function mod5adder_66 . Compared to
FDD+DDM, KFDD+DDM increases the NNC, #QG, and
#QG_A while not increasing the number of lines for func-
tion mini- alu_84 . Whereas for function mod5adder_66 ,
KFDD+DDM only slightly increases the NNC and
#QG_A. Note that, compared to FDD+DDM, there are 7
cases where KFDD+DDM reduces #lines, #QG, NNC, and
#QG_A. As can be obviously observed from Table 3 and
Fig. 13, this is because the KFDD is more compact than
the FDD. In other words, for a given function, the KFDD
has the number of nodes (#nodes) less than the FDD. For
function mini- alu_84 , although the number of nodes of the
FDD is the same as that of the KFDD, the KFDD is not

Table 1 The costs of the circuits
presented in Fig. 10(b) and
Fig. 11

Circuit #lines T-depth T-count #QG NNC #QG_A

Figure 10(b) 6 15 35 83 92 359
Figure 11(a) 6 15 35 82 64 274
Figure 11(b) 6 15 35 82 56 250

54 Journal of Electronic Testing (2022) 38:39–62

1 3

Ta
bl

e
2

 T
he

 re
su

lts
 w

rt.
 #

lin
es

, #
Q

G
, N

N
C

, #
Q

G
_A

, a
nd

 #
no

de
s

B
en

ch
m

ar
k

sp
ec

ifi
ca

tio
n

FD
D
+
D
D
M

K
FD

D
+
D
D
M

Al
go
ri
th
m

 1

Fu
nc

tio
n

#i
n/

#o
ut

#l
in

es
#Q

G
N

N
C

#Q
G

_A
#n

od
es

#l
in

es
#Q

G
N

N
C

#Q
G

_A
#n

od
es

#l
in

es
#Q

G
N

N
C

#Q
G

_A

4m
od

5_
8

4/
1

5
34

16
82

4
5

34
16

82
4

5
34

16
82

9s
ym

m
l_

91
9/

1
12

32
5

65
2

2,
28

1
26

12
32

5
65

2
2,

28
1

26
12

32
5

62
6

2,
20

3
al

u_
9

5/
1

8
83

76
31

1
7

8
83

76
31

1
7

8
83

76
31

1
ap

ex
2_

10
1

39
/3

35
6

8,
46

8
60

2,
23

0
1,

81
5,

15
8

53
8

28
3

6,
00

6
31

6,
28

0
95

4,
84

6
36

8
28

8
5,

88
8

11
8,

87
6

36
2,

51
6

ap
ex

5_
10

4
11

7/
88

35
8

7,
09

5
35

4,
55

0
1,

07
0,

74
5

44
4

33
5

6,
83

9
35

0,
57

8
1,

05
8,

57
3

42
6

33
6

6,
84

9
29

3,
81

4
88

8,
29

1
bw

_1
16

5/
28

67
1,

43
0

19
,8

46
60

,9
68

91
67

1,
43

0
19

,8
46

60
,9

68
91

67
1,

43
2

15
,8

26
48

,9
10

co
rd

ic
_1

38
23

/2
41

64
5

2,
11

0
6,

97
5

43
41

64
5

2,
11

0
6,

97
5

43
42

64
5

1,
84

4
6,

17
7

cy
cl

e1
0_

2_
61

12
/1

2
23

19
7

14
8

64
1

24
23

19
7

14
8

64
1

24
21

19
5

13
6

60
3

de
co

d2
4_

10
2/

4
6

68
64

26
0

5
6

68
64

26
0

5
6

68
64

26
0

e6
4_

14
9

65
/6

5
19

2
2,

03
3

2,
11

8
8,

38
7

12
8

19
2

2,
03

3
2,

11
8

8,
38

7
12

8
19

2
2,

03
3

1,
03

0
5,

12
3

ex
5p

_1
54

8/
63

19
7

4,
28

3
21

4,
18

0
64

6,
82

3
26

7
19

1
3,

90
7

18
5,

91
4

56
1,

64
9

24
3

19
4

3,
93

4
91

,6
64

27
8,

92
6

ha
m

15
_3

0
15

/1
5

42
48

3
4,

38
0

13
,6

23
67

42
48

3
4,

38
0

13
,6

23
67

42
48

3
2,

40
8

7,
70

7
ha

m
7_

29
7/

7
17

19
6

48
0

1,
63

6
23

17
19

6
48

0
1,

63
6

23
17

19
6

40
2

1,
40

2
hw

b5
_1

3
5/

5
17

49
6

1,
67

6
5,

52
4

35
17

49
6

1,
67

6
5,

52
4

35
17

49
5

1,
85

0
6,

04
5

hw
b6

_1
4

6/
6

43
1,

18
8

