
LeonardoSpectrum for Altera
HDL Synthesis Manual

Software Version v2001.1

July 2001

Copyright © 2001 Exemplar Logic, Inc., A Mentor Graphics Company. All rights reserved.
This document contains information that is proprietary to Exemplar Logic, Inc and may be duplicated in
whole or in part by the original recipient for internal business purposes only, provided that this entire notice
appears in all copies. In accepting this document, the recipient agrees to make every reasonable effort to
prevent the unauthorized use of this information.

This document is for information and instruction purposes. Exemplar Logic reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Exemplar Logic to determine whether any changes have been made.

The terms and conditions governing the sale and licensing of Exemplar Logic products are set forth in
written agreements between Exemplar Logic and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of
Exemplar Logic whatsoever.

DISCLAIMER

ALTHOUGH EXEMPLAR LOGIC, INC HAS TESTED THE SOFTWARE AND REVIEWED THE
DOCUMENTATION, EXEMPLAR LOGIC, INC MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS SOFTWARE AND DOCUMENTATION,
ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.

EXEMPLAR LOGIC SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF EXEMPLAR LOGIC INC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Exemplar Logic Inc.

880 Ridder Park Drive, San Jose, CA 95131
web site: http://www.exemplar.com

email: support@exemplar.com

TRADEMARKS

Exemplar Logic™ and its Logo are trademarks of Exemplar Logic, Inc. LeonardoSpectrum™,
LeonardoInsight™, TimeCloser™, FlowTabs™, HdlInventor™, SmartScripts™,P&RIntegrator™,
DesktopASIC™, XlibCreator™, SynthesisWizard™, and MODGEN™ are trademarks of Exemplar Logic,
Inc.; Model Sim/VHDL™, Model Sim™, and V-System/Verilog™ are trademarks of Model Technology,
Inc.; Renoir™, Monet™, and PackagedPower™ are trademarks of Mentor Graphics Corporation.
Verilog® and Verilog-XL® are registered trademarks of Cadence Design Systems, Inc. All other
trademarks remain the property of their respective owners.

http://www.exemplar.com

Table of Contents

. 1-1

....

.. 2-1

...

.....

...

.... 2-1

.

...
... 2-24
... 2-24

... 2-2

....

..... 2-30

.... 2-3

... 2-34

... 2-36
... 2-

. 2-38

.. 2-38

TABLE OF CONTENTS
Chapter 1
Introduction to VHDL Synthesis ...

Overview... 1-1
VHDL and Synthesis .. 1-2

Chapter 2
VHDL Language Features..

Entities and Architectures.. 2-1
Configuration ... 2-2
Processes.. 2-5

Literals .. 2-7
Types.. 2-8
Enumerated Types .. 2-9
Integer Types ... 2-16
Floating-point Types...2-17
Physical Types ... 2-18
Syntax and Semantics ..8
Array Types ... 2-19
Record Types .. 2-21
Subtypes... 2-22
Type Conversions ...2-23
IEEE 1076 Predefined Types..
IEEE 1164 Predefined Types..

Objects .. 2-26
Signals.. 2-26
Constants.. 2-26
Variables .. 2-26
Ports ... 2-27
Generics ... 2-27
Loop Variables... 2-28

Statements... 2-28
Conditional Statements ..8
Selection Statements ..2-29
Loop Statements and Generate Statements...
Assignment Statements..2

Operators... 2-34
IEEE 1076 Predefined Operators..
IEEE 1164 Predefined Operators..
Operator Overloading ...37

Attributes .. 2-37
VHDL Predefined Attributes ..
Exemplar Predefined Attributes...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d iii

TABLE OF CONTENTS [continued]

Table of Contents

.. 2-
... 2

.... 2-4
.
.... 2-4
.
...
... 2
. 2-49
. 2-50
2-51

2-51

.. 3-1

....... 3-
....
..... 3
..

..... 3-7
.. 3-7
.. 3-7
... 3-7
... 3-9

... 3-13

. 3-15
... 3-1
... 3
. 3-17
... 3
...
..
.. 3-21
... 3-22
... 3
User-Defined Attributes...38
Usage Of Attributes ..-39

Blocks ... 2-40
Functions And Procedures ..1
Resolution Functions ... 2-44

Syntax and Semantics ..4
Synthesis Issues .. 2-45

Component Instantiation..2-46
Binding a Component ..-48

Option 1 - Using a Default Binding..
Option 2 - Using a Configuration Specification ...
Option 3 - Matching a Component Name to a Library Cell ..
Option 4 - Creating a Black Box by Omitting the Entity ..

Packages.. 2-51
Aliases... 2-52

Chapter 3
The Art of VHDL Synthesis ..

Registers, Latches and Resets ..1
Level-Sensitive Latch .. 3-1
Edge-Sensitive Flip-Flops...-2
Wait Statements ... 3-5
Variables .. 3-6
Predefined Flip-flops and Latches ..

Assigning I/O Buffers From VHDL ...
Automatic Buffer Assignment in Batch Mode ..
Manual Assignment Using The BUFFER_SIG Property ...
Buffer Assignment Using Component Instantiation...

Three-state Buffers ... 3-10
Bidirectional Buffers... 3-12
Buses... 3-12
State Machines .. 3-13

General State Machine Description ..
VHDL Coding Style For State Machines ...
Power-up And Reset ...6
Encoding Methods ..-17

Arithmetic And Relational Logic ..
Module Generation ...-19
Resource Sharing .. 3-19
Ranged Integers ... 3-21
Advanced Design Optimization...

Technology-Specific Macros ...
Multiplexers and Selectors...-24
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1div

TABLE OF CONTENTS [continued]

Table of Contents

.. 4-1

..... 4-1

.... 4-2

... 4-2
...... 4-4
.. 4-5
...

..
......
...
...
... 4
.... 4-
.... 4-17
... 4-17
.. 4-18
.. 4-21

. 5-1

..

.... 5-3

.. 6-1

..

....
...... 6
......
..... 6-8
..... 6-8
.....

. 6-14
Chapter 4
The VHDL Environment ...

Entity and Package Handling..
Entity Compiled as the Design Root..
Finding Definitions of Components ...
How to Use Packages ..

Interfacing With Other VHDL Tools..
VHDL Simulators ... 4-5
Synopsys .. 4-7
Mentor Graphics .. 4-8

The Exemplar Packages..4-8
Predefined Types .. 4-9
Predefined Attributes .. 4-9
Predefined Functions ..-11
Predefined Procedures ...15

Syntax and Semantic Restrictions...
Synthesis Tool Restrictions ..
VHDL Language Restrictions ...

Example array_pin_number Attribute ..

Chapter 5
Introduction to Verilog Synthesis ..

Verilog and Synthesis ... 5-2
Synthesizing the Verilog Design ..

Chapter 6
Verilog Language Features..

Modules .. 6-1
’macromodule’... 6-2

Numbers.. 6-2
Data Types .. 6-3

Net Data Types .. 6-5
Register Data Type .. 6-6
Parameter Data Type ...-6

Continuous Assignments ..6-7
Net Declaration Assignment ...
Continuous Assignment Statement ...

Procedural Assignments .. 6-9
Always Blocks .. 6-10
Module Instantiation ... 6-13

Parameter Override During Instantiation of Module ..
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d v

TABLE OF CONTENTS [continued]

Table of Contents

.... 6-

.. 6-15

.. 6-20
..... 6

..
...
... 6-23

...
. 6-28
..

...

.. 6-33

.
...

..

. 7-1

....... 7-
....
.... 7
.. 7-4
... 7-5
... 7-5
... 7-6

...

..
... 7-19
. 7-24
... 7
... 7-26
... 7
Defparam Statement ..14
’unconnected_drive’ and ’nounconnected_drive’..

Operators... 6-15
Operands .. 6-16
‘signed and ‘unsigned Attributes on Operators ..
Operator Precedence ...-20

Statements... 6-20
If-Else Statements .. 6-21
Case Statements .. 6-22
Case Statement and Multiplexer Generation ..
for Statements .. 6-26
Disable Statement ... 6-27
forever, repeat, while and Generalized Form of for Loop ..

Functions and Tasks.. 6-29
Functions.. 6-29
Tasks .. 6-30
Inout Ports in Task..6-32
Access of Global Variables from Functions and Tasks...

System Task Calls.. 6-33
System Function Calls ...6-33
Initial Statement .. 6-34

Compiler Directives...6-34

Chapter 7
The Art of Verilog Synthesis..

Registers, Latches, and Resets ...1
Level-Sensitive Latch ...7-1
Edge-Sensitive Flip-flops ..-2

Assigning I/O Buffers from Verilog...
Automatic Assignment Using Chip Mode..
Manual Assignment Using the Control File ...
Buffer Assignment Using Component Instantiation...

Tristate Buffers ... 7-6
Bidirectional Buffers... 7-9
Buses... 7-9
State Machines .. 7-11

Moore Machines ...7-13
Mealy Machines... 7-17
Issues in State Machine Design ..

Arithmetic and Relational Logic..
Module Generation ...-25
Resource Sharing and Common Subexpression Elimination ...
Comparator Design ...-26
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1dvi

TABLE OF CONTENTS [continued]

Table of Contents

... 7-27

... 7-28
... 7-28

..

. 8-1

.... 8-1
... 8-2
...... 8-3
..... 8-3

... 9-1

..... 9
...... 9-
.....
..... 9
... 9-6
..... 9-8
... 9-8
.... 9-9
.. 9-10
.. 9-10

... 9-11
... 9-11
... 9-14
Technology-Specific Macros ...
Synthesis Directives.. 7-28

parallel_case and full_case directives...
translate_off and translate_on directives ..
enum directive.. 7-29
attribute directive ... 7-30
Encoding Directive ..7-31

Chapter 8
Verilog and Synthesis of Logic...

Comparing With X and Z ...
Variable Indexing of Bit Vectors...
Syntax and Semantic Restrictions...

Unsupported Verilog Features ..

Chapter 9
Module Generation...

Using Module Generation..-4
Supported Technologies ..4
Supported Operators ... 9-4
Counters and RAMs..-5
Counter and RAM Inferencing and Module Generation ..

Using Module Generation Tools..
Specifying Module Generation Library ..
Area/Delay Tradeoff Attributes ...
Disabling Module Generation..
Counter and RAM Extraction ..
Verilog Usage .. 9-10

User-Defined Module Generators..
The Module Generator Boundary ...
Module Generator Contents..
Usage ... 9-16
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d vii

Table of Contents

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1dviii

Figure 1-1. Top-Down Design Flow with LeonardoSpectrum.. 1-2
Figure 5-1. Top Down Design Flow with LeonardoSpectrum .. 5-2
Figure 7-1. DRAM Interface with Refresh.. 7-12
Figure 9-1. LeonardoSpectrum Module Generation Environment .. 9-2
Figure 9-2. Using Module Generation Results in Area Reduction.. 9-3
Figure 9-3. Using Module Generation Results in Delay Reduction .. 9-3

LIST OF FIGURES

Table of Contents

... 6-16

LIST OF TABLES
Table 6-1. Operators Supported by LeonardoSpectrum ...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d ix

LIST OF TABLES [continued]

Table of Contents
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1dx

ports
ural
rts a
ns

ts are

in

ll
Chapter 1
Introduction to VHDL Synthesis

Overview
VHDL is a high level description language for system and circuit design. The language sup
various levels of abstraction. In contrast to regular netlist formats that supports only struct
description and a boolean entry system that supports only dataflow behavior, VHDL suppo
wide range of description styles. These include structural descriptions, dataflow descriptio
and behavioral descriptions.

The structural and dataflow descriptions show a concurrent behavior. That is, all statemen
executed concurrently, and the order of the statements is not relevant. On the other hand,
behavioral descriptions are executed sequentially in processes, procedures and functions
VHDL. The behavioral descriptions resemble high-level programming languages.

VHDL allows a mixture of various levels of design entry. LeonardoSpectrum synthesizes a
levels of abstraction, and minimizes the amount of logic needed, resulting in a final netlist
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 1-1

VHDL and Synthesis Introduction to VHDL Synthesis

hat

lay

nds
description in the technology of your choice. The Top-Down Design Flow is shown in
Figure 1-1.

Figure 1-1. Top-Down Design Flow with LeonardoSpectrum

VHDL and Synthesis
VHDL is fully simulatable, but not fully synthesizable. There are several VHDL constructs t
do not have valid representation in a digital circuit. Other constructs do, in theory, have a
representation in a digital circuit, but cannot be reproduced with guaranteed accuracy. De
time modeling in VHDL is an example.

State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL) circuit
descriptions and target a specific technology. Scheduling and allocation algorithms, which
perform circuit optimization at a very high and abstract level, are not yet robust enough for
general circuit applications. Therefore, the result of synthesizing a VHDL description depe
on the style of VHDL that is used.

Top-Down Design Flow

LeoHDL 01

synthesize to gate

translate to behavior/simulate

optimize speed/area

technology map

physical implementation

CAE simulator

LeonardoSpectrum
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d1-2

Introduction to VHDL Synthesis VHDL and Synthesis

rcuit,

This HDL Synthesis manual is intended to give the VHDL designer guidelines to achieve a
circuit implementation that satisfies the timing and area constraints set for a given target ci
while still using a high level of abstraction in the VHDL source code.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 1-3

VHDL and Synthesis Introduction to VHDL Synthesis
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d1-4

ogic

n in
Chapter 2
VHDL Language Features

This chapter provides an introduction to the basic language constructs in VHDL: defining l
blocks, structural, dataflow and behavioral descriptions, concurrent and sequential
functionality, design partitioning and more. LeonardoSpectrum synthesizes all levels of
abstraction, and minimizes the amount of logic needed, resulting in a final netlist descriptio
your technology.

Entities and Architectures
The basic building blocks in VHDL are Entities and Architectures. An entity describes the
boundaries of the logic block. Its ports and its generics are declared here. An architecture
describes the contents of the block in structural, dataflow and behavioral constructs.

This VHDL description shows the implementation ofsmall_block , a block that describes
some simple logic functions.

The entity describes the boundary. The port list is given with a direction (in this casein or out),
and a type (bit) for each port. The name of the entity issmall_block . The name of the
architecture isexemplar which is linked to the entity with the namesmall_block . While

entity small_block is
port (a, b, c : in bit ;

o1 : out bit ;
o2 : out bit

) ;
end small_block ;

architecture exemplar of small_block is
signal s : bit ;

begin
o1 <= s or c ;
s <= a and b ;
o2 <= s xor c ;

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-1

Entities and Architectures VHDL Language Features

y

e

age if

er

nal

r

the
n

multiple architectures may exist for each entity, only one architecture may be executed. B
default, the last defined architecture is linked to the entity.

The architecture describes the contents of thesmall_block . The architecture starts with a
declarative region; for example, the internal signals is declared. The architecture also has a typ
(bit); this is similar to the ports in the entity.

A signal is another form of an object in VHDL. All objects and expressions in VHDL are
strongly typed. This means that all objects are of a defined type and issues an error mess
there is a type mismatch. For example, you cannot assign an integer of typesignal to abit .

The architecture contents starts after thebegin statement. This is called thedataflow
environment. All statements in the dataflow environment are executed concurrently; the ord
of the statements is irrelevant. This is why it is valid to uses befores is assigned anything.
Assignment of a value to a signal is done with the<= sign. In the first statement,o1 is assigned
the result value ofs or c . The operatoror is a predefined operator.

Additional details about the various dataflow statements and operators are given in the
following sections:

• Configuration

• Processes

Configuration

In summary, a configuration declaration provides the mechanism for delayed component
binding specification. The entity name identifies the root entity to be elaborated. The optio
architecture name provides the name of the architecture to be elaborated.

A configuration declaration can configure each component instantiation individually with a
different entity or architecture. The configuration declaration can also configure some lowe
level component instantiation of the current component being configured.

With the help of the configuration declaration, you can try out different possible bindings of
component instantiations by keeping the basic hierarchical structure of the top level desig
intact.

NOTE: If you use “con” for configuration and “ent” for entity then the name of the hierarchy
cell created is “con_ent ”.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-2

VHDL Language Features Entities and Architectures
library ieee;
library work;
use ieee.std_logic_1164.all;
package global_decl is
type log_arr is array(std_logic) std_logic;
constant std_to_bin : log_arr:=('X','X','0','1','X','X',
'0','1','X');
function to_bin (from : std_logic) return std_logic;
end ;
package global_decl is

function to_bin (from : std_logic) return std_logic is
begin
return std_to_bin(from);
end ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-3

Entities and Architectures VHDL Language Features
library ieee;
library work;
use ieee.std_logic_1164.all;
use work.global_decl.all;

entity en1 is port
(a: in std_logic;
b: out std_logic);
end ;

architecture ar1 of en1 is
begin
b <= to _bin (a);
end ;

architecture ar2 of en1 is
begin
b <= not (to _bin (a));
end ;

library ieee;
library work;
use ieee.std_logic_1164.all;
use work.global_decl.all;
entity en2 is port
(a: in std_logic;
b, c: out std_logic);
end ;

architecture arc of en2 is
component en1 port
(a: in std_logic;
b: out std_logic);
end component ;

continued.........
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-4

VHDL Language Features Entities and Architectures

e
l
tructs

tiple
ls that
esses.
Processes

Processesare sections of sequentially executed statements, as opposed to the dataflow
environment, where all statements are executed concurrently. In a process, the order of th
statementsdoesmatter. In fact, processes resemble the sequential coding style of high leve
programming languages. Also, processes offer a variety of powerful statements and cons
that make them very suitable for high level behavioral descriptions.

A process can be called from the dataflow area. Each process is a sequentially executed
program, but all processes run concurrently. In a sense, multiple processes resemble mul
programs that can run simultaneously. Processes communicate with each other via signa
are declared in the architecture. Also the ports defined in the entity can be used in the proc

begin
c1: en1 port map (a => a, b => b);
c2: en1 port map (a => a, b => c);

end ;

library work;
configuration binding of en2 is
for arc
for c1: en1 use entity work.en1 (ar1);
end for ;
for c2: en1 use entity work.en1 (ar2);
end for ;
end for ;
end binding ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-5

Entities and Architectures VHDL Language Features

rite

y a

and
This example describes a circuit that can load a source vector of 4 bits, on the edge of a w
clock (wrclk), store the value internally in a register (intreg) if a chip enable (ce) is active,
while it produces one bit of the register constantly (not synchronized). The bit is selected b
selector signals of two bits.

The description consists of two processes, one to write the value into the internal register,
one to read from it. The two processes communicate via the register valueintreg .

entity experiment is
port (source : in bit_vector(3 downto 0) ;

ce : in bit ;
wrclk : in bit ;
selector : in bit_vector(1 downto 0) ;
result : out bit

);
end experiment;

architecture exemplar of experiment is
signal intreg : bit_vector(3 downto 0) ;

begin -- dataflow environment
writer : process -- process statement

-- declarative region (empty here)
begin -- sequential environment

-- sequential (clocked) statements
wait until wrclk’event and wrclk = ’1’ ;
if (ce=’1’) then

intreg <= source ;
end if ;

end process writer;

reader : process (intreg, selector) -- process statement
-- with sensitivity list

-- declarative region (empty
here)

begin
-- sequential (not-clocked) statements

case selector is
when "00" => result <= intreg(0) ;
when "01" => result <= intreg(1) ;
when "10" => result <= intreg(2) ;
when "11" => result <= intreg(3) ;

end case ;
end process reader;

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-6

VHDL Language Features Literals

s to
ge

of the

,

t

d

a brief
s

The first process (writer) includes a wait statement. The wait statement causes the proces
execute only if its condition isTRUE. In this case, the wait statement waits until a positive ed
occurs on the signalwrclk (expressionwrclk’event and wrclk=’1’). Each time the edge
occurs, the statements following the wait statements are executed. In this case, the value
input signal source is loaded into the internal signalintreg only if ce is ’ 1’ . If ce is ’0’ ,
intreg retains its value. In synthesis terms, this translates into a D-flipflop, clocked onwrclk ,
and enabled byce .

The second process (reader) does not have a wait statement. Instead, it has a sensitivity list
with the signalsintreg andselector there. This construct defines that the whole process is
executed each time eitherintreg or selector changes. If the process is executed, the outpu
signalresult gets updated with depending on the values ofintreg andselector . Note that
this leads to combinational behavior, sinceresult depends on onlyintreg andselector , and
each time either of these signals changes,result gets updated.

A process has an optional name (in this casewriter andreader), a sensitivity list OR a wait
statement, and a declarative region where signals, variables, functions etc. can be declare
which are used only within the process. Each statement is executed sequentially, as in a
programming language.

Not all constructs, or combinations of constructs, in a process lead to behavior that can be
implemented as logic.

Literals
Constant values in VHDL are given in literals.Literalsare lexical elements. The following is an
overview, with examples given for each type of literal.

Literals are used to define types and as constant values in expressions. This list provides
description of their function in VHDL which will be more clear after the descriptions of type
and expressions.

Character Literals: ’0’ ’X’ ’a’ ’%’#

String Literals: “1110100” “XXX” “try me!” “$^&@!”

Bit String Literals: B“0010_0001” X”5F’ O“63_07”

Decimal Literals: 27 -5 4E3 76_562 4.25

Based Literals: 2#1001# 8#65_07" 14#C5#E+2

Physical Literals: 2 ns 5.0 V 15 pF

Identifiers: Idle TeSTing a true_story
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-7

Literals VHDL Language Features

t

rs

ility.

sized

L.

ypes

nd
res a
nd in
ing of
o

The ’_’ in bit string literals, decimal literals and based literals helps to order your literal, bu
does not represent a value.

Character literals contain only a single character, and are single quoted.

String literals contain an array of characters, and are double quoted.

Bit String Literals are a special form of string literals. They contain an array of the characte0
and1, and are preceded by one of three representation forms.B is the bit representation (0 or 1
allowed),X the hexadecimal representation (0 to F allowed) and O the octal representation (0 to
7 allowed).X"5F" is exactly the same asB"01011111" , which is again the same as the string
literal "01011111" .

Bit string literals can contain underscores, which are ignored and only inserted for readab

Decimal literals areinteger or real values.

Based literals are alsointeger or real values, but they are written in a based form.8#75# is
the same as decimal61. However it is not the same as the bit literal valueO"75" since the bit
literal value is an array (of bits) and the based literal is a integer.

Physical literals are sometimes required for simulation. As they are not used in the synthe
part of the design, we do not go into detail about them.

Identifiers can be enumerated literals. They are case-insensitive, like all identifiers in VHD
Their use becomes more clear with the discussion of VHDL types.

Types

A typeis a set of values. VHDL supports a large set of types, but here we concentrate on t
that are useful for synthesis.

VHDL is a strongly typed language: every object in a VHDL source needs to be declared a
needs to be of a specific type. This allows the VHDL compiler to check that each object sto
value that is in its type. This avoids confusion about the intended behavior of the object, a
general allows the user to catch errors early in the design process. It also allows overload
operators and subprograms. It also make coding in VHDL a little more difficult, but tends t
produce cleaner, better maintainable code.

VHDL defines four classes of types:

• Scalar types

• Composite types

• Access types
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-8

VHDL Language Features Literals

ic
t

s in

e

Here is

te’
• File types

Access types and File type cannot be applied for logic synthesis, since they require dynam
resource allocation, which is not possible in a synthesized hardware. Therefore, we will no
discuss these.

Instead, only scalar types and composite types will be discussed. These are all scalar type
VHDL:

• Enumerated types.

• Integer types

• Floating-point types

• Physical types

• VHDL has two forms of composite types:

• Array types

• Record types.

Enumerated Types

Syntax and Semantics

An enumerated type consists of a set of literals (values). It indicates that objects of that typ
cannot contain any other values than the ones specified in the enumerated type.

An example of an enumerated type is the pre-defined typebit . This is how the typebit is
declared:

Any object of typebit can only contain the (literal) values’0’ and’1’ . The VHDL compiler
will error out (type error) if a different value could be assigned to the object.

Enumerated types are also often used to declare the (possible) states of a state machine.
an example of the declaration of the states of an imaginary state machine are declared:

Once an object of this type is declared, the object can contain only one of these three ‘sta
values.

type bit is (’0’,’1’) ;

type states is (IDLE, RECEIVE, SEND) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-9

Literals VHDL Language Features

erated
nt
e

or

lly)

ary

at
re

de any

, and
ur
Synthesis Issues

It is important to understand a logic synthesis tool needs to do state encoding on any enum
type. For example, thestates type in the previous section needs at least two bits to represe
the three possible values. This section mainly deals with the various forms of controlling th
enumerated encoding for each enumerated type in your design.

LeonardoSpectrum performsonehot encoding on an enumerated type. Use the batch mode
interactive shell options as follows:

• Use batch mode option-encoding .

• Use interactive shell variableencoding .

In addition the following attributes are available:

• TYPE_ENCODING_STYLE(define the encoding style for state machine type encoding)

• TYPE_ENCODING(define the bit-to-bit encoding for state machine type values manua

• LOGIC_TYPE_ENCODING(define that the type needs to be synthesized into a single bin
value)

These three attributes are declared in theexemplar_1164 package. So you do not need to
declare them if you use ause exemplar.exemplar_1164.all statement in your design unit.

TheLOGIC_TYPE_ENCODINGattribute on an enumerated type will give a hint to the compiler th
any object of the type should be encoded with a single bit, even though there might be mo
than two value in the type.

An example of a type whereLOGIC_TYPE_ENCODINGis helpful, is the typestd_ulogic in the
IEEE 1164 package. The type consists of nine values, but the synthesis tools should enco
object ofstd_ulogic as a single bit value. Here is how LeonardoSpectrum encodes
std_ulogic as a single-bit value:

LOGIC_TYPE_ENCODINGtakes an array of characters, as many as there are values in the type
each character states how LeonardoSpectrum should treat the related value. There are fo

-- Declare the LOGIC_TYPE_ENCODING attribute :
attribute LOGIC_TYPE_ENCODING : string ;

-- Declare the std_ulogic type :
type std_ulogic is (’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’) ;

-- Set the LOGIC_TYPE_ENCODING attribute on the std_ulogic type :
attribute LOGIC_TYPE_ENCODINGof std_ulogic:type is

(’X’,’X’,’0’,’1’,’Z’,’X’,’0’,’1’,’X’) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-10

VHDL Language Features Literals

e

o
are
hine.
oding
gy

ate
values that LeonardoSpectrum accepts as legal single bit values for theLOGIC_TYPE_ENCODING
attribute:’0’ , ’1’ , ’X’ , ’Z’ .

’0’ : Treat the value as a logic zero.

’1’ : Treat the value as a logic one.

’X’ : Treat the value as either a logic one or a logic zero. LeonardoSpectrum can decid
which one, depending on the context it is used in. LeonardoSpectrum uses this freedom to
optimize the circuit as much as it can.

’Z’ : Treat the value as a high-Z values. LeonardoSpectrum will generate a three-state
driver if this value is used in an assignment.

LeonardoSpectrum can work with all values of a type with aLOGIC_TYPE_ENCODINGattribute.
Only comparisons of aNON-STATIC value with’X’ or ’Z’ will return FALSE.

TheTYPE_ENCODINGandTYPE_ENCODING_STYLEattributes on an enumerated type are used t
control state-encoding for state-machine descriptions. Normally, state-machines in VHDL
described by giving a enumerated type that identifies each possible state of the state mac
The encoding for this enumerated type is done by LeonardoSpectrum. By default, the enc
is ONEHOTfor FPGA andBINARY for ASIC. Otherwise, the encoding depends on the technolo
used.

