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Suggestions for locality optimizations (SLO), a cache profiling tool, 
analyzes runtime reuse paths to find the root causes of poor data locality, 
and suggests the most promising code optimizations. Refactoring using 
the hints of the SLO analyzer doubles the average execution speed of 
several SPEC2000 benchmark programs.

R
efactoring a program means transforming 
its internal structure to improve its quali-
ties, such as program organization, execution 
speed, or readability, without changing its 
functionality. Although refactoring is most 

often seen as a way to improve a program’s internal 
architecture,1 here we use the term to mean improv-
ing the execution speed. The main bottleneck often 
is not computation time, but rather memory access 
delay: Processors can execute hundreds of instructions 
in the time needed to fetch a single word from main 
memory.

A cache hierarchy narrows the performance gap be-
tween processor and memory. Only when the requested 
data is present in the cache does the system quickly deliver 
the data to the processor, saving it from data starvation. 
Basically, caches operate by retaining the most recently 
used data. If the processor reuses the data quickly, cache 
hits occur. Conversely, if it reuses the data after a long 
time, intervening data can evict the data from the cache, 
resulting in a cache miss. The majority of the processor 
chip area is typically reserved for caches. However, in 
many applications, cache misses cause the CPU to stall 
during more than half of the execution time. In these 
cases, execution speed benefits more from reducing the 
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number of cache misses than from reducing the number 
of computations.

Data accessed infrequently exhibits low temporal data 
locality. The corresponding cache miss arises from the 
instructions touching too much other data between use 
and reuse. The instruction trace that occurs between use 
and reuse of the same data is called the reuse path, and 
all code along the reuse path that accesses data contrib-
utes to the cache miss. Several cache profiling tools, such 
as Intel VTune,2 Cprof,3 and Cachegrind,4 measure the 
hot spots where most cache misses occur and highlight 
the source code lines with the misses. Those highlighted 
lines, however, are merely the ends of the reuse paths 
that generate a cache miss. In many cases, refactoring 
other code along the reuse path improves the temporal 
data locality. 

Figure 1 shows an example using our reuse profiling 
tool, called suggestions for locality optimizations (SLO; 
http://slo.sourceforge.net). The horizontal highlighted 
bars indicate the source code lines with cache misses, 95 
percent of which occur in Line 5 of the function inprod-
uct. Using cache profiling tools, the natural tendency is 
to rewrite inproduct for better cache performance. 
Unfortunately, refactoring of inproduct cannot dimin-
ish the data volume the processor accesses between 
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use and reuse. In fact, improving the 
locality and removing the resulting 
cache misses requires two different 
refactorings in function f. SLO indi-
cates these refactorings as vertical 
bars to the left of the source code. Im-
proving the locality of the remaining 
5 percent misses at Line 29 requires 
a third refactoring.

In general, existing profilers pin-
point the cache miss location, but not 
the location that needs refactoring. 
Finding that location while knowing 
only the cache miss location is dif-
ficult in large programs. Compared 
to other tools,2-4 SLO is unique in that 
it precisely highlights the code re-
gions where refactoring is needed to 
eliminate most cache misses, as in the 
Figure 1 example. SLO also indicates 
the type of refactoring needed, such 
as “FUSE” or “TILE” in the vertical 
bars. SLO’s automatic analysis en-
ables programmers to improve their 
complex applications’ data locality. 

In addition to the automatic data 
locality optimizations compilers per-
form, implementing the refactorings 
suggested by SLO improved speedups, 
with programs running 1.09 to 4.11 
times faster.

Long-distance reuses  
cause cache misses

Every cache hit originates from the 
reuse of data. However, data reuse re-
sults in a hit only if the data remains 
in the cache between use and reuse. We measure the 
temporal locality of a particular data reuse in terms of 
reuse distance. The reuse distance is the number of dis-
tinct data elements the processor accesses between the 
use and reuse of the same data.5 A reuse distance larger 
than the cache size generates a cache miss because the 
cache’s capacity is too small to store all data accessed be-
tween use and reuse. A reuse distance smaller than the 
cache size yields a hit—that is, for most cache policies.

