
HITEC�PROOFS USER�S MANUAL

Center for Reliable � High�Performance Computing

University of Illinois

���� West Main Street

Urbana� IL ���������	

January ��� �

�

HITEC�PROOFS is a gate�level� sequential circuit test generation and fault simulation

package which targets single stuck�at faults in synchronous sequential circuits described

in the ISCAS�� benchmark format� Fault lists are automatically generated for all single

stuck�at faults in a circuit� and fault collapsing is performed using structural equivalence�

Individual faults are targeted by HITEC� and several passes through the fault list are made�

with increasing time and backtrack limits in each successive pass� When a test sequence is

successfully generated to detect a target fault� HITEC invokes the PROOFS fault simulator

to �nd all additional faults incidentally detected by the test sequence� Detected faults are

then removed from the fault list� After each pass through the fault list� the user is prompted

about whether to continue with the next pass� execution terminates when the user responds

negatively� PROOFS can also be run separately using a test set supplied by the user�

The HITEC�PROOFS package consists of two main programs and four preprocessing

programs� The two main programs are the test generator and the fault simulator� The pre�

processing steps were implemented as separate programs for several reasons� First� memory

overhead is a major concern for both the test generator and fault simulator� therefore� by

separating the programs� a minimal amount of memory is needed by the test generator� Sec�

ond� it allows the user to write a parser or fault list creator without looking at the internal

data structures� The four preprocessing programs levelize the circuit� create a complete fault

list� collapse the fault list� and calculate the dominators in a circuit�

I System Overview

Figure � shows the 	ow diagram for the use of HITEC or PROOFS� All run�time parame�

ters are stored in the �le TEST�run� This was done to avoid typing command line arguments

and to allow easier running by system calls from a graphical interface� In the 	ow diagram�

Level

Circuit.name
Circuit.lev

Faultlist

Circuit.fault

Circuit.eqf

Equiv

Testgen

Circuit.grs
Circuit.red
Circuit.atp

Faultsim

Circuit.frs
Circuit.ufl
Circuit.det

Faultsim
started by
Testgen

Circuit.bench

Circuit.fault

Circuit.vec

Dominators

Circuit.dom

Figure �
 Run time 	ow diagram

the user can either supply a fault list or create a complete fault list� In addition� the user can

supply functional vectors to evaluate before test generation is begun� The names in boxes

are the commands� the �le names in italics are created by a program� and the bold names

are �les supplied by the user�

�

II Parsing

The parsing program� level� was written in C and lex� It reads the 	attened circuit de�

scription of the ISCAS benchmark format� The benchmark �le for an example circuit� s���

is shown in Figure �� and the circuit schematic is shown in Figure
�

INPUT�G��
INPUT�G��
INPUT�G��
INPUT�G
�
OUTPUT�G���
G� � DFF�G���
G� � DFF�G���
G� � DFF�G�
�
G�� � NOT�G��
G�� � NOT�G���
G� � AND�G��� G��
G�� � OR�G��� G��
G�� � OR�G
� G��
G� � NAND�G��� G���
G�� � NOR�G��� G���
G�� � NOR�G�� G��
G�� � NOR�G�� G��
G�
 � NOR�G�� G���
END

Figure �
 Benchmark �le for s�� �s���bench�

Aside from parsing the circuit� level levelizes the circuit� 	ags asynchronous feedback� and

calculates the testability measures for the circuit� A tokenized format of the circuit is then

written out to the circuit�lev �le� Identi�ers are assigned to the nodes in levelized order� as

shown in the revised circuit schematic in Figure �� A net name to net number translation

table is written to the circuit�name �le� An example for s�� is shown in Figure ��

The format of the circuit�lev �le for s�� is shown in Figure �� The number on the �rst

line is the number of gates in the circuit plus one� the second number is obsolete� Each line

starting with the third line represents one gate� The �rst number is the node identi�er� The

second number is the token for the gate type� where the gate type tokens are speci�ed in