10
,7

72
33

,5
04

81
41

1,
09

3
9,

25
8

28
,8

67
72

43
1,

09
4

9,
78

8
30

,4
58

hw
b7

_1
5

7/
7

51
1,

79
7

20
,3

04
62

,7
09

11
8

51
1,

79
7

20
,3

04
62

,7
09

11
8

52
1,

79
6

21
,6

48
66

,7
40

hw
b8

_6
4

8/
8

69
2,

90
1

47
,1

68
14

4,
40

5
18

9
69

2,
90

1
47

,1
68

14
4,

40
5

18
9

66
2,

89
9

51
,7

70
15

8,
20

9
hw

b9
_6

5
9/

9
22

0
7,

74
3

41
2,

03
6

1,
24

3,
85

1
49

4
17

1
4,

95
9

16
8,

78
4

51
1,

31
1

30
5

17
2

4,
94

3
13

7,
33

6
41

6,
95

1
m

in
i–

al
u_

84
4/

2
8

12
9

13
6

53
7

10
8

13
0

16
6

62
8

10
8

13
0

17
4

65
2

m
od

5a
dd

er
_6

6
6/

6
20

39
9

2,
05

8
6,

57
3

33
20

39
9

2,
06

0
6,

57
9

33
17

39
7

1,
45

8
4,

77
1

pd
c_

19
1

16
/4

0
62

5
17

,7
59

3,
13

6,
23

6
9,

42
6,

46
7

1,
11

0
41

9
9,

91
0

1,
11

8,
88

0
3,

36
6,

55
0

59
3

45
0

9,
86

2
38

8,
65

0
1,

17
5,

81
2

pl
us

12
7m

od
81

92
_7

8
13

/1
3

24
19

6
44

32
8

24
24

19
6

44
32

8
24

24
19

6
44

32
8

pl
us

63
m

od
40

96
_7

9
12

/1
2

22
17

9
40

29
9

22
22

17
9

40
29

9
22

22
17

9
40

29
9

pl
us

63
m

od
81

92
_8

0
13

/1
3

24
19

7
44

32
9

24
24

19
7

44
32

9
24

24
19

7
44

32
9

r d
53

_6
8

5/
3

8
13

3
96

42
1

13
8

13
3

96
42

1
13

8
13

3
96

42
1

rd
73

_6
9

7/
3

10
23

1
31

6
1,

17
9

21
10

23
1

31
6

1,
17

9
21

10
23

1
31

6
1,

17
9

rd
84

_7
0

8/
4

15
34

2
61

2
2,

17
8

29
15

34
2

61
2

2,
17

8
29

15
34

2
62

8
2,

22
6

sp
la

_2
02

16
/4

6
55

1
14

,9
03

2,
34

7,
38

4
7,

05
7,

05
5

92
2

42
8

9,
57

9
1,

08
8,

88
8

3,
27

6,
24

3
57

4
44

1
9,

56
1

39
0,

44
0

1,
18

0,
88

1
sy

m
6_

63
6/

1
10

19
6

26
2

98
2

14
10

19
6

26
2

98
2

14
10

19
6

29
0

1,
06

6
sy

m
9_

71
9/

1
12

32
5

65
2

2,
28

1
26

12
32

5
65

2
2,

28
1

26
12

32
5

62
6

2,
20

3
xo

r5
_1

95
5/

1
5

6
0

6
5

5
6

0
6

5
5

6
0

6

55Journal of Electronic Testing (2022) 38:39–62

1 3

same as the FDD. For that function, synthesizing a revers-
ible circuit using the KFDD instead of the FDD signifi-
cantly increases the NNC and #QG_A. For the functions
presented in Tables 2 and 3, compared to FDD+DDM, the
average reductions achieved by KFDD+DDM in #lines,
#QG, NNC, and #QG_A are 3.62% , 5.31% , 7.44% , and
7.59% , respectively. As can be seen, while synthesizing
reversible circuits by mapping a node into a reversible cas-
cade, using the KFDD instead of the FDD helps reduce the
NNC, also the number of lines, the number of Clifford+T
gates before and after SWAP insertion.

Algorithm 1 and KFDD+DDM both synthesize a revers-
ible circuit from a KFDD and the KFDDs used by them
are both generated by using the PUMA package and sifting
techniques [6]. That is, for a given function, Algorithm 1
and KFDD+DDM synthesize reversible circuits from the

same KFDD. Subsequently, Algorithm 1 is compared to
KFDD+DDM.