If a process exists with multiplewait statements, then the TYPE_ENCODING_STYLE
attribute can be applied to the label of the process to control the encoding of the implicit st
machine.

TheTYPE_ENCODING_STYLEgives a hint to the compiler as to what kind of encoding style to
choose. There are five different styles to choose from:BINARY, GRAY, ONEHOT, RANDOM, AUTO.
Here is an example of how to use theTYPE_ENCODING_STYLEattribute on a (imaginary) state
enumerated type:

-- Declare the TYPE_ENCODING_STYLE attribute
-- (not needed if the exemplar_1164 package is used) :
type encoding_style is (BINARY, ONEHOT, GRAY, RANDOM, AUTO) ;
attribute TYPE_ENCODING_STYLE : encoding style ;

-- Declare the (state-machine) enumerated type :
type my_state_type is (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the TYPE_ENCODING_STYLE of the state type :
attribute TYPE_ENCODING_STYLEof my_state_type:type is ONEHOT ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-11

Literals VHDL Language Features

type.
s as

e is
s
n the
r of

s).

the

ill
In the example, LeonardoSpectrum will use one-hot encoding for the values of my_state_
More specifically, LeonardoSpectrum will use five bits for the type and will encode the state
follows:

The ’-’ value will allow LeonardoSpectrum to only compare a single bit when a state valu
tested for. When a state value is assigned,’-’ means a0. This scheme allows the synthesis tool
to eliminate almost all logic when testing for the state machine to be in a particular state. O
other hand, sinceONEHOTencoding requires more bits than other encoding styles, the numbe
flip-flops will increase.ONEHOTencoding can therefore be very beneficial for technologies
where flip-flops are not expensive, but combinational logic is (like in the Xilinx architecture

Naming: ForONEHOTencoding, the synthesized bits of a state machine will be named after
bit number in the table. Here is an example:

The signalstate will be synthesized with one-hot encoding style, and LeonardoSpectrum w
generate five bits for it, where each one gets the state number from the table:

state(4) corresponds to bit4 in the state table

state(3) corresponds to bit3 in the state table

state(2) corresponds to bit2 in the state table

state(1) corresponds to bit1 in the state table

state(0) corresponds to bit0 in the state table

For BINARY encoding (the default) the synthesis tools will use the following state table:

bit4 bit3 bit2 bit1 bit0
SEND - - - - 1
RECEIVE - - - 1 -
IGNORE - - 1 - -
HOLD - 1 - - -
IDLE 1 - - - -

signal state : my_state_type ;

bit2 bit1 bit0
SEND 0 0 0
RECEIVE 0 0 1
IGNORE 0 1 0
HOLD 0 1 1
IDLE 1 - -
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-12

VHDL Language Features Literals

o

hines

ted,

the
BINARY encoding (asGRAYandRANDOMencoding) uses the minimum number of bits needed t
encode all values. In the case (five values),BINARY encoding needs three bits. The last value
(for IDLE) in the table indicates several’-’ s. The’-’ (just as the’-’) value is used to reduce
the size of comparators needed to test the state.

Naming: ForBINARY encoding, as well as forGRAYandRANDOMencoding, the synthesis tools
will generate the minimum number of bits needed for an object of the type. The signalstate
will now generate three bits, each with the following name:

state(2) corresponds tobit2 in the state table

state(1) corresponds tobit1 in the state table

state(0) corresponds tobit0 in the state table

GRAYencoding lets LeonardoSpectrum build a Gray-code encoding. Gray-code encoding
assures that in each successive value, only one single bit changes:

Gray encoding does not use the optimization possible with the’-’ value. Gray encoding
reduces glitches in the combinational logic when moving from one value (state) to its
successor. It can be helpful in designs that require very clean logic switching and state mac
that do not perform many jumps to different states.

RANDOMencoding will create a random encoding scheme. The state table cannot be predic
nor is there any way to let the synthesis tools produce it for you.RANDOMencoding is interesting
if you would like to see whether or not the circuit size or performance depends heavily on
state encoding.

For TWOHOT encoding LeonardoSpectrum uses the following state table:

bit2 bit1 bit0
SEND 0 0 0
RECEIVE 0 0 1
IGNORE 0 1 1
HOLD 0 1 0
IDLE 1 1 0

bit 3 bit 2 bit 1 bit 0

SEND - - 1 1

RECEIVE - 1 - 1

IGNORE 1 - - 1

HOLD - 1 1 -

IDLE 1 - 1 -
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-13

Literals VHDL Language Features

alue

ps
hot
that

es a
The“-” don’t care value allows LeonardoSpectrum to only compare two bits when a state v
is tested for. When a state value is assigned, the“-” means a0. This scheme allows the
synthesis tools to eliminate almost all logic when testing for the state machine to be in a
particular state. The twohot encoding requires more flip flops than binary and fewer flip flo
than onehot. The twohot encoding can be very beneficial for some large FSMs where one
uses too many flip flops, and binary requires too much decode logic. The number of states
can be encoded by n bits is given by the following expression:

To fully control the state encoding, use theTYPE_ENCODINGattribute. With theTYPE_ENCODING
attribute you can define the state table used. Here is an example:

TheTYPE_ENCODINGattribute takes an array of equal-length strings, where each string defin
row in the state table. TheTYPE_ENCODINGattribute is declared in theexemplar_1164 package,
so if you use that, you do not have to enter the declaration for it.

-- Declare the TYPE_ENCODING attribute :
type exemplar_string_array is array (natural range <>, natural range <>)

of character ;
attribute array_pin_number : exemplar_string_array ;
attribute TYPE_ENCODING : exemplar_string_array ;

-- Declare the (state-machine) enumerated type :
type my_state_type is (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the type-encoding attribute :
attribute TYPE_ENCODINGof my_state_type:type is

("0001","01--","0000","11--","0010") ;

Σ
n-1

n-m-1

m=0
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-14

VHDL Language Features Literals

st
es in

is to

ing
this

ign.

-type)

ate

g

the

e.
II

ange
This attribute setting will let the synthesis tools to use the following state table:

The number of bits used in theTYPE_ENCODINGattribute value does not have to be the smalle
possible number of bits. Just make sure that you specify as many strings as there are valu
the enumerated type. Also note that you can use the’-’ value to let LeonardoSpectrum know
not to use these bits when testing is the state machine is in the given state. You can use th
reduce the size of the circuit.

Note: Currently LeonardoSpectrum does not have an algorithm to find a good state encod
for any enumerated type. Still, the various forms of manual state table control explained in
section should allow you to find a good state encoding for each state machine in your des

The attributes described in this section allow you to encode each state machine (each state
individually as follows.

• Use the batch mode option-encoding that sets the default encoding (BINARY) to either
BINARY, ONEHOT, TWOHOT, GRAYor RANDOM. This command-line switch is useful to
quickly switch from one state encoding style to another on a design with a single st
machine. Any of the encoding attributes overwrite any default setting.

• On the interactive command line shell set theencoding variable toBINARY (default),
ONEHOT, TWOHOT, GRAYor RANDOMbefore reading in a design to use a different encodin
style for the state machines in the design.

An interesting effect of this way of handling encoding for enumerated types in synthesis of
predefined typecharacter in VHDL. The character type is defined in the packagestandard ,
as an enumerated of all characters in the 8-bit ASCII set. WhenBINARY encoding (default) is
chosen, each character will be synthesized into seven bits, with exactly its 8-bit ASCII valu
So, LeonardoSpectrum can synthesize characters (and strings) representing them as ASC
values. If a different default encoding is chosen, the encoding of the character type will ch
accordingly.

bit3 bit2 bit1 bit0
SEND 0 0 0 1
RECEIVE 0 1 - -
IGNORE 0 0 0 0
HOLD 1 1 - -
IDLE 0 0 1 0
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-15

Literals VHDL Language Features

r

an

he
)
ign,
since

s

igned

, the
Integer Types

Syntax and Semantics

When designing arithmetic behavior, it is very helpful to work with integer types. An intege
type defines the set of integer values in its range. This is how an integer type is defined:

Any object of typemy_integer can only contain integer values in the range specified. VHDL
pre-defines an integer type calledinteger , that at least covers a range of integer values that c
be represented in two’s complement with 32 bits:

Actually, VHDL 1076 does not define the maximum bounds of the predefined typeinteger
nor of any other integer type, it just states that it should at least include this range.

Synthesis issues

LeonardoSpectrum can synthesize with any integer type that contains no values outside t
range-2147483648 to 2147483647 . LeonardoSpectrum stores integer values (constant ones
using (32 bit) integers internally. If more than 32 bits are needed for a particular circuit des
you should use arrays to represent them. Do not use integer types that exceed the range,
many other VHDL tools have the same restrictions as LeonardoSpectrum.

LeonardoSpectrum needs to do encoding for integer types, since an integer range require
multiple bits to represent. The synthesis tools will analyze the range of an integer type and
calculate the number of bits needed to represent it.

If there are no negative values in the integer range, LeonardoSpectrum will create an uns
representation. For example, consider the following object of the typemy_integer from the
previous section:

The signalcount will be represented as unsigned, consisting of four bits. When synthesized
four bits will be named as elements of a bus in the resulting netlist:

type my_integer is range 0 to 15 ;

type integer is range -2147483647 to 2147483647;

signal count : my_integer ;

count(3) the MSB bit
count(2)
count(1)
count(0) the LSB bit
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-16

VHDL Language Features Literals
If the range includes negative numbers, LeonardoSpectrum will use two’s-complement
representation of the integer values. For example, any object of the predefined typeinteger
will be represented with 32 bits where the MSB bit represents the sign bit.

Example:

Now, LeonardoSpectrum will represent the signalbig_value as 32 bits:

Floating-point Types

Syntax and Semantics

As any high-level programming language, VHDL defines floating-point types.Floating-point
types approximate the real numbers.

Here is an example of the declaration of a floating-point type:

VHDL pre-defines a very general floating-point type calledreal.

Like the integer types, maximum bounds of any floating-point type are not defined by the
language. However, the floating-point type should but should at least include-1.0E38 to
1.0E38 .

Nothing in the language defines anything about the accuracy of the resolution of the
floating-point type values.

signal big_value : integer ;

big_value(31) the sign bit
big_value(30) the MSB bit
:
:
big_value(1)
big_value(0) the LSB bit

type my_real is range 0.0 to 1.0 ;

type real is range -1.0E38 to 1.0E38 ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-17

Literals VHDL Language Features

point
t
olution

cts.

d the
e.

, as

ts and

e
spect
Synthesis Issues

In general, since the resolution of floating-point types is not defined by the language, it is
difficult to come up with a good rule for encoding floating-point types. While in a regular
(software) compilers floating-point types are represented in 32, 64 or 128 bits, the floating-
operations just require time. In hardware compilers like a logic synthesis tool, floating-poin
operations would require massive amounts of actual synthesized hardware, unless the res
and bounds of the floating-point type are kept under very close control.

In summary, LeonardoSpectrum does not currently support synthesis of floating point obje
Floating-point types and objects can however be used in constant expression.

For example, an attribute could get a (compile time constant) floating-point expression, an
synthesis tools will calculate the expression and set the floating-point value on the attribut

Physical Types

Syntax and Semantics

VHDL allows the definition of physical types.Physicaltypes represent relations between
quantities. A good example of a physical type is the predefined typetime :

Objects of physical types can contain physical values of the quantities specified in the type
long as the values do not exceed the range of the type. Typetime is often used in VHDL
designs to model delay.

Synthesis Issues

Physical types, objects and values are normally only used for simulation purposes. Objec
values of typetime are used inafter clauses to model delay.

LeonardoSpectrum attempts to synthesize any physical value that is within the range of th
type. The encoding follows the encoding for integer types, and expresses the value with re

type time is range -2147483647 to 2147483647
units

fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-18

VHDL Language Features Literals

ic

s. For

ined

index)

not yet
to the base quantity (fs in the typetime). It is not common practice however to synthesize log
circuitry to model physical values.

LeonardoSpectrum handles constant expressions of physical values without any problem
example, attributes of typetime can receive constant values of typev . This is often used to
model arrival time and required time properties in the design.

Array Types

Syntax and Semantics

An array type in VHDL specifies a collection of values of the same type. There are constra
and unconstrained array types.

For an constrained array type, the number of elements and the name of the elements (the
is defined and fixed.

Example:

In this example, typebyte defines an array of 8 element, each of typebit . The elements are
named with indexes ranging from7 (for the left most element in the array) downto0 (for the
right most element in the array). Example of an array object:

Individual elements of the array object can now be referred to using indexing:

seven(0) is the name of the right most element in arrayv . Its value is the bit literal’1’ .

seven(7) is the name of the left most element in arrayv . Its value is the bit literal’0’ .

Parts of the array can be retrieved using slicing:

seven(3 downto 0) is the name of the right most four elements in arrayseven . The value is an
array of four bits:"0111" . The indexes of this array range from3 down to0.

For an unconstrained array type, the number of elements and the name of the elements in
defined. An example is the pre-defined typebit_vector :

type byte is array (7 downto 0) of bit ;

constant seven : byte := "00000111" ;

type bit_vector is array (natural range <>) of bit ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-19

Literals VHDL Language Features

.

rder
ge.

e

cept

ver,

ained,

be an

rum
pes

ols

Bit
B or
Here, the array type defines that the element type isbit , and that the index type is type
natural . Typenatural is an integer subtype that includes all non-negative integers. The
meaning of this is that the index value for any object of typebit_vector can never be negative

By defining an unconstrained array type, you defer specifying a size for the array. Still, in o
to define a valid object of an unconstrained array type, we need to constrain the index ran
This is normally done on the object declaration:

Unconstrained array types are very important, since they allow you to declare many
different-size objects and to use these objects through each other, without introducing typ
conflicts.

The type of the element of an (constrained or unconstrained) array type is not restricted to
enumerated typebit as in the examples. Actually, an array element type can be any type ex
for an unconstrained array type.

You can define an array of integers, an array of 6-bit arrays, an array of records etc. Howe
you cannot declare an array of (the unconstrained array type)bit_vector .

If you want an unconstrained array type where you need more indexes to remain unconstr
you need a multi-dimensional array type:

Multi-dimensional (constrained and unconstrained) array type are useful when modeling
RAMs, ROMs and PLAs in VHDL. Indexes and slices of multi-dimensional arrays need to
specify all index dimensions, separated by a comma.

Finally, the index type of an array type does not have to be an integer (sub)type. It can also
enumerated type.

Synthesis Issues

There are no synthesis restrictions in LeonardoSpectrum on using arrays. LeonardoSpect
supports arrays of anything (within the language rules), multi-dimensional arrays, array ty
with enumerated index type. Negative indexes are also allowed.

Naming of array objects is straightforward. LeonardoSpectrum appends the index for each
element after the array name. If the element type consists of multiple bits, the synthesis to
append the element indexes to the array name with its index.

It is important to understand that there is no Most Significant Bit (MSB) or Least Significant
(LSB) defined in an array type or array object. The semantics of what is interpreted as MS

constant eight : bit_vector (7 downto 0) := "00001000" ;

type matrix is array (natural range <>, natural range <>) of bit ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-20

VHDL Language Features Literals

tool
duct.

B. As

t

f

rray.

name
LSB is defined by the operations on the array. In the example of objectseven the user probably
meant the left most bit to be the MSB, and the right most bit the LSB. However, this is not
defined by the language, just by the user.

Additions, subtractions, and multiplications have to be defined by the user. Most synthesis
vendors define (arithmetic) operations on arrays in packages that are shipped with the pro
Most of these packages assume that leftmost bit is the MSB and the rightmost bit is the LS
an example of this, the packagesexemplar andexemplar_1164 define arithmetic operators the
bit_vector and the IEEE 1164 array equivalentstd_logic_vector type. In these packages,
the leftmost bit is assumed to be the MSB.

Record Types

Syntax and Semantics

A recordtype defines a collection of values, just like the array type.

All elements of an array must be of the same type. Elements of a record can be of differen
types:

The element typemonth_name in this example could be an enumerated type with all names o
the months as literals.

The elements of a record type can again be of any type, but cannot be an unconstrained a

Consider the following object of typedate :

Individual elements of a record object can be accessed with a selected name. A selected
consists of the object name, followed by a dot (.) and the element name:

my_birthday.year selects theyear field out of my_birthday and returns the integer value
1993 .

type date is
record

day : integer range 1 to 31 ;
month : month_name ;
year : integer range 0 to 4000 ;

end record ;

constant my_birthday : date := (29, june, 1963) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-21

Literals VHDL Language Features

types

ed
dot,
bits

-time
Synthesis Issues

LeonardoSpectrum does not impose any restrictions (except for language rules) on record
and record objects.

Naming of the individual bits that result after synthesizing a record object follow the select
naming rule of the language: Each bit in a record object get the record name followed by a
followed by the element name. If the element synthesizes into multiple bits, the index of the
in each element are appended to that. As an example, the five bits that represent theday field in
my_birthday will be named as follows:

Subtypes

A subtypeis a type with a constraint.

A subtype allows you to restrict the values that can be used for an object without actually
declaring a new type. This speeds up the debugging cycle, since the simulator will do a run
check on values being out of the declared range. Declaring a new type would cause type
conflicts. Here is an example:

my_birthday.day(0) LSB in my_birthday.day
my_birthday.day(1)
my_birthday.day(2)
my_birthday.day(3)
my_birthday.day(4) MSB in my_birthday.day

subtype <subtype_name> is <base_type> [<constraint>] ;

type big_integer is range 0 to 1000 ;
type small_integer is range 0 to 7;

signal intermediate : small_integer ;
signal final : big_integer ;

final <= intermediate * 5 ; <- type error occurs because
big_integer and small_integer are
NOT the same type
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-22

VHDL Language Features Literals

void

nd

claring

pe are
y will
then

ype

ate
With a type-conversion (see next section), you can ’cast’ one integer into another one to a
the error. Still, it is cleaner to use a subtype declaration for the (more constrained)
small_integer type:

Subtypes can be used to constraint integer types (as in the example), floating-point type, a
unconstrained arrays.

Declaring a subtype that constraints an unconstrained array type is exactly the same as de
a constrained array type:

has the same effect as:

Just as in the integer type example, subtypes of one and the same unconstrained base-ty
compatible (will not cause type errors), but when two constrained array types are used, the
cause type errors if objects of both types are intermixed in expressions. Type conversion is
the only possibility to let objects of the two types be used together in expressions without t
errors. There are no synthesis restrictions on the use of subtypes.

Type Conversions

In cases where it is not possible to declare one type and one subtype instead of two separ
types, VHDL has the concept of type conversion.Type conversionis similar to type’casting’
in high level programming languages. To cast an expression into a type, use the following
syntax:

type big_integer is range 0 to 1000 ;
subtype small_integer is big_integer range 0 to 7;

signal intermediate : small_integer ;
signal final : big_integer ;

final <= intermediate * 5 ;<- NO type error occurs ! because
big_integer and small_integer
have the same base-type
(big_integer).

type bit_vector is array (natural range <>) of bit ;
subtype eight_bit_vector is bit_vector (7 downto 0) ;

type eight_bit_vector is array (7 downto 0) of bit ;

<type>(<expression>)
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-23

Literals VHDL Language Features

n in

er
point

on

r
dard

ctions
Type conversion is allowed between ’related’ types. There is a long and detailed discussio
the VHDL LRM about what related types are, but in general, if it is obvious to you that the
compiler should be able to figure out how to translate values of one type to values of anoth
type, the types are probably related. For example, all integer types are related, all floating-
types are related and all array types of the same element type are related.

So, the problem of type error between two different types in example of the previous secti
could be solved with a type conversion:

IEEE 1076 Predefined Types

The VHDL IEEE 1076 standard predefines a number of types. The following lists the ones
which are most important for synthesis:

LeonardoSpectrum also understands the predefined typesCHARACTER, STRING,
SEVERITY_LEVEL, TIME, REALandFILE .

IEEE 1164 Predefined Types

A problem with the 1076 standard is that it does not specify any multi-valued logic types fo
simulation purposes, but rather left this to the user and/or tool vendor. The IEEE 1164 Stan
specifies a 9-valued logic. LeonardoSpectrum supports these types, although some restri
apply to the values you can use for synthesis.

The meaning of the different type values of the IEEE 1164 standard are as follows:

type big_integer is range 0 to 1000 ;
type small_integer is range 0 to 7;

signal intermediate : small_integer ;
signal final : big_integer ;

final <= big_integer(intermediate * 5) ;<- NO type error occurs now,
since the compiler knows how to
translate ’small_integer’ into
big_integer with the type
conversion.

type bit is (’0’,’1’) ;
type bit_vector is array (integer range <>) of bit ;
type integer is range MININT to MAXINT ;
subtype positive is integer range 0 to MAXINT ;
subtype natural is integer range 0 to MAXINT ;
type boolean is (TRUE,FALSE) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-24

VHDL Language Features Literals

ance

if

in
on

This
’U’ Uninitialized

’X’ Forcing Unknown

’0’ Forcing Low

’1’ Forcing High

’Z’ High Impedance

’W’ Weak Unknown

’L’ Weak Low

’H’ Weak High

’-’ Dont Care

The weak values on a node can always be overwritten by a forcing value. The high imped
state can be overwritten by all other values.

Most of these values are meaningful for simulation purposes only. Some restrictions apply
you want to use these values for synthesis. Only the values’0’ ,v ,’X’ ,’-’ and’Z’ have a
well-described meaning for synthesis.

Some examples of IEEE 1164 type statements are:

The identifierresolution_func is a function that defines which value should be generated
case multiple values are assigned to an object of the same type. This is called the resoluti
function of the type. Resolution functions are supported as long as they do not return any
metalogical values.

To use the IEEE 1164 types you must load the IEEE package into your VHDL description.
is done with the following statements:

type std_ulogic is (’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’) ;
type std_ulogic_vector is array (natural range <>) of std_ulogic ;
subtype std_logic is resolution_func std_ulogic ;
type std_logic_vector is (natural range <>) of std_logic ;
subtype X01Z is resolution_func std_ulogic range ’X’ to ’Z’ ;

-- includes X,0,1,Z

library ieee ;
use ieee.std_logic_1164.all ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-25

Objects VHDL Language Features

e
be
ir

ures.

y. This

l
is:

ses,
Objects
Objectsin VHDL (signals, variables, constants, ports, loop variables, generics) can contain
values. Values can be assigned to objects, and these values can be used elsewhere in th
description by using the object in an expression. All objects except loop variables have to
declared before they are used. This section describes the various objects in VHDL and the
semantics.

Signals

Signalsrepresent wires in a logic circuit. Here are a few examples of signal declarations:

Signals can be declared in all declarative regions in VHDL except for functions and proced
The declaration assigns a name to the signal (foo); a type, with or without a range restriction
(bit_vector(5 downto 0)); and optionally an initial (constant) value. Initial values on
signals are usually ignored by synthesis.

Signals can be assigned values using an assignment statement
(e.g.,aux <= ’0’ ;). If the signal is of an array type, elements of the signal’s array can be
accessed and assigned using indexing or slicing.

Assignments to signals are not immediate, but scheduled to be executed after a delta dela
effect is an essential difference between variables and signals.

Constants

Constants can not be assigned a value after their declaration. Their only value is the initia
constant value. Initialization of a constant is required. An example of declaring a constant

Variables

Variables can not be declared or used in the dataflow areas or in packages, only in proces
functions and procedures. An example of declaring a variable is:

signal foo : bit_vector (5 downto 0) := B"000000" ;
signal aux : bit ;
signal max_value : integer ;

constant ZEE_8 : std_logic_vector (7 downto 0) := "ZZZZZZZZ" ;

variable temp : integer range 0 to 10 := 5 ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-26

VHDL Language Features Objects

t to a

In
low

gnal,
d,

of

t to
Assignments to a variable are immediate. This effect is an essential difference between
variables and signals. The initial assignment to a variable is optional. The initial assignmen
variable in a process is usually ignored by synthesis.

Ports

A port is an interface terminal of an entity. A port represents an ordinary port in a netlist
description. Ports in VHDL are, just like other objects, typed and can have an initial value.
addition, a port has a “direction.” This is a property that indicates the possible information f
through the port. Possible directions arein , out , inout andbuffer , whereinout andbuffer
indicate bidirectional functionality.

After declaration, a port can be used in the architecture of the entity as if it were a normal si
with the following restrictions: first, you cannot assign to a port with direction in, and secon
you cannot use a port of direction out in an expression.

Generics

A genericis a property of an entity. A good example of a generic is the definition of the size
the interface of the entity. Generics are declared in a generic list.

The genericsize can be used inside the entity (e.g., to define the size of ports) and in the
architecture that matches the entity. In this example, the genericsize is defined as an integer
with an initial value8. The sizes of the input and output ports of the entity increment are se
be 8 bits unless the value of the generic is overwritten by a generic map statement in the
component instantiation of the entity.

entity adder is
port (

input_vector : in bit_vector (7 downto 0) ;
output_vector : out bit_vector (7 downto 0)

) ;
end adder ;

entity increment is
generic (size : integer := 8) ;
port (ivec : in bit_vector (size-1 downto 0) ;

ovec : out bit_vector (size-1 downto 0)) ;
end increment ;

inst_1 : increment generic map (size=>16)
port map (ivec=>invec, ovec=>outvec) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-27

Statements VHDL Language Features

for

p

re can
iable

.

ss,
Here, a 16-bit incrementer is instantiated, and connected to the signalsinvec andoutvec .

LeonardoSpectrum fully supports generics and generic map constructs and imposes no
restriction on the type of the generic. Generics are very useful in generalizing your VHDL
description for essential properties like sizes of interfaces or for passing timing information
simulation to instantiated components.

Loop Variables

A loop variableis a special object in the sense that it does not have to be declared. The loo
variable gets its type and value from the specified range in the iteration scheme.

In this code fragment,i becomes an integer with values0,1,2...5 respectively, when the loop
statements are executed 6 times. A loop variable can only be used inside the loop, and the
be no assignments to the loop variable. For synthesis, the range specified for the loop var
must be a compile-time constant, otherwise the construct is not synthesizable.

Statements
This section briefly discusses the basic statements that can be used in VHDL descriptions

Conditional Statements

This code fragment describes a multiplexer function, implemented with an if-then-else
statement. This statement can only be used in a sequential environment, such as a proce
procedure or a function.

for i in 5 downto 0 loop
a(i) <= b(i) and ena ;

end loop ;

signal a : integer ;
signal output_signal, x, y, z : bit_vector (3 downto 0) ;
....
if a = 1 then

output_signal <= x ;
elsif a = 2 then

output_signal <= y ;
elsif a = 3 then

output_signal <= z ;
else

output_signal <= "0000" ;
end if ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-28

VHDL Language Features Statements

tement

rue

ment,
The same functionality in the dataflow environment is accomplished with the use of the
conditional signal assignment statement:

Selection Statements

If many conditional clauses have to be performed on the same selection signal, a case sta
is a better solution than theif-then-else construct:

The“|” sign indicates that particular case has to be entered if any of the given choices is t
(or functionality). Each case can contain a sequence of statements.

The case statement can only be used in a sequential environment. In the dataflow environ
the selected signal assignment statement has the equivalent behavior:

signal a : integer ;
signal output_signal, x, y, z : bit_vector (3 downto 0) ;
....
output_signal <= x when a=1 else
y when a=2 else
z when a=3 else
"0000" ;

signal output_signal, sel, x, y, z : bit_vector (3 downto 0) ;
....
case sel is

when "0010" => output_signal <= x ;
when "0100" => output_signal <= y ;
when "1000" => output_signal <= z ;
when "1010" | ”1100" | "0110" => output_signal <= x and y and z ;
when others => output_signal <= "0000" ;

end case ;

signal output_signal, sel, x, y, z : bit_vector (3 downto 0) ;
....
with sel select

output_signal <= x when "0010",
y when "0100",
z when "1000",
x and y and z when "1010" | "1100"
|"0110", "0000" when others ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-29

Statements VHDL Language Features

r only

f

Loop Statements and Generate Statements

In many cases, especially with operations on arrays, many statements look alike, but diffe
on minor points. In that case, you might consider using a loop statement.

In this code fragment, each bit of a input signal is “anded” with a single bit enable signal, to
produce an output array signal. The loop variablei does not have to be declared. It holds an
integer value since the loop range is an integer range.

The previous example showed afor loop. VHDL also has awhile loop. Here is an example:

LeonardoSpectrum supports almost every type of loop. The tool supports anyfor loop with the
exception offor loops that containwait until statements. The tool also supports any kind o
NEXTandEXIT statements applicable on an outerwhile loop with multiplewait statements.

While loops are supported as long as they have a validwait statement in every possible path
within the loop. If awhile loop does not have a singlewait statement, and it is bound by
constants, then the tool synthesized the design correctly. This is shown in the following
example:

signal result, input_signal : bit_vector (5 downto 0) ;
signal ena : bit ;
....
for i in 0 to 5 loop

result(i) <= ena and input_signal(i) ;
end loop ;

process -- no sensitivity list
begin

wait until clk’ event AND clk=’1’;
output_signal <= 0;
while (input_signal < 6) loop

wait until clk’ event AND clk=’1’;
output_signal <= output_signal +1;

end loop;
end process;

variable i : integer ;
......

i := 0 ;
while (i < 6) loop

result(i) <= ena AND input_signal(i) ;
i := i + 1 ;

end loop ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-30

VHDL Language Features Statements

ent in
The tool supportsEXIT andNEXTstatements withinwhile loops.

For example, we could write thewhile loop as follows:

The loop statement can only be used inside sequential environments. Its equivalent statem
the dataflow environment is thegenerate statement:

Thegenerate statement is preceded by a label (G1). A label is required in the generate
statement but is optional in the loop statement.

Thegenerate statement does not allowEXIT andNEXTstatements. The reason is that the
statements inside thegenerate statement are executed concurrently. So there is no way to
know when to exit. Thegenerate statement has nowhile equivalent, for the same reason.
Instead however, there is aif equivalent in thegenerate statement:

The condition must evaluate to a run-time constant. That is a language requirement.

process -- no sensitivity list
begin

wait until clk’ event AND clk=’1’;
output_signal <= 0;

while (TRUE) loop
exit if (input_signal < 6);
wait until clk’ event AND clk=’1’;
output_signal <= output_signal +1;
end loop ;
end process ;

signal result, input_signal : bit_vector (5 downto 0) ;
signal ena : bit ;
....
G1 : for i in 0 to 5 generate

result(i) <= ena and input_signal(i) ;
end generate ;

signal result, input_signal : bit_vector (5 downto 0) ;
G1 : for i in 0 to 5 generate
G2 : if i < 3 generate

result(i) <= input_signal(i) ;
end generate ;
G3 : if (i >= 4) generate

result(i) <= NOT input_signal (i);
end generate ;
end generate ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-31

Statements VHDL Language Features

e,

and

pe of
in

t hand

iables:

ted

taflow
actual
There is noelse part possible in agenerate statement. We consider this a flaw in the languag
but the Exemplar synthesis tools has to comply with it.

LeonardoSpectrum does not have any synthesis restrictions for thegenerate statement.

Assignment Statements

Assignments can be done to signals, ports and variables in VHDL. Assignments to signals
ports are done with the<= operator.

In this code fragmento gets assigned the value of the vector-XOR (bit by bit) of vectorsv and
b. The type of the object on the left hand side of the assignment should always match the ty
the value on the right hand side of the assignment. Signal assignments can be used both
dataflow environment and sequential environments.

Assignments to variables are done with the “:= ” sign.

Variable assignments can only be used in sequential environments. Types on left and righ
side of the “:= ” sign should match.

There is one important difference between assignments to signals and assignments to var
when the values are updated. The value of a variable in a variable assignment is updated
immediately after the assignment. The value of a signal in a signal assignment is not upda
immediately, but gets “scheduled” until after a delta (delay) time.

This delay time is not related to actual time, but is merely a simulation characteristic. This
behavior of the signal assignment does not have any effect for signal assignments in a da
environment, since assignments are done concurrently there. However, in a process, the
value of the signal changes only after the complete execution of the process.

signal o, a, b : std_logic_vector (5 downto 0) ;
....
o <= a xor b ;

variable o : std_logic_vector (5 downto 0) ;
signal a, b : std_logic_vector (5 downto 0) ;
....
o := a AND NOTb ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-32

VHDL Language Features Statements

an

d to
The following example illustrates this effect. It shows the description of a multiplexer that c
select one bit out of a four bit vector using two select signals.

This description does not behave as intended. The problem is becausemuxval is a signal; the
value ofmuxval is not immediately set to the value defined by bitsa andb. Instead,muxval still
has the same value it had when the process started when theif statement is executed. All
assignments tomuxval are scheduled until after the process finishes. This means thatmuxval
still has the value it got from the last time the process was executed, and that value is use
select the bit from the input vector.

entity mux is
port (s1, s2 : in bit ;

inputs : in bit_vector (3 downto 0) ;
result : out bit

) ;
end mux ;

architecture wrong of mux is
begin

process (s1,s2,inp)
signal muxval : integer range 0 to 3 ;
begin

muxval <= 0 ;
if (s1 = ’1’) then muxval <= muxval+1 ;
if (s2 = ’1’) then muxval <= muxval+2 ;
-- use muxval as index of array ’inputs’
result <= inputs (muxval) ;

end process ;
end wrong ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-33

Operators VHDL Language Features

to

signal
ely,

he
The solution to this problem is to makemuxval a variable. In that case, all assignments done
muxval are immediate, and the process works as intended.

As a general rule, if you use signal assignments in processes, do not use the value of the
after the assignment, unless you explicitly need the previous value of the signal. Alternativ
you can use a variable instead.

Operators

IEEE 1076 Predefined Operators

VHDL predefines a large number of operators for operations on objects of various types. T
following is an overview:

Relational operators on ALL types (predefined or not):

= <=

/= >

< >=

Logical operators on pre-defined types BIT and BOOLEAN:

AND NOR

OR XOR

entity mux is
port (s1, s2 : in bit ;

inputs : in bit_vector (3 downto 0) ;
result : out bit) ;

end mux ;

architecture right of mux is
begin

process (s1,s2,inp)
variable muxval : integer range 0 to 3 ;
begin

muxval := 0 ;
if (s1 = ’1’) then muxval := muxval+1 ;
if (s2 = ’1’) then muxval := muxval+2 ;
-- Use muxval as index of array ’inputs’
result <= inputs (muxval) ;

end process ;
end right ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-34

VHDL Language Features Operators

m the

ys
st

types

the
NAND NOT

Arithmetic operators on all integer types:

+ mod

- rem

* abs

/

**

Concatenation of elements into an array of elements:

& (,,,,)

Relational operators operate on any type. The basis of comparing two values is derived fro
order of definition. For example in thestd_logic type the value’U’ is smaller than the value
’1’ because’U’ is defined first in the order of values in the type. The comparison of two arra
is accomplished by comparing each element of the array. The left most element is the mo
significant one for comparisons.

In this example,a(7) is the most significant bit for comparisons with vectora, andb(9) is the
most significant bit for comparisons with vectorb.

Logical operators work in a straightforward manner and do the appropriate operations on
BIT andBOOLEAN, and also for one-dimensional arrays ofBIT andBOOLEAN. In the latter case,
the logical operation is executed on each element of the array. The result is an array with
same size and type as the operands.

Arithmetic operators work on integers and on all types derived from integers.
LeonardoSpectrum supports arithmetic operators on vectors, described in the exemplar
package.

signal a : bit_vector (7 downto 0) ;
signal b : bit_vector (9 downto 5) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-35

Operators VHDL Language Features

n or

ever,
nd
e

Concatenation operators can group elements of the same type into an array of that type.
Consider the following examples:

This description is the same as the following one:

The aggregate operator in VHDL is especially useful when assigning to a vector of unknow
large size:

In this example,o(0) is assigned’1’ and all other elements ofo (independent of its size) get
value’0’ .

IEEE 1164 Predefined Operators

The IEEE 1164 standard logic package describes a set of new types for logic values. How
the binary operators that are predefined in VHDL only operate on bit and boolean types, a
arrays of bits and booleans. Therefore, the IEEE standard logic type package redefines th
logical operators (and, or, not, etc.) for the typesstd_logic , std_ulogic and the array types
std_logic_vector andstd_ulogic_vector .

signal a, b, c : bit ;
signal x : bit_vector (5 downto 0) ;
signal y : bit_vector (3 downto 0) ;
....
-- using concatenation operator

x <= a & b & c & B"00" & ’0’ ;
-- using an aggregate

y <= (’1’, ’0’, b, c) ;

signal a, b, c : bit ;
signal x : bit_vector (5 downto 0) ;
signal y : bit_vector (3 downto 0) ;
....

x(5) <= a ;
x(4) <= b ;
x(3) <= c ;
x(2 downto 0) <= "000" ;
y(0) <= ’1’ ;
y(1) <= ’0’ ;
y(2) <= b ;
y(3) <= c ;

signal o : bit_vector (255 downto 0) ;
....

o <= (0=>’1’, others =>’0’) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-36

VHDL Language Features Attributes

nd

in
it

on

use

m

any

tes
Operator Overloading

The operators+, - , * , mod, abs , < ,>, etc. are predefined for integer and floating-point types, a
the operatorsand , or , not etc. are predefined on the typebit andboolean . If you want to use
an operator that is not pre-defined for the types you want to use, use operator overloading
VHDL to define what the operator should do. Suppose you want to add an integer and a b
according to your own semantics, and you want to use the “+” operator:

The first “+” in the assignment tot is the pre-defined “+” operator on integers. The second “+”
is the user defined overloaded operator that adds a bit to an integer. The“ character around the
“+” operator definition is needed to distinguish the operator definition from a regular functi
definition.

Operator overloading is also necessary if you defined your own logic type and would like to
any operator on it.

If you want to do arithmetic operations (+, - , etc.) on the array typesbit_vector or
std_logic_vector , it will be more efficient for synthesis to use the pre-defined operators fro
theexemplar and theexemplar_1164 packages.

LeonardoSpectrum fully supports operator overloading as described by the language.

Attributes
In VHDL, attributes can be set on a variety of objects, such as signals and variables, and m
other identifiers, like types, functions, labels etc.

An attribute indicates a specific property of the signal, and is of a defined type. Using attribu
at the right places creates a very flexible style of writing VHDL code. An example of this is
given at the end of this section.

function “+” (a: integer; b: bit) return integer is
begin

if (b=’1’) then
return a+1 ;

else
return a ;

end if ;
end “+” ;
signal o, t: integer range 0 to 255 ;
signal b : bit ;
...
t <= o + 5 + b ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-37

Attributes VHDL Language Features

.

f

tes
ols.

type,
the
VHDL Predefined Attributes

VHDL pre-defines a large set of attributes for signals. The following example shows the
definition of two vectors and the values of the VHDL predefined attributes for them.

The attributes do not have to be written in capitals; VHDL is case-insensitive for identifiers

An important predefined attribute for synthesis is theEVENTattribute. Its value reveals edges o
signals.

Exemplar Predefined Attributes

Apart from the VHDL predefined types, Exemplar also supplies a set of predefined attribu
that are specifically helpful for guiding the synthesis process or controlling down-stream to

User-Defined Attributes

Attributes can also be user defined. In this case, the attribute first has to be declared, with a
and then its value can be set on a signal or other object. This value can then be used with
“ ’ ” construct. The following is an example:

signal vector_up : bit_vector (9 downto 4) ;
signal vector_dwn : bit_vector (25 downto 0) ;
....
vector_up’LEFT-- returns integer 9
vector_dwn’LEFT-- returns integer 25
vector_up’RIGHT-- returns integer 4
vector_dwn’RIGHT-- returns integer 0
vector_up’HIGH-- returns integer 4
vector_dwn’HIGH-- returns integer 25
vector_up’LOW-- returns integer 9
vector_dwn’LOW-- returns integer 0
vector_up’LENGTH-- returns integer 6
vector_dwn’LENGTH-- returns integer 26
vector_up’RANGE -- returns range 4 to 4
vector_dwn’RANGE-- returns range 25 to 0
vector_up’REVERSE_RANGE-- returns range 4 to 9
vector_dwn’REVERSE_RANGE-- returns range 0 to 25

signal my_vector : bit_vector (4 downto 0) ;
attribute MIDDLE : integer ;
attribute MIDDLE of my_vector : signal is my_vector’LENGTH/2 ;
....

my_vector’MIDDLE -- returns integer 2
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-38

VHDL Language Features Attributes

ple.

sked.

these
Usage Of Attributes

To indicate where attributes in a VHDL description are useful, consider the following exam

This example calculates the parity of the bits of a source vector, where each bit can be ma
This VHDL description is correct, but is not very flexible. Suppose the application changes
slightly and requires a different size input. Then the VHDL description has to be modified
significantly, since the range of the vector affects many places in the description. The
information is not concentrated, and there are many dependencies. Attributes can resolve
dependencies.

entity masked_parity is
port (source : in bit_vector (5 downto 0) ;

mask : in bit_vector (5 downto 0) ;
result : out bit

) ;
end masked_parity ;

architecture soso of masked_parity is
begin

process (source, mask)
variable tmp : bit ;
variable masked_source : bit_vector (5

downto 0) ;
begin

masked_source := source and mask ;
tmp := masked_source(0) ;
for i in 1 to 5 loop

tmp := tmp XORmasked_source(i) ;
end loop ;
result <= tmp ;

end process ;
end soso ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-39

Blocks VHDL Language Features

the
d

ated,

de
ng
es.
Here is an improved version of the same example, where attributesLEFT, RIGHT, andRANGE
define the dependencies on the size of the vector.

If the application requires a different size parity checker, this time we only have to modify
source vector range, and the attributes ensure that the rest of the description gets adjuste
accordingly. Now the information is concentrated.

Blocks
When using processes and dataflow statements it is possible to use VHDL as a high level
hardware description language. However, as the descriptions get more and more complic
some form of design partitioning, or hierarchy, is required or desirable.

VHDL offers a variety of methods for design partitioning. One form of partitioning is to divi
a description into various processes. In the following sections four more forms of partitioni
are discussed: blocks, subprograms (functions and procedures), components and packag

entity masked_parity is
generic (size : integer := 5) ;
port (source : in bit_vector (size downto 0) ;

mask : in bit_vector (source’RANGE) ;
result : out bit

) ;
end masked_parity ;

architecture better of masked_parity is
begin

process (source, mask)
variable tmp : bit ;
variable masked_source : bit_vector (source’RANGE) ;

begin
masked_source := source and mask ;
tmp := masked_source(source’LEFT) ;
for i in source’LEFT+1 to source’RIGHT loop

tmp := tmp xor masked_source(i) ;
end loop ;
result <= tmp ;

end process ;
end better ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-40

VHDL Language Features Functions And Procedures

r

ods,
rrors

n the

the

is
d

A block is a method to cluster a set of related dataflow statements. Signals, subprograms,
attributes, etc. that are local to the block can be defined in a block declarative region. All
statements in a block are executed concurrently, and thus define a dataflow environment.

Blocks can be nested, for example.

Signals, ports and generics declared outside the block can be used inside the block, eithe
directly (asglobal_sig is used in blockB2), or via a port map (asg1 is connected too1 in
block B2) or generic maps (for generics). There is no real difference between the two meth
except that the port (generic) map construct is a cleaner coding style which could reduce e
when using or assigning to global objects.

A block can also have aGUARDexpression (c=’1 ’ in block B2). In that case, an assignment
inside the block that contains the keywordGUARDEDwill only be executed when theGUARD
expression isTRUE. In the example,o1 only gets the value oflocal_sig whenc=’1’ . GUARDED
blocks and assignments provide a interesting alternative to construct latches or flip-flops i
synthesized circuit. For examples, refer to Registers, Latches and Resets on page3-1.

LeonardoSpectrum fully support blocks, with port/generic lists and port/generic maps and
GUARDoptions of blocks.

Functions And Procedures
Subprograms (function and procedures) are powerful tools to implement functionality that
repeatedly used.Functionstake a number of arguments that are all inputs to the function, an
return a single value.Procedurestake a number of arguments that can be inputs, outputs or
inouts, depending on the direction of the flow of information through the argument. All
statements in functions and procedures are executed sequentially, as in a process. Also,

architecture xxx of yyy is
signal global_sig ,g1,g2,c bit ;

begin
B1 : block -- block declarative region

signal local_sig : bit ;
begin -- block concurrent statements

local_sig <= global_sig ;
-- Block in a block

B2 : block (c=’1’) -- Block has “GUARD” expression
port (o1,o2 : out bit)-- Block port declarations
port map (o1=>g1,o2=>g2) ;

begin
o1 <= guarded local_sig ;
o2 <= global_sig ;

end block ;
end block ;

end xxx ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-41

Functions And Procedures VHDL Language Features

ls are

a
two

es
rs

signal

fined

itial
variables that are local to the subprogram can be declared in the subprogram. Local signa
not allowed.

As an example, suppose you would like to add two vectors. In this case, you could define
function that performs the addition. The following code fragment shows how an addition of
6-bit vectors is done.

That vector addition, implemented this way, is not very efficient for synthesis. The packag
exemplar andexemplar_1164 provide vector additions that can implement efficient/fast adde
more easily.

An example of a procedure is shown. The procedure increments a vector only if an enable
is high.

This incrementer procedure shows the behavior of an in/out port. The parametervect is both set
and used in this procedure. Also, the procedure statements use a call to the previously de
vector_adder function. If an input of a function or a procedure is not connected when it is
used, that input will get the initial value as declared on the interface list.

For example, inputena will get (initial) value’1’ if it is not connected in a procedure call to the
procedureincrement . It is an error if an input is not connected and also does not have an in
value specified.

function vector_adder (x : bit_vector(5 downto 0); y : bit_vector(5
downto 0)) return bit_vector(5 downto 0) is

-- declarative region
variable carry : bit ;
variable result : bit_vector(5 downto 0) ;

begin
-- sequential statements

carry := ’0’ ;
for i in 0 to 5 loop

result (i) := x(i) xor y(i) xor carry ;
carry := carry AND (x(i) OR y(i)) OR x(i) AND y(i) ;

end loop ;
return result ;

end vector_adder ;

procedure increment (vect : inout bit_vector(5 downto 0); ena :
in bit :=’1’) is
begin

if (ena=’1’) then
vect := vector_adder (vect, "000001") ;

end if ;
end increment ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-42

VHDL Language Features Functions And Procedures

e
ry

a
dition

the

l, the

me
the

re
al
of one

s.
One important feature of subprograms in VHDL is that the arguments can be unbound. Th
given examples operate on vectors of 6 bits. If you want to use the subprograms for arbitra
length vectors, you could specify the length-dependencies with attributes and not specify
range on the parameters (leave them unbound). Here is a redefinition of both the vector ad
function and the incrementer procedure for arbitrary length vectors.

In the procedure increment example, name association was added in the parameter list of
vector_adder call. The name association (e.g.,x=>vect) is an alternative way to connect a
formal parameter (x) to its actual parameter (vect). Name associations (as well as positional
associations) are helpful if the number of parameters is large.

Subprograms can be called from the dataflow environment and from any sequential
environment (processes and other sub-programs). If a procedure output or inout is a signa
corresponding parameter of the procedure should also be declared as a signal.

Subprograms can be overloaded. That is, there could be multiple subprograms with the sa
name, but with different parameter list types or return types. LeonardoSpectrum performs
overlaod resolution.

In the last example, the variable carry was initialized in when it was declared. This is a mo
compact way of setting the starting value of a variable in a function or procedure. The initi
value does not have to be a constant. It could be a nonconstant value also (like the value
of the parameters).

LeonardoSpectrum fully supports all VHDL language features of functions and procedure

function vector_adder (x : bit_vector; y : bit_vector) return
bit_vector is

variable carry : bit := ’0’ ;
variable result : bit_vector(x’RANGE) ;

begin
for i in x’RANGE loop

result (i) := x(i) XOR y(i) XOR carry ;
carry := carry AND (x(i) OR y(i)) OR x(i) AND y(i) ;

end loop ;
return result ;

end vector_adder ;

procedure increment (vect : inout bit_vector; ena : in bit :=’1’) is
begin

if (ena=’1’) then
vect := vector_adder (x=>vect, "000001") ;

end if ;
end increment ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-43

Resolution Functions VHDL Language Features

e are
. In

al is
d

be
rrent
n the
Resolution Functions

Syntax and Semantics

In a concurrent area in VHDL, all statements happen concurrently. That means that if ther
two assignments to the same signal, then the final value of the signal needs to be resolved
VHDL, you can only have multiple concurrent assignments to a signal if the type of the sign
resolved . A resolvedtype is a type with a resolution function. A good example of a resolve
type is the typestd_logic from the IEEE 1164 package:

The wordresolved in this declaration refers to a resolution function calledresolved . Here is
how it is specified in thestd_logic_1164 package:

The resolution function of typestd_logic takes a vector of the (unresolved) base-type of
std_logic : std_ulogic . It returns a singlestd_ulogic .

Now if you have two concurrent assignments to any signal of typestd_logic , the resolution
function will be called to determine the final value of the signal. The resolution function will
called with a vector with two elements, where each element contains the value of a concu
assignment. Inside the resolution function, the final value of the signal is defined, based o
two assignment values.

subtype std_logic is resolved std_ulogic ;

function resolved (s : std_ulogic_vector) return std_ulogic is
variable result : std_ulogic := ’Z’; -- weakest state default
attribute synthesis_return of result: variable is

“WIRED_THREE_STATE” ;
begin

-- the test for a single driver is essential otherwise the
-- loop would return ’X’ for a single driver of ’-’ and that
-- would conflict with the value of a single driver unresolved
-- signal.
if (s’LENGTH = 1) then return s(s’LOW);
else

for i in s’ range loop result := resolution_table(result,
s(i));

end loop ;
end if return result;

end resolved;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-44

VHDL Language Features Resolution Functions

rs

,
s

ll

r. In

ming
the
Synthesis Issues

Resolution functions are especially useful when you want to model nets with multiple drive
(like busses with three-state drivers). However, VHDL lets you define a resolution function
freely, without any special restrictions. The resolution function is thus just another function
only it gets called wherever there are multiple assignments to a signal of the (sub) type it i
attached to.

You can define a resolution function and attach it to a subtype, and LeonardoSpectrum wi
synthesize the circuitry it implies for each multiple assignment.

In many cases, the resolution function mimics a certain electrical behavior for the simulato
the case of the IEEE typestd_logic , and its resolution functionresolved, the resolution function
resembles tri-states being wired together. Therefore, the synthesis directive attribute
(synthesis_result) is set toWIRED_THREE_STATE.

This synthesis directive is a hint to LeonardoSpectrum to interpret the elements of the inco
vector as parallel three-state assignments, where the three-state condition is derived from
assignment. That way, any three-state drivers can be created with multiple assignments.

Let’s go through one example step by step, to show what the resolution function is doing:

When the code is executed, LeonardoSpectrum will give the following error:

This message is obvious, since you did not explain what should happen whena andb force
(different) values concurrently onto signalTMP. For that, write a resolution function. Suppose
you want the concurrent assignments to beANDed. Then you should write a resolution function
that performs anANDoperation of the elements of its input vector.

Also attach the resolution function toTMP. You could do that in two ways:

entity test_resolver is
port (a, b : bit ;

o : out bit) ;
end test_resolver ;
architecture exemplar of test_resolver is

signal tmp : bit ;
begin

tmp <= a ;
tmp <= b ;
o <= tmp ;

end exemplar ;

file, line 9: Error, multiple sources on unresolved signal TMP; also line 10.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-45

Component Instantiation VHDL Language Features

a
ple
1. Create a subtype ofbit , say,rbit , and attach the resolution function to that subtype,
just as we did for the typestd_logic .

2. Directly attach the resolution function to the signalTMP. This is the easiest way, and it is
useful if there are not many signals that need the resolution function.

The second method is::

LeonardoSpectrum will synthesize this description andtmp becomes theANDof a andb.

Component Instantiation
Componentsare a method of introducing structure in a VHDL description. A component
represents a structural module in the design. Using components, it is possible to describe
netlist in VHDL. Components are instantiated in the dataflow environment. Here is an exam

entity test_resolver is
port (a, b : bit ;

o : out bit) ;
end test_resolver ;

architecture exemplar of test_resolver is
-- Write the resolution function that ANDs the elements:
function my_and_resolved (a : bit_vector) return bit is

variable result : bit := ’1’ ;
begin

for i in a’range loop
result := result AND a(i) ;

end loop ;
return result ;

end my_and_resolved ;

-- Declare the signal and attach the resolution function to it:
signal tmp : my_and_resolved bit ;

begin
tmp <= a ;
tmp <= b ;
o <= tmp ;

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-46

VHDL Language Features Component Instantiation
of a structural VHDL description where four one-bit rams and a counter module are
instantiated.

entity scanner is
port (reset : in bit ;

stop : in bit ;
load : in bit ;
clk : in bit ;
load_value : in bit_vector (3 downto 0) ;
data : out bit_vector (3 downto 0)

) ;
end scanner ;

architecture exemplar of scanner is

component RAM_32x1
port (a0, a1, a2, a3, a4 : in bit ;

we, d : in bit ;
o : out bit

) ;
end component ;

component counter
generic (size : integer := 4) ;
port (clk : in bit ;

enable : in bit ;
reset : in bit ;
result : out bit_vector (4 downto 0)

) ;
end component ;
signal ena : bit ;
signal addr : bit_vector (4 downto 0) ;

begin
for i in 0 to 3 generate

ram : RAM_32x1 port map (a0=>addr(0), a1=>addr(1),
a2=>addr(2), a3=>addr(3), a4=>addr(4), d=>data(i),
we=>load, o=>data(i)) ;

end generate ;

ena <= not stop ;
count : counter generic map (size=>addr’length)

port map(clk=>clk, enable=>ena,
reset=>reset, result=>addr) ;

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-47

Binding a Component VHDL Language Features

area of
of the
f

map

truct

long

ations
nd so
The generate statement is used here to instantiate the four RAMs.

Components have to be declared before they can be used. This is done in the declaration
the architecture, or in a package (see next section). The declaration defines the interface
component ports with their type and their direction. Actually this example is just a netlist o
components. We added one dataflow statement (the assignment toena) to show that structure
and behavior can be mixed in VHDL.

The ports of the component are connected to actual signals (or ports) with the port map
construct. The generics of the component are connected to actual values with the generic
construct. In this example the genericsize is set to4 with the attribute length on the arrayaddr .
If no generic value was set tosize (or if the generic map construct was completely absent),
size gets value4, as indicated by the initial value onsize in the generic list of the component.
It is an error if a generic (or input port) is not connected in a generic map (or port map) cons
and there is no initial value given in the component generic (or port) list.

