HITEC/PROOFS USER’S MANUAL

Center for Reliable & High-Performance Computing
University of Illinois
1308 West Main Street
Urbana, IL 61801-2307

January 11, 1996

HITEC/PROOFS is a gate-level, sequential circuit test generation and fault simulation
package which targets single stuck-at faults in synchronous sequential circuits described
in the ISCAS89 benchmark format. Fault lists are automatically generated for all single
stuck-at faults in a circuit, and fault collapsing is performed using structural equivalence.
Individual faults are targeted by HITEC, and several passes through the fault list are made,
with increasing time and backtrack limits in each successive pass. When a test sequence is
successfully generated to detect a target fault, HITEC invokes the PROOFS fault simulator
to find all additional faults incidentally detected by the test sequence. Detected faults are
then removed from the fault list. After each pass through the fault list, the user is prompted
about whether to continue with the next pass; execution terminates when the user responds
negatively. PROOFS can also be run separately using a test set supplied by the user.

The HITEC/PROOFS package consists of two main programs and four preprocessing
programs. The two main programs are the test generator and the fault simulator. The pre-
processing steps were implemented as separate programs for several reasons. First, memory
overhead is a major concern for both the test generator and fault simulator; therefore, by
separating the programs, a minimal amount of memory is needed by the test generator. Sec-
ond, it allows the user to write a parser or fault list creator without looking at the internal
data structures. The four preprocessing programs levelize the circuit, create a complete fault

list, collapse the fault list, and calculate the dominators in a circuit.

I System Overview

Figure 1 shows the flow diagram for the use of HITEC or PROOFS. All run-time parame-
ters are stored in the file TEST.run. This was done to avoid typing command line arguments

and to allow easier running by system calls from a graphical interface. In the flow diagram,

Circuit.bench

|

Level
Circuit.name
Circuit.lev
Faultlist
Circuit.fault Circuit.fault Dominators
N Circuit.dom
Equiv
Circuit.eqf
Circuit.vgc
\\
. /\
Faultsim Faultsim Testgen

N started by

Circuit.frs \\\\\T?Stgfﬁr],/ Circuit.grs
Circuit.ufl) Circuit.red
Circuit.det Circuit.atp

Figure 1: Run time flow diagram

the user can either supply a fault list or create a complete fault list. In addition, the user can
supply functional vectors to evaluate before test generation is begun. The names in boxes
are the commands, the file names in italics are created by a program, and the bold names

are files supplied by the user.

II Parsing

The parsing program, level, was written in C and lex. It reads the flattened circuit de-
scription of the ISCAS benchmark format. The benchmark file for an example circuit, s27,

is shown in Figure 2, and the circuit schematic is shown in Figure 3.

INPUT(GO)
INPUT(G1)
INPUT(G2)
INPUT(G3)
OUTPUT(G17)

G5 = DFF(G10)

G6 = DFF(G11)

G7 = DFF(G13)

G14 = NOT(G0)

G17 = NOT(G11)

G8 = AND(G14, G6)
G15 = OR(G12, G8)
G16 = OR(G3, G8)

G9 = NAND(G16, G15)
G10 = NOR(G14, G11)
G11 = NOR(G5, G9)
G12 = NOR(G1, GT)
G13 = NOR(G2, G12)
END

Figure 2: Benchmark file for s27 (s27.bench)

Aside from parsing the circuit, level levelizes the circuit, flags asynchronous feedback, and
calculates the testability measures for the circuit. A tokenized format of the circuit is then
written out to the circuit.lev file. Identifiers are assigned to the nodes in levelized order, as
shown in the revised circuit schematic in Figure 4. A net name to net number translation
table is written to the circuit.name file. An example for s27 is shown in Figure 5.

The format of the circuit.lev file for s27 is shown in Figure 6. The number on the first
line is the number of gates in the circuit plus one; the second number is obsolete. Fach line
starting with the third line represents one gate. The first number is the node identifier. The

second number is the token for the gate type, where the gate type tokens are specified in

GO

G2

DC G14 j@ﬂ(ﬁs

Gl ZGlZ §13 ﬂj/z Ggi G11 [G17 E

G3

G5

G16

$>)G 10

>

>

G6

G7

Figure 3: s27 circuit schematic

2 z 9 El

>

Figure 4: s27 circuit schematic with levelized identifiers

1 GO

2 Gl

3 G2

4 G3

5 Gbd

6 G6
7GT

8 G14
9 G12
10 G8
11 G13
12 G15
13 G16
14 G9
15 G11
16 G17
17 G10
18 G17_$OUTPUT

Figure 5: Net name to net number translation for s27 (s27.name)