Because reuse distance is independent of cache size, we 
can use it for different cache constellations; therefore, the 
reuse distance is a good general measure of a particular 
program execution’s data locality. Reuse distances smaller 
than the cache size exhibit good data locality, whereas 
longer distances cause misses, therefore exhibiting poor 
data locality.

Code responsible for  
long-distance reuse

Limiting the reuse distances to a value less than the cache 
size can eliminate cache misses. Typically, the distance is 
many times greater than the cache size. Also, the reuse path 
often spans large areas in the source code. All the code on 
the reuse path accessing data enlarges the reuse distance. 
Finding an effective code refactoring is complicated for two 
reasons: The reuse distance often must decrease by orders 
of magnitude, and the reuse path typically covers large code 
sections. Nonetheless, in many cases, a small refactoring 
of the appropriate source code fragment can reduce reuse 
distances to values below the cache size.

SLO manages the complexity of tracking reuse paths 
by building a loop call tree. The loop call tree is a new 
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Figure 1. Suggestions for locality optimizations (SLO) visualization. SLO highlights 
source code lines containing cache misses with horizontal bars and suggests 
refactorings with vertical bars. The colored arrows indicate the main use-reuse pairs 
that have low temporal data locality and thus generate most cache misses.

5%

95%

FU
SE

FU
SE

TI
LE

TI
LE

1

5

10

15

20

25

30

Function f computes                                               where  

denotes the inner product of row i of matrix X with row j of matrix Y.

Xkl
l

∑
k
∑ /

�
Xi ,
�

Yj
j

∑
i

∑ �
Xi ,
�

Yj

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore.  Restrictions apply.



hierarchical representation of the program that contains 
a node for every function call, loop execution, and loop 
iteration observed at runtime. For example, Figure 2a 
shows the loop call tree for the program in Figure 1. 
The nodes near the top encompass large sections of the 
program execution.

The goal is to improve data locality by applying a code 
transformation to the reuse path, bringing use and reuse 
closer together. The most appropriate source code frag-
ment needs to “see” all code that accesses data between 
use and reuse. Finding such a fragment is possible by 
inspecting the loop call tree.

The one node that sees the whole reuse path is the 
single node at the highest level of the reuse path—that 
is, the use and reuse nodes’ least common ancestor. This 
is called the overview node because it provides a global 
view of the code executed between use and reuse. For 
example, in Figure 2a, the j-loop at Level 4 is the over-
view node of the leftmost reuse path. The use occurs in 
iteration j = 0, and the reuse occurs in iteration j = 1. 

SLO uses vertical bars to highlight the source code cor-
responding to the overview node, as in Figure 1. The two 
blue overview nodes in Figure 2a correspond to the blue 
vertical bar in Figure 1. The blue bar on Line 5 indicates 

Figure 2. SLO’s internal representation of reuses. SLO tracks reuse paths by building loop call trees, for example, in (a) the tree for the 
code in Figure 1 (for N = 2 and len = 2). The boxes at the bottom represent memory accesses in basic blocks, and the arrows join the uses 
with the reuses of X. The gray lines indicate reuse paths. (b) The distance histogram for the reuses (blue and yellow arrows) in 2a shows 
color-coded suggestions for refactorings. The bar colors correspond to the highlighted source code in Figure 1. The background colors 
indicate the distance ranges that result in hits in the L1 and L2 caches. 
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the cache miss area. In this case, the j-loop generated half 
of the cache misses. In the loop call tree, the cache misses 
are at the end of the reuse paths.

The left reuse path makes clear why no refactoring 
in inproduct alone can eliminate the blue misses: The 
use and reuse occur in different calls to inproduct at 
Level 6. Therefore, when refactoring inproduct, this 
function sees only either the use or the reuse, but not 
both. Hence, a refactoring is necessary at a higher level 
in the loop call tree.