In the example, the input ports of the componentRAM_32x1 are individual bits (a0, a1, a2, a3,
a4). If the input would have been declared as abit_vector (0 to 4), then the individual bits
could be connected with indexed formal names:

or with a sliced formal name:

or simply with a full identifier association:

LeonardoSpectrum supports any form of slicing or indexing of formal parameter names, as
as the VHDL language rules are obeyed (formal name should be static).

LeonardoSpectrum also supports type-transformation functions in port and generic associ
as long as they are synthesizable. Type transformation functions are not very often used a
are not explained here.

Binding a Component
The definition of the components counter andRAM_32x1 are not yet given in the example. The
process of giving a contents definition for a component is calledbinding in VHDL. With
LeonardoSpectrum, there are four ways to do component binding:

.. port map (a(0) => addr(0), a(1) => addr(1), a(2) => addr(2),
a(3) => addr(3), a(4) => addr(4), ...

.. port map (a(0 to 4) => addr(0 to 4),

.. port map (a => addr,
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-48

VHDL Language Features Binding a Component

This
fault

ith a

ame
ell

e a

alue.
1. Specify an entity with the same name as the component and an architecture for it.
way, the component gets bound to the entity with the same name. This is called ’de
binding’ in VHDL.

2. Specify a configuration specification. Here you can bind a component to an entity w
different name, and you can even connect component ports to entity ports with a
different name.

3. Use a source technology in LeonardoSpectrum that contains a cell with the same n
as the component. LeonardoSpectrum will bind the component to the technology c
(and include functional, timing and area information for it).

4. Do not specify any entity for the component. This way, LeonardoSpectrum will issu
warning and create a black-box for the component.

Option 1 - Using a Default Binding

The component counter is a good example of the first option:

This description only includes behavior. There is no component instantiated, although it is
possible, and it makes hierarchical design possible.

Note that in this case the overloaded ’+’ operator is used on vectors, as defined in theexemplar
package. Also note that an asynchronous reset construction is used to reset the counter v

entity counter is
generic (size : integer) ;
port (clk : in bit ;

enable : in bit ;
reset : in bit ;
result : out bit_vector (size-1 downto 0)

) ;
end counter ;

architecture exemplar of counter is
begin

process (clk,reset)
begin

if (reset=’1’) then
result <= (others=>’0’) ;

elsif (clk’event and clk=’1’) then
if (enable=’1’) then

result <= result + "1" ;
end if ;

end if ;
end process ;

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-49

Binding a Component VHDL Language Features

ve a

e
have

to be

.

Option 2 - Using a Configuration Specification

The second option gives more freedom to bind an entity to a component. Suppose you ha
counter entity that does exactly what you need, but it is named differently, and (or) has
differently named ports and generics:

The following example configuration specification could be used to bind the component
counter to the entityalternative , for a particular or all instances of thecounter component.
The configuration specification is added after thecounter component declaration:

This configuration specification bindsall instances of componentcounter to an entity called
alternative (architectureex) in thework library, and it connects the generics and ports of th
entity to differently named generics and ports in the component. If the ports and generics
the same name in the entity and the architecture, the generic map and port map don’t have
given. If there is only one architecture of the entityalternative then the architecture (ex) does
not have to be given either. If not all, but just one or two instances of the componentcounter
should be bound to the entityalternative , then replaceall by a list of instance (label) names

Configuration specifications are a very powerful method to quickly switch definitions of
components to a different alternative.

entity alternative is
generic (N : integer) ;
port (clock : in bit ;

ena : bit :
reset : bit ;
output : out bit_vector (N-1 downto 0)) ;

end alternative ;
architecture ex of alternative is
begin

.....
end ex ;

component counter
generic (size : integer) ;
port (clk : in bit ;

enable : in bit ;
reset : in bit ;
result : out bit_vector(4 downto 0)) ;

end component counter ;
for all :counter use entity work.alternative(ex) generic map
(N=>size)

port map (clock=>clk, ena=>enable,
reset=>reset,output=>result) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-50

VHDL Language Features Packages

the

get
t the

y.
resent
ocks
nents

entity

body,
LeonardSpectrum fully supports all forms of configuration specifications that are allowed in
language.

If no configuration specification is given, the synthesis tools use the default binding as
explained in the first option.

Option 3 - Matching a Component Name to a Library
Cell

In the third option, if you use a component name that matches the name of a cell in the tar
technology library, then that cell will be instantiated in the design. In this case, assume tha
nameRAM_32x1 is the name of a RAM cell in the target technology library.

Option 4 - Creating a Black Box by Omitting the Entity

The fourth option is to omit declaring an entity for the component. This is helpful when
hierarchy has to be preserved. This technique can be effectively used to maintain hierarch
LeonardoSpectrum generates an empty module for each component it cannot find in the p
file as an entity or as a library cell in the source technology. Empty modules show up as bl
in the final netlist. They are not touched by the synthesis and optimization process. Compo
without a definition can also help to isolate a particular difficult or user-defined part of the
design from the synthesis operations. Clock generators or other asynchronous circuits or
time-critical user-defined modules are an example of this.

Packages
A packageis a cluster of declarations and definitions of objects, functions, procedures,
components, attributes etc. that can be used in a VHDL description. You cannot define an
or architecture in a package, so a package by itself does not represent a circuit.

A package consists of two parts. The package header, with declarations, and the package
with definitions. An example of a package isstd_logic_1164 , the IEEE 1164 logic types
package. It defines types and operations on types for 9-valued logic.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-51

Aliases VHDL Language Features

ssible

t is
ge is

ally
to

tion
nt
To include functionality from a package into a VHDL description, theuse clause is used.

This example shows how the IEEE 1164 standard logic types and functions become acce
to the description in entityxxx .

This is the general form to include a package in a VHDL description:

Theuse clause is preceded by alibrary clause. The predefined librarieswork andstd do not
have to be declared in alibrary clause before they are used in ause clause. All other libraries
do need to be declared.

Theselectioncan consist of only one name of a object, component, type or subprogram tha
present in the package, or the word all, in which case all functionality defined in the packa
loaded into LeonardoSpectrum, and can be used in the VHDL description.

Aliases
An alias is an alternate name for an existing object. By using an alias of an object, you actu
use the object to which it refers. By assigning to an alias, you actually assign to the object
which the alias refers.

Aliases are often useful in unbound function calls. For instance, if you want to make a func
that takes theANDoperation of the two left most bits of an arbitrary array parameter. If you wa

library ieee ;
use ieee.std_logic_1164.all ;

entity xxx is
port (x : std_logic ; -- type std_logic is known since it

is
-- defined in package
-- std_logic_1164

...

library lib ;
use lib.package.selection ;

signal vec : std_logic_vector (4 downto 0) ;
alias mid_bit : std_logic is vec(2) ;
-- Assignment :
mid_bit <= ’0’ ;
-- is the same as
vec(2) <= ’0’ ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-52

VHDL Language Features Aliases

ok

a
ou
to make the function general enough to handle arbitrary sized arrays, this function could lo
like this:

This function will only work correctly if the index range ofarr is descending (downto).
Otherwise,arr’left-1 is not a valid index number. VHDL does not have a simple attribute
that will give the one-but-leftmost bit out of an arbitrary vector, so it will be difficult to make
function that works correctly both for ascending and descending index ranges. Instead, y
could make an alias ofarr , with a known index range, and operate on the alias:

LeonardoSpectrum fully supports aliases.

function left_and (arr: std_logic_vector) return std_logic is
begin

return arr(arr’left) and arr(arr’left-1) ;
end left_and ;

-- Function does not work for ascending index ranges of arr.

function left_and (arr : std_logic_vector) return std_logic is
alias aliased_arr : std_logic_vector (0 to arr’length-1) is

arr ;

begin
return aliased_arr(0) and aliased_arr(1) ;

end left_and ;
-- Function works for both ascending and descending index
-- ranges of arr.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-53

Aliases VHDL Language Features
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d2-54

avior

that

e in

al
Chapter 3
The Art of VHDL Synthesis

This chapter explains the relationship between constructs in VHDL and the logic which is
synthesized. It focuses on coding styles with the best performance for synthesis.

Registers, Latches and Resets
VHDL synthesis produces registered and combinational logic at the RTL level. All
combinational behavior around the registers is, unless prohibited by the user, optimized
automatically. The style of coding combinational behavior, such asif-then-else andcase
statements, has some effect on the final circuit result, but the style of coding sequential beh
has significant impact on your design.

The purpose of this section is to show how sequential behavior is produced with VHDL, so
you understand why registers are generated at certain places and not in others.

Most examples explain the generation of these modules with short VHDL descriptions in a
process. If you are not working in a process, but just in the dataflow area of an architectur
VHDL, it is possible to generate these modules using predefined procedures in the
exemplar.vhd package.

Level-Sensitive Latch

This first example describes a level-sensitive latch:

In this example, the sensitivity list is required, and indicates that the process is executed
whenever the signalsena or input_foo change. Also, since the assignment to the global sign

signal input_foo, output_foo, ena : bit ;
...
process (ena, input_foo)
begin

if (ena = ’1’) then
output_foo <= input_foo ;

end if ;
end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-1

Registers, Latches and Resets The Art of VHDL Synthesis

tes the

t is
dition

E,
change
output_foo is hidden in a conditional clause,output_foo cannot change (will preserve its old
value) if ena is ’0’ . If ena is ’1’ , output_foo is immediately updated with the value of
input_foo , whenever it changes. This is the behavior of a level-sensitive latch.

In technologies where level-sensitive latches are not available, LeonardoSpectrum transla
initially generated latches to the gate-equivalent of the latch, using a combinational loop.

Latches can also be generated in dataflow statements, using a guarded block:

Edge-Sensitive Flip-Flops

The Event Attribute

An edge triggered flip-flop is generated from a VHDL description only if a signal assignmen
executed on the leading (or on the falling) edge of another signal. For that reason, the con
under which the assignment is done should include an edge-detecting mechanism. TheEVENT
attribute on a signal is the most commonly used edge-detecting mechanism.

TheEVENTattribute operates on a signal and returns a boolean. The result is always FALS
unless the signal showed a change (edge) in value. If the signal started the process by a
in value, theEVENTattribute isTRUEall the way through the process.

Here is one example of the event attribute, used in the condition clause in a process.
LeonardoSpectrum recognizes an edge triggered flip-flop from this behavior, withoutput_foo
updated only on the leading edge ofclk .

The attributeSTABLEis the boolean inversion of theEVENTattribute. Hence,NOT CLK’STABLEis
treated the same asCLK’EVENT. LeonardoSpectrum supports both attributes.

b1 : block (ena=’1’)
begin

output_foo <= GUARDEDinput_foo ;
end block ;

signal input_foo, output_foo, clk : bit ;
....
process (clk)
begin

if (clk’event and clk=’1’) then
output_foo <= input_foo ;

end if ;
end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-2

The Art of VHDL Synthesis Registers, Latches and Resets
Synchronous Sets And Resets

All conditional assignments to signaloutput_foo inside the if clause translate into
combinational logic in front of the D-input of the flip-flop. For instance, we could make a
synchronous reset on the flip-flop by doing a conditional assignment tooutput_foo :

Signalsreset andinput_foo do not have to be on the sensitivity list (although it is allowed)
since a change in their values does not result in any action inside the process.

Alternatively, dataflow statements could be used to specify a synchronous reset, using a
GUARDEDblock and a conditional signal assignment.

signal input_foo, output_foo, clk, reset : bit ;
...
process (clk)
begin

if (clk’event and clk = ’1’) then
if reset = ’1’ then

output_foo <= ’0’ ;
else

output_foo <= input_foo ;
end if ;

end if ;
end process ;

b3 : block (clk’event and clk=’1’)
begin

output_foo <= GUARDED’0’ when reset=’1’ else
input_foo ;
end block ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-3

Registers, Latches and Resets The Art of VHDL Synthesis

us

hat
t
t

ty list.

ead of

nal.

t)
ed in
ic that
Asynchronous Sets And Resets

If the reset signal should have immediate effect on the output, but the assignment to
output_foo from input_foo should happen only on the leading clock edge, an asynchrono
reset is required. Here is the process:

Now reset HAS TO BE on the sensitivity list! If it were not there, VHDL semantics require t
the process should not start if reset changes. It would only start ifclk changes. That means tha
if reset becomes’1’ , output_foo would be set to’0’ if clk either goes up, or goes down, bu
not before any change ofclk . This behavior cannot be synthesized into logic.
LeonardoSpectrum issues an error message that reminds you to put reset on the sensitivi

Asynchronous set and reset can both be used. It is also possible to have expressions inst
the fixed’0’ or ’1’ in the assignments tooutput_foo in the reset and set conditions. This
results in combinational logic driving the set and reset input of the flip-flop of the target sig
The following code fragment shows the structure of such a process:

There can be several asynchronouselsif clauses, but the synchronous elsif clause (if presen
has to be the last one in the if clause. A flip-flop is generated for each signal that is assign
the synchronous signal assignment. The asynchronous clauses result in combinational log
drives the set and reset inputs of the flip-flops. If there is no synchronous clause, all logic
becomes combinational.

signal input_foo, output_foo, clk, reset : bit ;
...
process (clk,reset)
begin

if (reset = ’1’) then
output_foo <= ’0’ ;

elsif (clk’event and clk = ’1’) then
output_foo <= input_foo ;

end if ;
end process ;

process (cl ock, asynchronousl y_used_si gnal s)
begin

if (bool ean_expressi on) then
asynchronous si gnal _assi gnm ents

elsif (bool ean_expressi on) then
asynchronous si gnal _assi gnm ents

elsif (cl ock’event and cl ock = const ant) then
synchronous si gnal _assi gnm ents

end if ;
end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-4

The Art of VHDL Synthesis Registers, Latches and Resets

cial

ide the
ge

clk is
Clock Enable

It is also possible to specify an enable signal in a process. Some technologies have a spe
enable pin on their basic building blocks. LeonardoSpectrum recognize the function of the
enable from the VHDL description and generates a flip-flop with an enable signal from the
following code fragment:

In dataflow statements, a clock enable can be constructed with aGUARDEDblock and a
conditional signals assignment.

Wait Statements

Another way to generate registers is by using thewait until statement. Thewait until
clause can be used in a process, and is synthesizable, as long as all of the control paths ins
process contain at least one wait statement. The following code fragment generates an ed
triggered flip-flop between signalinput_foo andoutput_foo :

There is no sensitivity list on this process. In VHDL, a process can have a sensitivity listor a
wait statement, but not both. In this example, the process is executed if clk changes since
present in the wait condition. Also, the wait condition can be simplified towait until

signal input_foo, output_foo, enable, clk : bit ;
...
process (clk)
begin

if (clk’event and clk=’1’) then
if (enable=’1’) then

output_foo <= input_foo ;
end if ;

end if ;
end process ;

b4: block (clk’event and clk=’1’)
begin

output_foo <= GUARDEDinput_foo when enable=’1’
else output_foo ;

end block ;

signal input_foo, output_foo, clk : bit ;
...
process
begin

wait until clk’event and clk=’1’ ;
output_foo <= input_foo ;

end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-5

Registers, Latches and Resets The Art of VHDL Synthesis

ve the

ait

cess
is
wing

eir
clock

they
clk=’1’ ; , since the process only starts ifclk changes, and thusclk’event is always true.
Multiple wait statements per process are also supported as long as all of the statements ha
samewait until clause.

LeonardoSpectrum does not support asynchronous reset behavior with wait statements. A
synchronous reset remains possible however, by describing the reset behavior after the w
statement.

Variables

Variables (like signals) can also generate flip-flops. Since the variable is defined in the pro
itself, and its value never leaves the process, the only time a variable generates a flip-flop
when the variable is used before it is assigned in a clocked process. For instance, the follo
code segment generates a three-bit shift register.

In this case, the variablesa andb are used before they are assigned. Therefore, they pass th
values from the last run through the process, which is the assigned value delayed by one
cycle. If the variables are assigned before they are used, you will get a different circuit:

Here, a and b are assigned before used, and therefore do not generate flip-flops. Instead,
generate a single wire. Only one flip-flop remains in betweeninput_foo andoutput_foo
because of the signal assignment in the clocked process.

signal input_foo, output_foo, clk : bit ;
...
process (clk)

variable a, b : bit ;
begin

if (clk’event and clk=’1’) then
output_foo <= b ;
b := a ;
a := input_foo ;

end if ;
end process ;

signal input_foo, output_foo, clk : bit ;
...
process (clk)

variable a, b : bit ;
begin

if (clk’event and clk=’1’) then
a := input_foo ;
b := a ;
output_foo <= b ;

end if ;
end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-6

The Art of VHDL Synthesis Assigning I/O Buffers From VHDL

mplar
flop or

f you
or a
Predefined Flip-flops and Latches

Flip-flops and latches can also be generated by using predefined procedures from the exe
package. These procedure calls cause LeonardoSpectrum to instantiate the required flip-
D-latch. There are various forms of these procedures available, including versions with
asynchronous preset and clear.

Assigning I/O Buffers From VHDL
There are three ways to assign I/O buffers to your design from VHDL:

• Run LeonardoSpectrum in “chip” mode.

• Use thebuffer_sig attribute on a port in the VHDL source

• Use thebuffer_sig command.

• Use direct component instantiation in VHDL of the buffer you require.

Thebuffer_sig attribute or the direct component instantiation will overwrite any default
buffer assignment that LeonardoSpectrum does in “chip” mode.

It is important to realize that if you specify buffer names in the VHDL source,
LeonardoSpectrum checks the source technology library to find the buffer you requested. I
specify buffers in the control file, LeonardoSpectrum checks the target technology library f
matching buffer.

Automatic Buffer Assignment in Batch Mode

The easiest way of assigning buffers is to use the-chip batch mode option on the command
line.

Manual Assignment Using The BUFFER_SIG Property

Special buffers, e.g. clock buffers, can be assigned using thebuffer_sig property. This can be
done with theBUFFER_SIGcommand. Here is an example:

For LeonardoSpectrum, special buffers can be assigned by using theBUFFER_SIGprocedure.
After reading in a design, use the commandBUFFER_SIG CLOCK_BUFFER net_names.

BUFFER_SIG CLOCK_BUFFER clk
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-7

Assigning I/O Buffers From VHDL The Art of VHDL Synthesis
Thebuffer_sig property can also be set on a port using thebuffer_sig attribute in the VHDL
source.

Portclk is connected to the input of the external clock bufferCLOCK_BUFFER. An intermediate
node calledmanual_clk appears onCLOCK_BUFFER’s output. Gates specified in the control file
are searched for in the target technology library. Gates specified in the VHDL source are
searched for in the source technology library.

entity example is
port (inp, clk : in std_logic;

outp : out std_logic;
inoutp : inout std_logic
);
attribute buffer_sig : string ;
attribute buffer_sig of clk: signal is

“CLOCK_BUFFER” ;
end example;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-8

The Art of VHDL Synthesis Assigning I/O Buffers From VHDL

. In
put

r

Buffer Assignment Using Component Instantiation

It is also possible to instantiate buffers in the VHDL source file with component instantiation
particular, if you want a specific complex input or output buffer to be present on a specific in
or output, component instantiation is a very powerful method:

In this example, component instantiation forces anOUTPUT_FLIPFLOPbuffer on the
bidirectional pininoutp . Also an input bufferINPUT_BUFFERis specified to pick up the value
from this pin to be used internally.

LeonardoSpectrum will look for definitions of VHDL instantiated components in the source
library. Make sure that you specify a source library (-source=lib_name) or set the attribute
NOBUFFon the I/O pin of the instantiated buffer. Otherwise, LeonardoSpectrum will conside
the buffer to be a user-defined block and will add a buffer from the target technology.

entity special is
port (inp : in std_logic ;

clk : in std_logic ;
...
outp : out std_logic;
inoutp : inout std_logic

) ;
end special ;

architecture exemplar of special is
component OUTPUT_FLIPFLOP

port (c,d,t : in std_logic ;
o : out std_logic

) ;
end component ;
component INPUT_BUFFER

port (i : in std_logic ;
o : out std_logic

) ;
end component ;
signal intern_in, intern_out, io_control :

std_logic ;
begin

b1 : OUTPUT_FLIPFLOP port map (c=>clk,
d=>intern_out,

t=>io_control, o=>inoutp)
;

b2 : INPUT_BUFFER port map (i=>inoutp,
o=>intern_in) ;

...
end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-9

Three-state Buffers The Art of VHDL Synthesis

fine

of a

ce it
Three-state Buffers
Three-state buffers and bidirectional buffers (covered in the next section) are very easy to
generate from a VHDL description.

A disabled three-state buffer will be in a high-impedance state. VHDL itself does not prede
a high-impedance state, but the IEEE 1164 standard logic package defines the’Z’ character
literal to have a behavior that exactly resembles the behavior of the high-impedance state
three-state buffer. A signal (a port or an internal signal) of the standard logic type can be
assigned a’Z’ value. The synthesis tools recognize the’Z’ value and creates a three-state
buffer from a conditional assignment with’Z’ :

In the when clause, bothinput_signal and the conditionena=’1’ can be full expressions.
LeonardoSpectrum generates combinational logic driving the input or the enable of the
three-state buffer for these expressions.

Normally, simultaneous assignment to one signal in VHDL is not allowed for synthesis, sin
would cause data conflicts. However, if a conditional’Z’ is assigned in each assignment,
simultaneous assignment resembles multiple three-state buffers driving the same bus.

entity three-state is
port (input_signal : in std_logic ;

ena : in std_logic ;
output_signal : out std_logic

) ;
end three-state ;

architecture exemplar of three-state is
begin

output_signal <= input_signal when ena = ’1’ else
’Z’ ;
end exemplar ;

entity three-state is
port (input_signal_1, input_signal_2 : in std_logic ;

ena_1, ena_2 : in std_logic ;
output_signal : out std_logic

) ;
end three-state ;

architecture exemplar of three-state is
begin

output_signal <= input_signal_1 when ena_1 = ’1’ else ’Z’ ;
output_signal <= input_signal_2 when ena_2 = ’1’ else ’Z’ ;

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-10

The Art of VHDL Synthesis Three-state Buffers

e,
e. In

the
LeonardoSpectrum does not check for bus-conflicts on three-state assignments. Therefor
make sure that the enable signals of the three-state drivers are never simultaneously activ
this example,ena_1 andena_2 should never be’1’ simultaneously.

These examples show assignments to output ports (device ports). It is also possible to do
assignments to an internal signal. This will create internal busses in such a case.

Three-state buffers can also be generated from process statements:

If the target technology does not have any internal three-state drivers, then use one of the
following methods:

• Transform the three-state buffers into regular logic with the-tristate batch mode
option.

• Set thetristate_map variable is set toTRUEin the interactive shell.

driver1 : process (ena_1, input_signal_1) begin
if (ena_1=’1’) then

output_signal <= input_signal_1 ;
else

output_signal <= ’Z’ ;
end if ;

end process ;
driver2 : process (ena_2, input_signal_2) begin

if (ena_2=’1’) then
output_signal <= input_signal_2 ;

else
output_signal <= ’Z’ ;

end if ;
end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-11

Bidirectional Buffers The Art of VHDL Synthesis

ed

a

. If
d an

often
al
Bidirectional Buffers
Bidirectional I/O buffers will be created by LeonardoSpectrum if an external port is both us
and assigned inside the architecture. Here is an example:

The difference with the previous example is that in this case, the output itself is used again
internally. Note that for that reason, the portbidir_port is declared to beinout .

The enable signalena could also be generated from inside the architecture, instead of being
primary input as in this example.

LeonardoSpectrum selects a suitable bidirectional buffer from the target technology library
there is no bidirectional buffer available, it selects a combination of a three-state buffer an
input buffer.

Buses
The examples in the previous sections all use single bits as signals. In reality, busses are
used: arrays of bits with (multiple) three-state drivers. In that case, the type of the bus sign

entity bidir_function is
port (bidir_port : inout std_logic ;

ena : in std_logic ;
...

) ;
end bidir_function ;

architecture exemplar of bidir_function is
signal internal_signal, internal_input : std_logic

;
begin

bidir_port <= internal_signal when ena = ’1’ else
’Z’ ;

internal_input <= bidir_port ;
...
-- use internal_input
...
-- generate internal_signal

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-12

The Art of VHDL Synthesis State Machines

s can

style,

he

type

ts. In
state
should bestd_logic_vector . All examples given still apply for busses, although the’Z’
character literal now has to be a string literal. Here is one example:

This generates two set of eight three-state buffers, two on each line of the busoutput_signal .

As with single three-state drivers, busses can be internal signal, or ports. Similarly, busse
be created using processes.

State Machines
This section describes a basic form of a general state machine description. VHDL coding
power-up and reset, state encoding and other issues will be discussed.

General State Machine Description

There are various ways to describe a state machine in VHDL. This section will only show t
most commonly used description.

The possible states of the state machine are listed in an enumerated type. A signal of this
(present_state) defines in which state the state machine appears. In acase statement of one
process, a second signal (next_state) is updated depending on present_state and the inpu
the samecase statement, the outputs are also updated. Another process updates present_
with next_state on a clock edge, and takes care of the state machine reset.

entity three-state is
port (input_signal_1, input_signal_2 : in

std_logic_vector (7 downto 0) ;
ena_1, ena_2 : in std_logic ;
output_signal : out std_logic_vector(7 downto

0)
) ;

end three-state ;

architecture exemplar of three-state is
begin

output_signal <= input_signal_1 when ena_1 = ’1’
else “ZZZZZZZZ” ;

output_signal <= input_signal_2 when ena_2=’1’
else “ZZZZZZZZ” ;

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-13

State Machines The Art of VHDL Synthesis

ts a
Here is the VHDL code for such a typical state machine description. This design implemen
RAS-CAS controller for DRAM refresh circuitry.

entity ras_cas is
port (clk, cs, refresh, reset : in bit ;

ras, cas, ready : out bit) ;
end ras_cas ;

architecture exemplar of ras_cas is
-- Define the possible states of the state machine
type state_type is (s0, s1, s2, s3, s4) ;
signal present_state, next_state : state_type ;

begin

registers : process (clk, reset)
begin

-- process to update the present state
if (reset=’1’) then

present_state <= s0 ;
elsif clk’event and clk = ’1’ then

present_state <= next_state;
end if ;

end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-14

The Art of VHDL Synthesis State Machines

of the

of
o not

epend

ready

the
ore
VHDL Coding Style For State Machines

There are various issues of coding style for state-machines that might affect performance
synthesized result.

A first issue is the form of state machine that will be created. There are basically two forms
state machines, Mealy machines and Moore machines. In a Moore machine, the outputs d
directly depend on the inputs, only on the present state. In a Mealy machine, the outputs d
directly on the present state and the inputs.

In the RAS-CAS state machine described in the previous section, the outputs ras, cas and
only depend on the value ofpresent_state . This means that the description implements a
Moore machine. If the outputs would be set to different values under the input conditions in
if statements inside thecase statement, a Mealy machine would have been created. In a Mo

transitions : process (present_state, refresh, cs)
begin

-- process to calculate the next state and the outputs
case present_state is

when s0 =>
ras <= ’1’ ; cas <= ’1’ ; ready <= ’1’ ;
if (refresh = ’1’) then

next_state <= s3 ;
elsif (cs = ’1’) then

next_state <= s1 ;
else

next_state <= s0 ;
end if ;

when s1 =>
ras <= ’0’ ; cas <= ’1’ ; ready <= ’0’ ;
next_state <= s2 ;

when s2 =>
ras <= ’0’ ; cas <= ’0’ ; ready <= ’0’ ;
if (cs = ’0’) then

next_state <= s0 ;
else

next_state <= s2 ;
end if ;

when s3 =>
ras <= ’1’ ; cas <= ’0’ ; ready <= ’0’ ;
next_state <= s4 ;

when s4 =>
ras <= ’0’ ; cas <= ’0’ ; ready <= ’0’ ;
next_state <= s0 ;

end case ;
end process ;

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-15

State Machines The Art of VHDL Synthesis

ave to

the

tes
same

ans

uld
rn

always
about

pe,
ctrum
ld even
esis
machine, there is always a register in between the inputs and the outputs. This does not h
be the case in Mealy machines.

A second issue in coding style is thecase statement that has been used to test the
present_state . A case statement is more efficient than aif-then-elsif-else statement,
since that would build a priority encoder to test the state (which could mean more logic in
implementation). It is also important to note that there is noOTHERSentry in thecase statement.
An OTHERSentry could create extra logic if not all the states are mentioned in thecase
statement.

This extra logic will have to determine if the machine is in any of the already mentioned sta
or not. Unless there are a number of states where the state machine behaves exactly the
(which is not likely since then you could reduce the state machine easily) anOTHERSentry is not
beneficial and will, in general, create more logic than is required.

A third issue is the assignments to outputs andnext_state in the state transition process.
VHDL defines that any signal that is not assigned anything should retain its value. This me
that if you forget to assign something to an output (ornext_state) under a certain condition in
thecase statement, the synthesis tools will have to preserve the value.

Since the state transition process is not clocked, latches will have to be generated. You co
easily forget to assign to an output if the value does not matter. The synthesis tools will wa
you about this, since it is a common user error in VHDL:

Make sure to always assign something tonext_state and the state machine outputs under
every condition in the process to avoid this problem. To be absolutely sure, you could also
assign a value to the signal at the very beginning of the process (before the start of thecase
statement).

Graphical state-machine entry tools often generate state machine descriptions that do not
assign values to the outputs under all conditions. LeonardoSpectrum will issue a warning
this, and you could either manually fix it in the VHDL description, or make sure you fully
specify the state machine in the graphical entry tool. The synthesis tools cannot fill in the
missing specifications, since it is bounded by the semantics of VHDL on this issue.

Power-up And Reset

For simulation, the state machine will initialize into the leftmost value of the enumeration ty
but for synthesis it is unknown in which state the machine powers up. Since LeonardoSpe
does state encoding on the enumeration type of the state machine, the state machine cou
power up in a state that is not even defined in VHDL. Therefore, to get simulation and synth
consistency, it is very important to supply a reset to the state machine.

"file.vhd", line xx : Warning, latches might be needed for XXX.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-16

The Art of VHDL Synthesis Arithmetic And Relational Logic

used,
about

n
Types

en

ill not
ic,

or

ds on
d

In the example state machine shown in General State Machine, an asynchronous reset is
but a synchronous reset would be possible. Registers, Latches, and Reset explains more
how to specify resets on registers in VHDL.

Encoding Methods

LeonardoSpectrum has several methods to control encoding for state machines that use a
enumerated type for the declaration of the states. In this chapter, the section Enumerated
discusses state encoding methods in detail.

Arithmetic And Relational Logic
Logic synthesis is very powerful in optimizing “random” combinational behavior, but has
problems with logic which is arithmetic in nature. Often special precautions have to be tak
into consideration to avoid ending up with inefficient logic or excessive run times.
Alternatively, macros may be used to implement these functions.

LeonardoSpectrum supports the overloaded operators “+”, “ - ”, “ * ”, and “abs ”. These operators
work on integers (and on arrays; with the exemplar package).

If you use overloaded operators to calculate compile time constants, the synthesis tools w
generate any logic for them. For example, the following code segments do not result in log
but assign a constant integer13 to signalfoo .

If you are not working with compile time constant operands, arithmetic logic is generated f
arithmetic operators.

The pre-defined “+” on integers generates an adder. The number of bits of the adder depen
the size of the operands. If you use integers, a 32 bit adder is generated. If you use range

function add_sub (a: integer, b: integer, add : boolean)
return integer is

begin
if (add = TRUE) then

return a + b ;
else

return a - b ;
end if ;

end my_adder ;
signal foo : integer ;
constant left : integer := 12 ;
....
foo <= add_sub (left,6,TRUE) - 5 ;-- Expression evaluates to 13
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-17

Arithmetic And Relational Logic The Art of VHDL Synthesis

s. For

dder

ies.

is
nd.

tant.

tends

of
integers, the size of the adder is defined so that the entire range can be represented in bit
example, if variablesa andb do not evaluate to constants, the following code segment:

generates a 32-bit (signed) adder, but

generates an 8-bit (unsigned) adder.

If one of the operands is a constant, initially a full-sized adder is still generated but logic
minimization eliminates much of the logic inside the adder, since half of the inputs of the a
are constant.

The pre-defined “- ” on integers generates a subtracter. Same remarks apply as with the “+”
operator.

The pre-defined “* ” multiplication on integers generates a multiplier. Full multiplication is
supported when a module generator is used. See the LeonardoSpectrum Synthesis and
Technology Manual for information on module generators supported for specific technolog
You can also define your own technology specific multiplier.

The pre-defined “/ ” division on integers generates a divider. Only division by a power of two
supported. In this case, there is no logic generated, only shifting of the non-constant opera
With module generation you could define your own technology-specific divider.

The predefined “** ” exponentiation on integers is only supported if both operands are cons

“=,” “ /= ,” “ <,” “ >,” “ <=,” and “>=” generate comparators with the appropriate functionality.

Operations on integers are done in two-complement implementation if the integer range ex
below0. If the integer range is only positive, an unsigned implementation is used.

There are a number of other ways to generate arithmetic logic. The predefined exemplar
functionsadd , add2 , sub , sub2 , +, and- on bit_vector andstd_logic_vector types are
examples of functions which do this. For descriptions of these functions, see Predefined
Functions.

By default, LeonardoSpectrum generates “random” logic for all pre-defined operators.
Alternatively, if a module generator for a particular target technology is supplied,
LeonardoSpectrum will generate technology specific solutions (e.g., hard macros) instead
random logic.

variable a, b, c : integer ;
c := a + b ;

variable a, b, c : integer range 0 to 255 ;
c := a + b ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-18

The Art of VHDL Synthesis Arithmetic And Relational Logic

ols

d by

d
ster

y

and
ng the

l

Module Generation

When arithmetic and relational logic are used for a specific VHDL design, the synthesis to
provide a method to synthesize technology specific implementations for these operations.
Generic modules (for bit-sizes > 2) have been developed for many of the FPGAs supporte
LeonardoSpectrum to make the most efficient technology specific implementation for
arithmetic and relational operations. Use the following:

• Use the batch mode option-modgen= modgen_library to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a user VHDL design.

• Use the interactive shellmodgen_read modgen_librarycommand to load the module
generation library into the HDL database. Since these modules have been designe
optimally for a target technology, the synthesis result is, in general, smaller and/or fa
and takes less time to compile.

If you want to define your own module generator for a specific technology, you can do so b
describing a module generator in VHDL.

Resource Sharing

LeonardoSpectrum performs automatic common subexpression elimination for arithmetic
boolean expressions. The following example has two adders in the code, but they are addi
same numbers,a andb.

After automatic common subexpression elimination, only one adder will be used in the fina
circuit. Thus, it would create the same logic as the following example.

signal a,b,c,d : integer range 0 to 255 ;
...
process (a,b,c,d) begin

if (a+b = c) then <statements>
elsif (a+b = d) then <more_statements>
end if ;

end process ;

process (a,b.c.d)
variable tmp : integer range 0 to 255 ;

begin
tmp := a+b ;
if (tmp = c) then <statements>
elsif (tmp = d) then <more_statements>
end if ;

end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-19

Arithmetic And Relational Logic The Art of VHDL Synthesis

s. The

etic

g one
:

he
Proper use of parentheses guide the synthesis tools in eliminating common subexpression
following code segment, for example, can be properly modified to share an adder.

Using parentheses, the logic can share an adder for inputsb andc , as shown below.

LeonardoSpectrum automatically performs a limited amount of resource sharing of arithm
expressions that are mutually exclusive. Consider the following example:

Initially, two adders and a multiplexer are created, but after the automatic resource sharin
adder is reduced, and the final circuit is same as would be created from the following code

The limitations of automatic resource sharing are as follows:

• Complex operators must drive the same signal.

• Complex operators must be of the same type (for example, two adders) and have t
same width (for example, 8-bit adders).

o1 <= a + b + c;
o2 <= b + c + d;

o1 <= a + (b + c);
o2 <= (b + c) + d;

process (a,b,c,test) begin
if (test=TRUE) then

o <= a + b ;
else

o <= a + c ;
end if ;

end process ;

process (a,b,c,test) begin
variable tmp : integer range 0 to 255 ;

begin
if (test=TRUE) then

tmp := b ;
else

tmp := c ;
end if ;
o <= a + tmp ;

end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-20

The Art of VHDL Synthesis Arithmetic And Relational Logic

er

pe.
on
ation

aced
the

ow a
imes

f the

that
Ranged Integers

It is best to use ranged integers instead of “unbound” integers. In VHDL, an unbound integ
(integer with no range specified) is guaranteed to include the range-2147483647 to
+2147483647 . This means that at least 32 bits are needed to implement an object of this ty
LeonardoSpectrum has to generate large amounts of logic in order to perform operations
these objects. Some of this logic may become redundant and get eliminated in the optimiz
process, but the run time is slowed down considerably.

If you use integers as ports, all logic has to remain in place and synthesis algorithms are f
with a complex problem. Therefore, if you do not need the full range of an integer, specify
range that you need in the object declaration:

small_int only uses eight bits in this example, instead of the 32 bits if the range was not
specified.

Advanced Design Optimization

Module generation, resource sharing and the use of ranged integers are all examples of h
particular design can be improved for synthesis without changing the functionality. Somet
it is possible to change the functionality of the design slightly, without violating the design
specification constraints, and improve the implementation for synthesis. This requires
understanding of VHDL and what kind of circuitry is generated, as well as understanding o
specifications of the design. One example of this is given, in the form of a loadable loop
counter.

Often, applications involve a counter that counts up to a input signal value, and if it reaches
value, some actions are needed and the counter is reset to0.

In this example, LeonardoSpectrum builds an incrementer and a full-size comparator that
compares the incoming signal with the counter value.

signal small_int : integer range 255 downto 0 ;

process begin
wait until clk’event and clk=’1’ ;

if (count = input_signal) then
count <= 0 ;

else
count <= count + 1 ;

end if ;
end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-21

Technology-Specific Macros The Art of VHDL Synthesis

that
rison
e by

to
and

f the
ities
t truly

acros

to
gy

ration

rd
fit is
the

more.

X.
In this example, a full comparator has to be created since the VHDL description indicates
the comparison has to be done each clock cycle. If the specification allows that the compa
is only done during the reset, we could re-code the VHDL and reduce the overall circuit siz
loading the counter with theinput_signal , and then counting down to zero:

Here, one decrementer is needed plus a comparison to a constant (0). Since comparisons
constants are a lot cheaper to implement, this new behavior is much easier to synthesize,
results in a smaller circuit.

This is a single example of how to improve synthesis results by changing the functionality o
design, while staying within the freedom of the design specification. However, the possibil
are endless, and a designer should try to use the freedom in the design specification to ge
optimal synthesis performance.

Technology-Specific Macros
In many cases, the target technology library includes a number of hard macros and soft m
that perform specific arithmetic logic functions. These macros are optimized for the target
technology and have high performance.

This section will explain how to instantiate technology specific macros in the VHDL source
assure full control over the synthesized logic. The VHDL description will become technolo
dependent.

Note that LeonardoSpectrum does automatic inference of technology specific macros from
standard (technology independent) arithmetic and relational operators when Module Gene
is used. However, if a particular hard-macro is required, or there is no Module Generator
available for the your technology, manual instantiation will be needed.

With LeonardoSpectrum, it is possible to use component instantiation of soft macros or ha
macros in the target technology, and use these high performance macros. An added bene
that the time needed for optimization of the whole circuit can be significantly reduced since
synthesis tools do not have to optimize the implementation of the dedicated functions any

As an example, suppose you would like to build an 8-bit counter in the device family FPGA
There is a hard-macro available in theFPGAXlibrary that will do this. Call it theCOUNT8. In order

process begin
wait until clk’event and clk=’1’ ;

if (count = 0) then
count <= input_signal ;

else
count <= count - 1 ;

end if ;
end process ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-22

The Art of VHDL Synthesis Technology-Specific Macros

is
g to

se

n
esign.
to directly instantiate this macro in VHDL, declare a componentCOUNT8and instantiate it with a
component instantiation statement.

LeonardoSpectrum synthesizes this component as a black-box, since there is no
entity/architecture description. The black box appears in the output file as a symbol.

If you use hard-macros in a VHDL description, specify a source technology so the synthes
tools can include area and timing information. For this example, you would use the followin
load the source library into the design database:

• Batch mode option,-source=fpgax .

• Interactive shell,load_library fpgax command.

If simulation is required on the source VHDL design, you have to supply an entity and
architecture forCOUNT8. In that case, make sure to set the attributeNOOPTto TRUEon the
componentCOUNT8, so that the synthesis tools treat the component as a black-box, otherwi
they will synthesizeCOUNT8into general logic.

Using technology specific macro instantiation can speed-up the synthesis and optimizatio
process considerably. It also often leads to more predictable area and delay costs of the d
The VHDL description however becomes technology dependent.

component COUNT8
port (pe, c, ce, rd : in std_logic ;

d : in std_logic_vector (7 downto 0) ;
q : out std_logic_vector (7 downto 0)

) ;
end component ;
...
-- clock, count_enable, reset, load, load_data and output are signals
-- in the VHDL source
...
counter_1 : COUNT8 port map (c=>clock, ce=>count_enable,

rd=>reset, pe=>load, d=>load_data, q=>output) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-23

Multiplexers and Selectors The Art of VHDL Synthesis

a
riable

the

singe
Multiplexers and Selectors
From acase statement, LeonardoSpectrum creates either muxes or selector circuits. In the
following example, a selector circuit is created.

If the selector value is the index to be selected from an array, the selector resembles a
multiplexer. It is still possible to express this in acase statement, but it is also possible to use
variable indexed array. For example, if an integer value defines the index of an array, a va
indexed array creates the multiplexer function:

selects biti out of the vectorvec . This is equivalent to the more complex writing style with a
case statement:

For the prior description, LeonardoSpectrum creates the same multiplexers as they do for
variable-indexed array.

LeonardoSpectrum fully supports variable-indexed arrays, including index values that are
enumerated types rather then integers, and index values that are expressions rather then
identifiers.

case test_vector is
when “000" => o <= bus(0) ;
when “001" | ”010" | “100" => o <= bus(1) ;
when “011" | ”101" | “110" => o <= bus(2) ;
when “111" => o <= bus(3) ;

end case ;

signal vec : std_logic_vector (15 downto 0) ;
signal o : std_logic ;
signal i : integer range 0 to 15 ;
...
o <= vec(i) ;

case i is
when 0 => o <= vec(0) ;
when 1 => o <= vec(1) ;
when 2 => o <= vec(2) ;
when 3 => o <= vec(3) ;
...

end case ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-24

The Art of VHDL Synthesis Multiplexers and Selectors

t

RO M s,PLAsAndD ecoders

There are many ways to express decoder behavior from a ROM or PLA table. The cleares
description of a ROM would be acase statement with the ROM addresses in the case
conditions, and the ROM data in thecase statements. In this section, two other forms are
discussed:

1. Decoder as a constant array of arrays.

2. Decoder as a constant two-dimensional array.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-25

Multiplexers and Selectors The Art of VHDL Synthesis

ia a
ned, a
The following is an example of a ROM implemented with an array of array type. The ROM
defines a hexadecimal to 7-segment decoder:

The ROM with array of array implementation has the advantage that it can be accessed v
simple integer value as its address. A disadvantage is that each time another ROM is defi
new element type (seven_segment) and a new ROM type (rom_type) have to be defined.

PLA descriptions should allow a’X’ or ’-’ dont-care value in the input field, to indicate a
product lines’ insensitivity for a particular input. You cannot use acase statement for a PLA

LIBRARY ieee;
USE ieee.std_logic_1164. ALL;
USE ieee.numeric_std. ALL;

ENTITY async_sevenseg IS
PORT(

addr : IN unsigned (3 DOWNTO0);
data : OUT unsigned (6 DOWNTO0)

);

END async_sevenseg ;

ARCHITECTURErtl OF async_sevenseg IS

SUBTYPE seven_segment IS unsigned(6 DOWNTO0) ;
TYPE rom_type IS ARRAY (natural RANGE<>) OF seven_segment ;
CONSTANThex_to_7 : rom_type (0 TO 15) :=
("0111111", -- 0
"0011000", -- 1
"1101101", -- 2 Display segment index numbers :
"1111100", -- 3 2
"1011010", -- 4 1 3
"1110110", -- 5 6
"1110111", -- 6 0 4
"0011100", -- 7 5
"1111111", -- 8
"1111110", -- 9
"1011111", -- A
"1110011", -- B
"0100111", -- C
"1111001", -- D
"1100111", -- E
"1000111") ; -- F

BEGIN

data <= hex_to_7 (to_integer(addr)) ;

END rtl;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-26

The Art of VHDL Synthesis Multiplexers and Selectors

pe is
with dont cares in the input field since a comparison with a value that is not’0’ or ’1’ will
returnFALSE in a case condition (as opposed to just ignoring the input). Instead, a small
procedure or function is needed that explicitly defines comparisons to’X’ or ’-’ . The
following example describes such a procedure. First, a general 2-dimensional PLA array ty
declared.

type std_logic_pla is array (natural range <>, natural range <>)
of std_logic;
...
procedure pla_table (constant invec: std_logic_vector;

signal outvec: out std_logic_vector;
constant table: std_logic_pla) is

variable x : std_logic_vector (table’range(1)) ; -- product lines
variable y : std_logic_vector (outvec’range) ; -- outputs
variable b : std_logic ;

begin
assert (invec’length + outvec’length = table’length(2))
report “Size of Inputs and Outputs do not match table size”
severity ERROR ;

-- Calculate the AND plane
x := (others =>’1’) ;
for i in table’range(1) loop

for j in invec’range loop
b := table (i,table’left(2)-invec’left+j) ;
if (b=’1’) then

x(i) := x(i) AND invec (j) ;
elsif (b=’0’) then

x(i) := x(i) AND NOTinvec(j) ;
end if ;

-- If b is not ’0’ or ’1’ (e.g. ’-’) product line is insensitive to
invec(j)

end loop ;
end loop ;

-- Calculate the OR plane
y := (others =>’0’) ;
for i in table’range(1) loop

for j in outvec’range loop
b := table(i,table’right(2)-outvec’right+j) ;
if (b=’1’) then

y(j) := y(j) OR x(i);
end if ;

end loop ;
end loop ;
outvec <= y ;

end pla_table ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-27

Multiplexers and Selectors The Art of VHDL Synthesis

erate
at
)

the

n

e the

ution
nd
Once the two-dimensional array type and the PLA procedure are defined, it is easy to gen
and use PLAs (or ROMs). As a simple example, here is a PLA description of a decoder th
returns the position of the first’1’ in an array. The PLA has five product lines (first dimension
and seven IOs (four inputs and three outputs) (second dimension).

The PLA could have been defined in a array-of-array type also, just as the ROM described
above. A procedure or function for the PLA description will always be necessary to resolve
dont-care information in the PLA input field.

LeonardoSpectrum will do a considerable amount of compile-time constant propagation o
each call to the procedurepla_table . This does not affect the final circuit result at all. It just
adds the possibility to specify dont-care information in the PLA input table. In fact, a ROM
described with an array-of-array type and a variable integer index as its address will produc
same circuit as the ROM specified in a two-dimensional array and using thepla_table
procedure. If the modeled ROM or PLA becomes large, consider a technology-specific sol
by directly instantiating a ROM or PLA component in the VHDL description. Many FPGA a
ASIC vendors supply ROM and/or PLA modules in their library for this purpose.

constant pos_of_fist_one : std_logic_pla (4 downto 0, 6 downto 0) :=
(“1---000",-- first ’1’ is at position 0

“01--001",-- first ’1’ is at position 1
“001-010",-- first ’1’ is at position 2
“0001011",-- first ’1’ is at position 3
“0000111") ;-- There is no ’1’ in the input

signal test_vector : std_logic_vector (3 downto 0) ;
signal result_vector : std_logic_vector (2 downto 0) ;
...
-- Now use the pla table procedure with PLA pos_of_first_one
-- test_vector is the input of the PLA, result_vector the output.
...
pla_table (test_vector, result_vector, pos_of_first_one) ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d3-28

rch

ges

t. If
file

iles

of
Chapter 4
The VHDL Environment

This chapter discusses LeonardoSpectrum and the VHDL tool environment, including sea
paths, interfacing with other VHDL tools, and the Exemplar package.

Entity and Package Handling
Packages and entities in VHDL are stored in libraries. You can load VHDL files (with packa
and entities) separately into a directory that is assigned to a library.

An example of a predefined package is the package STANDARD (which is
pre-defined for VHDL), that LeonardoSpectrum loads from filestandard.vhd in
$EXEMPLAR/data/packages.syn . Other packages are available both in that directory, and in
$EXEMPLAR/data .

With the -vhdl_file=<filename> batch mode option, it is possible to load a VHDL file into
LeonardoSpectrum before the source VHDL file is read. Multiple-vhdl_file batch mode
options allow you to load multiple files. The order in which the files are included is importan
you use a package A in file B, make sure that the file in which A is defined is loaded before
B.

After all the-vhdl_file batch mode options are executed, and their corresponding VHDL f
are loaded into LeonardoSpectrum, the source VHDL file is read.

LeonardoSpectrum can handle either VHDL IEEE 1076-1987 or IEEE 1076-1993 dialects
VHDL. The default is 87. To run 93-style VHDL, use the batch mode option-vhdl_93 .

Note: LeonardoSpectrum does not handle all 93 style features. The most commonly used
features of the ’93 extension: shifter and rotator operators, xnor operator and extended
identifiers are supported.

spectrum <inp_file.vhd> <out_file.edf>
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-1

Entity and Package Handling The VHDL Environment

the
rder

lyzed
an

and
e

e root
use

t for
nd
If there is only one design file, you can read the file directly into LeonardoSpectrum GUI. If
design is split into multiple source files, however, you need to analyze them in the proper o
so that all terms are defined before they are used in the design. For example, if there is a
package declaration in one file that must be used by the whole design, that file must be ana
first. In LeonardoSpectrum, all the design units are stored in the HDL database, and you c
analyze as many of them as required.

Entity Compiled as the Design Root

When the VHDL source is loaded, LeonardoSpectrum starts compiling the top level entity
start the synthesis process. By default, the last entity found in the source file is used as th
top-level entity. This behavior can be changed, however.

The batch mode option-entity= entity_name on the command line allows LeonardoSpectrum
find the entity specified and consider that the root of the design. An entity from an included
VHDL file can be specified as the root of the design.

After the root entity is found, LeonardoSpectrum tries to find a matching architecture. By
default, the tools will choose the LAST architecture described in the source VHDL file that
matches the top-level entity. Use the batch mode option-architecture= architecture_name
to overwrite this default.

By default, LeonardoSpectrum assumes that the last entity or configuration analyzed is th
entity. By default, the LAST architecture analyzed for the root entity is compiled. You can
theelaborate command with-entity entity_nameand-architecture arch_namebatch
mode arguments to selectively compile a particular entity/architecture pair.

Finding Definitions of Components

In order to instantiate an entity into a VHDL description, you must first declare a componen
it. If you use a component instantiation in your VHDL design, LeonardoSpectrum tries to fi
the definition of that component. There are three possibilities.

1. The component is a cell in a source technology library.

2. The component has a matching (named) entity in the VHDL source

3. The component has no definition.

-entity=ent ity_nam e

-architecture=archi tect ure_nam e
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-2

The VHDL Environment Entity and Package Handling

e

n
or in

f the

ign
nts of

e

f a
ere is

the
ic

This
If a source technology is specified, then the component in the source technology library is
searched for. This is especially helpful if the component represents a particular macro in th
source technology.

If the component is not present in the source technology, LeonardoSpectrum tries to find a
entity and architecture for it. The entity (and architecture) could be present in the same file,
an included VHDL file.

If LeonardoSpectrum cannot find a matching entity for the component, then the contents o
component are undefined, and the following warning is issued:

Working with components without a definition can be useful if a particular module of the des
is not synthesizable. A clock generator or a delay-module is an example of this. The conte
that module should be provided separately to the physical implementation tools. Leaving
components undefined is also useful in two other cases:

1. To preserve hierarchy through the synthesis process.

2. For using hard and soft macros in the target technology.

It is possible to explicitly leave the contents of a component empty, even though there is a
entity/architecture for it or a cell in the source technology library. In that case, specify the
boolean attributeNOOPTon the component, or on the corresponding entity; or use batch mod
-noopt =entity_nameoption.

This can be useful when only a part of the hierarchy of a design has to be synthesized or i
user-defined simulatable but not synthesizable block is run through LeonardoSpectrum. H
an example of how to set thenoopt attribute:

Components with anoopt attribute or undefined components are handled as black boxes by
synthesis tools, and show up as cells in the target netlist. Supplying the technology-specif
contents of these cells is left to the user. You can applynoopt to a particular instance of a
component by setting this attribute on the label of the component instantiation statement.
has the same effect as if the attribute were added to the underlying entity.

Warning, component com ponent _nam e has no definition

component clock_gen
.....

end component ;
attribute noopt : boolean ;
attribute noopt of clock_gen: component is TRUE ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-3

Entity and Package Handling The VHDL Environment

se

er

the

y the

e can

at is
is
How to Use Packages

A functionality described in a VHDL package is included into the VHDL design using the u
clause. This is the general form of the use clause:

The use clause is preceded by a library clause. There are predefined librarieswork andstd that
do not have to be declared in a library clause before they are used in a use clause. All oth
libraries need the top to be declared. Librarystd is normally only used to include packages
predefined in VHDL1076, but librarywork is free to be used for any user-defined packages.
User-defined library names are also allowed.

If a particular package is not found in the specified library, LeonardoSpectrum completes
following steps to find the package:

1. The currentwork library is searched for the package.

2. If the package is not there, LeonardoSpectrum searches for a file with the name
package.vhd in the present working directory. The present working directory is the
directory where LeonardoSpectrum was invoked.

3. If the package is not there, LeonardoSpectrum searches the directories specified b
hdl_input_location variable, in the order specified.

4. If the file is not there, LeonardoSpectrum tries to find the package in the
$EXEMPLAR/data or the$EXEMPLAR/data/packages.syn directory and checks if the
file is a pre-defined package.

5. If the file is not there, LeonardoSpectrum issues an error message that the packag
not be found.

Theselectioncan consist of only one name of an object, component, type or subprogram th
present in the package, or the wordall , in which case all functionality defined in the package
loaded into the synthesis tools and can be used in the VHDL description.