Table I. The third number is the level of this gate in the circuit. The fourth number is the
number of inputs to this gate. Next is the list of input lines to this gate sorted in order of
decreasing (easier to control) values of controllability zero. Next is the list of input lines to
this gate sorted in order of decreasing (easier to control) values of controllability one. Next
is the number of successors of this gate, followed by the list of successor gates sorted in order
of decreasing observability values (easier to observe). The next number is the observability
of this line. The next character is a semicolon or an O. If there is an O, then this line is a
primary output. The last two numbers are the values of controllability zero and one. This
structure was chosen to allow zero look-head parse of the description. This structure allows
all arrays to be dynamically allocated to their exact needed size while the description is
being read.

Levelization is done by setting all primary inputs and flip-flops to level 0, and performing an
event-driven calculation of the level of each gate in the circuit. Any gate with an unassigned

level is in an asynchronous feedback loop or is a successor of an unconnected line.

inputs in successors

order of in order of _
gate number decreasing deCfeaSing primary
type of inputs C1 obs. value output?

I | | |

9|9 |5 /2|7 2|7 2212 11,9 ;|2 3

] | T ! \

node level inputs in number observability
identifier order of of value o
decreasing Successors controllability
Co values
COandC1
19
10

11001816:00
21001911;00
310011113;00
410011312;00
550117171157 ;2 10
6501151511010;8 11
750111111910;13
81051112101716; 11
99527272212119:23
1061026868212138;3 14
11910293931710;13
1281521091091 145 ; 6 4
1381521041041 148 ;41
147202121312131153:65
1592521455143617160; 8 11
161030115151 180; 118
179302158158 157:2 10
1823511616000 11 8

Figure 6: Levelized circuit description for s27 (s27.lev)

Table I: TOKEN-TO-GATE-TYPE TRANSLATION

Token | Gate Type Token Gate Type
1 INPUT 21 TRISTATE
2 ouTpPUT 22 TRISTATEINV
3 XOR 23 TRISTATE1
4 XNOR 24 DFF_L
5 DFF 25 DFF_LCP
6 AND 26 DFF_LC
7 NAND 27 DFF_LP
8 OR 28 DFF_CP
9 NOR 29 DFF_C

10 NOT 30 DFF_P

11 BUF 31 NAND_LATCH
12 TIE1 32 NOR_LATCH
13 TIEO 33 CMOS

14 TIEX 34 NMOS

15 TIEZ 35 PMOS

16 MUX_2 36 NOTIF1

17 BUS 37 NOTIFO

18 BUS_GOHIGH 38 BUFIF1

19 BUS_GOLOW 39 BUFIFO

20 BUSZ

The testability measures are calculated using the SCOAP testability measurement tech-

nique. The measurements are calculated through the flip-flops, and calculation continues

until there is convergence.

IIT Fault Lists

The program faultlist will create a complete, uncollapsed fault list for the circuit in the
circuit.fault file. If the user wishes to supply a fault list, then he or she may create a fault
list in the same format and supply it to the fault collapser. The format of the fault list is
shown in Figure 7. Each line represents one fault and ends in a semicolon. The first number
is the gate on which the fault is present. The second number is the input number of the
fault, where input number 0 is the output of the gate. The third number is the fault type,
i.e., 0 or 1 for a stuck-at-0 or stuck-at-1 fault. For example, the fault 15 2 0 is a stuck-at-0

fault on the second input of gate 15.

node node
identifier s-a-1 identifier s-a-0

9/0|1 9120

! |

fault fault
on gate on 2nd
output input

700;
701,
710;
711;
80 0;
801,
810;
811;
90 0;
90 1;
910;
91 1;
920;
921,

Figure 7: Fault list for s27 (s27.fault)

The program equiv will collapse any fault list and also order the faults in one of four ways.
The faults are collapsed using a few simple rules shown in Table II. The fault groups are then
ordered in either a random, breadth-first, depth-first from the primary inputs order, or a
depth-first from the primary outputs order. The depth-first from the primary outputs order
was shown to give the best performance for fault simulation. A portion of the equivalent
fault file for the s27 circuit is shown in Figure 8. Equivalent faults are listed on the same
line, separated by colons, and the fault closest to the primary outputs is listed first. This
fault is used as the representative fault for the fault group by the test generator and fault

simulator.