G5

G0

G1

G2

G3

G6

G7

G14

G13

G8 G15

G9 G11 G17

G10
G16

G12

Figure

 s�� circuit schematic

3

1

2

8

9 11

12

13

16

17

7

6

5

4

10

14 15 18

Figure �
 s�� circuit schematic with levelized identi�ers

�

� G�
� G�

 G�
� G

� G�
� G�
� G�
� G��
� G��
�� G�
�� G�

�� G��
�
 G��
�� G�
�� G��
�� G��
�� G��
�� G�� �OUTPUT

Figure �
 Net name to net number translation for s�� �s���name�

Table I� The third number is the level of this gate in the circuit� The fourth number is the

number of inputs to this gate� Next is the list of input lines to this gate sorted in order of

decreasing �easier to control� values of controllability zero� Next is the list of input lines to

this gate sorted in order of decreasing �easier to control� values of controllability one� Next

is the number of successors of this gate� followed by the list of successor gates sorted in order

of decreasing observability values �easier to observe�� The next number is the observability

of this line� The next character is a semicolon or an O� If there is an O� then this line is a

primary output� The last two numbers are the values of controllability zero and one� This

structure was chosen to allow zero look�head parse of the description� This structure allows

all arrays to be dynamically allocated to their exact needed size while the description is

being read�

Levelization is done by setting all primary inputs and 	ip�	ops to level �� and performing an

event�driven calculation of the level of each gate in the circuit� Any gate with an unassigned

level is in an asynchronous feedback loop or is a successor of an unconnected line�

�

gate
type

node
identifier

number
of inputs output?

primary

number
of

successors

level

9 27 7 2 12 11 9 ; 2

observability

59 2 2 3

inputs in

C1

order of
inputs in

C0
decreasing

order of
decreasing decreasing

in order of
successors

controllability
value

C0 and C1
values

obs. value

��
��
� � � � � � �� � � �
� � � � � � �� � � �

 � � � � �� �
 � � �
� � � � � �
 �� � � �
� � � � �� �� � �� � � � ��
� � � � �� �� � �� �� � � ��
� � � � �� �� � � �� � �

� �� � � � � � �� �� �� � � �
� � � � � � � � � �� �� � � �

�� � �� � � � � � � �� �
 � �
 ��
�� � �� � �
 �
 � � �� � �

�� � �� � �� � �� � � �� � � � �
�
 � �� � �� � �� � � �� � � � �
�� � �� � �� �
 �� �
 � ��
 � � �
�� � �� � �� � � ��
 � �� �� � � � ��
�� ��
� � �� �� � �� � � �� �
�� �
� � �� � �� � � � � � � ��
�� �
� � �� �� � � O �� �

Figure �
 Levelized circuit description for s�� �s���lev�

�

Table I
 TOKEN�TO�GATE�TYPE TRANSLATION

Token Gate Type Token Gate Type
� INPUT �� TRISTATE
� OUTPUT �� TRISTATEINV

 XOR �
 TRISTATE�
� XNOR �� DFF L
� DFF �� DFF LCP
� AND �� DFF LC
� NAND �� DFF LP
� OR �� DFF CP
� NOR �� DFF C
�� NOT
� DFF P
�� BUF
� NAND LATCH
�� TIE�
� NOR LATCH
�
 TIE�

 CMOS
�� TIEX
� NMOS
�� TIEZ
� PMOS
�� MUX �
� NOTIF�
�� BUS
� NOTIF�
�� BUS GOHIGH
� BUFIF�
�� BUS GOLOW
� BUFIF�
�� BUSZ

The testability measures are calculated using the SCOAP testability measurement tech�

nique� The measurements are calculated through the 	ip�	ops� and calculation continues

until there is convergence�

III Fault Lists

The program faultlist will create a complete� uncollapsed fault list for the circuit in the

circuit�fault �le� If the user wishes to supply a fault list� then he or she may create a fault

list in the same format and supply it to the fault collapser� The format of the fault list is

shown in Figure �� Each line represents one fault and ends in a semicolon� The �rst number

is the gate on which the fault is present� The second number is the input number of the

fault� where input number � is the output of the gate� The third number is the fault type�

i�e�� � or � for a stuck�at�� or stuck�at�� fault� For example� the fault �� � � is a stuck�at��

fault on the second input of gate ���

�

identifier
node

identifier
node

fault
on gate
output

s-a-1 s-a-0

9 0 1 9 2 0

fault

input
on 2nd

���
� � ��
� � ��
� � ��
� � ��
� � ��
� � ��
� � ��
� � ��
� � ��
� � ��
� � ��
� � ��
� � ��
� � ��

���

Figure �
 Fault list for s�� �s���fault�

The program equiv will collapse any fault list and also order the faults in one of four ways�

The faults are collapsed using a few simple rules shown in Table II� The fault groups are then

ordered in either a random� breadth��rst� depth��rst from the primary inputs order� or a

depth��rst from the primary outputs order� The depth��rst from the primary outputs order

was shown to give the best performance for fault simulation� A portion of the equivalent

fault �le for the s�� circuit is shown in Figure �� Equivalent faults are listed on the same

line� separated by colons� and the fault closest to the primary outputs is listed �rst� This

fault is used as the representative fault for the fault group by the test generator and fault

simulator�

�

Table II
 FAULT COLLAPSING RULES

Gate Fault Fault Collapsed Into
NOT A s�a�� Z s�a��
NOT A s�a�� Z s�a��
AND A s�a�� Z s�a��
NAND A s�a�� Z s�a��
OR A s�a�� Z s�a��
NOR A s�a�� Z s�a��

A is an input to the gate�
Z is the output of the gate�

���
�� � � �
�� � � �
�� � �
 �� � �
 �� � �
 �� � � �
�� � � �
�� � �
 � � � �
� � �
 �� � �
 �� � �
 �� � � �
� � �
 � � �
 � � � �
�� � �
 �� � � �
�� � �
 �
 � �
 �
 � �
 � � �
 �
 � � �
�� � � �

���

Figure �
 Equivalent fault �le for s�� �s���eqf�

�

IV Dominators

The program dominators is used to calculate the static dominators of each node in the

circuit and to determine all the mandatory assignments to propagate a D or D bar on the

input of a given gate� In the current implementation� the dominators are restricted to one

time frame� In other words� dominators crossing a time frame are not computed� The

dominators and mandatory assignments are determined in reverse level order� i�e�� from

primary outputs to primary inputs� Figure � is the algorithm to determine the dominator

gates for each gate in the circuit and the algorithm to determine all mandatory assignments

needed for a gate� There are two simple rules to determine the dominators for a given gate�

First� the gate itself is a dominator� Second� the intersection of the dominators of all the

successor gates also contains dominators to the gate�

For level � maxlev downto �
For each gate G in level

DOM�G� � G � �DOM�Succ � of G� � DOM�Succ � of G�
� DOM�Succ
 of G� � � ��

For each gate G
MAN�G� � �

For each D in DOM�G�
MAN�G� �MAN�G� � �All off path inputs of D�

Figure �
 Algorithm to determine dominators and mandatory assignments

The parity of the dominator gate is also retained to determine if the mandatory assignment

a�ects the good or the faulty machine during test generation� Figure �� is an example of how

the parities are used to determine mandatory assignments� In this example� the value ��� is

the value on the input of the NAND gate� Only the good value of this gate needs to be set

to the noncontrolling value so that the o��path input of gate A is assigned the value ��X�

Gate B is a dominator of gate A with odd parity� because gate A is an inverting gate� The

odd parity means that the D value will be inverted an odd number of times before reaching

the input of gate B� therefore� only a faulty value needs to be set� so that the o��path gate

inputs have the mandatory assignments of X��� In a similar way� gates C and D have even

��

parity� therefore� the o��path lines have a mandatory assignment of X���

Mandatory assignments

B
C D

A
1/X

1/0

X/1

0/1

X/0

1/01/0

X/0 0/1

Figure ��
 Determination of dominators and mandatory assignments

The dominator �le of s�� is shown in Figure ��� The format of the �le consists of one line

for each gate� The �rst number represents the gate for which the mandatory assignments

correspond� The second number is the number of mandatory assignments� Each mandatory

assignment is made up of three numbers
 the gate� the o��path line number predecessor to

this gate� and the parity of the gate�

� � �
� � � � ��

 � �� � ��
�
 �� � � �� �� � �
 �� ��
� � �� �� � � � ��
�
 �� � � �� � � � � ��
� � � � � � � ��
� � � � ��
� � � � � � � ��
��
 �� � � �� � � �� � ��
�� � �� � � ��
 ��
�� � �� � � �� �
 � �� �� � �� � ��
�
 � �� � � �� �� � �
 �� � �
 � ��
��
 �� � � �� �� � �� �
 ��
�� � �� �� � �� � ��
�� � �� �� ��
�� � �� �� � �� � ��
�� � �� �� ��
END

Figure ��
 Dominators of s�� �s���dom�

��

V Fault Simulation and Test Generation

The fault simulator can be run as a stand�alone program to fault grade a set of test vectors�

or it can be run in conjunction with the test generator to identify all faults detected by the

test sequences generated� When run as a stand�alone program� the fault simulator takes a

test vector �le as input� circuit�vec� in addition to the circuit�lev and circuit�eqf �les� A

test vector �le for the s�� circuit is shown in Figure ��� The order of primary inputs in