As an example, theIEEE 1164 std_logic_1164 package (that defines the multi-valued logic
types that are often used for circuit design), is included with the following statements:

library lib ;
use lib.package.sel ect ion ;

library ieee ;
use ieee.std_logic_1164.all ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-4

The VHDL Environment Interfacing With Other VHDL Tools

y

ou

e
e
f

vious

L
for

this
This package is loaded from the$EXEMPLAR/data/packages.syn file. This file contains only
the declarations of the functions of thestd_logic_1164 package. The bodies of the functions
are built into LeonardoSpectrum for synthesis efficiency.

The contents of the package you include with ause clause becomes visible and is usable onl
within the scope where you use theuse clause. The VHDL scoping rules are not explained in
this manual. However, if you start a new entity (and architecture), always make sure that y
include the packages you need withuse clauses just before the entity.

Interfacing With Other VHDL Tools
The VHDL parsers in LeonardoSpectrum are compliant with the IEEE VHDL 1076-1987
standard. Hence, apart from the VHDL restrictions for synthesis, interfacing with tools that
generate VHDL or operate on VHDL should not introduce compatibility problems.

However, since VHDL 1076 does not define file handling, there might be mismatches in th
way the tools handle files. Many VHDL simulators incorporate a directory structure to stor
separately compiled VHDL files. LeonardoSpectrum does not use separate compilation o
VHDL files. Therefore, all packages and components that are used for a VHDL design
description should be identified before running LeonardoSpectrum, as explained in the pre
section.

VHDL Simulators

You should always load the packages and entities in your design into the simulator prior to
simulating the root entity. For simulation, theexemplar andexemplar_1164 packages can be
found in the$EXEMPLAR/data directory. The files are namedexemplar.vhd andex_1164.vhd ,
respectively. Refer to the topicThe Exemplar Packagesfor more information on these
packages.

Post-Synthesis Functional Simulation

If desired, post-synthesis functional simulation can be performed using the structural VHD
output from LeonardoSpectrum. In your design flow, choose the appropriate netlist output
the target technology. Then use the batch mode-effort=reformat switch to produce
structural VHDL for simulation. The flow is, assuming an ASIC as the target technology for
example,

1. VHDL synthesis with LeonardoSpectrum:

spectrum my_design.vhd my_design.edf -target=asic
-effort=exhaustive -report=2
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-5

Interfacing With Other VHDL Tools The VHDL Environment

in

s.
hen,

esis

ion

es a
ports
sized
sized

n
ile
u

sing
2. Produce VHDL netlist:

This produces the structural VHDL filemy_test.vhd , which may now be simulated.

LeonardoSpectrum synthesizes all port types into single-bit values. These get written out
VHDL as ports of typestd_logic . The original port types are not preserved.

In LeonardoSpectrum, the same design can be written into multiple files in multiple format
After optimization, choose the appropriate netlist output format for the target technology; t
you can write a VHDL description of the same synthesized design. By using a simulatable
library of the target technology, this VHDL output can be simulated. The sequence of synth
statements should be similar to the following:

When doing synthesis from a VHDL description, one goal of post-synthesis VHDL simulat
is to simulate the design with the original set of ports (same type, io mode etc.).

• Use the batch mode option-vhdl_wrapper =filename.

• Use thecreate_wrapper interactive shell option to create the wrapper file.

The wrapper consists of an architecture (that connects to the original entity) that instantiat
component that refers to the synthesized description. Type-conversion functions connect
of the synthesized description to the ports of the original description. Since both the synthe
description and the original description have the same name, we need to store the synthe
description into a different library (in the simulator) than the original one.

Load the synthesized VHDL description in a library calledsynthesis in your simulator. Then
load the wrapper architecture into the work library. The wrapper links with the originally
compiled entity of the original VHDL description. The wrapper file uses type transformatio
functions from a package calledtypetran to translate the port types. This packages is in the f
$EXEMPLAR/vhdl/typetran.vhd . You have to load this package into the simulator before yo
load the wrapper description.

Now, the original entity can be simulated with the wrapper architecture. Since the wrapper
instantiates the synthesized description, simulation of the synthesized design is done by u
the original entity (ports). The original test vectors can then be used to simulate.

spectrum my_design.edf my_test.vhd -source=asic
-target=asic -effort=reformat -report=2

load_lib asic
read original.vhd
optimize -tar asic <other options>
write synthesized.edf -- required for target technology
write synthesized.vhd -- can be used for simulation.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-6

The VHDL Environment Interfacing With Other VHDL Tools

of
es; a

as that
the

trum

tion).

brary
d

Synopsys

Users that have existing VHDL files for Synopsys VHDL Compiler can rely on one or more
the Synopsys pre-defined VHDL packages. LeonardoSpectrum supports all these packag
use clause includes the packages in your design.

The Synopsys packages define a set of types and functions that contain Synopsys pragm
VHDL Compiler uses as synthesis directives. These pragmas are correctly interpreted by
following Exemplar tools:

pragma translate_on
pragma translate_off
synopsys translate _on
synopsys translate_off
synopsys synthesis_on
synopsys synthesis_off

Except for ause clause for each Synopsys package that you need in your VHDL file, you
should NOT have to load any Synopsys package into LeonardoSpectrum. LeonardoSpec
locates the packages that you want to use in the directory$EXEMPLAR/data . Here is the list of
files with the contained packages:

Note: LeonardoSpectrum locates the packages (from the use clause in your VHDL descrip
LeonardoSpectrum loads any of the listed files from the$EXEMPLAR/data directory, or reads a
file without the synthesis directives. However, without the synthesis directives,
LeonardoSpectrum CANNOT efficiently synthesize any of the Synopsys packages.

LeonardoSpectrum assumes that the Synopsys libraries are called from either the VHDL li
SYNOPSYSor the VHDL library IEEE.Note: The VHDL library IEEE is a storage recommende
by Synopsys.

If you store your Synopsys library (on your VHDL simulator) somewhere else than in these
libraries, then you have to manually include the (package) files needed from the

File Name Package Name

syn_ari.vhd ARITHMETIC

syn_attr.vhd ATTRIBUTES

syn_type.vhd TYPES

syn_arit.vhd STD_LOGIC_ARITH

syn_misc.vhd STD_LOGIC_MISC

syn_unsi.vhd STD_LOGIC_UNSIGNED

syn_sign.vhd STD_LOGIC_SIGNED
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-7

The Exemplar Packages The VHDL Environment

ys

t.

fore,
cs.
ed

your

tion
efine
nd
e

e

$EXEMPLAR/data directory. LeonardoSpectrum does not recognize the libraries as Synops
packages.

• Manually include these packages with the batch mode option
-vhdl_file =libname:: filenamein the appropriate library.

• Use theanalyze libname filenameinteractive command line shell option and argumen
Make sure again that you use the files from the$EXEMPLAR/data directory (with
synthesis directive attributes).

Mentor Graphics

LeonardoSpectrum is source-code compatible with the latest version of Autologic II. There
you should not encounter any problems when running VHDL designs from Mentor Graphi
LeonardoSpectrum supports two VHDL packages from Autologic II, both of which are stor
in the$EXEMPLAR/data directory:

These files are automatically read when you specify the package names in a use clause in
VHDL description.

The Exemplar Packages
There are a number of operations in VHDL that occur regularly. An example is the transla
of vectors to integers and back. For this reason, Exemplar Logic provides packages that d
attributes, types, functions and procedures that are frequently used. Using the functions a
procedures reduces the amount of initial circuitry that is generated, compared to writing th
behavior explicitly in a user-defined function or procedure. This reduces the cpu-time for
compilation and also could result in a smaller circuit implementation due to improved
optimization.

This section discusses the defined functionality in the Exemplar Logic packagesexemplar and
exemplar_1164 . The package bodies are not read by the synthesis tools; the functions are
built-in. The packages are used for simulation only, and editing them does NOT change th
synthesized logic. The VHDL source for these packages is given in the filesexemplar.vhd and
exemplar_1164.vhd , respectively in the$EXEMPLAR/data directory.

Theexemplar_1164 package defines the same functionality as theexemplar package, but
operates on the IEEE 1164 multi-valued logic types.

File Name Package Name

std_arit.vhd STD_LOGIC_ARITH

qsim_logic.vhd QSIM_LOGIC
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-8

The VHDL Environment The Exemplar Packages

E

lude

lude

se the
If you are using the IEEE 1164 types in your VHDL description, you should include the IEE
standard logic type definition into your VHDL description with ause clause. The VHDL source
of the IEEE 1164 types package is in the filestd_1164.vhd in the$EXEMPLAR/data directory.
If you also want to use the Exemplar functions that operate on these types, you should inc
the packageexemplar_1164 with a use clause. For example:

library ieee;
use ieee.std_logic_1164.all;
library exemplar;
use exemplar_1164.all;

If you do not use the IEEE 1164 types, but still want to use the Exemplar functions, just inc
the packageexemplar in your VHDL description with ause clause. All functions are then
defined with the predefined typesbit andbit_vector , and on the four-valued typeselbit and
elbit_vector .

Predefined Types

Theexemplar package defines a four-valued type calledelbit and its array equivalent
elbit_vector . Theelbit type includes the bit values’0’ , ’1’ , ’X’ and’Z’ .

Exemplar recommends that you use the IEEE 1164 standard logic types, and the
exemplar_1164 package.

Predefined Attributes

LeonardoSpectrum uses attributes to control synthesis of the described circuit. You can u
set_attribute interactive shell command to set object attributes within the hierarchical
database.

You may find it more convenient to define attributes in the VHDL source. The following
attributes are recognized by the VHDL parser, and declared in both theexemplar and the
exemplar_1164 package:

Attribute Type Description

required_time time Set required time on output

arrival_time time Setarrival_time on input

output_load real Specify load set on output

max_load real Specify max load allowed on input

clock_cycle time Specify clock length on clock pin

pulse_width time Specify pulse width on clock pin
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-9

The Exemplar Packages The VHDL Environment

sent a
the
plar

s set
*VHDL only.

In order to set a particular attribute on a signal (or port) in VHDL, use the normal attribute
specification statement in VHDL. Here are some examples:

Since variables do not represent one unique node in the circuit implementation (they repre
different circuit node after each assignment) the attributes are effective on all circuit nodes
variable represents. This could lead to unexpected behavior. So be careful using the exem
attributes on variables.

All attributes work both on single-bit signals and on arrays of bits. In the case an attribute i
on a signal that is an array of bits (bit_vector , elbit_vector or std_logic_vector) the

input_drive time Specify delay/unit load for input

nobuf boolean Reject buffer insertion for a input

pin_number string Specify location of input or output pin

array_pin_number* array of strings Specify location for each bit of a bus

preserve_signal boolean Signal’s function will survive synthesis

buffer_sig string Specify explicit buffer on a pin

modgen_sel modgen_select Specify time requirement for module generators
driving this signal

library exemplar ;
use exemplar.exemplar. all ; -- Include the ’exemplar’ package
entity test is

port (my_input : in bit ;
my_output : out bit_vector (5 downto 0) ;

) ;
attribute pin_number of my_input: signal is "P15" ;
attribute array_pin_number of my_output:signal is

("P14","P13","P12","P11","P10","P9") ;
attribute required_time of my_output:signal is 5 ns ;

end test ;

architecture exemplar of test is
signal internal_signal : bit ;
attribute preserve_signal of internal_signal: signal is TRUE ;
attribute modgen_sel of internal_signal: signal is FAST ;

begin
...

Attribute Type Description
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-10

The VHDL Environment The Exemplar Packages

. First

the
igned
value of the attribute is set to all circuit nodes in the vector. An exception is thepin_number
attribute which only operates on single bit ports. Use thearray_pin_number attribute to set pin
numbers on all bits of a bus.

Predefined Functions

The package exemplar defines a set of functions that are often used in VHDL for synthesis
of all, the package defines the overloaded operatorsand , nand , or , nor , xor , andnot for the
typeselbit andelbit_vector , as well a forelbit_matrix , a two-dimensional array type of
elbit values.

The Exemplar package defines a large set of functions for both the standardbit and
bit_vector types. For backwards compatibility, these functions are also defined forelbit and
elbit_vector types. These functions are discussed below.

All functions are also defined with the IEEE 1164 typesstd_logic, std_ulogic ,
std_logic_vector , andstd_ulogic_vector in the packageex_1164 in file ex_1164.vhd .

bool 2el b (l:bool ean) ret urnst d_l ogi c;

Takes a boolean, and returns astd_logic bit. Boolean valueTRUEwill becomestd_logic
value’1’ , FALSE will become’0’ .

elb2bool (l:st d_l ogi c) ret urnbool ean;

Takes astd_logic value and returns a boolean. Thestd_logic value’1’ will becomeTRUE,
all other values becomeFALSE.

int2boo (l:i nteger) ret urnbool ean;

Takes an integer and returns a boolean. Integer value’0’ will return FALSE, all other integer
values returnTRUE.

boo2i nt (l:bool ean) ret urni nteger;

Takes a boolean and returns an integer. Boolean valueTRUEwill return 1, FALSE will return 0.

evec2i nt (l:st d_l ogi c_vect or) ret urni nteger;

Takes a vector of bits and returns the (positive) integer representation. The left most bit in
vector is assumed the MSB for the value of the integer. The vector is interpreted as an uns
representation.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-11

The Exemplar Packages The VHDL Environment

al to
of the
ned

tant
ay.

s

the

.

ost

est of
he
ed
int2evec(l:i nteger,si ze:i nteger: = 32) ret urnst d_l ogi c_vect or;

Takes a integer and returns the vector representation. The size of the vector becomes equ
the value of an optional second argument (size). If this argument is not specified, the size
return vector defaults to 32. The left most bit in the resulting vector is the MSB of the retur
value. If the integer value of the first parameter is negative, the MSB is the sign bit.

elb2i nt (l:st d_l ogi c) ret urni nteger;

Takes astd_logic value and returns an integer. Thestd_logic value’1’ will return integer
value1, all other values will return integer value0.

For all shifter functions that follow, the shift amount (r) could either be a compile time cons
or not. If it is, the synthesized circuit will only consist of a re-ordering of the wires in the arr
Otherwise, LeonardoSpectrum will synthesize a shifter circuit.

sl (l:st d_l ogi c_vect or;r:i nteger) ret urnst d_l ogi c_vect or;

Takes a vectorl and an integerr and returns a vector. The resulting vector is the same size al,
but all bits ofl are shifted leftr places. The bits on the right side of the result vector are
zero-filled. The integerr must be non-negative.

sl 2 (l:st d_l ogi c_vect or;r:i nteger) ret urnst d_l ogi c_vect or;

Same assl , but the vectorl is treated as a 2-complement (signed) representation. Sign bit is
left most bit in vector. Bits on the right are zero-filled.

sr (l:st d_l ogi c_vect or;r:i nteger) ret urnst d_l ogi c_vect or;

Same assl , but bits are shifted to the right side of the vector. Bits on left side are zero-filled

sr2 (l:st d_l ogi c_vect or;r:i nteger) ret urnst d_l ogi c_vect or;

Same assr , but the vectorl is treated as a 2-complement representation. Sign bit is the left m
bit in vector. Bits on the left side are sign-bit filled.

add (op_l ,op_r:st d_l ogi c_vect or) ret urnst d_l ogi c_vect or;

Takes two vectors and returns a vector. The resulting vector is one bit larger than the larg
the input vectors, and represents the addition of the input vectors, including the carry bit. T
left most bit is assumed to be the MSB. The add function is a vector addition of two unsign
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-12

The VHDL Environment The Exemplar Packages

bit is
de to

it
vectors. The smallest input vector is’0’ , extended on the MSB side to the size of the largest
input vector before addition is performed.

add2 (op_l ,op_r:st d_l ogi c_vect or) ret urnst d_l ogi c_vect or;

Same asadd , but now the vectors are assumed to be in 2-complement representation. Sign
the left most bit in the vectors. The smallest input vector is sign-bit extended on the MSB si
the size of the largest vector before addition is performed.

sub (op_l ,op_r:st d_l ogi c_vect or) ret urnst d_l ogi c_vect or;

Same asadd , but the subtraction function is implemented on unsigned vectors.op_r is
subtracted fromop_l.

Actually this is an under-flow of unsigned !

sub2 (op_l ,op_r:st d_l ogi c_vect or) ret urnst d_l ogi c_vect or;

Same asadd2 , but the subtraction function is implemented on 2-complement representation
vectors.op_r is subtracted fromop_1.

ext end(op_l :st d_l ogi c_vect or;op_r:i nteger)
ret urn st d_l ogi c_vect or;

Takes a vectorop_land an integerop_rand returns a vector. The vectorop_l is extended in size
up toop_r elements. The input vectorop_l is zero-extended on the MSB side. The left most b

add ("1011","0100") result : "01111" (add (11,4) == 15)
add ("0011","100") result : "00111" (add (3,4) == 7)

add2 ("1011","0100") result : "00001" (add2 (-5,4) == 1)
add2 ("0011","100") result : "11111" (add2 (3,-4) ==
-1)

sub ("1011","0100")result : "00111" (sub (11,4) == 7)
sub ("0011","100") result : "11111" (sub(3,4) == 31)

sub2 ("1011","0100") result : "10111" (sub2(-5,4) == -9)
sub2 ("1011", "100") result : "11111" (sub2(-5,-4) ==
-1)
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-13

The Exemplar Packages The VHDL Environment

-bit

tor to
input

ulting
in the vector is assumed the MSB. There is also a version of extend that takes a single
(std_logic) value and extends it to a vector of sizeop_r.

ext end2(op_l :st d_l ogi c_vect or;op_r:i nteger)
ret urnst d_l ogi c_vect or;

Same asextend , but the vector is in 2’s-complement representation. The input vector is sign
extended. There is also a version of extend2 that takes a single (std_logic) value and
sign-extends it to a vector of sizeop_r.

com p2 (op:st d_l ogi c_vect or) ret urnst d_l ogi c_vect or;

Takes a vector and returns a vector of the same size. This function assumes the input vec
be in 2-complement representation and will return the complement (negative) value of the
value. The right most bit is assumed to be the LSB.

"+" (op_l ,op_r:st d_l ogi c_vect or) ret urnst d_l ogi c_vect or;

Takes two vectors and returns a vector. As add, but now the carry bit is not saved. The res
vector is the same size as the largest input vector. Overflow wraps around. This function
implements addition of unsigned vectors.

extend ("1001",7) result : "001001"
extend (’1’,3) result : "001"
extend ("011001001", 4) result : "1001" -- Truncation

extend2 ("1001",7) result : "1111001"
extend2 (’1’,3) result : "111"
extend2 ("011001001",4) result : "1001" -- Truncation

comp2 ("1001") result : "0111" (comp2 (-7) == 7)

"10110" + "101"
result : "11011" (22 + 5 == 27)
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-14

The VHDL Environment The Exemplar Packages

input

the
fore

gn bit
tor is

esses
n
HDL

r

s

"- "(op_l ,op_r:st d_l ogi c_vect or) ret urnst d_l ogi c_vect or;

Same as “+”, only the subtraction function is performed.op_r is subtracted fromop_l. This
function implements subtraction of unsigned vectors.

"m ul t" (op_l ,op_r:st d_ul ogi c_vect or) ret urnst d_ul ogi c_vect or;

Takes two vectors and returns a vector. The size of the resulting vector is the size of both
vectors added. In each vector, the left most bit is the MSB. The mult function performs
UNSIGNED multiplication of the two input vectors. In case of unequal-length input vectors,
smallest vector is zero-extended on the MSB side to the size of the largest input vector be
the multiplication is performed.

"m ul t2" (op_l ,op_r:st d_ul ogi c_vect or) ret urnst d_ul ogi c_vect or;

Like mult , but now the vectors are assumed to be in 2-complement representation. The si
is the left most bit in each vector. In case of unequal-length input vectors, the smallest vec
sign-bit extended on the MSB side to the size of the largest input vector before the
multiplication is performed.

Predefined Procedures

There are various ways to generate flip-flops and d-latches with VHDL, such as using proc
and specifying behavior that represents the behavior of flip-flops and dlatches. However, i
some cases it is useful to instantiate technology independent flip-flops or dlatches in the V
dataflow environment immediately.

A more structural oriented VHDL style will be possible that way. The exemplar package
includes the definition of procedures that represent flip-flops or dlatches with various set o
reset facilities that operate on single bits or vectors (to create registers).

Theexemplar package defines these procedures on signals of typebit , bit_vector , elbit
andelbit_vector , while the packageexemplar_1164 defines the same procedures for the
IEEE 1164 typesstd_logic , std_ulogic , std_logic_vector andstd_ulogic_vector . In
the description below only examples forbit andbit_vector are given, but the full definition
of the procedures, for the types listed above, is available for simulation purposes in the file
exemplar.vhd andexemplar_1164.vhd .

"10110" - "101"
result : "10001" (22 - 5 == 17)

mult ("1011", "0100") result: "00101100" (mult(11,4)==44)
mult ("1", "1111") result: "00001111" (mult(1,15)==15)
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-15

The Exemplar Packages The VHDL Environment

nt)

n

of the

f the
red to
Flip-flops

Heredff is the single bit D flip-flop anddff_v is the vectored D flip-flop.dff has no preset or
clear inputs,dffc has an active-high asynchronous clear (setq to ’0’) input,dffp has an
active-high asynchronous preset (setq to ’1’) input, anddffpc has both a preset and a clear
input. If both preset and clear are asserted,q is not defined. All inputs are active high, the clock
input is positive edge triggered. For the vectored dffs, the number of flip-flops that will be
instantiated is defined by the size of the input (d) and output (q) vectors of thedff#_v
instantiation. (The size ofd andq vectors must be the same.)

If q is a port of the VHDL entity, it must be declared as anINOUT port, sinceq is used
bidirectionally in each of these functions.

Latches

These define a level sensitive D-type latch with an enable. The latch is enabled (transpare
when the enable input is1, disabled when the input is0. dlatch has no preset or clear
capability,dlatchc has an asynchronous active-high clear (setq to ’0’) input, dlatchp has an
asynchronous active-high preset (setq to ’1 ’), anddlatchpc has both preset and clear. If both
preset and clear are asserted,q is not defined.dlatch_v creates the vector equivalent
procedures to generate registers of dlatches.

Tristate Buses

When a signal is assigned in multiple concurrent statements, the synthesis implementatio
requires that in each statement the signal is assigned a’Z ’ value under at least one condition. A
tristate gate is created in this case, with the enable of the gate corresponding to the inverse
condition where the’Z’ is assigned in the model. This is the only case where multiple
assignments to a signal in different concurrent statements is allowed.

It is also possible for the user to specify what to do in the case where none of the drivers o
bus are enabled. To address this situation, three pre-defined procedures have been decla
handle the three standard tristate bus conditions:PULLUP, PULLDNandTRSTMEM. These drive an
otherwise undriven bus to the values1, 0, or retain the current value , respectively. Only
one of these functions may be specified for a given bus. LeonardoSpectrum will build the

dff[_v](data, clock, q)
dffc[_v](data, clear, clock, q)
dffp[_v](data, preset, clock, q)
dffpc[_v](data, preset, clear, clock, q)

dlatch[_v](data, enable, q)
dlatchc[_v](data, clear, enable, q)
dlatchp[_v](data, preset, enable, q)
dlatchpc[_v](data, preset, clear, enable, q)
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-16

The VHDL Environment Syntax and Semantic Restrictions

ed. If

te for
ated.
sed.

seful
not

t be

,
pt,

ects
appropriate logic to implement the specified function in the technology. If the technology
includes pull-up or pull-down resistors or repeater cells on internal busses these will be us
these resistors are not available, an additional tristate gate, with an enable which is theNORof all
the other enable. The tristate gate input is eitherVCC, GNDor the value on the bus is created to
implement the specified function. LeonardoSpectrum also determines what the default sta
a bus is in the technology. If the default matches the specified function, no extra logic is cre
If no termination is specified, then the undriven tristate value depends on the technology u

The tristate bus procedures defined below may be used with signals of typebit , elbit ,
(packageexemplar) std_logic andstd_ulogic (packageex_1164).

pul lup(busnam e)

When a bus is not driven, this procedure pulls the bus up to 1.

pul ldn(busnam e)

When a bus is not driven, this procedure pulls the bus down to 0.

trst m em (busnam e)

When a bus is not driven, this procedure drives the bus to the last driven state.

Syntax and Semantic Restrictions
VHDL as the IEEE Standard 1076 is a extended language with many constructs that are u
for simulation. However, during the initial development of the language, logic synthesis was
taken into account. Therefore, a number of constructs or combination of constructs canno
implemented in actual circuits. VHDL 1076 is fully simulatable, but not fully synthesizable.

Synthesis Tool Restrictions

This section discusses the syntax and semantic restrictions of the VHDL parsers of
LeonardoSpectrum.

• Operations on files not supported. Files in VHDL could behave like ROMs or RAMs
but LeonardoSpectrum does not support using file (types), and will ignore, but acce
file (type) declarations.

• Operations on objects ofreal types are not supported. Objects ofreal types have no
defined bit-resolution. LeonardoSpectrum ignores, but accepts declarations of (obj
of) real types.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-17

Syntax and Semantic Restrictions The VHDL Environment

ge.

s,

ns

list:
• Operations on objects ofaccess types are not supported, since they lead to
unsynthesizable behavior. LeonardoSpectrum ignores, but accepts declarations of
(objects of)access types.

• AttributesBEHAVIOR, STRUCTURE, LAST_EVENT, LAST_ACTIVE, andTRANSACTIONare not
supported.

• Global, non-constant signals are not supported, that is, signals declared in a packa

• Allocators are not supported, because they perform dynamic allocation of resource
which is not synthesizable.

• Resolution functions with a synthesis directive are allowed.

VHDL Language Restrictions

Apart from these restrictions, which are mostly tool-related, there are some basic restrictio
that apply to VHDL descriptions for synthesis. Since they occur quite often, additional
descriptions are presented here to clarify the problems involved for synthesis. Here is the

• after clause ignored.

• Restrictions on Initialization values.

• Loop restrictions

• Restrictions on edge-detecting attributes (EVENTandSTABLE).

• Restrictions on wait statements.

• Restrictions on multiple drivers on one signal.

A more detailed description of these restrictions follows below:

After Clause Ignored

Theafter clause refers to delay in a signal. Since delay values cannot be guaranteed in
synthesis, they are ignored by the synthesis tools after they issue a warning.

Restrictions on Initialization Values

Initialization values are allowed in a number of constructs in VHDL:

1. Initial value of a signal in a signal declaration.

2. Initial value of a variable in a variable declaration in a process.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-18

The VHDL Environment Syntax and Semantic Restrictions

tial
g the

can

n

3. Initial value of a variable in a variable declaration in a subprogram (procedure or
function).

4. Initial value of a generic or port in a component declaration.

5. Initial value of a parameter in a subprogram interface list.

The problem with initialization values for synthesis is that some initial values define the ini
value of an object before actual simulation is done. This behavior corresponds to controllin
power-up state of a device that would be synthesized from the VHDL description. Since
synthesis cannot control the power-up state of a device, this kind of initial value cannot be
synthesized. However, if after initialization there is never an change of value, the behavior
be synthesized, and resembles a simple constant value.

LeonardoSpectrum fully supports initialization values, except for initializing objects that ca
change their value after initialization. That is, the following form of initialization values are
NOT supported because they imply power-up behavior of the synthesized device:

1. Initial values of a signal in a signal declaration.

2. Initial value of a variable in a variable declaration in a process.

3. Initial value of anOUTPUTor INOUT port in an interface list.

All other forms of initialization values are supported by the synthesis tools.