As can be seen from Tables 2 and 3, out of the 31 func-
tions, there are 15 cases where Algorithm 1 outperforms
KFDD+DDM on NNC as well as #QG_A, and 9 cases
where Algorithm 1 achieves the NNC and #QG_A both
same as KFDD+DDM. In the other 7 cases, compared to
algorithm KFDD+DDM, although Algorithm 1 increases
both the NNC and #QG_A, the NNC and #QG_A are
increased by no more than 11% and 10% , respectively.
Whereas, compared to KFDD+DDM, Algorithm 1 reduces
the NNC and #QG_A by up to 65.26% and 65.07% (function
pdc_191), respectively. Moreover, there are 12 cases where
Algorithm 1 reduce both the NNC and #QG_A by no less
than 11% . On the other hand, Algorithm 1 achieves the same
#QG as KFDD+DDM in 18 cases. In the other 13 cases,

Table 3 Improvement (%)
results of KFDD+DDM and
Algorithm 1

Function KFDD+DDM vs. FDD+DDM Algorithm 1 vs. KFDD+DDM

#lines #QG NNC #QG_A #nodes #lines #QG NNC #QG_A

4mod5_8 0 0 0 0 0 0 0 0 0
9symml_91 0 0 0 0 0 0 0 3.99 3.42
alu_9 0 0 0 0 0 0 0 0 0
apex2_101 20.51 29.07 47.48 47.40 31.60 –1.77 1.96 62.41 62.03
apex5_104 6.42 3.61 1.12 1.14 4.05 –0.30 –0.15 16.19 16.09
bw_116 0 0 0 0 0 0 –0.14 20.26 19.78
cordic_138 0 0 0 0 0 –2.44 0 12.61 11.44
cycle10_2_61 0 0 0 0 0 8.70 1.02 8.11 5.93
decod24_10 0 0 0 0 0 0 0 0 0
e64_149 0 0 0 0 0 0 0 51.37 38.92
ex5p_154 3.05 8.78 13.20 13.17 8.99 –1.57 –0.69 50.70 50.34
ham15_30 0 0 0 0 0 0 0 45.02 43.43
ham7_29 0 0 0 0 0 0 0 16.25 14.30
hwb5_13 0 0 0 0 0 0 0.20 –10.38 –9.43
hwb6_14 4.65 8.00 14.05 13.84 11.11 –4.88 –0.09 –5.72 –5.51
hwb7_15 0 0 0 0 0 –1.96 0.06 –6.62 –6.43
hwb8_64 0 0 0 0 0 4.35 0.07 –9.76 –9.56
hwb9_65 22.27 35.96 59.04 58.89 38.26 –0.58 0.32 18.63 18.45
mini–alu_84 0 –0.78 –22.06 –16.95 0 0 0 –4.82 –3.82
mod5adder_66 0 0 –0.10 –0.09 0 15.00 0.50 29.22 27.48
pdc_191 32.96 44.2 64.32 64.29 46.58 –7.40 0.48 65.26 65.07
plus127mod8192_78 0 0 0 0 0 0 0 0 0
plus63mod4096_79 0 0 0 0 0 0 0 0 0
plus63mod8192_80 0 0 0 0 0 0 0 0 0
rd53_68 0 0 0 0 0 0 0 0 0
rd73_69 0 0 0 0 0 0 0 0 0
rd84_70 0 0 0 0 0 0 0 –2.61 –2.20
spla_202 22.32 35.72 53.61 53.57 37.74 –3.04 0.19 64.14 63.96
sym6_63 0 0 0 0 0 0 0 –10.69 –8.55
sym9_71 0 0 0 0 0 0 0 3.99 3.42
xor5_195 0 0 0 0 0 0 0 0 0
Average 3.62 5.31 7.44 7.59 5.75 0.13 0.12 13.47 12.86

56 Journal of Electronic Testing (2022) 38:39–62

1 3

Algorithm 1 slightly increases (by no more than 0.69%)
or decreases (by no more than 1.96%) the #QG compared
to KFDD+DDM. Consequently, it can be concluded that,
compared to KFDD+DDM, the reduction in the number of
Clifford+T gates after SWAP insertion which is achieved
by Algorithm 1 is mainly contributed to the reduction in
NNC. Compared to KFDD+DDM, the average reductions
achieved by Algorithm 1 in NNC and #QG_A are 13.47%
and 12.86% , respectively.

In addition, as can be seen from Table 3 and Fig. 14,
compared to KFDD+DDM, there are 9 cases where Algo-
rithm 1 increases the number of lines (#lines). Increas-
ing the number of lines may help reduce the NNC and
#QG_A. In the 15 cases where Algorithm 1 reduces both

the NNC and #QG_A, there are 7 cases where Algorithm 1
increases the number of lines. However, it is worth noting
that there are 6 cases where Algorithm 1 achieves the same
#lines as KFDD+DDM, and 2 cases where Algorithm 1
even reduces the number of lines. For the functions pre-
sented in Table 2, compared to KFDD+DDM, the average
reduction achieved by Algorithm 1 in the number of lines
is 0.13%.