Table II: FAULT COLLAPSING RULES

Gate | Fault | Fault Collapsed Into
NOT | A s-a-0 Z s-a-1
NOT | A s-a-1 Z s-a-0
AND | A s-a-0 Z s-a-0
NAND | A s-a-0 Z s-a-1
OR A s-a-1 Z s-a-1
NOR | A s-a-1 7 s-a-0

A is an input to the gate.
7 is the output of the gate.

1110;

121 0;
1800:1810:1600:1611;

150 1;

1520:500;
510:1700:1721:1711;
§01:810:100;

1510:1400;
1421:1301:1321:401:1311;
100 1

Figure 8: Equivalent fault file for s27 (s27.eqf)

IV Dominators

The program dominators is used to calculate the static dominators of each node in the
circuit and to determine all the mandatory assignments to propagate a D or D bar on the
input of a given gate. In the current implementation, the dominators are restricted to one
time frame. In other words, dominators crossing a time frame are not computed. The
dominators and mandatory assignments are determined in reverse level order, i.e., from
primary outputs to primary inputs. Figure 9 is the algorithm to determine the dominator
gates for each gate in the circuit and the algorithm to determine all mandatory assignments
needed for a gate. There are two simple rules to determine the dominators for a given gate.
First, the gate itself is a dominator. Second, the intersection of the dominators of all the

successor gates also contains dominators to the gate.

For level = maxlev downto 0
For each gate G in level
DOM(G) = G U (DOM(Suce 1 of G) N DOM(Succ 2 of G)
N DOM (Suce 3 of G)--+)

For each gate G
MAN(G) = ¢
For each D in DOM(G)
MAN(G) = MAN(G) U (All of f path inputs of D)

Figure 9: Algorithm to determine dominators and mandatory assignments

The parity of the dominator gate is also retained to determine if the mandatory assignment
affects the good or the faulty machine during test generation. Figure 10 is an example of how
the parities are used to determine mandatory assignments. In this example, the value 1/0 is
the value on the input of the NAND gate. Only the good value of this gate needs to be set
to the noncontrolling value so that the off-path input of gate A is assigned the value 1/X.
Gate B is a dominator of gate A with odd parity, because gate A is an inverting gate. The
odd parity means that the D value will be inverted an odd number of times before reaching
the input of gate B; therefore, only a faulty value needs to be set, so that the off-path gate

inputs have the mandatory assignments of X /1. In a similar way, gates C and D have even

10

parity; therefore, the off-path lines have a mandatory assignment of X /0.

Mandatory assignments

’/X/1 //_ T X/0 b 01

X/0

X | :A 2

1/0 |

Figure 10: Determination of dominators and mandatory assignments

The dominator file of s27 is shown in Figure 11. The format of the file consists of one line
for each gate. The first number represents the gate for which the mandatory assignments
correspond. The second number is the number of mandatory assignments. Each mandatory
assignment is made up of three numbers: the gate, the off-path line number predecessor to

this gate, and the parity of the gate.

10;

21970;

311190;
43155114120 1310 0;
521514050 0;
63155110806 0 0;
7292070 0;

81810;

9297009 20;
10315511060 10 8 0;
112119011 3 0;
12415511413012100 129 0;
13415511412013100 13 4 0;
143155014120 14 13 0;
15215140155 0;

16 1 16 15 0;

1721715017 8 0;

18 1 18 16 0;

END

Figure 11: Dominators of s27 (s27.dom)

11

V Fault Simulation and Test Generation

The fault simulator can be run as a stand-alone program to fault grade a set of test vectors,
or it can be run in conjunction with the test generator to identify all faults detected by the
test sequences generated. When run as a stand-alone program, the fault simulator takes a
test vector file as input, circuit.vec, in addition to the circuit.lev and circuit.eqf files. A

test vector file for the s27 circuit is shown in Figure 12. The order of primary inputs in

4

0010
1001
1100
0110
0011
0111
1001
1011
0011
0011
0000
1110
1001
0010
1000
1010
0010
0101
0101
1001
END

Figure 12: Test vector file for s27 (s27.vec or s27.atp)

the circuit.vec file is the same as that in the circuit.lev and circuit.name files. The fault
simulation results are stored in the circuit.frs file which contains the run time, fault coverage,
and other statistics about the fault simulation. The fault simulator also creates a circuit.ufl
file containing all undetected faults and a circuit.det file containing all detected faults, both

in the same format as the collapsed fault list.