Loop Restrictions

Loops are supported if they are bound by constants or they havewait until statements to
prevent combinational loops.

Restrictions On Edge-Detecting Attributes (’event)

Most restrictions on VHDL to assure correct compilation into a logic circuit are on the
constructs that define edges or changes on signals. The’EVENT attribute is the best example of
this.signal’EVENT is TRUEonly if signalchanges. Then it isTRUEfor one simulation delta of
time. In all other cases it isFALSE. TheSTABLEattribute is the boolean inversion ofEVENT.

There are two restrictions for synthesis on usage of theEVENTand theSTABLEattribute:
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-19

Syntax and Semantic Restrictions The VHDL Environment

e.

r of

s
ms.

ith

s.

p) is
1. An EVENTor STABLEattribute can be used only to specify a leading or falling clock edg
For example:

2. Clock edge expressions can only be used as conditions. For example:

These restrictions originate from the fact that binary logic circuits have a restricted numbe
elements that are active ONLY during signal edges. Basically, only (set/resettable) edge
triggered flip-flops show that behavior. Within these restrictions, LeonardoSpectrum allow
free usage of the clock edge conditions, either in guarded blocks, processes or subprogra

Restrictions on Wait Statements

All state-of-the-art VHDL synthesis tools on the market right now have strong restrictions w
respect to wait statements and use of edge-detecting attributes (’event and’stable). Here are
the (informal) restrictions for the wait statement:

• Multiple wait statements are supported in a process with some synthesis restriction
All the control paths should have at least onewait statement and all of thewait
statements should be identical with a single bit clock expression.

• The expression in theuntil condition must specify a leading or falling single clock
edge. (Examples are shown above in theEVENTattribute section.)

All assignments inside the process result in the creation of registers. Each register (flip-flo
clocked with the single clock signal.

There are a number of cases where multiplewaits are synthesizable and resemble
state-machine behavior. In LeonardoSpectrum, multiplewaits are supported.

clk’event and clk=’1’ -- Leading edge of clk
clk’event and clk=’0’ -- Falling edge of clk
NOT clk’stable and clk=’0’ -- Falling edge of clk
clk’event and clk -- Leading edge of (boolean)
clk

if (clk’event and clk=’1’) then ...
wait until NOT clk’stable and clk=’0’ ;
wait until clk=’1’ ; --Implicit clock edge due to

--VHDL semantics of ’wait’
block (clk’event and clk=’1’... --Block GUARD condition
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-20

The VHDL Environment Example array_pin_number Attribute

lved
e is

t
n

ivers

the

iple

e

ct on

is

ents
Restrictions on Multiple Drivers on One Signal

VHDL does not allow multiple drivers on a signal of an unresolved type. For signals of reso
types, VHDL defines that a (user-defined) resolution function defines what the signal valu
going to be in case there are multiple driver (simultaneous assignments) to the signal.

A resolution function with meta-logical values (’Z’ , ’X’ , etc.) in general leads to behavior tha
is not synthesizable (since logic circuits cannot produce meta-logical values). Therefore, i
general, VHDL synthesis tools do not allow multiple drivers on a signal. However, if the
resolution function defines the behavior of multiple three-state drivers on a bus, multiple dr
of a signal could represent synthesizable behavior.

The ’Z’ value is in general used to identify three-state behavior. The resolution function of
IEEE std_logic (resolved) type is written so that multiple drivers on a signal ofstd_logic do
resemble multiple three-state drivers on a bus. Therefore, the synthesis tools accept mult
assignments to the same signal as long as each assignment is conditionally set to the’Z’ value.
The synthesis tools allow free usage of’Z’ assignments (either from dataflow statements,
process statements or from within procedures). LeonardoSpectrum implements three-stat
drivers to mimic the three-state behavior.

It is important to note that LeonardoSpectrum does not check if there could be a bus-confli
the driven bus. In this case, the simulation would just call the resolution function again to
resolve the value (normally producing a meta-logical value), but the behavior for synthesis
not defined. Avoiding bus conflicts is the responsibility of the user.

Example array_pin_number Attribute
The following is a working example of the application of the array_pin_attribute in
LeonardoSpectrum. This attribute is not supported for Verilog. The example design implem
a UART.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-21

Example array_pin_number Attribute The VHDL Environment
LIBRARY ieee;
use ieee.std_logic_1164.all;
LIBRARY exemplar ;
use exemplar.exemplar_1164.all;

ENTITY uart IS
PORT (clkx16 : IN std_logic;
--Input clock. 16x bit clock

read : IN std_logic;
--Received data read strobe
write : IN std_logic;
--Transmit data write strobe
rx : IN std_logic;
--Receive data line
reset : IN std_logic;
--clear dependencies
tx : OUT std_logic;
--Transmit data line
rxrdy : OUT std_logic;
--Received data ready to be read
txrdy : OUT std_logic;
--Transmitter ready for next byte
parityerr : OUT std_logic;
--Receiver parity error
framingerr : OUT std_logic;
--Receiver framing error
overrun : OUT std_logic;
--Receiver overrun error
data : INOUT std_logic_vector(0 TO 7));
--Bidirectional data bus
attribute array_pin_number of data: signal is
("A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7");
attribute clock_node : boolean;
attribute clock_node of clkx16 : signal is TRUE;
attribute low_reset : boolean;
attribute high_reset : boolean;
attribute high_reset of reset : signal is TRUE;

END uart;

--(continued...)
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-22

The VHDL Environment Example array_pin_number Attribute
ARCHITECTURE exemplar OF uart IS
-- Transmit data holding register
SIGNAL txhold : std_logic_vector(0 TO 7);

-- Transmit shift register bits
SIGNAL txreg : std_logic_vector(0 TO 7);
SIGNAL txtag2 : std_logic;
-- tag bits for detecting
SIGNAL txtag1 : std_logic;
-- empty shift reg
SIGNAL txparity : std_logic;
-- Parity generation register

-- Transmit clock and control signals
SIGNAL txclk : std_logic;
-- Transmit clock: 1/16th of clkx16
SIGNAL txdone : std_logic;
-- '1' when shifting of byte is done
SIGNAL paritycycle : std_logic;
-- '1' on next to last shift cycle
SIGNAL txdatardy : std_logic;
-- '1' when data is ready in txhold

-- Receive shift register bits
SIGNAL rxhold : std_logic_vector(0 TO 7);
-- Holds received data for read
SIGNAL rxreg : std_logic_vector(0 TO 7);
-- Receive data shift register
SIGNAL rxparity : std_logic;
-- Parity bit of received data
SIGNAL paritygen : std_logic;
-- Generated parity of received data
SIGNAL rxstop : std_logic;
-- Stop bit of received data

-- Receive clock and control signals
SIGNAL rxclk : std_logic;
-- Receive data shift clock
SIGNAL rxidle : std_logic;
-- '1' when receiver is idling
SIGNAL rxdatardy : std_logic;
-- '1' when data is ready to be read

--cont inued
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-23

Example array_pin_number Attribute The VHDL Environment
BEGIN
make_txclk:

PROCESS (reset, clkx16)
VARIABLE cnt : std_logic_vector(2 DOWNTO 0);

BEGIN
--Toggle txclk every 8 counts, which divides the clock by 16

IF reset='1' THEN
txclk <= '0' ;
cnt := (OTHERS=>'0') ;
ELSIF clkx16'event AND clkx16='1' THEN
IF (cnt = "000") THEN
txclk <= NOT txclk;
END IF;
cnt := cnt + "001";
-- Use the exemplar_1164 "+" on std_logic_vector

END IF;
END PROCESS;

make_rxclk:
PROCESS (reset, clkx16)

VARIABLE rxcnt : std_logic_vector(0 TO 3);
-- Count of clock cycles
VARIABLE rx1: std_logic;
-- rx delayed one cycle
VARIABLE hunt : boolean;
-- Hunting for start bit

BEGIN
IF reset='1' THEN
--Reset all generated signals and variables

hunt := FALSE ;
rxcnt := (OTHERS=>'0') ;
rx1 := '0' ;
rxclk <= '0' ;

ELSIF clkx16'EVENT AND clkx16 = '1' THEN
--rxclk = clkx16 divided by 16

rxclk <= rxcnt(0);

--Hunt=TRUE when we are looking for a start bit:
--A start bit is eight clock times with rx=0 after a falling edge

IF (rxidle = '1' AND rx = '0' AND rx1 = '1') THEN
--Start hunting when idle and falling edge is found
hunt := TRUE;
END IF ;

--continued
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-24

The VHDL Environment Example array_pin_number Attribute
IF rxidle = '0' OR rx = '1' THEN
--Stop hunting when shifting in data or a 1 is found on rx
hunt := FALSE;
END IF;
rx1 := rx;-- rx delayed by one clock for edge detection
--(Must be assigned AFTER reference)
--Increment count when not idling or when hunting
IF (rxidle = '0' OR hunt) THEN
--Count clocks when not rxidle or hunting for start bit
rxcnt := rxcnt + "0001";
ELSE
--hold at 1 when rxidle and waiting for falling edge
rxcnt := "0001";
END IF;

END IF ;
END PROCESS;

-- transmit shift register:
txshift:

PROCESS (reset, txclk)
BEGIN

IF reset='1' THEN
txreg <= (OTHERS=>'0') ;
txtag1 <= '0' ;
txtag2 <= '0' ;
txparity <= '0' ;
tx <= '0' ;

ELSIF txclk'event AND txclk = '1' THEN
IF (txdone AND txdatardy) = '1' THEN

-- Initialize registers and load next byte of data
txreg <= txhold;
-- Load tx register from txhold
txtag2 <= '1';
-- Tag bits for detecting
txtag1 <= '1';
-- when shifting is done
txparity <= '1';
-- Parity bit.Initializing to 1==odd parity
tx <= '0';
-- Start bit

--continued
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-25

Example array_pin_number Attribute The VHDL Environment
ELSE
-- Shift data
txreg <= txreg(1 TO 7) & txtag1;
txtag1 <= txtag2;
txtag2 <= '0';
-- Form parity as each bit goes by

txparity <= txparity XOR txreg(0);
-- Shift out data or parity bit or stop/idle bit

IF txdone = '1' THEN
tx <= '1';
-- stop/idle bit

ELSIF paritycycle = '1' THEN
tx <= txparity;
-- Parity bit

ELSE
tx <= txreg(0);
--Shift data bit

END IF;
END IF ;

END IF;
END PROCESS;

--paritycycle = 1 on next to last cycle (When txtag2 has reached txreg(1))
--(Enables putting the parity bit out on tx)
paritycycle <= txreg(1) AND NOT (txtag2 OR txtag1 OR
txreg(7) OR txreg(6) OR txreg(5) OR
txreg(4) OR txreg(3) OR txreg(2));

--txdone = 1 when done shifting (When txtag2 has reached tx)
txdone <= NOT (txtag2 OR txtag1 OR
txreg(7) OR txreg(6) OR txreg(5) OR txreg(4) OR
txreg(3) OR txreg(2) OR txreg(1) OR txreg(0));

--continued
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-26

The VHDL Environment Example array_pin_number Attribute
rx_proc:
--Shift data on each rxclk when not idling

PROCESS (reset, rxclk)
BEGIN

IF reset='1' THEN
rxreg <= (OTHERS=>'0') ;
rxparity <= '0' ;
paritygen <= '0' ;
rxstop <= '0' ;
ELSIF rxclk'event AND rxclk = '1' THEN

IF rxidle = '1' THEN
-- Load all ones when idling
rxreg <= (OTHERS=>'1');
rxparity <= '1';
paritygen <= '1';
-- Odd parity
rxstop <= '0';

ELSE
--Shift data when not idling
--bug in assigning to slices
--rxreg (0 TO 6) <= rxreg (1 TO 7);
--rxreg(7) <= rxparity;
rxreg <= rxreg (1 TO 7) & rxparity;
rxparity <= rxstop;
paritygen <= paritygen XOR rxstop;
-- Form parity as data shifts by
rxstop <= rx;

END IF ;
END IF;

END PROCESS;

async:
-- rxidle requires async preset since it is clocked by rxclk and
-- its value determines whether rxclk gets generated

PROCESS (reset, rxclk)
BEGIN

IF reset = '1' THEN
rxidle <= '0';
ELSIF rxclk'EVENT and rxclk = '1' THEN
rxidle <= NOT rxidle AND NOT rxreg(0);
END IF;

END PROCESS async;

--continued
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-27

Example array_pin_number Attribute The VHDL Environment
txio:
-- Load txhold and set txdatardy on falling edge of write
-- Clear txdatardy on falling edge of txdone

PROCESS (reset, clkx16)
VARIABLE wr1,wr2: std_logic;
-- write signal delayed 1 and 2 cycles
VARIABLE txdone1: std_logic;
-- txdone signal delayed one cycle

BEGIN
IF reset='1' THEN

txdatardy <= '0' ;
wr1 := '0' ;
wr2 := '0' ;
txdone1 := '0' ;

ELSIF clkx16'event AND clkx16 = '1' THEN
IF wr1 = '0' AND wr2= '1' THEN

--Falling edge on write signal. New data in txhold latches
txdatardy <= '1';

ELSIF txdone = '0' AND txdone1 = '1' THEN
--Falling edge on txdone signal. Txhold has been read.
txdatardy <= '0';

END IF;

--Delayed versions of write and txdone signals for edge detection
wr2 := wr1;
wr1 := write;
txdone1 := txdone;

END IF ;
END PROCESS;

--continued
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-28

The VHDL Environment Example array_pin_number Attribute
rxio:
PROCESS (reset, clkx16)

VARIABLE rd1, rd2 : std_logic;
--Read input delayed 1 and 2 cycles
VARIABLE rxidle1 : std_logic;
--rxidle signal delayed 1 cycle

BEGIN
IF reset='1' THEN
overrun <= '0' ;
rxhold <= (OTHERS=>'0') ;
parityerr <= '0' ;
framingerr <= '0' ;
rxdatardy <= '0' ;
rd1 := '0' ;
rd2 := '0' ;
rxidle1 := '0' ;

ELSIF clkx16'event AND clkx16 = '1' THEN

--Look for rising edge on idle and update output registers
IF rxidle = '1' AND rxidle1 = '0' THEN
IF rxdatardy = '1' THEN
--Overrun error if previous data is still there
overrun <= '1';

ELSE
--No overrun error since holding register is empty
overrun <= '0';

--Update holding register
rxhold <= rxreg;

--paritygen = 1 if parity error
parityerr <= paritygen;

--Framing error if stop bit is not 1
framingerr <= NOT rxstop;

--Signal that data is ready for reading
rxdatardy <= '1';

END IF;
END IF;
rxidle1 := rxidle;
--rxidle delayed 1 cycle for edge detect

--continued
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-29

Example array_pin_number Attribute The VHDL Environment
--Clear error and data registers when data is read
IF (NOT rd2 AND rd1) = '1' THEN

rxdatardy <= '0';
parityerr <= '0';
framingerr <= '0';
overrun <= '0';

END IF;
rd2 := rd1;
-- Edge detect for read
rd1 := read;
-- (Must be assigned AFTER reference)
IF reset = '1' THEN
rxdatardy <= '0';
END IF;

END IF ;
END PROCESS;

-- Drive data bus only during read
data <= rxhold WHEN read = '1' ELSE (OTHERS=>'Z') ;

-- Latch data bus during write
txhold <= data WHEN write = '1' ELSE txhold;

-- Receive data ready output signal
rxrdy <= rxdatardy;

-- Transmitter ready for write when no data is in txhold
txrdy <= NOT txdatardy;

-- Run-time simulation check for transmit overrun
ASSERT write = '0' OR txdatardy = '0'

REPORT "Transmitter overrun error" SEVERITY WARNING;

END exemplar;

--end of example
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d4-30

ge
ral

d,

all
Chapter 5
Introduction to Verilog Synthesis

Verilog HDL is a high level description language for system and circuit design. The langua
supports various levels of abstraction. Where a regular netlist format supports only structu
description, Verilog supports a wide range of description styles. This includes structural
descriptions, data flow descriptions and behavioral descriptions.

The structural and data flow descriptions show a concurrent behavior. All statements are
executed concurrently, and the order of the statements does not matter. On the other han
behavioral descriptions are executed sequentially in always blocks, tasks and functions in
Verilog. The behavioral descriptions resemble high-level programming languages.

Verilog allows a mixture of various levels of design entry. LeonardoSpectrum synthesizes
levels of abstraction, and minimizes the amount of logic needed, resulting in a final netlist
description in the technology of your choice.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 5-1

Verilog and Synthesis Introduction to Verilog Synthesis

f
, in

ed

ral
the

the
The high level devsign flow enabled by the use of LeonardoSpectrum is shown inFigure 5-1.

Figure 5-1. Top Down Design Flow with LeonardoSpectrum

Verilog and Synthesis
Verilog is completely simulatable, but not completely synthesizable. There are a number o
Verilog constructs that have no valid representation in a digital circuit. Other constructs do
theory, have a representation in a digital circuits, but cannot be reproduced with guarante
accuracy. Delay time modeling in Verilog is an example of that.

State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL) circuit
descriptions and target a specific technology. Scheduling and allocation algorithms, that
perform circuit optimization at a very high and abstract level, are not yet available for gene
circuit applications. Therefore, the result of synthesis of a Verilog description depends on
style of Verilog that is used. Users of LeonardoSpectrum should understand some of the
concepts of synthesis specific to Verilog coding style at the RTL level, in order to achieve
desired circuit implementation.

Top-Down Design Flow

LeoHDL 01

synthesize to gate

translate to behavior/simulate

optimize speed/area

technology map

physical implementation

CAE simulator

LeonardoSpectrum
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d5-2

Introduction to Verilog Synthesis Synthesizing the Verilog Design

uit,

ctrum

ilog
This manual is intended to give the Verilog designer guidelines to achieve a circuit
implementation that satisfies the timing and area constraints that are set for the target circ
while still using a high level of abstraction in the Verilog source code. This goal will be
discussed both in the general case for synthesis applications, as well as for LeonardoSpe
specifically. Examples are used extensively; Verilog rules are not emphasized.

Knowledge of the basic constructs of Verilog is assumed. For more information on the Ver
language, refer to theVerilog Hardware Description Language Reference Manual, published
by Open Verilog International.

Synthesizing the Verilog Design
Using LeonardoSpectrum to synthesize your Verilog design is easy. If you run from the
command line, use the following batch mode option:

If you run LeonardoSpectrum from the interactive shell, use the following command and
argument:

-input_format=verilog

read -format verilog f ile_nam e
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 5-3

Synthesizing the Verilog Design Introduction to Verilog Synthesis
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d5-4

logic

f the
.

Chapter 6
Verilog Language Features

This chapter provides an introduction to the basic language constructs in Verilog: defining
blocks:

• Data flow and behavioral descriptions

• Concurrent and sequential functionality

• Numbers and data types.

LeonardoSpectrum synthesizes all levels of abstraction and minimizes the amount of logic
needed resulting in a final netlist description in the technology of your choice.

Modules
A basic building block in Verilog is a module. The module describes both the boundaries o
logic block and the contents of the block, in structural, data flow and behavioral constructs

Note: LeonardoSpectrum supports empty top level modules.

This Verilog description shows the implementation ofsmall_block , a block that describes
some simple logic functions.

The port list is declared, the port directions are specified, then an internalwire is declared. A
wire in Verilog represents physical connection in hardware. It can connect betweenmodules or

module small_block (a, b, c, o1, o2);
input a, b, c;
output o1, o2;
wire s;

assign o1 = s || c ;
assign s = a && b ;
assign o2 = s ^ c ;

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-1

Numbers Verilog Language Features

ous
se

g

or

. If

such as
gates, and does not store a value. Awire can be used anywhere inside themodule , but can only
be assigned by:

• Connecting it to an output of a gate or amodule .

• Assigning to it using a continuous assignment.

This module contains only dataflow behavior. Dataflow behavior is described using continu
assignments. All continuous assignments are executed concurrently, thus the order of the
assignments does not matter. This is why it is valid to uses befores is assigned. In the first
statemento1 is assigned the result of the logicalORof s andc. “ | | ” denotes the logical OR
operation.

More details about the various dataflow statements and operators are given in the followin
sections.

’macromodule’

LeonardoSpectrum supports ’macromodule’, which is treated as ’module’.

Numbers
Numbers in Verilog can be either constants or parameters. Constants can be either sized
unsized. Either one can be specified in binary, octal, hexadecimal, or decimal format.

If a prefix is preceded by a number, this number defines the bit width of the number, for
instance,8’b 01010101 . If no such number exists, the number is assumed to be 32 bits wide
no prefix is specified, the number is assumed to be 32 bits decimal.

LeonardoSpectrum produces a warning when encountering non-synthesizable constants
float. The value0 is assumed.

Name Prefix Legal Characters

binary ’b 01xXzZ_?

octal ’o 0-7xXzZ_?

decimal ’d 0-9_

hexcadecimal ’h 0-9a-fA-FxXzZ_?
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-2

Verilog Language Features Data Types

a

For example, in

x will evaluate to8.

Special characters in numbers:

“_” a separator to improve readability.

’x’ , ’X’ unknown value.

’z’ , ’Z’ , ’?’ tri-state value.

Examples:

Data Types
Verilog defines three main data types:

• net

• register

• parameter

By default these data types are scalars, but all can take an optional range specification as
means of creating a bit vector. The range expression is of the following form:

x = 2.5 + 8;

334 32 bi tsw ide deci m alnum ber

32’b101 32 bi tsw ide bi nary num ber(zer o lef tf il led)

3’b11 3 bi tsw ide bi nary num ber(ie,011)

20’h’f_ffff 20 bi tsw ide hexadeci m alnum ber

10’bZ 10 bi tsw ide al lt ri-state

[<most significant bit> : <least significant bit>]
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-3

Data Types Verilog Language Features

syntax.
Some of these data types are used in the example below, along with the range expression
Further details on the data types are presented in the following sections.

// This design implements a Manchester Encoder
//
module manenc (reset, clk , data , load , sdata, ready);
parameter max_count = 7;

input clk, load;
input [max_count:0] data;
output sdata, ready ;

reg sdata, ready ;
reg [2:0] count;
reg [max_count:0] sout;
reg phase;

// Phase encoding
always @ (posedge clk)

begin
sdata = sout[max_count] ^ phase;
phase = ~phase ;

end
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-4

Verilog Language Features Data Types

the
ned to
Net Data Types

The net data types supported by LeonardoSpectrum are

• wire

• tri

• supply0

• supply1

• wand

• wor

These data types are used to represent physical connections between structural entities in
Verilog design, such as a wire between two gates, or a tristate bus. Values cannot be assig

// Shift data
always @ (posedge phase)

begin
if ((count == 0) & !load) begin

sout[max_count:1] = sout[0:max_count - 1];
sout[0] = 1’b0;
ready = 1’b1;

end
else if ((count == 0) & load) begin

sout = data;
count = count + 1;
ready = 1’b0;

end
else if (count == max_count) begin

sout[max_count:1] = sout[0:max_count - 1];
sout[0]= 1’b0;
count = 0;

end
else begin

sout[max_count:1] = sout[0:max_count - 1];
sout[0]= 1’b0;
count = count + 1;

end
end

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-5

Data Types Verilog Language Features

ent

ing

lable

do

ed by
net data types withinalways blocks. (tri0 , tri1 , triand , trior andtrireg are also net data
types, but are not yet supported by LeonardoSpectrum).

wire and tri Nets

Thewire andtri net data types are identical in usage (syntax and function). The two differ
names are provided for design clarity. Nets driven by a single gate are usually declared aswire
nets, as shown in Modules in this chapter, while nets driven by multiple gates are usually
declared astri nets.

Supply Nets

Thesupply1 andsupply0 net data types are used to describe the power (VCC) and ground
supplies in the circuit. For example, to declare a ground net with the name GND, the follow
code is used:

wand and wor Net Types

wand and wor statements result into and or logic respectively, since wired logic is not avai
in all technologies.

Register Data Type

A register, declared with keywordreg , represents a variable in Verilog. Where net data types
not store values,reg data types do. Registers can be assigned only in analways block, task or
function. When a variable is assigned a value in analways block that has a clock edge event
expression (posedge or negedge), a flip-flop is synthesized by LeonardoSpectrum. To avoid
the creation of flip-flops forreg data types, separate the combinational logic into a different
always block (that does not have a clock edge event expression as a trigger).

Parameter Data Type

The parameter data type is used to represent constants in Verilog. Parameters are declar
using the keywordparameter and a default value. Parameters can be overridden when a
module is instantiated.

supply0 GND ;

wor out;
out = a&b
out = c&d;
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-6

Verilog Language Features Continuous Assignments

y be
ector

ents are
ever

e

Declaration Local to Begin-End Block

Local declaration of registers and integers is allowed inside a namedbegin-end block. If the
begin-end block contains a “@ posedge ck ” statement, then the declaration is not supported.

Array of reg and integer Declaration

Memory declaration and usage of an array of registers or integers is now allowed.

Continuous Assignments
A continuous assignment is used to assign values to nets and ports. The nets or ports ma
either scalar or vector in nature. (Assignments to a bit select or a constant part select of a v
are also allowed.) Because nets and ports are being assigned values, continuous assignm
allowed only in the dataflow portion of the module. As such, the net or port is updated when
the value being assigned to it changes.

Continuous assignments may be made at the same time the net is declared, or by using th
assign statement.

input [10:0] data;
always @ (data)
begin : named_block
integer i;

parity = 0;
for (i = 0; i < 11; i= i + 1)
parity = parity ^ data[i];

end //named_block

input [3:0] address;
input [7:0] date_in;
output [7:0] data_out;
reg [7:0] data_out, mem [3:0];
always @ (address or date_in or we)

if (we) mem [address] = date_in;
else data_out = mem [address];
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-7

Continuous Assignments Verilog Language Features

et and

nuous

of a
Net Declaration Assignment

The net declaration assignment uses the same statement for both the declaration of the n
the continuous assignment:

Only one net declaration assignment can be made to a specific net, in contrast to the conti
assignment statement, where multiple assignments are allowed.

Continuous Assignment Statement

The continuous assignment statement (assign) is used to assign values to nets and ports that
have previously been declared.

The following example describes a circuit that loads a source vector of 4 bits on the edge
clock (wrclk), and stores the value internally in a register (intreg) if the chip enable (ce) is

wire [1:0] sel = selector ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-8

Verilog Language Features Procedural Assignments

plete

t
. This
active. One bit of the register output is put on a tristate bus (result_int) based on a bit selector
signal (selector), with the bus output clocked through a final register (result).

Procedural Assignments
Procedural assignments are different from continuous assignments in that procedural
assignments are used to update register variables. Assignments may be made to the com
variable, or to a bit select or part select of the register variable.

Both blocking and non-blocking procedural assignments are allowed.

Blocking assignments, specified with the “=” operator, are used to designate assignments tha
must be executed before the execution of the statements that follow it in a sequential block

module tri_asgn (source, ce, wrclk, selector, result) ;
input [3:0] source ;
input ce, wrclk ;
input [1:0] selector ;
output result ;
reg [3:0] intreg ;
reg result ;
// net declaration assignment
wire [1:0] sel = selector ;
tri result_int ;

// continuous assignment statement
assign

result_int = (sel == 2’b00) ? intreg[0] : 1’bZ
,

result_int = (sel == 2’b01) ? intreg[1] : 1’bZ
,

result_int = (sel == 2’b10) ? intreg[2] : 1’bZ
,

result_int = (sel == 2’b11) ? intreg[3] : 1’bZ
;
always @(posedge wrclk)
begin

if (ce)
begin

intreg = source ;
result = result_int ;

end
end

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-9

Always Blocks Verilog Language Features

after

ts
the

ing
nts
r, in a

w

means that the value of a register variable in a blocking assignment is updated immediately
the assignment.