�
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
END

Figure ��
 Test vector �le for s�� �s���vec or s���atp�

the circuit�vec �le is the same as that in the circuit�lev and circuit�name �les� The fault

simulation results are stored in the circuit�frs �le which contains the run time� fault coverage�

and other statistics about the fault simulation� The fault simulator also creates a circuit�u�

�le containing all undetected faults and a circuit�det �le containing all detected faults� both

in the same format as the collapsed fault list�

��

The test generator automatically invokes the fault simulator and communicates with it

through UNIX sockets� The test generation results are stored in the circuit�grs �le which

contains the test generation run time� test generation e�ciency� and other statistics� The

resulting test set is stored in the circuit�atp �le� which has the same format as the circuit�vec

�le� as shown in Figure ��� Untestable faults are stored in the circuit�red �le� The user

can supply an initial set of test vectors in a circuit�vec �le to reduce the number of faults

targeted by the test generator� The TEST�run �le must be con�gured to enable this option�

The TEST�run �le format is shown in Figure �
�

simpic port number � port number for faultsim graphics �obsolete�
master host name � name of master host for graphics �obsolete�
bench �le � ckt�bench �name of benchmark �le � level input�
lev �le � ckt�lev �name of levelized circuit �le � level output�
vec �le � ckt�vec �name of vector �le � faultsim input�
fault �le � ckt�fault �name of fault �le � faultlist output�
equiv fault �le � ckt�eqf �name of equivalent fault �le � equiv output�
undetected fault �le � ckt�u	 �name of undetected fault �le � faultsim output�
faultsim host name � used with testgen �name of host for faultsim�
testgen host name � used with testgen �name of host for testgen�
name �le � ckt�name �name of �name� �le � level output�
atp �le � ckt�atp �test vector �le � testgen output�
faultsim result �le � ckt�frs �faultsim results�
testgen result �le � ckt�grs �testgen results�
sim gen port � port between faultsim and testgen
color � color graphics used if one �obsolete�
faultsim running � faultsim running if one
testgen running � testgen running if one
fault pic running � graphics running if one �obsolete�
read vec � read ckt�vec �le before test generation if one
dominator �le � ckt�dom �name of dominators �le � dominators output�
redundant fault �le � ckt�red �name of untestable fault �le � testgen output�
debug � debug value for testgen
backtrack limit � maximum number of backtracks allowed in testgen
state backtrack limit � maximum number of state backtracks allowed in testgen
time limit � maximum time allowed per fault in pass �

�unit � ����� sec for HP� ���� sec for SUN�
scan stat �le � name of �le for scan statistics �obsolete�

Figure �

 TEST�run �le format

�

VI Running HITEC�PROOFS

To run the test generator and fault simulator� �rst place all executables in a bin directory�

and include the pathname of that directory in your search path� Then create a TEST�run �le

with one of the two script �les provided� do hitec or do proofs� do hitec con�gures the

TEST�run �le with options set for running the test generator �which invokes the fault

simulator�� and do proofs con�gures the TEST�run �le with options set for running the

fault simulator only� All programs except for level look at the TEST�run �le for their

arguments� Next� run the preprocessing programs� followed by the fault simulator or test

generator� Program invocations for the s�� circuit are as follows

do hitec s�� �or do proofs s���
level s��

faultlist

equiv

dominators �not needed if the test generator is not used�
testgen �or faultsim�

The following component types are handled by HITEC and PROOFS

INPUT
OUTPUT
DFF � D 	ip 	op
AND
NAND
OR
NOR
NOT � inverter
BUF � bu�er� output � input
TIE� � line tied to �
TIE� � line tied to �
TIEX � line tied to X
TIEZ � line tied to Z

In addition� PROOFS handles the following component types also

XOR � exclusive�OR
XNOR � exclusive�NOR

��

BUS � bus� output goes to unknown if all inputs have Z value
BUS GOHIGH � bus� output goes to high if all inputs have Z value
BUS GOLOW � bus� output goes to low if all inputs have Z value
TRISTATE � tristate� active low control signal
TRISTATEINV � tristate with output inverted
TRISTATE� � tristate� active high control signal
MUX� � ��input multiplexor

For the MUX�� TRISTATE� TRISTATEINV� and TRISTATE� components� the control

signal must be the last input in the list of inputs� In the multiplexor� the �rst input is

selected when the control signal is �� and the second input is selected when the control

signal is �� A bus component must have only tristate components as predecessors� and

tristate components must have only bus components as successors� The bus output value is

the value of the non�Z �high impedance� input� If there is a con	ict �a one placed on one

bus input and a zero placed on another bus input�� the bus output value is unknown�

��

