
Rese arch FEA TURE

computer	62 Published by the IEEE Computer Society 0018-9162/09/$25.00 © 2009 IEEE	

Suggestions for locality optimizations (SLO), a cache profiling tool,
analyzes runtime reuse paths to find the root causes of poor data locality,
and suggests the most promising code optimizations. Refactoring using
the hints of the SLO analyzer doubles the average execution speed of
several SPEC2000 benchmark programs.

R
efactoring a program means transforming
its internal structure to improve its quali-
ties, such as program organization, execution
speed, or readability, without changing its
functionality. Although refactoring is most

often seen as a way to improve a program’s internal
architecture,1 here we use the term to mean improv-
ing the execution speed. The main bottleneck often
is not computation time, but rather memory access
delay: Processors can execute hundreds of instructions
in the time needed to fetch a single word from main
memory.

A cache hierarchy narrows the performance gap be-
tween processor and memory. Only when the requested
data is present in the cache does the system quickly deliver
the data to the processor, saving it from data starvation.
Basically, caches operate by retaining the most recently
used data. If the processor reuses the data quickly, cache
hits occur. Conversely, if it reuses the data after a long
time, intervening data can evict the data from the cache,
resulting in a cache miss. The majority of the processor
chip area is typically reserved for caches. However, in
many applications, cache misses cause the CPU to stall
during more than half of the execution time. In these
cases, execution speed benefits more from reducing the

Kristof Beyls, Tele Atlas

Erik H. D’Hollander, Ghent University

number of cache misses than from reducing the number
of computations.

Data accessed infrequently exhibits low temporal data
locality. The corresponding cache miss arises from the
instructions touching too much other data between use
and reuse. The instruction trace that occurs between use
and reuse of the same data is called the reuse path, and
all code along the reuse path that accesses data contrib-
utes to the cache miss. Several cache profiling tools, such
as Intel VTune,2 Cprof,3 and Cachegrind,4 measure the
hot spots where most cache misses occur and highlight
the source code lines with the misses. Those highlighted
lines, however, are merely the ends of the reuse paths
that generate a cache miss. In many cases, refactoring
other code along the reuse path improves the temporal
data locality.

Figure 1 shows an example using our reuse profiling
tool, called suggestions for locality optimizations (SLO;
http://slo.sourceforge.net). The horizontal highlighted
bars indicate the source code lines with cache misses, 95
percent of which occur in Line 5 of the function inprod-
uct. Using cache profiling tools, the natural tendency is
to rewrite inproduct for better cache performance.
Unfortunately, refactoring of inproduct cannot dimin-
ish the data volume the processor accesses between

Refactoring for
Data Locality

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

use and reuse. In fact, improving the
locality and removing the resulting
cache misses requires two different
refactorings in function f. SLO indi-
cates these refactorings as vertical
bars to the left of the source code. Im-
proving the locality of the remaining
5 percent misses at Line 29 requires
a third refactoring.

In general, existing profilers pin-
point the cache miss location, but not
the location that needs refactoring.
Finding that location while knowing
only the cache miss location is dif-
ficult in large programs. Compared
to other tools,2-4 SLO is unique in that
it precisely highlights the code re-
gions where refactoring is needed to
eliminate most cache misses, as in the
Figure 1 example. SLO also indicates
the type of refactoring needed, such
as “FUSE” or “TILE” in the vertical
bars. SLO’s automatic analysis en-
ables programmers to improve their
complex applications’ data locality.

In addition to the automatic data
locality optimizations compilers per-
form, implementing the refactorings
suggested by SLO improved speedups,
with programs running 1.09 to 4.11
times faster.

Long-distance reuses
cause cache misses

Every cache hit originates from the
reuse of data. However, data reuse re-
sults in a hit only if the data remains
in the cache between use and reuse. We measure the
temporal locality of a particular data reuse in terms of
reuse distance. The reuse distance is the number of dis-
tinct data elements the processor accesses between the
use and reuse of the same data.5 A reuse distance larger
than the cache size generates a cache miss because the
cache’s capacity is too small to store all data accessed be-
tween use and reuse. A reuse distance smaller than the
cache size yields a hit—that is, for most cache policies.

Because reuse distance is independent of cache size, we
can use it for different cache constellations; therefore, the
reuse distance is a good general measure of a particular
program execution’s data locality. Reuse distances smaller
than the cache size exhibit good data locality, whereas
longer distances cause misses, therefore exhibiting poor
data locality.

Code responsible for
long-distance reuse

Limiting the reuse distances to a value less than the cache
size can eliminate cache misses. Typically, the distance is
many times greater than the cache size. Also, the reuse path
often spans large areas in the source code. All the code on
the reuse path accessing data enlarges the reuse distance.
Finding an effective code refactoring is complicated for two
reasons: The reuse distance often must decrease by orders
of magnitude, and the reuse path typically covers large code
sections. Nonetheless, in many cases, a small refactoring
of the appropriate source code fragment can reduce reuse
distances to values below the cache size.

SLO manages the complexity of tracking reuse paths
by building a loop call tree. The loop call tree is a new

63FEBRUARY 2009

Figure 1. Suggestions for locality optimizations (SLO) visualization. SLO highlights
source code lines containing cache misses with horizontal bars and suggests
refactorings with vertical bars. The colored arrows indicate the main use-reuse pairs
that have low temporal data locality and thus generate most cache misses.

5%

95%

FU
SE

FU
SE

TI
LE

TI
LE

1

5

10

15

20

25

30

Function f computes where

denotes the inner product of row i of matrix X with row j of matrix Y.

Xkl
l

∑
k
∑ /

�
Xi ,
�

Yj
j

∑
i

∑ �
Xi ,
�

Yj

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

hierarchical representation of the program that contains
a node for every function call, loop execution, and loop
iteration observed at runtime. For example, Figure 2a
shows the loop call tree for the program in Figure 1.
The nodes near the top encompass large sections of the
program execution.

The goal is to improve data locality by applying a code
transformation to the reuse path, bringing use and reuse
closer together. The most appropriate source code frag-
ment needs to “see” all code that accesses data between
use and reuse. Finding such a fragment is possible by
inspecting the loop call tree.

The one node that sees the whole reuse path is the
single node at the highest level of the reuse path—that
is, the use and reuse nodes’ least common ancestor. This
is called the overview node because it provides a global
view of the code executed between use and reuse. For
example, in Figure 2a, the j-loop at Level 4 is the over-
view node of the leftmost reuse path. The use occurs in
iteration j = 0, and the reuse occurs in iteration j = 1.

SLO uses vertical bars to highlight the source code cor-
responding to the overview node, as in Figure 1. The two
blue overview nodes in Figure 2a correspond to the blue
vertical bar in Figure 1. The blue bar on Line 5 indicates

Figure 2. SLO’s internal representation of reuses. SLO tracks reuse paths by building loop call trees, for example, in (a) the tree for the
code in Figure 1 (for N = 2 and len = 2). The boxes at the bottom represent memory accesses in basic blocks, and the arrows join the uses
with the reuses of X. The gray lines indicate reuse paths. (b) The distance histogram for the reuses (blue and yellow arrows) in 2a shows
color-coded suggestions for refactorings. The bar colors correspond to the highlighted source code in Figure 1. The background colors
indicate the distance ranges that result in hits in the L1 and L2 caches.

f

i−loop k−loop

i = 0 i = 1 k = 0 k = 1

j−loop j−loop l−loop l−loop

j = 0 j = 1 j = 0 j = 1 l = 0 l = 1 l = 0 l = 1

Inproduct Inproduct Inproduct Inproduct

X[0][0] X[0][1] X[1][0] X[1][1]

m−loop m−loop m−loop m−loop

m = 0 m = 1 m = 0 m = 1 m = 0 m = 1 m = 0 m = 1

X[0][0] Y[0][0] X[0][1] Y[0][1] X[0][0] Y[1][0] X[0][1] Y[1][1] X[1][0] Y[0][0] X[1][1] Y[0][1] X[1][0] Y[1][0] X[1][1] Y[1][1]

3 3
3 3

7

6

5
4

Loop level

Function level

Iteration level

Level 1:

Level 8:

Level 2:

Level 3:

Level 4:

Level 5:

Level 6:

Level 7:

(a)

Fuse i−loop with k−loop

Tile j−loop

10 2 3

1

2

3

4

4 5 6 7
Reuse distance

N
o.

 re
us

es

L1 cache L2 cache

(b)

Rese arch Fe ature

computer	64

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

the cache miss area. In this case, the j-loop generated half
of the cache misses. In the loop call tree, the cache misses
are at the end of the reuse paths.

The left reuse path makes clear why no refactoring
in inproduct alone can eliminate the blue misses: The
use and reuse occur in different calls to inproduct at
Level 6. Therefore, when refactoring inproduct, this
function sees only either the use or the reuse, but not
both. Hence, a refactoring is necessary at a higher level
in the loop call tree.

In addition to using vertical bars to highlight the
refactoring region, SLO gives feedback by drawing
arrows in the function containing the overview node.
These arrows go from the beginning to the end of the
reuse path in the refactoring region. For example, for
the blue region in Figure 1, the reuse paths accessing
array elements X enter and exit the region through
the call to inproduct. For the yellow region, the
reuse paths start in the call to inproduct and end in
expression X[k].

Highlighting all source code lines on the reuse path, as
the reuse distance visualizer (RDVIS) tool does,6 can also
help find a refactoring. However, in cases where reuse
paths span thousands of lines, finding a location in the
reuse path where a small code change largely reduces the
reuse distance is laborious. In our experience, highlighting
only the region corresponding to the overview node helps
to quickly understand the root cause of long reuse paths.

shortening reuse distance

SLO highlights the source locations of the largest
possible reduction in reuse distance. Although the
programmer is free to change the code in any way,
SLO suggests a refactoring that merges the overview
node’s children nodes at runtime. Merging the children
nodes provides more freedom to reschedule the uses
and reuses from each child node. The loop call tree
has three types of nodes: loop level, iteration level, and
function level. For each type, SLO suggests a different
source code transformation that results in merged chil-
dren nodes at runtime. The “Loop Transformations That
Increase Locality” sidebar provides background on the
code transformations.

With loop-level nodes, use occurs in one loop, and reuse
occurs in another loop. Fusing both loops can draw these
reuses nearer. The yellow nodes in Figure 2a represent an
example of this case. Use occurs in the i-loop, and reuse
occurs in the k-loop. SLO indicates this with the “FUSE”
vertical bars.

In iteration-level nodes, use and reuse occur in dif-
ferent iterations of the same loop. It’s possible that each
iteration addresses more data than the processor can
store in the cache. To draw the reuses closer together,
each iteration should access less data. An example of an

iteration-level node is the reuse path crossing the blue it-
eration nodes j = 0 and j = 1 in Figure 2a. Two traditional
transformations that reduce the amount of data accessed
in a single iteration are loop interchange and loop tiling.
SLO indicates this case with the “TILE” vertical bar.

With function-level nodes, use occurs in one func-
tion, and reuse occurs in another function. The solution
comprises two steps. First, we put the bodies of the two
functions in a common function. Next, we fuse the code
that produces the uses with the code that generates the
reuses. SLO indicates this case with “FUSE” vertical bars
next to the two function calls’ source code.

In Figure 2b, yellow and blue indicate two required
refactorings. We can shorten the yellow reuses by fusing
the i-loop with the k-loop and the blue reuses by tiling
the j-loop. In Figure 1, the green refactoring annotation
suggests tiling the i-loop to avoid cache misses resulting
from the reuses of array Y.

Using SLO to optimize programs
To implement measuring the reuse distances and the

loop call tree, we extended the GNU Compiler Collection
(GCC) to instrument the memory accesses, function calls,
and loops. The resulting instrumented code is linked
with a library that processes the memory access, loop
execution, and function call events at runtime to track
the data reuses.

For each reuse, the instrumentation library calcu-
lates the reuse distance and the children of the overview
node in the loop call tree. Further, it calculates the basic
blocks corresponding to the overview node’s children.
SLO maps those basic blocks to the corresponding pair of
source code locations (such as loop or function call site).
For each pair of source locations, the library records
the histogram of reuse distances. When the program
finishes, it writes to a file the mapping of source location
pairs to the corresponding reuse distance histogram.

To speed up this measurement, we use advanced
sampling techniques.7 Two modes of measurement are
available. The first mode measures the reuse distance,
and the second mode measures the reuse data volume—
that is, the total number of accesses between reuses.
The instrumented program runs about 100 times slower
when measuring the reuse distance and five times slower
when measuring the reuse data volume. Whereas we can

65FEBRUARY 2009

With function-level nodes,
use occurs in one function,
and reuse occurs in
another function.