Table 4 presents the T-count and the T-depth of the
reversible circuits obtained with algorithms FDD+DDM,
KFDD+DDM, and Algorithm 1. In Table 4, the col-
umns indicated by ‘Imp_1’ show the percentage reduc-
tion in T-depth or T-count achieved by comparing
KFDD+DDM to FDD+DDM. Whereas the columns

Fig. 13 Improvement results of
KFDD+DDM wrt. FDD+DDM

Fig. 14 Improvement results of
Algorithm 1 wrt. KFDD+DDM

57Journal of Electronic Testing (2022) 38:39–62

1 3

indicated by ‘Imp_2’ give the percentage reduction in
T-depth or T-count achieved by comparing Algorithm 1
to KFDD+DDM. It can be observed from Table 4 that,
compared to FDD+DDM, there are 7 cases where algo-
rithm KFDD+DDM reduces both the T-depth and the
T-count. For the other 24 cases, KFDD+DDM achieves
the T-depth and the T-count both same as FDD+DDM.
Compared to FDD+DDM, the average reductions achieved
by KFDD+DDM in T-depth and T-count are both 5.50% .
As can be seen, while synthesizing reversible circuits by
mapping a node into a reversible cascade, using KFDDs
is also better than using FDDs in terms of the T-depth and
T-count.

On the other hand, since KFDD+DDM and Algorithm
1 both synthesize a reversible circuit from a KFDD, the
resulting T-depth or T-count of the two algorithms are
quite close to each other.

It can be concluded from above analyses that, the strat-
egies presented for ranking the ordering of nodes to be
mapped for reducing NNC which are used by the pro-
posed synthesis method is effective. While synthesizing
reversible circuits using the KFDD, the proposed method
helps reduce the NNC as well as the number of Clifford+T
gates after SWAP insertion and has a slight impact on
the resulting #lines, T-depth, T-count, and the number of
Clifford+T gates before SWAP insertion.

Table 4 The results wrt. T-depth and T-count

Function FDD+DDM KFDD+DDM Algorithm 1

T-depth T-count T-depth T-count Imp_1(%) T-depth T-count Imp_2(%)

T-depth T-count T-depth T-count

4mod5_8 6 14 6 14 0 0 6 14 0 0
9symml_91 60 140 60 140 0 0 60 140 0 0
alu_9 15 35 15 35 0 0 15 35 0 0
apex2_101 1,611 3,759 1,134 2,646 29.61 29.61 1,110 2,590 2.12 2.12
apex5_104 1,314 3,066 1,260 2,940 4.11 4.11 1,263 2,947 –0.24 –0.24
bw_116 258 602 258 602 0 0 258 602 0 0
cordic_138 120 280 120 280 0 0 120 280 0 0
cycle10_2_61 33 77 33 77 0 0 33 77 0 0
decod24_10 12 28 12 28 0 0 12 28 0 0
e64_149 381 889 381 889 0 0 381 889 0 0
ex5p_154 792 1,848 720 1,680 9.09 9.09 726 1,694 –0.83 –0.83
ham15_30 81 189 81 189 0 0 81 189 0 0
ham7_29 33 77 33 77 0 0 33 77 0 0
hwb5_13 90 210 90 210 0 0 90 210 0 0
hwb6_14 222 518 201 469 9.46 9.46 201 469 0 0
hwb7_15 333 777 333 777 0 0 333 777 0 0
hwb8_64 537 1,253 537 1,253 0 0 537 1,253 0 0
hwb9_65 1,452 3,388 909 2,121 37.40 37.40 906 2,114 0.33 0.33
mini–alu_84 24 56 24 56 0 0 24 56 0 0
mod5adder_66 72 168 72 168 0 0 72 168 0 0
pdc_191 3,324 7,756 1,830 4,270 44.95 44.95 1,821 4,249 0.49 0.49
plus127mod8192_78 33 77 33 77 0 0 33 77 0 0
plus63mod4096_79 30 70 30 70 0 0 30 70 0 0
plus63mod8192_80 33 77 33 77 0 0 33 77 0 0
rd53_68 24 56 24 56 0 0 24 56 0 0
rd73_69 42 98 42 98 0 0 42 98 0 0
rd84_70 63 147 63 147 0 0 63 147 0 0
spla_202 2,760 6,440 1,767 4,123 35.98 35.98 1,764 4,116 0.17 0.17
sym6_63 36 84 36 84 0 0 36 84 0 0
sym9_71 60 140 60 140 0 0 60 140 0 0
xor5_195 0 0 0 0 0 0 0 0 0 0
Average 446.81 1042.55 328.94 767.52 5.50 5.50 327.97 765.26 0.07 0.07

58 Journal of Electronic Testing (2022) 38:39–62

1 3

5.2 Comparison to Prior Synthesis Methods Based
On FDD or BDD

Stojković et al. [23] used FDDs to synthesize reversible cir-
cuits. Whereas, Abdalhaq et al. [1] used BDDs to synthesize
reversible circuits. They did not consider the reduction of the
NNC in their works. However, for the completeness of this
work and due to the fact that BDDs and FDDs are both spe-
cial kinds of the KFDD, we compare the proposed synthesis
method to their methods in this section.