In addition to using vertical bars to highlight the 
refactoring region, SLO gives feedback by drawing 
arrows in the function containing the overview node. 
These arrows go from the beginning to the end of the 
reuse path in the refactoring region. For example, for 
the blue region in Figure 1, the reuse paths accessing 
array elements X enter and exit the region through 
the call to inproduct. For the yellow region, the 
reuse paths start in the call to inproduct and end in  
expression X[k].

Highlighting all source code lines on the reuse path, as 
the reuse distance visualizer (RDVIS) tool does,6 can also 
help find a refactoring. However, in cases where reuse 
paths span thousands of lines, finding a location in the 
reuse path where a small code change largely reduces the 
reuse distance is laborious. In our experience, highlighting 
only the region corresponding to the overview node helps 
to quickly understand the root cause of long reuse paths.

shortening reuse distance

SLO highlights the source locations of the largest 
possible reduction in reuse distance. Although the 
programmer is free to change the code in any way, 
SLO suggests a refactoring that merges the overview 
node’s children nodes at runtime. Merging the children 
nodes provides more freedom to reschedule the uses 
and reuses from each child node. The loop call tree 
has three types of nodes: loop level, iteration level, and 
function level. For each type, SLO suggests a different 
source code transformation that results in merged chil-
dren nodes at runtime. The “Loop Transformations That 
Increase Locality” sidebar provides background on the 
code transformations.

With loop-level nodes, use occurs in one loop, and reuse 
occurs in another loop. Fusing both loops can draw these 
reuses nearer. The yellow nodes in Figure 2a represent an 
example of this case. Use occurs in the i-loop, and reuse 
occurs in the k-loop. SLO indicates this with the “FUSE” 
vertical bars.

In iteration-level nodes, use and reuse occur in dif-
ferent iterations of the same loop. It’s possible that each 
iteration addresses more data than the processor can 
store in the cache. To draw the reuses closer together, 
each iteration should access less data. An example of an 

iteration-level node is the reuse path crossing the blue it-
eration nodes j = 0 and j = 1 in Figure 2a. Two traditional 
transformations that reduce the amount of data accessed 
in a single iteration are loop interchange and loop tiling. 
SLO indicates this case with the “TILE” vertical bar.

With function-level nodes, use occurs in one func-
tion, and reuse occurs in another function. The solution 
comprises two steps. First, we put the bodies of the two 
functions in a common function. Next, we fuse the code 
that produces the uses with the code that generates the 
reuses. SLO indicates this case with “FUSE” vertical bars 
next to the two function calls’ source code. 

In Figure 2b, yellow and blue indicate two required 
refactorings. We can shorten the yellow reuses by fusing 
the i-loop with the k-loop and the blue reuses by tiling 
the j-loop. In Figure 1, the green refactoring annotation 
suggests tiling the i-loop to avoid cache misses resulting 
from the reuses of array Y.

Using SLO to optimize programs
To implement measuring the reuse distances and the 

loop call tree, we extended the GNU Compiler Collection 
(GCC) to instrument the memory accesses, function calls, 
and loops. The resulting instrumented code is linked 
with a library that processes the memory access, loop 
execution, and function call events at runtime to track 
the data reuses.

For each reuse, the instrumentation library calcu-
lates the reuse distance and the children of the overview 
node in the loop call tree. Further, it calculates the basic 
blocks corresponding to the overview node’s children. 
SLO maps those basic blocks to the corresponding pair of 
source code locations (such as loop or function call site). 
For each pair of source locations, the library records 
the histogram of reuse distances. When the program 
finishes, it writes to a file the mapping of source location 
pairs to the corresponding reuse distance histogram.

To speed up this measurement, we use advanced 
sampling techniques.7 Two modes of measurement are 
available. The first mode measures the reuse distance, 
and the second mode measures the reuse data volume—
that is, the total number of accesses between reuses. 
The instrumented program runs about 100 times slower 
when measuring the reuse distance and five times slower 
when measuring the reuse data volume. Whereas we can 

65FEBRUARY 2009

With function-level nodes,  
use occurs in one function,  
and reuse occurs in  
another function.

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore.  Restrictions apply.



Rese arch Fe ature

computer	66

use the second mode to quickly discover the most prom-
ising areas for refactoring, the first mode gives complete 
reuse distance information useful for estimating cache 
behavior.

After the profiling run, SLO reads the recorded reuse 
distance histograms and individually colors and stacks 
them, as in Figure 3a. The horizontal reuse distance axis is 
scaled logarithmically. When the user clicks a colored bar 

Loop Transformations That Increase Locality

L oops iterating over large data structures are prone to 
poor data locality. Reordering the iterations to shorten 

long reuse distances can improve locality. Three well-known 
loop transformations improve memory-access behavior: loop 
fusion, loop interchange, and loop tiling.1 

When the processor traverses the same data twice in different 
loops, it’s usually beneficial to merge, or fuse, the computations 
into a single loop to iterate over the data structure only once. 

Figure A1 shows the source code, memory access stream, and 
reuse distance histogram before and after applying loop fusion. 
The fusion reduces the reuse distances from M − 1 to 0.

When the processor reuses the same data between different itera-
tions of an outer loop, it can reduce the gap between the reuses by 
interchanging the outer and the inner loop. As a result of loop 
interchange, the iterations reusing the same data execute near 
each other. In the example in Figure A2, the reuse distances 

decrease from N − 1 to 0.

When the processor reuses 
some data in an inner loop 
and other data in an outer 
loop, loop interchange will 
optimize only one of the data 
reuses. The other reuse 
remains between the outer 
loop’s iterations. Loop tiling 
improves both types of reuses 
at the same time. This is done 
by limiting the amount of 
data the processor accesses 
in the inner loop. Blocks of a 
limited number of iterations 
are called tiles.

As a result of loop tiling in 
the Figure A3 example, the 
reuses of B[j] in the second 
loop are 10 iterations apart. 
This gives a constant reuse 
distance of 11, as opposed to 
the reuse distance N + 1 
before tiling.

After tiling, the reuse dis-
tance remains constant with 
growing problem size N. 
Furthermore, the i-loop 
interrupts the reuses of A[i] 
between iterations of the  
j-loop only every 10 itera-
tions. Therefore, only 
one-tenth of those reuses 
grows large—that is, M + 19. 
With a simple loop inter-
change, all those reuses 
would grow large.

 
Reference
1.	 R. Allen and K. Kennedy,  
	 Optimizing Compilers for  
	 Modern Architectures, Mor- 
	 gan Kaufmann, 2002.

Figure A. Loop transformations. Three loop transformations can improve memory-access 
behavior: (1) loop fusion, (2) loop interchange, and (3) loop tiling. These examples show the 
source code, memory access stream, and reuse distance histogram before (left column) and 
after (right column) applying the transformations.
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in the histogram, SLO highlights the corresponding code, 
akin to the bars and arrows in Figure 1.

The three rightmost bars in the histogram in Figure 3a 
indicate that SLO suggests three refactorings. First, the 
yellow bars in the Figure 1 source code indicate fusing 
the i-loop and k-loop. The yellow arrow indicates that the 

uses occur inside the call to inproduct on Line 24, while 
reference X[k] generates the reuses. The i-loop computes 
sumInp, and the k-loop computes sumX. The computations 
in both loops are completely independent: The first loop 
doesn’t use sumX, and the second loop doesn’t use sumInp. 
Therefore, we can safely fuse both loops (see Figure 3b).

Figure 3. Implementing SLO’s suggestions. (a) SLO suggests three different refactorings for reuses at a distance greater than the L2 cache 
size. These refactoring colors correspond to Figure 1: tiling the i-loop and the j-loop (blue and green, respectively) and fusing i-loop with 
k-loop (yellow). The refactoring produces code after (b) loop fusion and (c) loop tiling. (d) A reuse histogram shows that reuse distances 
are decreased after optimization compared to 3(a). The background color shows that the L2 cache-missing reuses have been turned into 
L1 cache-hitting reuses after applying the refactorings. 
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double f
(double **X, double **Y, int len, int N)
{
  int i,j,l;
  double sumInp = 0.0, sumX = 0.0;
  int T;
  /* loop over X and Y in tiles of maximum 50
      elements. T points to the beginning of
      the current tile. */
  for (T=0; T<len; T += 50) {
    /* Tsize is the size of the tile: either 50,
        or possibly less in the last tile. */
    const int Tsize = (T+50>len) ? len-T : 50;
    for (i=0; i<N; i++) {
      for (j=0; j<N; j++)
        sumInp +=
          inproduct (&X[i][T], &Y[j][T], Tsize);
      for (l=T; l<T+Tsize; l++)
         sumX += X[i][l];
      } /* end of i-loop. */
  } /* end of T-loop. */

  return sumX / sumInp;
}

double f
(double **X, double **Y, int len, int N)
{
  int i,j,l;
  double sumInp = 0.0, sumX = 0.0;

  for (i=0; i<N; i++) {
  for (j=0; j<N; j++)
    sumInp += inproduct (X[i], Y[j], len);
  for (l=0; l<len; l++)
    sumX += X[i][l];
  }
  return sumX / sumInp;
}
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Next, the green and blue bars in Figure 1 suggest 
tiling both the i-loop and the j-loop. The processor 
simply accesses too much data in a single iteration of 
the inner j-loop and the outer i-loop. Now, the green 
and blue arrows reveal that the reuses occur between 
different calls to inproduct. Indeed, a single iteration 
of the j-loop, which computes the inner product <X[i], 
Y[j]>, accesses 2 × 106 elements, as arrays X[i] and 
Y[j] each contain 106 elements. The refactored code in 
Figure 3c, following SLO’s tiling suggestions, accesses 
fewer elements in a single iteration of the i-loop and j-
loop. Rather than computing the inner products of long 
arrays with length len, the refactored code calculates 
the inner product of a subvector with length Tsize = 
50 elements in each iteration. This method limits the 
number of data elements accessed in a single iteration 
to 100, down from 106.

As Figure 3d shows, as a result of the two refactor-
ings, the reuse distance decreased by several orders of 
magnitude. The cache-missing reuses at distance 220 
to 225 have transformed into L1 cache-hitting reuses at 
distance 25 to 210. After refactoring, the program runs 
about two times faster on a Pentium 4 PC.

This example also shows that refactoring for data 
locality might increase the code complexity. However, 
the complexity increase is mitigated in two ways. First, 
the code refactoring is localized to the function or loops 
the overview node selects. Second, the suggested refac-
torings are well-known structured transformations. 
The rewards of improved data locality and diminished 
execution time often offset increased code complexity. 
Essentially, using SLO involves two steps: The program-
mer finds the largest contribution in the histogram to  
the right of the cache size (yielding the most cache 
misses) and then analyzes the corresponding code and 
implements SLO’s suggestions.

SPEC2000 CASE STUDIES

The industry often uses the SPEC2000 benchmark 
suite to measure a computer’s CPU and memory per-
formance.8 We used SLO to analyze seven SPEC2000 
benchmark programs for data locality.

Locality patterns

Figure 4 shows the generated locality patterns. We 
started by inspecting the area in the histograms to the 

right of the L2 cache size because this corresponds to the 
reuses that generate the most costly L2 cache misses. 

Each color represents a different refactoring sugges-
tion. Clicking a color highlights the refactoring region 
in the code. For example, for Applu, Figure 4 shows the 
refactoring region corresponding to the blue bar (Fortran 
77 code). It indicates that decreasing the blue long-dis-
tance reuses requires fusing functions jacld and blts. 
Further investigation of the source code reveals that both 
jacld and blts consist of a single large loop nest with 
the same loop bounds. Inlining both functions and fusing 
the two loops would easily shrink the reuse distances. 

We analyzed the other programs in the same way and 
obtained the following results.

Applu solves coupled, nonlinear partial-differential 
equations. We can remove the blue, green, yellow, and 
orange bars at distances greater than 220 by following 
SLO’s suggestion to fuse several functions. The other bars 
remain because either they’re small and therefore less 
important, or we couldn’t find a legal transformation.