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

Rese arch Fe ature

computer	66

use the second mode to quickly discover the most prom-
ising areas for refactoring, the first mode gives complete
reuse distance information useful for estimating cache
behavior.

After the profiling run, SLO reads the recorded reuse
distance histograms and individually colors and stacks
them, as in Figure 3a. The horizontal reuse distance axis is
scaled logarithmically. When the user clicks a colored bar

Loop Transformations That Increase Locality

L oops iterating over large data structures are prone to
poor data locality. Reordering the iterations to shorten

long reuse distances can improve locality. Three well-known
loop transformations improve memory-access behavior: loop
fusion, loop interchange, and loop tiling.1

When the processor traverses the same data twice in different
loops, it’s usually beneficial to merge, or fuse, the computations
into a single loop to iterate over the data structure only once.

Figure A1 shows the source code, memory access stream, and
reuse distance histogram before and after applying loop fusion.
The fusion reduces the reuse distances from M − 1 to 0.

When the processor reuses the same data between different itera-
tions of an outer loop, it can reduce the gap between the reuses by
interchanging the outer and the inner loop. As a result of loop
interchange, the iterations reusing the same data execute near
each other. In the example in Figure A2, the reuse distances

decrease from N − 1 to 0.

When the processor reuses
some data in an inner loop
and other data in an outer
loop, loop interchange will
optimize only one of the data
reuses. The other reuse
remains between the outer
loop’s iterations. Loop tiling
improves both types of reuses
at the same time. This is done
by limiting the amount of
data the processor accesses
in the inner loop. Blocks of a
limited number of iterations
are called tiles.

As a result of loop tiling in
the Figure A3 example, the
reuses of B[j] in the second
loop are 10 iterations apart.
This gives a constant reuse
distance of 11, as opposed to
the reuse distance N + 1
before tiling.

After tiling, the reuse dis-
tance remains constant with
growing problem size N.
Furthermore, the i-loop
interrupts the reuses of A[i]
between iterations of the
j-loop only every 10 itera-
tions. Therefore, only
one-tenth of those reuses
grows large—that is, M + 19.
With a simple loop inter-
change, all those reuses
would grow large.

Reference
1.	 R. Allen and K. Kennedy,
	 Optimizing Compilers for
	 Modern Architectures, Mor-
	 gan Kaufmann, 2002.

Figure A. Loop transformations. Three loop transformations can improve memory-access
behavior: (1) loop fusion, (2) loop interchange, and (3) loop tiling. These examples show the
source code, memory access stream, and reuse distance histogram before (left column) and
after (right column) applying the transformations.

A[1] A[1] … A[1] A[2] …

for j := 1 to N do
 for i := 1 to M do
 ... A[j] ...

A[1] A[2] … A[N] A[1] …

for i := 1 to M do
 for j := 1 to N do
 ... A[j] ...Source code

Memory
 access stream

Reuse
 distance

 histogram

A[1] A[1] A[2] … A[M]

for i := 1 to M do
 ... A[i]+t ...
 ... A[i]+k ...

A[1] A[2] … A[M] A[1] … A[M]

for i := 1 to M do
 ... A[i]+t ...
for j := 1 to M do
 ... A[j]+k ...

Source code

(1)

(2)

(3)

Memory
 access stream

Reuse
 distance

 histogram

11

(M − 1)N

1

9
10 (N − 1)M

1
10 (N − 1)M

Reuse distance

Reuse distance

Reuse distance
M + 19

A[1] B[1] A[1] B[2] … B[11] A[2] B[1] …

for t := 1 to N by 10 do
 for i := 1 to M do
 for j := t to min(t+10,N) do
 ... A[i] + B[j] ...

A[1] B[1] A[1] B[2] … B[N] A[2] B[1] …

for i := 1 to M do
 for j := 1 to N do
 ... A[i] + B[j] ...Source code

Memory
 access stream

Reuse
 distance

 histogram

N + 1

(M − 1)N

1

(N − 1)M

(M − 1)N

0

MM

0

(M − 1)N

Reuse distance
N – 1

Reuse distanceReuse distance
M – 1

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

in the histogram, SLO highlights the corresponding code,
akin to the bars and arrows in Figure 1.

