
Computer Design Project
(Assigned: Wednesday, Sep. 29, 2004)
Contact: Alok Doshi, Broun 309, x1864, doshias@auburn.edu; 4-5PM MWF
A small RISC CPU is to be designed in the VHDL modeling language and verified via Mentor Graphics "ModelSim EE" simulator on SUN workstations. The project will be done in four parts. The descriptions of the four parts along with their due dates are given below. (Maintain a single 1” folder for submitting the project parts. When submitting the later parts, all the previous parts need to be in the folder).
CPU Design Project – Part #1
(Due: Friday, Oct. 15, 2004)
An instruction set architecture (ISA) for a new microprocessor (μP) is to be designed. The μP will be designed and modeled in VHDL in later parts. Your ISA is to be designed using RISC design principles, with primary design goals being low cost and a minimal number of clock cycles per instruction. Following are the requirements for your ISA.
1. The ISA may contain no more than 16 unique instructions. However, you may have multiple formats for a given type of instruction, if necessary.
2. The ISA is to support 16-bit data words only. (No byte operands.)

a. All operands are to be 16-bit signed integers (2’s complement).

b. Each instruction must be encoded using one 16-bit word.

3. The ISA is to support linear addressing of 64K, 16-bit words memory. The memory is to be word-addressable only - not byte-addressable.

4. The ISA should contain appropriate numbers and types of user-programmable registers to support it.

5. The ISA must “support” the following C Programming Language constructs:

* Assignment operator: variable = expression;

Expressions must support the two arithmetic operators:

add (+) and subtract(-)

Data are limited to:

 - 16-bit two’s-complement integers (Example: int a;)

- One-dimensional integer arrays (Example: int a[10];)

* Control flow structures: “if-else” structures, “while” loops, “for” loops

 These should support the six standard relational operators:

==, !=, >, <=, <, >=

* Functions (call and return), with parameters able to be passed by value

or by reference.
Provide the following information about your ISA:
- List and describe the user-programmable registers.
- List and describe the different instruction formats used.

- For each instruction in your instruction set, list the following:

o Assembly language for each form of the instruction - mnemonic and
 operands

o Machine language for each form of the instruction:

- instruction code format, op-code, and operand encoding

o Justification for including each form of the instruction in your ISA

- For each C construct listed in item 5 above, provide an example showing how the construct would be “compiled”, i.e. implemented with your instruction set, by writing an example of the C construct and the corresponding assembly language (AL) implementation.

CPU Design Project – Part #2
(Due: Friday, Oct. 29, 2004)

In this part, you are to design the datapath of a CPU that will realize the instruction set architecture (ISA) designed in the previous assignment (including any “adjustments” made to the ISA). Include the following in your submission.
1. A block diagram (register level) of the datapath, with all components and control signals clearly labeled.

2. A description of the function of each component in the datapath.

3. For each instruction of your ISA, list the register transfers, or sequence of register transfers, required to fetch and execute the instruction. Register names should correspond to components in your datapath diagram.

4. A discussion of the tradeoffs and other design decisions made in developing your datapath. This should include:

- Cost vs. speed tradeoffs that you considered.

- Why you chose a single-cycle or multi-cycle design.

- Decisions related to “shared” and/or “dedicated” components.

- Selection of edge-triggered vs. latching registers.

- Other decisions that were considered.

CPU Design Project – Part #3
(Due: Wednesday, Nov. 17, 2004)

Design and test a VHDL model of the datapath of your CPU, as described in the block diagram and register transfers defined in part 2. The CPU must be capable of working with a single memory outside the CPU; the memory will be added in the final project. The datapath must have two 16-bit external “ports” to connect the CPU to the memory: a bidirectional data bus and an address bus. The datapath must also have the various control and status signals as external “ports”. These will be connected to a Control Unit in the next part. The datapath should be tested by forcing these control inputs to selected values to mimic the operation of a control unit.

Notes:
1. This is to be a register-transfer-level (RTL) design (not gate level).

2. The top-level design should contain only component instantiations, matching your block diagram (changes may be made to the diagram as necessary).

3. Design and test VHDL models of each unique component used in your datapath.
4. Create a table listing all control signals and the values of each control signal required for the instruction fetch cycle, and for the execution cycle for each instruction type.

Major Datapath Components Likely to be needed:
· ALU: The ALU must provide all arithmetic and logic functions required to support your instruction set. It should not provide unnecessary functions.

· Register file: Design as a multi-port “memory array”. DO NOT instantiate individual registers!

· Sign/zero extension logic, as appropriate, for ALU inputs.

· Program counter (PC).
· Instruction register (IR) (if required).

· Data bus interface (transceiver). The data bus should be of type std_logic_vector so that it can support tristate operation and multiple drivers (CPU and Memory). Other CPU signals can be of type std_logic_vector or bit_vector (or individual bits).

· Assorted multiplexers for data paths and register address inputs.

Thoroughly simulate each new component individually, before inserting it into the datapath. Annotate and submit each simulation. Simulate the datapath component, verifying all required register transfers, by applying control signals with force commands as they would normally be applied by the control unit. Use your control signal table from Note (4) above to design the datapath test, and show in the simulation where you verified each required register transfer for the CPU. (If some register transfers are common to multiple instructions, you do not need to show them separately for every instruction – but it might be a good idea to do so anyway.)
CPU Design Project – Final Part #4
(Due: Wednesday, Dec. 8, 2004 – Final Deadline)

1. Design and test a VHDL “behavioral” model of the control unit to realize the behavior described in your Control Signal Table from the previous part of the project.
2. Create a CPU component by instantiating and connecting your control unit and datapath components. CPU I/O ports should be limited to a clock input, data bus, address bus, and memory control signals (read and write enables). Do not instantiate main memory within the CPU component. This component does not need to be simulated separately. Go on to step 3.
3. Create a “System” component by instantiating and connecting your CPU component and the memory component(s). A clock input should be the only external port of this "System".
4. A sample VHDL Memory model, “memory16.vhd”, will be provided to you. At the start of simulation, the memory array will automatically be loaded with a test program, from object-code file “program”.
5. You will need to create object-code file “program” for your test program (hand-compile the program into binary object code). (The test program will be provided to you). Each line must begin with the 16-bit binary code for one instruction or data value to be loaded into memory. The rest of the line after the 16-bit code is ignored by the model, so you can put text there. I suggest putting the “assembly language” equivalent of that binary instruction. Example: 111100001111 add r1, r2, r3.
6. For the final simulation, to minimize the size of the listing, display only one line per clock transition (i.e., trigger only on clock signal transitions). Show a sufficient set of control signals to demonstrate correct operation of each instruction (control unit state, address bus, data bus, ALU output, register file outputs, register file input, memory control signals, etc.) On the simulation listing, annotate by writing the corresponding assembly language instruction next to each execute cycle and highlighting the “significant” result register or bus value.
ELEC 5200/6200 (Fall 2004)

1 of 4
Computer Design Project Assignment