Galgel computes the convective motion in water that 
differences in temperature generate. The bars on the 
right correspond to loops with long-distance reuses be-
tween iterations. We shortened the distances by reducing 
the size of the arrays traversed.

Art recognizes objects in an image by simulating 
neural networks. The red peak at distance 217 corre-
sponds to an outer loop that accesses too much data in 
each iteration. We reduced the data volume by recomput-
ing intermediate data values between iterations, instead 
of storing them in memory. The colors in the peak at dis-
tance 214 represent pairs of loops that need to be fused. 
We also applied these fusions.

Crafty is a chess program. The histogram shows that 
the data locality is quite good: Most of the reuses hit in 
the L1 cache. SLO highlights the few L1 misses in a single 
phase (the red area in the histogram). This phase cor-
responds to the loop that iterates over the evaluation of 
the legal moves at a given board position. Eliminating the 
remaining small fraction of L1 misses will require further 
investigation of this code.

GCC compiles C codes to an 88 K assembler. The histo-
gram shows that many refactorings are required to improve 
the locality, and the program has few hot spots. An ex-
ception is the red peak at distance 222, corresponding to 
the convergence loop that calculates liveness for register 
allocation. Alas, tiling this loop would result in more con-
vergence iterations, resulting in an overall slowdown.

Versatile Place and Route  places and routes electronic 
circuits for field-programmable gate arrays. The red, green, 
and blue refactorings require tiling the loops in Dijkstra’s 
shortest path algorithm, which can’t be done because of de-
pendencies. We removed the orange long-distance reuses, 
however, by using a more efficient memory allocator.

The rewards of improved data locality 
and diminished execution time often 
offset increased code complexity.

Rese arch Fe ature

computer	68

Authorized licensed use limited to: Auburn University. Downloaded on April 1, 2009 at 19:08 from IEEE Xplore.  Restrictions apply.



Equake simulates earthquakes. A sparse matrix repre-
sents a 3D model of the simulated region. The red peak 
at distance 221 corresponds to iterating over the large 

sparse matrix between time steps in the simulation. We 
tiled the corresponding loop.

In the example program in Figure 3, three suggested 
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Figure 4. SLO-generated locality patterns. The analysis included seven SPEC2000 benchmark programs: (a) Applu, (b) Galgel, (c) Art, (d) 
Crafty, (e) Gnu Compiler Collection, (f ) Versatile Place and Route, and (g) Equake. Clicking on a color highlights the refactoring region in 
the code, as in the Applu example.
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refactorings eliminate all L2 cache misses. For all but one 
of the analyzed SPEC2000 programs, SLO indicates that 11 
or fewer refactorings are needed to optimize 90 percent of 
the L2 misses. The exception is GCC, where the numerous 
compiler phases result in fewer focused hot spots.

We optimized five of the seven programs, following 
the suggested refactorings. We chose not to optimize 
Crafty and GCC because SLO indicates that Crafty has 
no significant locality problems and GCC lacks hot 
spots. For the other five programs, temporal locality 
improved significantly. Similar to the example in Figure 
3, the refactorings move the reuse distance peaks in 
the histogram to the left. In general, refactoring neces-
sitates a good understanding of the code to facilitate 

analyzing the code and data 
f low and verifying that the 
planned refactorings are legal. 
On average, the actual rewrit-
ing and refactoring of the code 
proved to be the easiest part 
of the process; on average, 
it took one to two hours. For 
the case studies, the analysis 
of SLO’s suggestions, under-
standing what the analyzed 
code does exactly, checking 
the legality of the suggested 
transformations, and the actual 
code refactoring took an aver-
age of two working days per  
program. 

Execution time

Figure 5a shows the result-
ing speedups on five platforms. 
Figure 5b shows a detailed 
breakdown of the execution 
time on an Itanium processor, 
as measured by performance 
counters. Refactoring elimi-
nated a large fraction of the stall 
time from data cache misses. 
The original and refactored 
source codes were compiled 
with all optimizations enabled. 
In principle, the SLO sugges-
tions could help a compiler to 
find better data locality optimi-
zations. However, the long reuse 
paths, dynamic data structures, 
and complex control flow often 
prevent the compiler from con-
cluding that a refactoring is 
legal. This is why SLO needs a 

human programmer in the loop. A programmer can ac-
curately determine whether a refactoring is legal on the 
basis of the algorithm and the programmer’s knowledge 
of the field and ability to adjust the code to make a refac-
toring possible. This process is why refactoring results in 
speedups ranging from a factor of 1.09 to 4.11.