The three rightmost bars in the histogram in Figure 3a
indicate that SLO suggests three refactorings. First, the
yellow bars in the Figure 1 source code indicate fusing
the i-loop and k-loop. The yellow arrow indicates that the

uses occur inside the call to inproduct on Line 24, while
reference X[k] generates the reuses. The i-loop computes
sumInp, and the k-loop computes sumX. The computations
in both loops are completely independent: The first loop
doesn’t use sumX, and the second loop doesn’t use sumInp.
Therefore, we can safely fuse both loops (see Figure 3b).

Figure 3. Implementing SLO’s suggestions. (a) SLO suggests three different refactorings for reuses at a distance greater than the L2 cache
size. These refactoring colors correspond to Figure 1: tiling the i-loop and the j-loop (blue and green, respectively) and fusing i-loop with
k-loop (yellow). The refactoring produces code after (b) loop fusion and (c) loop tiling. (d) A reuse histogram shows that reuse distances
are decreased after optimization compared to 3(a). The background color shows that the L2 cache-missing reuses have been turned into
L1 cache-hitting reuses after applying the refactorings.

80.0

60.0

40.0

20.0

0
20 25 210 215 220

Reuse distance

N
o.

 a
cc

es
se

s
(m

ill
io

ns
)

(a)

(c)

(d)

(b)

67FEBRUARY 2009

80.0

100.0

60.0

40.0

20.0

0
20 25 210 215 220

Reuse distance

N
o.

 a
cc

es
se

s
(m

ill
io

ns
)

double f
(double **X, double **Y, int len, int N)
{
 int i,j,l;
 double sumInp = 0.0, sumX = 0.0;
 int T;
 /* loop over X and Y in tiles of maximum 50
 elements. T points to the beginning of
 the current tile. */
 for (T=0; T<len; T += 50) {
 /* Tsize is the size of the tile: either 50,
 or possibly less in the last tile. */
 const int Tsize = (T+50>len) ? len-T : 50;
 for (i=0; i<N; i++) {
 for (j=0; j<N; j++)
 sumInp +=
 inproduct (&X[i][T], &Y[j][T], Tsize);
 for (l=T; l<T+Tsize; l++)
 sumX += X[i][l];
 } /* end of i-loop. */
 } /* end of T-loop. */

 return sumX / sumInp;
}

double f
(double **X, double **Y, int len, int N)
{
 int i,j,l;
 double sumInp = 0.0, sumX = 0.0;

 for (i=0; i<N; i++) {
 for (j=0; j<N; j++)
 sumInp += inproduct (X[i], Y[j], len);
 for (l=0; l<len; l++)
 sumX += X[i][l];
 }
 return sumX / sumInp;
}

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

Next, the green and blue bars in Figure 1 suggest
tiling both the i-loop and the j-loop. The processor
simply accesses too much data in a single iteration of
the inner j-loop and the outer i-loop. Now, the green
and blue arrows reveal that the reuses occur between
different calls to inproduct. Indeed, a single iteration
of the j-loop, which computes the inner product <X[i],
Y[j]>, accesses 2 × 106 elements, as arrays X[i] and
Y[j] each contain 106 elements. The refactored code in
Figure 3c, following SLO’s tiling suggestions, accesses
fewer elements in a single iteration of the i-loop and j-
loop. Rather than computing the inner products of long
arrays with length len, the refactored code calculates
the inner product of a subvector with length Tsize =
50 elements in each iteration. This method limits the
number of data elements accessed in a single iteration
to 100, down from 106.

As Figure 3d shows, as a result of the two refactor-
ings, the reuse distance decreased by several orders of
magnitude. The cache-missing reuses at distance 220
to 225 have transformed into L1 cache-hitting reuses at
distance 25 to 210. After refactoring, the program runs
about two times faster on a Pentium 4 PC.

This example also shows that refactoring for data
locality might increase the code complexity. However,
the complexity increase is mitigated in two ways. First,
the code refactoring is localized to the function or loops
the overview node selects. Second, the suggested refac-
torings are well-known structured transformations.
The rewards of improved data locality and diminished
execution time often offset increased code complexity.
Essentially, using SLO involves two steps: The program-
mer finds the largest contribution in the histogram to
the right of the cache size (yielding the most cache
misses) and then analyzes the corresponding code and
implements SLO’s suggestions.