12

The test generator automatically invokes the fault simulator and communicates with it
through UNIX sockets. The test generation results are stored in the circuit.grs file which
contains the test generation run time, test generation efficiency, and other statistics. The
resulting test set is stored in the circuit.atp file, which has the same format as the circuit.vec
file, as shown in Figure 12. Untestable faults are stored in the circuit.red file. The user
can supply an initial set of test vectors in a circuit.vec file to reduce the number of faults
targeted by the test generator. The TEST.run file must be configured to enable this option.
The TEST.run file format is shown in Figure 13.

simpic port number - port number for faultsim graphics (obsolete)

master host name - name of master host for graphics (obsolete)
bench file - ckt.bench (name of benchmark file — level input)
lev file - ckt.lev (name of levelized circuit file — level output)

ckt.vec (name of vector file — faultsim input)

ckt.fault (name of fault file — faultlist output)

ckt.eqf (name of equivalent fault file — equiv output)
ckt.ufl (name of undetected fault file — faultsim output)
used with testgen (name of host for faultsim)

used with testgen (name of host for testgen)

vec file

fault file

equiv fault file
undetected fault file
faultsim host name
testgen host name

name file - ckt.name (name of “name” file — level output)
atp file - ckt.atp (test vector file — testgen output)
faultsim result file - ckt.frs (faultsim results)
testgen result file - ckt.grs (testgen results)
sim gen port - port between faultsim and testgen
color - color graphics used if one (obsolete)
faultsim running - faultsim running if one
testgen running - testgen running if one
fault pic running - graphics running if one (obsolete)
read vec - read ckt.vec file before test generation if one
dominator file - ckt.dom (name of dominators file — dominators output)
redundant fault file - ckt.red (name of untestable fault file — testgen output)
debug - debug value for testgen
backtrack limit - maximum number of backtracks allowed in testgen
state backtrack limit - maximum number of state backtracks allowed in testgen
time limit - maximum time allowed per fault in pass 1
(unit = 1/100 sec for HP, 1/60 sec for SUN)
scan stat file - name of file for scan statistics (obsolete)

Figure 13: TEST.run file format

13

VI Running HITEC/PROOFS

To run the test generator and fault simulator, first place all executables in a bin directory,
and include the pathname of that directory in your search path. Then create a TEST.run file
with one of the two script files provided, do_hitec or do_proofs; do_hitec configures the
TEST.run file with options set for running the test generator (which invokes the fault
simulator), and do_proofs configures the TEST.run file with options set for running the
fault simulator only. All programs except for level look at the TEST.run file for their
arguments. Next, run the preprocessing programs, followed by the fault simulator or test

generator. Program invocations for the s27 circuit are as follows:

do_hitec s27 (or do_proofs s27)

level s27

faultlist

equiv

dominators (not needed if the test generator is not used)
testgen (or faultsim)

The following component types are handled by HITEC and PROOFS:

INPUT

ouTPUT

DFF — D flip flop
AND

NAND

OR

NOR

NOT — inverter

BUF — buffer, output = input
TIE1 — line tied to 1
TIEO — line tied to 0
TIEX — line tied to X
TIEZ — line tied to Z

In addition, PROOFS handles the following component types also:

XOR — exclusive-OR,
XNOR — exclusive-NOR

14

BUS — bus, output goes to unknown if all inputs have Z value

BUS_GOHIGH — bus, output goes to high if all inputs have Z value
BUS_.GOLOW — bus, output goes to low if all inputs have Z value
TRISTATE — tristate, active low control signal

TRISTATEINV — tristate with output inverted

TRISTATE1 — tristate, active high control signal

MUX2 — 2-input multiplexor

For the MUX2, TRISTATE, TRISTATEINV, and TRISTATE1 components, the control
signal must be the last input in the list of inputs. In the multiplexor, the first input is
selected when the control signal is 0, and the second input is selected when the control
signal is 1. A bus component must have only tristate components as predecessors, and
tristate components must have only bus components as successors. The bus output value is
the value of the non-Z (high impedance) input. If there is a conflict (a one placed on one

bus input and a zero placed on another bus input), the bus output value is unknown.

15