The speedup varies across platforms owing to mi-
croarchitectural differences that affect the slowdown 
resulting from cache misses. Significant characteristics 
are the sizes and access latencies of the cache levels, 
out-of-order execution versus in-order execution, and 
the prefetch mechanisms. Nonetheless, all speedups are 
positive, showing that improving the temporal locality 
has a positive impact on all platforms and programs. The 

Figure 5. Data cache stall time reduction and speedup after refactoring. (a) The table shows 
speedups resulting from SLO’s suggested refactorings on five platforms. (b) The chart shows a 
breakdown of execution time on an Itanium processor for original and refactored codes.
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Instruction cache miss
Data cache miss
Branch mispredicted
Execution

Art VPR Equake Galgel Applu(b)

	P entium 4	I tanium	A lpha EV67	PA -RISC 8500	U ltraSPARC IV 
	 2.66 GHz	 733 MHz	 677 MHz	 400 MHz	 1.05 GHz	
	 Cache size	 Cache size	 Cache size	 Cache size	 Cache size 
	 L1: 8 KB;	 L1: 16 KB;	 L1: 64 KB;	 L1: 1.5 MB;	 L1: 64 KB; 
	 L2: 512 KB	 L2: 96 KB	 L2: 8 MB		  L2: 16 MB 
		  L3: 2 MB

Program
Art	 4.11	 1.54	 1.16	 2.30	 1.89
VPR	 1.51	 1.40	 1.41	 1.17	 1.09
Equake	 1.10	 2.93	 3.09	 1.54	 1.57
Galgel	 2.14	 2.63	 2.48	 1.23	 1.46
Applu	 1.63	 2.46	 1.69	 1.17	 2.71
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profile-directed compilers. We believe that SLO will 
be useful in the optimization of many data-intensive 
applications. 
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source code of the five refactored programs is available 
at the SLO website (http://slo.sourceforge.net).

Eliminating cache misses

Cache misses occur when too much data is accessed 
between use and reuse—that is, when the reuse distance 
is larger than the cache size. To turn misses into hits, 
the reuse distance must be reduced to a value smaller 
than the cache size. All the code on the execution path 
between use and reuse contributes to enlarging the 
distance. 

Traditional profilers highlight the reuse path’s end 
point where the miss occurs. However, eliminating the 
cache miss often requires refactoring a completely dif-
ferent source location on the reuse path. Therefore, SLO 
highlights a small code region on the reuse path where 
refactoring has the highest impact on reuse distance. 
The region is determined based on the principle that the 
code with an overview of both the use and the reuse has 
the largest impact on the reuse distance. This is found by 
looking up the highest level in the hierarchy of function 
calls and loops traversed by the reuse path. 

Evaluation of SLO using SPEC2000 programs cover-
ing several important application domains revealed that 
the execution speed was doubled on the average on five 
different platforms. This indicates that SLO improves 
the locality in a platform-independent way, resulting in 
significant speedups.

R
efactoring for data locality opens a new avenue 
for performance-oriented program rewriting. 
SLO has broken down a large part of the com-
plexity that software developers face when 
speeding up programs with numerous cache 

misses. Therefore, we consider SLO to belong to a new 
generation of program analyzers. Whereas existing cache 
profilers (generation 1.0) highlight problems such as cache 
misses, second-generation analyzers (such as SLO) high-
light the place to fix problems.

Improving data locality is also important in hardware-
based applications. SLO was already used to optimize the 
frame rate and energy consumption in a wavelet decoder 
implemented on an FPGA. 

In another vein, the SLO concepts could be incor-
porated in interactive performance debuggers and 
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