SPEC2000 CASE STUDIES

The industry often uses the SPEC2000 benchmark
suite to measure a computer’s CPU and memory per-
formance.8 We used SLO to analyze seven SPEC2000
benchmark programs for data locality.

Locality patterns

Figure 4 shows the generated locality patterns. We
started by inspecting the area in the histograms to the

right of the L2 cache size because this corresponds to the
reuses that generate the most costly L2 cache misses.

Each color represents a different refactoring sugges-
tion. Clicking a color highlights the refactoring region
in the code. For example, for Applu, Figure 4 shows the
refactoring region corresponding to the blue bar (Fortran
77 code). It indicates that decreasing the blue long-dis-
tance reuses requires fusing functions jacld and blts.
Further investigation of the source code reveals that both
jacld and blts consist of a single large loop nest with
the same loop bounds. Inlining both functions and fusing
the two loops would easily shrink the reuse distances.

We analyzed the other programs in the same way and
obtained the following results.

Applu solves coupled, nonlinear partial-differential
equations. We can remove the blue, green, yellow, and
orange bars at distances greater than 220 by following
SLO’s suggestion to fuse several functions. The other bars
remain because either they’re small and therefore less
important, or we couldn’t find a legal transformation.

Galgel computes the convective motion in water that
differences in temperature generate. The bars on the
right correspond to loops with long-distance reuses be-
tween iterations. We shortened the distances by reducing
the size of the arrays traversed.

Art recognizes objects in an image by simulating
neural networks. The red peak at distance 217 corre-
sponds to an outer loop that accesses too much data in
each iteration. We reduced the data volume by recomput-
ing intermediate data values between iterations, instead
of storing them in memory. The colors in the peak at dis-
tance 214 represent pairs of loops that need to be fused.
We also applied these fusions.

Crafty is a chess program. The histogram shows that
the data locality is quite good: Most of the reuses hit in
the L1 cache. SLO highlights the few L1 misses in a single
phase (the red area in the histogram). This phase cor-
responds to the loop that iterates over the evaluation of
the legal moves at a given board position. Eliminating the
remaining small fraction of L1 misses will require further
investigation of this code.

GCC compiles C codes to an 88 K assembler. The histo-
gram shows that many refactorings are required to improve
the locality, and the program has few hot spots. An ex-
ception is the red peak at distance 222, corresponding to
the convergence loop that calculates liveness for register
allocation. Alas, tiling this loop would result in more con-
vergence iterations, resulting in an overall slowdown.

Versatile Place and Route places and routes electronic
circuits for field-programmable gate arrays. The red, green,
and blue refactorings require tiling the loops in Dijkstra’s
shortest path algorithm, which can’t be done because of de-
pendencies. We removed the orange long-distance reuses,
however, by using a more efficient memory allocator.

The rewards of improved data locality
and diminished execution time often
offset increased code complexity.

Rese arch Fe ature

computer	68

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

Equake simulates earthquakes. A sparse matrix repre-
sents a 3D model of the simulated region. The red peak
at distance 221 corresponds to iterating over the large

sparse matrix between time steps in the simulation. We
tiled the corresponding loop.

In the example program in Figure 3, three suggested

16.0

12.0

8.0

4.0

0
20 25 210 215 220

Reuse distance

N
o.

 a
cc

es
se

s
(m

ill
io

ns
)

(a)

7.0

5.0

6.0

4.0

3.0

2.0

1.0

0
20 25 210 215 220

Reuse distance

N
o.

 a
cc

es
se

s
(m

ill
io

ns
)

(b)

4.0

3.0

2.0

1.0

0
20 25 210 215

Reuse distance

N
o.

 a
cc

es
se

s
(m

ill
io

ns
)

(c)

4.0

3.0

2.0

1.0

0
20 25 210 215

Reuse distance

N
o.

 a
cc

es
se

s
(m

ill
io

ns
)

(d)

10.0

8.0

6.0

4.0

2.0

0
20 25 210 215 220

Reuse distance

N
o.

 a
cc

es
se

s
(m

ill
io

ns
)

(e)

400

300

200

100

0
20 25 210 215 220

Reuse distance

N
o.

 a
cc

es
se

s
(m

ill
io

ns
)

(f)

16.0

12.0

8.0

4.0

0
20 25 210 215 220

Reuse distance

N
o.

 a
cc

es
se

s
(m

ill
io

ns
)

(g)

Figure 4. SLO-generated locality patterns. The analysis included seven SPEC2000 benchmark programs: (a) Applu, (b) Galgel, (c) Art, (d)
Crafty, (e) Gnu Compiler Collection, (f) Versatile Place and Route, and (g) Equake. Clicking on a color highlights the refactoring region in
the code, as in the Applu example.