Stojković et al. [23] and Abdalhaq et al. [1] both used the
NCV-cost to measure the quantum cost of reversible circuits.
In other words, they considered the NCV quantum realiza-
tions for reversible circuits. In the following, Algorithm 1 is

compared to their methods by using the NCV-cost metric.
The results are listed in Tables 5 and 6.

In Tables 5 or 6, OFPFDD+LDM indicates the algo-
rithm in Ref. [23] which synthesizes circuits from the
optimal fixed-polarity FDDs by using LDMs. Whereas
OFPFDD+DDM indicates the algorithm in Ref. [23]
which synthesizes circuits from the optimal fixed-polarity
FDDs by using DDMs. BDD+GA indicates the algorithm
in Ref. [1] which synthesizes circuits from BDDs by using a
genetic algorithm to search the optimal BDDs. The columns
indicated by ‘runtime’ list the runtime in CPU seconds of
those algorithms. Table 6 shows the percentage reduction
(improvement) in #lines and NCV-cost achieved by compar-
ing Algorithm 1 to OFPFDD+DDM or BDD+GA.

Table 5 Comparison with the results of FDD based and BDD based methods

–: the data is not available

Function OFPFDD+LDM [23] OFPFDD+DDM [23] BDD+GA [1] Algorithm 1

#lines NCV-cost #lines NCV-cost #lines NCV-cost runtime #lines NCV-cost runtime

4mod5_8 5 18 5 18 7 24 < 0.01 5 12 < 0.01
9symml_91 – – – – 27 206 0.02 12 104 < 0.01
alu_9 8 29 8 28 7 29 < 0.01 8 26 < 0.01
apex2_101 – – – – 282 2747.78 6.53 288 1,735 0.81
apex5_104 – – – – 1,015 9839.09 5.31 336 2,124 0.29
bw_116 72 619 74 619 86 931.34 0.01 67 458 < 0.01
cordic_138 – – – – 49 311.44 0.33 42 196 < 0.01
cycle10_2_61 97 552 97 552 – – – 21 74 0.01
decod24_10 7 23 6 23 6 27 < 0.01 6 23 < 0.01
e64_149 – – – – 192 886 2.21 192 636 0.03
ex5p_154 231 1,808 225 1,803 206 1,970 0.03 194 1,186 < 0.01
ham15_30 – – – – 42 270 0.44 42 176 0.26
ham7_29 16 85 15 85 21 141 0.01 17 71 < 0.01
hwb5_13 18 199 18 196 27 268 0.01 17 160 < 0.01
hwb6_14 35 382 34 378 44 503 0.01 43 354 < 0.01
hwb7_15 56 677 57 678 76 910 0.02 52 564 < 0.01
hwb8_64 78 1,109 85 1,087 114 1,552 0.04 66 912 < 0.01
hwb9_65 – – – – 169 2,239 0.07 172 1,617 < 0.01
mini-alu_84 8 43 8 43 10 60 < 0.01 8 41 < 0.01
mod5adder_66 21 151 20 150 29 301.52 0.01 17 130 < 0.01
pdc_191 – – – – 619 6598.02 0.71 450 2,977 0.05
plus127mod8192_78 24 73 24 73 25 98 0.09 24 75 0.04
plus63mod4096_79 22 66 22 66 23 89 0.04 22 69 0.02
plus63mod8192_80 – – – – 25 97 0.08 24 76 0.03
rd53_68 8 44 8 44 13 98 < 0.01 8 45 < 0.01
rd73_69 10 76 10 76 25 217 0.01 10 77 < 0.01
rd84_70 15 112 15 112 34 304 0.02 15 111 < 0.01
spla_202 – – – – 482 5960.72 0.50 441 2,873 0.04
sym6_63 10 69 10 69 14 93 0.01 10 62 < 0.01
sym9_71 12 106 12 106 27 206 0.02 12 104 < 0.01
xor5_195 – – – – 6 8 < 0.01 5 6 < 0.01

59Journal of Electronic Testing (2022) 38:39–62

1 3

As can be observed from Table 5, the results of
OFPFDD+LDM and OFPFDD+DDM are quite close to
each other. This is because the two algorithms both syn-
thesize reversible circuits from the optimal fixed-polarity
FDDs. Consequently, Algorithm 1 is only compared to
OFPFDD+DDM and BDD+GA in the following.

As can be seen from Tables 5 and 6, there are 14
cases where Algorithm 1 achieves results not inferior to
OFPFDD+DDM in terms of #lines and NCV-cost. Com-
pared to OFPFDD+DDM [23], there are only 2 cases
(functions ham7_29 and hwb6_14) where Algorithm
1 only increases the number of lines, and 4 cases (func-
tions plus127mod8192_78 , plus63mod4096_79 , rd53_68 ,

and rd73_69) where Algorithm 1 only increases the NCV-
cost. Furthermore, Algorithm 1 reduces the number of
lines and the NCV-cost by up to 78.35% and 86.59% (func-
tion cycle10_2_61), respectively. The average reductions
achieved by Algorithm 1 in the number of lines and NCV-
cost are 5.67% and 14.07% , respectively.

On the other hand, compared to BDD+GA [1], there
are only 3 cases (functions alu_9 , apex2_101, and
hwb9_65) where Algorithm 1 only increases the number
of lines. In the other 27 cases, Algorithm 1 outperforms
BDD+GA in terms of #lines and NCV-cost. Furthermore,
Algorithm 1 reduces the number of lines and the NCV-cost
by up to 66.90% and 78.41% (function apex5_104), respec-
tively. The average reductions achieved by Algorithm 1 in
the number of lines and NCV-cost are 22.39% and 40.33% ,
respectively.

With regard to the runtime of the algorithms, Stojković
et al. [23] did not report the runtime of their algorithms. It
can be observed from Table 5 that, the time efficiency of
Algorithm 1 is better than BDD+GA.

As can be seen from the above analyses, while using NCV
library to realize reversible circuits, using KFDDs to gen-
erate reversible circuits is also better than using FDDs or
BDDs.

6 Conclusion

While synthesizing reversible circuits using the KFDD,
although how to reduce the quantum cost and the number
of qubits has been extensively researched, the restricted
interactions between qubits are rarely considered. In this
work, focusing on the NN-constraints, an attempt to com-
bine reversible logic synthesis, gate decomposition, and
qubit mapping in one synthesis flow is conducted. Based
on the Clifford+T gate library, by defining NNC metrics
for the NCT and MPP gates for the reversible logic level,
we address the reduction of the NNC of reversible circuits
synthesized from the KFDD. The ordering of nodes to be
mapped influences the quality of reversible circuits syn-
thesized from the KFDD. Thus, for reducing the NNC of
the resulting reversible circuits, the ordering of nodes to be
mapped is ranked by applying strategies guided by NNC
metrics. For further improving the quality of the resulting
circuits, local transformations are applied on node functions
while mapping a node to a cascade of reversible gates.

In the Clifford+T quantum mappings of NCT and MPP
gates, two SWAP-gates are applied in order to decrease the dis-
tance between the control and the target line of each CNOT gate
by one. One SWAP-gate is used for moving the control and the
target line together, another is used to restore the original order
of lines [11, 19]. As a result, the NNC metrics defined for the
NCT and MPP gates and the NNC evaluation of the reversible

Table 6 Improvement (%) results of Algorithm 1 wrt.
OFPFDD+DDM and BDD+GA

Function Algorithm 1 vs.
OFPFDD+DDM

Algorithm 1 vs.
BDD+GA

#lines NCV-cost #lines NCV-cost

4mod5_8 0 33.33 28.57 50.00
9symml_91 – – 55.56 49.51
alu_9 0 7.14 –14.29 10.34
apex2_101 – – –2.13 36.86
apex5_104 – – 66.90 78.41
bw_116 9.46 26.01 22.09 50.82
cordic_138 – – 14.29 37.07
cycle10_2_61 78.35 86.59 – –
decod24_10 0 0 0 14.81
e64_149 – – 0 28.22
ex5p_154 13.78 34.22 5.83 39.80
ham15_30 – – 0 34.81
ham7_29 –13.33 16.47 19.05 49.65
hwb5_13 5.56 18.37 37.04 40.30
hwb6_14 –26.47 6.35 2.27 29.62
hwb7_15 8.77 16.81 31.58 38.02
hwb8_64 22.35 16.10 42.11 41.24
hwb9_65 – – –1.78 27.78
mini–alu_84 0 4.65 20.00 31.67
mod5adder_66 15.00 13.33 41.38 56.89
pdc_191 – – 27.30 54.88
plus127mod8192_78 0 –2.74 4.00 23.47
plus63mod4096_79 0 –4.55 4.35 22.47
plus63mod8192_80 – – 4.00 21.65
rd53_68 0 –2.27 38.46 54.08
rd73_69 0 –1.32 60.00 64.52
rd84_70 0 0.89 55.88 63.49
spla_202 – – 8.51 51.80
sym6_63 0 10.14 28.57 33.33
sym9_71 0 1.89 55.56 49.51
xor5_195 – – 16.67 25.00
Average 5.67 14.07 22.39 40.33

60 Journal of Electronic Testing (2022) 38:39–62

1 3

circuits are pessimistic. On the other hand, it is usually consid-
ered that the NN-constraints imposed by lattice models are less
restricted than the coupling constraints imposed by IBM quan-
tum architectures. Combining reversible logic synthesis, gate
decomposition, and qubit mapping in a more general synthesis
flow for handling the coupling constraints at the reversible logic
level by defining more exact NNC metrics and designing more
exact strategies is future work.

Funding Information This work was supported by the National Natural
Science Foundation of China (No.61961023), the Jiangxi Provincial
Natural Science Foundation (No.20202BABL202007), the Guangxi
Natural Science Foundation (No.2021GXNSFAA220046), and the
Doctoral Foundation of Guangxi University of Science and Technol-
ogy (No.21Z04).

Data Availability Statement All data generated or analyzed during this
study are within the paper.

Conflicts of Interests The authors declare that they have no conflicts
of interest to this work.

Competing Interests The authors declare that they have no competing
interests.

References

 1. Abdalhaq BK, Awad A, Hawash A (2020) Reversible logic syn-
thesis using binary decision diagrams with exploiting efficient
reordering operators. IEEE Access 8:156001–156016

 2. Abdessaied N, Drechsler R (2016) Reversible and Quantum Cir-
cuits: Optimization and Complexity Analysis. Springer Interna-
tional Publishing AG

 3. Bu D, Wang P (2019) An improved KFDD based reversible circuit
synthesis method. Integr VLSI J 69:251–265

 4. Deb A, Dueck GW, Wille R (2021) Exploring the potential ben-
efits of alternative quantum computing architectures. IEEE Trans
Comput Aided Des Integr Circuits Syst 40(9):1825–1835

 5. Ding J, Yamashita S (2020) Exact synthesis of nearest neighbor
compliant quantum circuits in 2-D architecture and its applica-
tion to large-scale circuits. IEEE Trans Comput Aided Des Integr
Circuits Syst 39(5):1045–1058

 6. Drechsler R, Becker B (1998) Ordered Kronecker functional deci-
sion diagrams-a data structure for representation and manipula-
tion of Boolean functions. IEEE Trans Comput Aided Des Integr
Circuits Syst 17(10):965–973

 7. Fazel K, Thornton MA, Rice JE (2007) ESOP-based toffoli gate
cascade generation. In: Proc. 2007 IEEE Pacific Rim Confer-
ence on Communications, Computers and Signal Processing. pp
206–209

 8. Gupta P, Agrawal A, Jha NK (2006) An algorithm for synthesis
of reversible logic circuits. IEEE Trans Comput Aided Des Integr
Circuits Syst 25(11):2317–2330

 9. Kole A, Hillmich S, Datta K, Wille R, Sengupta I (2020) Improved
mapping of quantum circuits to IBM QX architectures. IEEE
Trans Comput Aided Des Integr Circuits Syst 39(10):2375–2383

 10. Kole A, Datta K, Sengupta I (2016) A heuristic for linear nearest
neighbor realization of quantum circuits by swap gate insertion

using N-gate lookahead. IEEE J Emerg Sel Top Circuits Syst
6(1):62–72

 11. Kole A, Datta K, Sengupta I, Wille R (2015) Towards a cost met-
ric for nearest neighbor constraints in reversible circuits. In: Proc.
International Conference on Reversible Computation. pp 273–278

 12. Li S, Zhou X, Feng Y (2021) Qubit mapping based on subgraph
isomorphism and filtered depth-limited search. IEEE Trans Com-
put 70(11):1777–1788

 13. Lin CC, Jha NK (2014) RMDDS: Reed-Muller decision diagram
synthesis of reversible logic circuits. ACM J Emerg Technol Com-
put Syst 10(2): Article 14, 25 pages

 14. Meter RV, Oskin M (2006) Architectural implications of quantum
computing technologies. ACM J Emerging Technologies Comp
Syst 2(1):31–63

 15. Miller DM, Maslov D, Dueck GW (2003) A transformation based
algorithm for reversible logic synthesis. In: Proc. the 40th Annual
Design Automation Conference. pp 318–323

 16. Nielsen MA, Chuang IL (2010) Quantum Computation and Quan-
tum Information: 10th, Anniversary. Cambridge University Press,
New York, USA

 17. Niemann P, Bandyopadhyay C, Drechsler R (2021) Combining
SWAPs and remote Toffoli gates in the mapping to IBM QX archi-
tectures. In: Proc. 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). pp 200–205

 18. Niemann P, Gupta A, Drechsler R (2019) T-depth optimization
for fault-tolerant quantum circuits. In: Proc. 2019 IEEE 49th
International Symposium on Multiple-Valued Logic (ISMVL).
pp 108–113

 19. Saeedi M, Wille R, Drechsler R (2011) Synthesis of quantum
circuits for linear nearest neighbor architectures. Quantum Inf
Process 10(3):355–377

 20. Sasao T (1999) Switching Theory for Logic Synthesis. Springer,
Boston, MA

 21. Soeken M, Roetteler M, Wiebe N, Micheli GD (2019) LUT-based
hierarchical reversible logic synthesis. IEEE Trans Comput Aided
Des Integr Circuits Syst 38(9):1675–1688

 22. Soeken M, Wille R, Drechsler R (2010) Hierarchical synthesis of
reversible circuits using positive and negative davio decomposi-
tion. In: Proc. 2010 5th International Design and Test Workshop
(IDT). pp 143–148

 23. Stojković S, Stanković R, Moraga C, Stanković M (2020) Revers-
ible circuits synthesis from functional decision diagrams by using
node dependency matrices. J Circuits Syst Comput 29(5): Article
2050079, 32 pages

 24. Wille R, Drechsler R (2009) BDD-based synthesis of reversible
logic for large functions. In: Proc. the 46th Annual Design Auto-
mation Conference. pp 270–275

 25. Wille R, Große D, Teuber L, Dueck GW, Drechsler R (2008)
RevLib: an online resource for reversible functions and revers-
ible circuits. In: Proc. 38th International Symposium on Multiple
Valued Logic. pp 220–225

 26. Wille R, Lye A, Drechsler R (2014) Considering nearest neigh-
bor constraints of quantum circuits at the reversible circuit level.
Quantum Inf Process 13(2):185–199

 27. Wille R, Lye A, Drechsler R (2014) Exact reordering of circuit
lines for nearest neighbor quantum architectures. IEEE Trans
Comput Aided Des Integr Circuits Syst 33(12):1818–1831

 28. Wille R, Drechsler R (2010) Towards a Design Flow for Revers-
ible Logic. Springer, Dordrecht

 29. Zulehner A, Wille R (2018) One-pass design of reversible circuits:
combining embedding and synthesis for reversible logic. IEEE
Trans Comput Aided Des Integr Circuits Syst 37(5):996–1008

 30. Soeken M, Frehse S, Wille R, Drechsler R (2011) RevKit: an open
source toolkit for the design of reversible circuits. In: Proc.
International Conference on Reversible Computation. pp 64–76

61Journal of Electronic Testing (2022) 38:39–62

1 3

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Dengli Bu is currently a full professor in the School of Electrical,
Electronic and Computer Science at Guangxi University of Science
and Technology. He received the bachelor’s and the master’s degrees
from the Department of Electronic Science and Technology of Nankai
University, Tianjin, China, in 1996 and 1999, respectively. He received
the Ph.D. degree from the Department of Computer Science and Tech-
nology of Tongji University, Shanghai, China, in 2015. From 2002 to
2020, he served as an associate professor at the School of Electronics
and Information Engineering of Jinggangshan University. He joined
School of Electrical, Electronic and Computer Science of Guangxi
University of Science and Technology in 2021. His research interests
include synthesis of reversible circuits and quantum circuits.

Junjie Yan received the Ph.D degree from Chongqing University of
Post and Telecommunication in 2021. He joind School of Electrical,
Electronic and Computer Science of Guangxi University of Science
and Technology in 2021.

Pengjie Tang received the Ph.D. degree in the Department of com-
puter science and technology of Tongji University, Shanghai, China,
in 2019. He joined School of Electronics and Information Engineering
of Jinggangshan University in 2012.

Haohao Yuan received the master’s degree from North University of
China in 2007. She is currently an associate professor in the School of
Electrical, Electronic and Computer Science of Guangxi University of
Science and Technology. Her research interests include circuit design
and internet-of-things (IoT).

62 Journal of Electronic Testing (2022) 38:39–62

	Synthesis of Reversible Circuits with Reduced Nearest-Neighbor Cost Using Kronecker Functional Decision Diagrams
	Abstract
	1 Introduction
	2 Reversible and Quantum Circuits
	3 KFDD and Dependency Matrices
	3.1 KFDD
	3.2 Dependency Between Nodes and Dependency Matrices

	4 Synthesis of Reversible Circuits With Reduced NNC Using the KFDD
	4.1 Mapping Nodes By Node Dependency
	4.2 Mapping Nodes By Applying Local Transformations
	4.3 Reversible Circuit Synthesis By Combining the Dependency Matrix and Local Transformations
	4.4 Synthesis of Reversible Circuits With Reduced NNC
	4.4.1 Strategies for Ranking the Ordering of Nodes to Be Mapped
	4.4.2 The Proposed Synthesis Method

	5 Experimental Evaluations
	5.1 Evaluating the Effect of the Proposed Method On NNC
	5.2 Comparison to Prior Synthesis Methods Based On FDD or BDD

	6 Conclusion
	References