69FEBRUARY 2009

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

Rese arch Fe ature

computer	70

refactorings eliminate all L2 cache misses. For all but one
of the analyzed SPEC2000 programs, SLO indicates that 11
or fewer refactorings are needed to optimize 90 percent of
the L2 misses. The exception is GCC, where the numerous
compiler phases result in fewer focused hot spots.

We optimized five of the seven programs, following
the suggested refactorings. We chose not to optimize
Crafty and GCC because SLO indicates that Crafty has
no significant locality problems and GCC lacks hot
spots. For the other five programs, temporal locality
improved significantly. Similar to the example in Figure
3, the refactorings move the reuse distance peaks in
the histogram to the left. In general, refactoring neces-
sitates a good understanding of the code to facilitate

analyzing the code and data
f low and verifying that the
planned refactorings are legal.
On average, the actual rewrit-
ing and refactoring of the code
proved to be the easiest part
of the process; on average,
it took one to two hours. For
the case studies, the analysis
of SLO’s suggestions, under-
standing what the analyzed
code does exactly, checking
the legality of the suggested
transformations, and the actual
code refactoring took an aver-
age of two working days per
program.

Execution time

Figure 5a shows the result-
ing speedups on five platforms.
Figure 5b shows a detailed
breakdown of the execution
time on an Itanium processor,
as measured by performance
counters. Refactoring elimi-
nated a large fraction of the stall
time from data cache misses.
The original and refactored
source codes were compiled
with all optimizations enabled.
In principle, the SLO sugges-
tions could help a compiler to
find better data locality optimi-
zations. However, the long reuse
paths, dynamic data structures,
and complex control flow often
prevent the compiler from con-
cluding that a refactoring is
legal. This is why SLO needs a

human programmer in the loop. A programmer can ac-
curately determine whether a refactoring is legal on the
basis of the algorithm and the programmer’s knowledge
of the field and ability to adjust the code to make a refac-
toring possible. This process is why refactoring results in
speedups ranging from a factor of 1.09 to 4.11.

The speedup varies across platforms owing to mi-
croarchitectural differences that affect the slowdown
resulting from cache misses. Significant characteristics
are the sizes and access latencies of the cache levels,
out-of-order execution versus in-order execution, and
the prefetch mechanisms. Nonetheless, all speedups are
positive, showing that improving the temporal locality
has a positive impact on all platforms and programs. The

Figure 5. Data cache stall time reduction and speedup after refactoring. (a) The table shows
speedups resulting from SLO’s suggested refactorings on five platforms. (b) The chart shows a
breakdown of execution time on an Itanium processor for original and refactored codes.

(a)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

0

0.2

0.4

0.6

0.8

1.0

O
rig

in
al

R
ef

ac
to

re
d

O
rig

in
al

R
ef

ac
to

re
d

O
rig

in
al

R
ef

ac
to

re
d

O
rig

in
al

R
ef

ac
to

re
d

O
rig

in
al

R
ef

ac
to

re
d

Instruction cache miss
Data cache miss
Branch mispredicted
Execution

Art VPR Equake Galgel Applu(b)

	P entium 4	I tanium	A lpha EV67	PA -RISC 8500	U ltraSPARC IV
	 2.66 GHz	 733 MHz	 677 MHz	 400 MHz	 1.05 GHz	
	 Cache size	 Cache size	 Cache size	 Cache size	 Cache size
	 L1: 8 KB;	 L1: 16 KB;	 L1: 64 KB;	 L1: 1.5 MB;	 L1: 64 KB;
	 L2: 512 KB	 L2: 96 KB	 L2: 8 MB		 L2: 16 MB
		 L3: 2 MB

Program
Art	 4.11	 1.54	 1.16	 2.30	 1.89
VPR	 1.51	 1.40	 1.41	 1.17	 1.09
Equake	 1.10	 2.93	 3.09	 1.54	 1.57
Galgel	 2.14	 2.63	 2.48	 1.23	 1.46
Applu	 1.63	 2.46	 1.69	 1.17	 2.71

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

For more information on any topic presented in Computer,
visit the IEEE Computer Society Digital Library at

www.computer.org/csdl

profile-directed compilers. We believe that SLO will
be useful in the optimization of many data-intensive
applications.

References
	 1.	 M. Fowler, Refactoring: Improving the Design of Exist-

ing Code, Addison-Wesley, 2000.

	 2.	 M. Atkins and R. Subramaniam, “PC Software Per-
formance Tuning,” Computer, Aug. 1996, pp. 47-54.

	 3.	 A.R. Lebeck and D.A. Wood, “Cache Profiling and
the SPEC Benchmarks: A Case Study,” Computer, Oct.
1994, pp. 15-26.

	 4.	 N. Nethercote and J. Seward, “Valgrind: A Program
Supervision Framework,” Electronic Notes in Theo-
retical Computer Science, Oct. 2003, pp. 1-23.

	 5.	 C. Ding and Y. Zhong, “Predicting Whole-Program
Locality through Reuse Distance Analysis,” Proc.
Conf. Programming Language Design and Implemen-
tation, ACM Press, 2003, pp. 245-257.

	 6.	 K. Beyls, E.H. D’Hollander, and F. Vandeputte,
“RDVIS: A Tool That Visualizes the Causes of Low
Locality and Hints at Program Optimizations,”
Proc. Int’l Conf. Computational Science, LNCS 3515,
Springer, 2005, pp. 166-173.

	 7.	 K. Beyls and E.H. D’Hollander, “Discovery of Local-
ity-Improving Refactorings by Reuse Path Analysis,”
Proc Int’l Conf. High Performance Computing and
Comm., LNCS 4208, Springer, 2006, pp. 220-229.

	 8.	 J.L. Henning, “SPEC CPU2000: Measuring CPU Per-
formance in a New Millennium,” Computer, July
2000, pp. 28-35.

Kristof Beyls is a software engineer at Tele Atlas. His
research interests include program analysis, compilers,
high-performance computing, and software engineering.
Beyls received a PhD in computer science from Ghent
University, Belgium. Contact him at kristof.beyls@elis.
ugent.be.

Erik H. D’Hollander is a professor in the Department of
Electronics and Information Systems at Ghent University,
Belgium. His research interests include parallel com-
puting, high-performance architectures, compilers, and
embedded systems. D’Hollander received a PhD in com-
puter science from Ghent University. Contact him at
erik.dhollander@elis.ugent.be.

source code of the five refactored programs is available
at the SLO website (http://slo.sourceforge.net).

Eliminating cache misses

Cache misses occur when too much data is accessed
between use and reuse—that is, when the reuse distance
is larger than the cache size. To turn misses into hits,
the reuse distance must be reduced to a value smaller
than the cache size. All the code on the execution path
between use and reuse contributes to enlarging the
distance.

Traditional profilers highlight the reuse path’s end
point where the miss occurs. However, eliminating the
cache miss often requires refactoring a completely dif-
ferent source location on the reuse path. Therefore, SLO
highlights a small code region on the reuse path where
refactoring has the highest impact on reuse distance.
The region is determined based on the principle that the
code with an overview of both the use and the reuse has
the largest impact on the reuse distance. This is found by
looking up the highest level in the hierarchy of function
calls and loops traversed by the reuse path.

Evaluation of SLO using SPEC2000 programs cover-
ing several important application domains revealed that
the execution speed was doubled on the average on five
different platforms. This indicates that SLO improves
the locality in a platform-independent way, resulting in
significant speedups.

R
efactoring for data locality opens a new avenue
for performance-oriented program rewriting.
SLO has broken down a large part of the com-
plexity that software developers face when
speeding up programs with numerous cache

misses. Therefore, we consider SLO to belong to a new
generation of program analyzers. Whereas existing cache
profilers (generation 1.0) highlight problems such as cache
misses, second-generation analyzers (such as SLO) high-
light the place to fix problems.

Improving data locality is also important in hardware-
based applications. SLO was already used to optimize the
frame rate and energy consumption in a wavelet decoder
implemented on an FPGA.

In another vein, the SLO concepts could be incor-
porated in interactive performance debuggers and

71FEBRUARY 2009

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