Non-blocking assignments, specified with the “<=” operator, are used to schedule assignmen
without blocking the procedural flow. It can be used whenever register assignments within
same time step can be made without regard to order or dependence upon each other.

Also, in contrast to the blocking assignment, the value of a register variable in a non-block
assignment is updated at the end of the time step. This behavior does not affect assignme
done in the dataflow environment, since assignments are done concurrently there. Howeve
sequential block, such as an always block, the value of the variable in a non-blocking
assignment changes only after the complete execution of the sequential block.

Always Blocks
Always blocks are sections of sequentially executed statements, as opposed to the dataflo
environment, where all statements are executed concurrently. In analways block, the order of
the statements DOES matter. In fact,always blocks resemble the sequential coding style of
high level programming languages. Also,always blocks offer a variety of powerful statements
and constructs that make them very suitable for high level behavioral descriptions.

An always block can be called from the dataflow area. Eachalways block is a sequentially
executed program, but allalways blocks run concurrently. In a sense, multiplealways blocks
resemble multiple programs that can run simultaneously.Always blocks communicate with
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-10

Verilog Language Features Always Blocks

rite

y a

r

a

ates
the
each other via variables of typereg which are declared in themodule . Also, the ports andwires
defined in themodule can be used in thealways blocks.

This example describes a circuit that can load a source vector of 4 bits, on the edge of a w
clock (wrclk), store the value internally in a register (intreg) if a chip enable (ce) is active,
while it produces one bit of the register constantly (not synchronized). The bit is selected b
selector signal of 2 bits, and is clocked out through the register result.

The description consists of twoalways blocks, one to write the value into the internal registe
and clock the output, and one to read from it. The twoalways blocks communicate via the
register valuesintreg andresult_int .

The firstalways block is a synchronous block. As is explained later, thealways block executes
only if the event expression at the event control evaluates to true. In this case, the event
expression evaluates to true when a positive edge occurs on the inputwrclk (event expression
posedge wrclk). Each time the edge occurs, the statements inside thealways statement are
executed. In this case, the value of the inputsource is loaded into the internal variableintreg
only if ce is ’1’ . If ce is ’0’ , intreg retains its value. In synthesis terms, this translates into
D flip-flop, clocked onwrclk , and enabled byce . Also, the intermediate outputresult_int is
loaded into the outputresult (a D flip-flop clocked onwrclk).

The secondalways block is a combinational block. In this case, the event expression evalu
to true when eitherintreg or selector changes. When this happens, the statements inside

module mux_case (source, ce, wrclk, selector, result);
input [3:0] source;
input ce, wrclk;
input [1:0] selector;
output result;
reg [3:0] intreg;
reg result, result_int;

always @(posedge wrclk)
begin

if (ce)
intreg = source;

result = result_int;
end

always @(intreg or selector)
case (selector)

2’b00: result_int = intreg[0];
2’b01: result_int = intreg[1];
2’b10: result_int = intreg[2];
2’b11: result_int = intreg[3];

endcase

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-11

Always Blocks Verilog Language Features

d of
. For
ity
always statement are executed, and the outputresult_int gets updated depending on the
values ofintreg andselector . Note that this leads to combinational behavior (essentially a
multiplexer), sinceresult_int only depends onintreg andselector , and each time either of
these signals changes,result_int gets updated.

The reason for separating the twoalways blocks is to avoid the creation of a register for the
variableresult_int . result_int must be ofreg data type, because it is assigned in analways
block, but it does not need to be registered logic.

Not all constructs, or combinations of constructs, in analways block lead to behavior that can
be implemented as logic. LeonardoSpectrum supports emptyalways statements.

Note that constants on the sensitivity list have no effect in simulation or synthesis. Any kin
expression inside a sensitivity list is legal in Verilog and is accepted by the synthesis tools
synthesis, all the leaf level identifiers of the expression are considered to be in the sensitiv
list, so some simulation mismatch might be seen after synthesis.

always @ (inp1[2:0] or 3'b011 or {a, b}) // allowed
.........
.........
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-12

Verilog Language Features Module Instantiation

ntiates

he

n the

efore
Module Instantiation
Module instantiation can be used to implement individual gates or cells, macros, or to add
hierarchy to your design. Here is an example that generates an address for RAM and insta
the RAM cells:

For this example, if the RAM moduleRAM_32x1 is a cell or macro in a library, the synthesis
tools will implement that cell or macro in the output netlist. To do that, the library in which t
cell or macro exists must be specified as the Input Design Technology. If no Input Design
Technology is specified, LeonardoSpectrum implements the RAM module as a black box i
output netlist, with inputs and outputs defined, but no functionality.

LeonardoSpectrum uses different techniques to indicate which source technology to use b
reading the design into the database:

module scanner (reset, stop, load, clk, load_value, data) ;
input reset, stop, load, clk;
input [3:0] load_value;
output [3:0] data;
reg [4:0] addr;

// Instantiate and connect 4 32x1-bit rams
RAM_32x1 U0 (.a(addr), .d(load_value[0]), .we(load), .o(data[0])

);
RAM_32x1 U1 (.a(addr), .d(load_value[1]), .we(load), .o(data[1])

);
RAM_32x1 U2 (.a(addr), .d(load_value[2]), .we(load), .o(data[2])

);
RAM_32x1 U3 (.a(addr), .d(load_value[3]), .we(load), .o(data[3])

);

// Generate the address for the rams
always @(posedge clk or posedge reset)
begin

if (reset)
addr = 5’b0 ;

else if (~stop)
addr = addr + 5’b1 ;

end
endmodule

module RAM_32x1 (a, we, d, o);
input [4:0] a;
input we, d ;
output o;
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-13

Module Instantiation Verilog Language Features

tance

eans
stance
• the -source=lib_name batch mode option

• the load_library <lib_name> interactive shell command

LeonardoSpectrum supports empty named port connections, e.g.,

Parameter Override During Instantiation of Module

Parameter overriding during module instantiation is supported by LeonardoSpectrum.

Defparam Statement

When using the defparam statement, parameter values can be changed in any module ins
throughout the design, provided the hierarchical name of the parameter is used.

Note: In LeonardoSpectrum, the hierarchical name is restricted to single level only. This m
that when the defparam statement is used, you can override any parameter value of an in
in the current module only.

nd2 x1 (.a(f), .b());

module top (a, b);
input [3:0] a;
output [3:0] b;

do_assign #(4) name (a, b);
endmodule
module do_assign (a, b);

parameter n = 2;
input [n-1:0] a;
output [n-1:0] b;

assign b = a;
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-14

Verilog Language Features Operators

wn or
Example:

’unconnected_drive’ and ’nounconnected_drive’

These directives are specified as outside modules only.’unconnected_drive’ takes either
pull0 or pull1 as a parameter and causes all the unconnected input ports to be pulled do
up, according to the parameter.’nounconnected_ drive’ restores the normal condition
(where the unconnected input ports are connected to high-Z).

Operators
This section describes the operators available for use in Verilog expressions.

module top (a, b);
input [3:0] a;
output [3:0] b;
wire top;

do_assign name (a, b);
defparam name.n = 4;
endmodule

module do_assign (a, b);
parameter n = 2;
input [n-1:0] a;
output [n-1:0] b;

assign b = a;
endmodule

’unconnected_drive’ pull1
module with_unconn_port (o, i);
output o;
input i;
assign o = i;
endmodule
’nounconnected_drive’
module test (i, o1, o2);
input i;
output o1, o2;
with_unconn_port I1 (o1,); // o1 = 1
with_unconn_port I2 (o2, i); // o2 = i
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-15

Operators Verilog Language Features

et of
Operands

An operand in an expression can be one of the following:

• Number

• Net (including bit-select and part-select)

• Register (including bit-select and part-select)

• A call to a function that returns any of the above

Bit-selects take the value of a specific bit from a vector net or register. Part-selects are a s
two or more contiguous bits from a vector net or register. For example:

The operators supported by LeonardoSpectrum are listed inTable 6-1.

Table 6-1. Operators Supported by LeonardoSpectrum

...
wire bit_int ;
reg [1:0] part_int ;
reg [3:0] intreg;

bit_int = intreg[1] ;// bit-select of intreg assigned to bit_int
part_int = intreg[2:1] ;// part-select of intreg assigned to
part_int
...

Operator Description

+ - * / arithmetic

< > <= >= relational

== logical equality

!= logic inequality

! logical negation

&& logical and

|| logical or

~ bit-wise negation

& bit-wise and
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-16

Verilog Language Features Operators
Arithmetic Operators

LeonardoSpectrum supports the following arithmetic operators:

If the bit value of any operand is‘X’ (unknown), then the entire resulting value is‘X’ . The “/ ”
operator is supported in the case where the divisor is a constant and a power of two.

Relational and Equality Operators

LeonardoSpectrum supports the following relational and equality operators:

If the bit value of any operand is‘X’ (unknown), then the entire resulting value is‘X’ .

=== and!== Operators are Treated as== and!=

=== and!== operators are treated as== and!= for synthesis purposes if either one of the
operands is nonconstant. If both the operands are constant, they can be used to compare
metalogical values. In simulation, the difference between== and=== is that one can compare
metalogical characters exactly with=== but not with==. Any metalogical character causes the
output of== to be unknownx . The difference between!= and!== is the same.

| bit-wise inclusive or

^ bi t-w ise excl usi ve or

~̂ or~^ bi t-w ise equi val ence

& reduct ion and

| r educt ion or

^ r educt ion xor

<< leftshi ft

>> rightshi ft

? : condi tional

{} concat enat ion

+ - * /

< > <= >= == !=
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-17

Operators Verilog Language Features
Logical Operators

LeonardoSpectrum supports the following logical operators:

Bit-Wise Operators

LeonardoSpectrum supports the followingbit_wise operators:

These operators perform bit-wise operations on equivalent bits in the operands.

Reduction Operators

Leonar doSpect rum supportsthe f ol low ing reduct ion oper ators:

module triple_eq_neq (in1, in2, O);
output [10:0] O;
input [2:0] in1, in2;
assign

O[0] = 3'b0x0 === 3'b0x0, // output is 1
O[1] = 3'b0x0 !== 3'b0x0, // output is 0
O[2] = 3'b0x0 === 3'b1x0, // output is 0
O[3] = 3'b0x0 !== 3'b1x0, // output is 1O[4]=in1===3'b0x0,

// LHS is non constant so this
// produces warning that comparison
// metalogical character is
// with zero. output is 0

O[5] = in1 !== 3'b0x0, // LHS is non constant so this
// produces warning that comparison
// with metalogical character is
// zero.output is 1,because it
// checks for not equality

O[6] = in1 === 3'b010, // normal comparison
O[7] = in1 !== 3'b010, // normal comparison
O[8] = in1 === in2, // normal comparison
O[9] = in1 !== in2, // normal comparison
O[10] = 3'b00x === 1'bx; // output is 1

endmodule

! && ||

~ & | ^ ^~ ~^

& | ^
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-18

Verilog Language Features Operators

ed on
it of

f

These operators perform reduction operations on a single operand. Operations are perform
the first and second bits of the operand, then on the result of that operation with the third b
the operand, until the limit of the vector is reached. The result is a single bit value.

The following operators:

are negations of the “&”, “ | ”, and “^ ” operators.

Shift Operators

LeonardoSpectrum supports the following shift operators:

Conditional Operator

The conditional operator statement has the following syntax:

The result of this operation istrue_expression if conditional_expression evaluates to
true, andfalse_expression if false. In the following example, result is assigned the value o
intreg[0] if sel = 2’b00 , otherwise result is assignedZ:

Concatenation

The concatenation of bits from multiple expressions is accomplished using the characters{ and
} . For example, the following expressions are equivalent:

For a = 5’b11010 , c = 5’b10101 , the result isfoo = 5’b11001 .

~& ~| ~^

<< >>

conditional_expression ? true_expression : false_expression

...
output result ;
reg [3:0} intreg ;
wire [1:0] sel ;

assign result = (~sel[0] && ~sel[1]) ? intreg[0] : 1’bZ ;
...

foo = {a[4:3], 1’b0, c[1:0]} ;
foo = {a[4], a[3], 1’b0, c[1], c[0]} ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-19

Statements Verilog Language Features

ed, a

o

he

given
s
est,
‘ signed and ‘ unsigned Attributes on Operators

‘signed and‘unsigned attributes change the type of a particular operator. Comparison
between two bit vectors are always done unsigned, but if the functionality needs to be sign
‘signed attribute can be used just after the comparator.

Similarly, an‘unsigned attribute can be used to perform an unsigned operation between tw
integers.

The shift operators always do a logical shift. By using the‘signed directive, they can be made
to do an arithmetic shift. Arithmetic right shift shifts in the sign bit and the left shift shifts in t
least significant bit (e.g.,4’b0001 << ‘signed 1 produces4’b0011).

Operator Precedence

The operator precedence rules determine the order in which operations are performed in a
expression. Parentheses can be used to change the order in an expression. The operator
supported by LeonardoSpectrum are listed below in order from highest precedence to low
with operators on the same line having the same precedence.

Statements
This section presents information on the use ofif-else , case andfor statements for
specifying designs.

input [3:0] A, B;
output o;
assign o = A < ‘signed B; // Signed comparator.

+ - ! ~ (unary)
* / (binary)
+ - (binary)
<< >>
< > <= >=
== !=
&
^ ^~ ~^
|
&&
||
? : (ternary)
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-20

Verilog Language Features Statements

here
ruct

rite

y a
If-Else Statements

Theif-else conditional construct is used to specify conditional decisions. As an example,
is the design from “Procedural Assignments,” with the multiplexer described with this const
instead of thecase statement:

This example describes a circuit that can load a source vector of 4 bits, on the edge of a w
clock (wrclk), store the value internally in a register (intreg) if a chip enable (ce) is active,
while it produces one bit of the register constantly (not synchronized). The bit is selected b
selector signal of 2 bits, and is clocked out through the register result.

module mux_case (source, ce, wrclk, selector, result);
input [3:0]source;
input ce, wrclk;
input [1:0]selector;
output result;
reg [3:0]intreg;
reg result, result_int;

always @(posedge wrclk)
begin
// if statement for chip enable on register

if (ce)
intreg = source;

result = result_int;
end

always @(intreg or selector)
begin
// if-else construct for multiplexer functionality

if (sel == 2’b00)
result_int = intreg[0] ;

else if (sel == 2’b01)
result_int = intreg[1] ;

else if (sel == 2’b10)
result_int = intreg[2] ;

else if (sel == 2’b11)
result_int = intreg[3] ;

end

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-21

Statements Verilog Language Features

t

Case Statements

If many conditional clauses have to be performed on the same selection signal, acase statement
is a better solution than theif-else construct. The following example describes a traffic ligh
controller (state machine with binary encoding):

module traffic (clock, sensor1, sensor2,
red1, yellow1, green1, red2, yellow2, green2);

input clock, sensor1, sensor2;
output red1, yellow1, green1, red2, yellow2, green2;
parameter st0 = 0, st1 = 1, st2 = 2, st3 = 3,

st4 = 4, st5 = 5, st6 = 6, st7 = 7;
reg [2:0] state, nxstate ;
reg red1, yellow1, green1, red2, yellow2, green2;

always @(posedge clock)
state = nxstate;

always @(state or sensor1 or sensor2)
begin

red1 = 1’b0; yellow1 = 1’b0; green1 = 1’b0;
red2 = 1’b0; yellow2 = 1’b0; green2 = 1’b0;

case (state)
st0: begin

green1 = 1’b1;
red2 = 1’b1;
if (sensor2 == sensor1)

nxstate = st1;
else if (~sensor1 & sensor2)

nxstate = st2;
end

st1: begin
green1 = 1’b1;
red2 = 1’b1;
nxstate = st2;

end
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-22

Verilog Language Features Statements

, this

um
Case Statement and Multiplexer Generation

Thecase statement, as defined by the Verilog LRM, is evaluated by order, and the first
expression to match the control expression is executed (during simulation). For synthesis
implies a priority encoding. However, in many cases thecase statement is used to imply a
multiplexer. This is true whenever thecase conditions are mutually exclusive (the control
expressions equals only one condition at any given time).

In Verilog, the case items can be non-constants also. In such a situation, LeonardoSpectr
cannot detect that thecase statements are parallel as follows:

st2: begin
green1 = 1’b1;
red2 = 1’b1;
nxstate = st3;

end
st3: begin

yellow1 = 1’b1;
red2 = 1’b1;
nxstate = st4;

end
st4: begin

red1 = 1’b1;
green2 = 1’b1;
if (~sensor1 & ~sensor2)

nxstate = st5;
else if (sensor1 & ~sensor2)

nxstate = st6;
end

st5: begin
red1 = 1’b1;
green2 = 1’b1;
nxstate = st6;

end
st6: begin

red1 = 1’b1;
green2 = 1’b1;
nxstate = st7;

end
st7: begin

red1 = 1’b1;
yellow2 = 1’b1;
nxstate = st0;

end
endcase

end
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-23

Statements Verilog Language Features

s are

hesis

ssage.
• Global batch mode switch-parallel_case

• Set Tcl variableparallel_case to TRUEto inform the tool that all thecase statements
in the design is mutually exclusive.

For example, the following Verilog code:

results in the equation:

If parallel case is used, the following equation will be synthesized:

This equation is simpler than the first. For a biggercase statement the amount of logic
reduction can be significant. This cannot be determined automatically since the case item
nonconstants.

The use of this option can cause simulation differences between behavioral and post-synt
netlists.

Automatic Full Case Detection

Thecasex statement below is full case (it covers all possible values000 to 111). The default
statement is not necessary and is ignored by the synthesis tools, resulting in a warning me
The synthesis tools also do full-case detection for normalcase andcasez statements.

case (1’b1)
s[0]: o = a;
s[1]: o = b;

endcase

o = s[0] * a + !s[0] * s[1] * b;

o = s[0] * a + s[1] * b;

input [2:0] sel;
casex (sel)

3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default :

endcase
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-24

Verilog Language Features Statements

ects
lusive.
LeonardoSpectrum does full coverage analysis for theif-then-else structure. The following
example is considered a fullif-then-else . The lastelse is ignored and a warning is issued.

Automatic Parallel Case Detection

casex statements are priority-encoded by definition. LeonardoSpectrum automatically det
parallel case and produce a warning message saying that case conditions are mutually exc
The followingcase statement is treated as parallel case.

LeonardoSpectrum does parallel case detection forcase andcasez statements. It also extracts
the parallelism of a mutually exclusiveif-then-else structure as shown below.

wire [1:0] data;
if (data == 2)

...........
else if (data == 1)

...........
else if (data == 3)

...........
else if (data == 0)

...........
else

// Ignored for synthesis purpose
endmodule

input [2:0] sel;
casex (sel)

3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default :

endcase

wire [1:0] data;
if (data == 2)

...........
else if (data == 1)

...........
else if (data == 3)

...........
else if (data == 0)

...........
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-25

Statements Verilog Language Features

sired.

f an
casex Statement

Thecasex statement is used when comparison to only a subset of the selection signal is de
For example, in the following Verilog code only the three least significant bits ofvect are
compared to001 . The comparison ignores the three most significant bits.

casez Supported

casez is used in Verilog to specify “don't care” bits of the case tags. The’z’ s in the case tags
are not compared when a comparison between the case expressionsel and the tags is done.

’case’ and ’default’ Statements

LeonardoSpectrum allows the default statement to appear anywhere in acase , casez , or casex
statement, and supports thecase statement with only one default entry.

for Statements

for loops are used for repetitive operations on vectors. In the following example, each bit o
input signal is ANDed with a single bit enable signal to produce the result:

casex (vect)
6’bXXX001 : <statement> ;

// this statement is executed if vect[2:0] = 3’b001
endcase

...
casez (sel)

3'b10z: ...
3'bz10: ...
3'bz11: ...
3'b00z: ...
default :

endcase

...
input clk ;
reg [4:0] input_signal, result ;
reg enable ;

always @ (posedge clk)
for (i = 0; i < 5; i = i + 1)

result[i] = enable & input_signal[i] ;
...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-26

Verilog Language Features Statements

her
le of
for loops are supported if they are bound by constants.for loops are also supported if they
contain a “@ posedge clk ” statement which prevents infinite combinatorial loops.

Disable Statement

The disable statement disables a named block or a task. Disabling of one block from anot
block is supported only if the second block is contained in the first one. Below is an examp
disabling a named block.

module add_up_to (up_to_this, the_out);
input [3:0] up_to_this;
output the_out;
reg [7:0] the_out;
integer i;

always @ (up_to_this)
begin : blk

the_out = 0;
for (i = 0; i < 16; i = i + 1)
begin

the_out = the_out + i;
if (i == up_to_this) disable blk;

end
end
endmodule

//Below is an example of disabling a task.
module add_up_to (up_to_this, the_out);
input [3:0] up_to_this;
output the_out;
reg [7:0] the_out;

always @ (up_to_this)
begin

add_upto_this (up_to_this, the_out);
end
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-27

Statements Verilog Language Features

y

forever, repeat, while and Generalized Form of for
Loop

forever , repeat , while , and the generalized form of thefor loop are supported as long as the
satisfy the conditions offor loops. The followingforever example, is a counter with
synchronous reset.

task add_upto_this;
input [3:0] up_to_this;
output [7:0] the_out;
integer i;
begin

the_out = 0;
for (i = 0; i < 16; i = i + 1)
begin

the_out = the_out + i;
if (i == up_to_this) disable

add_upto_this;
end

end
endtask
endmodule

module forever_example (clk, reset, out);
input clk, reset;
output [3:0]out;
reg [3:0]out;

always
begin
@(posedge clk) out = 0;
begin : for_ever
forever
begin : name
@(posedge clk)
if (reset) disable for_ever;
out = out + 1;
end
end
end
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-28

Verilog Language Features Functions and Tasks

um

as
ain

with
sk can

tional.

ctions
If any loop construct is NOT bound by constants or by clock events, then LeonardoSpectr
issues the “iteration limit reached” error.

Functions and Tasks
Pieces of Verilog can be grouped together in functions and tasks, which can then be used
subprograms in the Verilog code. This is useful for repeated code, or for readability of the m
module.

Tasks and functions appear similar, but are used in different ways. A task is a subprogram
inputs and outputs, and replaces any piece of verilog code in a module. Expressions in a ta
be both combinational and sequential.

Functions have only inputs and returns a value by its name. Functions are purely combina

Functions

Functions are defined inside a module and can be freely used once they are defined. Fun
are always used in an expression, behavioral or dataflow:

or

module repeat_example (i, o);
input i;
output o;
reg o;

always @ (i)
begin

o = i;
repeat (4'b1011)

o = ~o; // o = ~i
end
endmodule

assign y = func(a,b);

x = func(z);
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-29

Functions and Tasks Verilog Language Features
An example of a function is given below.

Tasks

Tasks are always displayed as statements:

LeonardoSpectrum supports empty tasks.

module calculator (a, b, clk, s, operator);
input [7:0] a, b;
input clk;
input [1:0] operator;
output [7:0] s;
reg [7:0] s;
parameter ADD = 2’b00, SUB = 2’b01, MUL = 2’b10;

function [15:0] mult;
input [7:0] a, b ;
reg [15:0] r;
integer i;

begin
if (a[0] == 1)

r = b;
else

r = 0;
for (i = 1; i < 7; i = i + 1) begin

if (a[i] == 1)
r = r + b << i ;

end
mult = r;

end
endfunction

always @ (posedge clk)
begin

case (operator)
ADD: s = a + b ;
SUB: s = a - b ;
MUL: s = mult(a,b);

endcase
end
endmodule

my_task(a,b,c,d);
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-30

Verilog Language Features Functions and Tasks
An example of a task is presented below.

task demux (state, load, bait, enable, ready, write, read);
input [2:0] state;
output load, bait, enable, ready, write, read;
parameter LOAD = 3’b000, WAIT = 3’b100, ENAB = 3’b110,

READ = 3’b111, WRIT = 3’b011, STRO = 3’b001;

case (state)
LOAD:

{state, load, bait, enable, ready, write, read} = 6’b100000;
WAIT:

{state, load, bait, enable, ready, write, read} = 6’b010000;
ENAB:

{state, load, bait, enable, ready, write, read} = 6’b001000;
READ:

{state, load, bait, enable, ready, write, read} = 6’b000100;
WRIT:

{state, load, bait, enable, ready, write, read} = 6’b000010;
STRO:

{state, load, bait, enable, ready, write, read} = 6’b000001;
endcase

endtask
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-31

Functions and Tasks Verilog Language Features
Inout Ports in Task

LeonardoSpectrum supports inout ports in atask statement. Any value passed through inout
ports can be used and modified inside thetask .

module inoutintask (i, o1, o2);
input i;
output o1, o2;
reg r, o1, o2;
task T ;
inout io;
output o;
begin

o = io;
io = ~io;

end
endtask
always @ (i)
begin

r = i;
T (r, o1); // o1 = i, r = ~i
o2 = r; // o2 = ~i;

end
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-32

Verilog Language Features System Task Calls

ng is
Access of Global Variables from Functions and Tasks

Global variables can be accessed for both reading and writing.

System Task Calls
LeonardoSpectrum accepts system task calls. System task calls are ignored, and a warni
issued.

System Function Calls
LeonardoSpectrum accepts system function calls. The value0 is assumed for system function
calls, and a warning is issued.

module x (clk, reset, i1, i2, o);
input clk, reset, i1, i2;
output o;
reg o;
reg [1:0] state;

task T; //without any port
begin

case (state)
2'b00: o = i1;
2'b01: o = i2;
2'b10: o = ~i1;
2'b11: o = ~i2;

endcase
state = state + 1; // next state

end
endtask

always @ (posedge clk or posedge reset)
if (reset) begin

state = 0;
o = 0;

end
else T;

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-33

Initial Statement Verilog Language Features

but
ools,
ing

to be
Initial Statement
LeonardoSpectrum acceptsinitial statements. The actual value is ignored.

Compiler Directives

Verilog supports a large list of compiler directives. Most of them are useful for simulation,
are meaningless for synthesis purposes. A few directives are supported by the synthesis t
and those directives have to do with macro substitution and conditional compilation. Follow
is a list of these directives:

The symbol exemplar is predefined by LeonardoSpectrum.

Therefore, the statement:

will always be true, and the else part will always be false. This is useful if some parts need
excluded from synthesis, but used by simulation or other tools. For example:

‘define
‘ifdef
‘else
‘endif
‘include
‘signed
‘unsigned
‘unconnected_drive
‘nounconnected_drive

‘ifdef exemplar

‘ifdef exemplar
// do nothing here when running simulator
‘else
initial
// do all initialization here. This will be ignored by the
synthesis tools.
‘endif
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d6-34

avior

and

an
Chapter 7
The Art of Verilog Synthesis

This chapter explains how particular logic constructs can be synthesized with Verilog
restrictions taken into account.

Registers, Latches, and Resets
Verilog synthesis produces registers and combinational logic at the RTL level. All
combinational behavior around the registers is, unless prohibited by the user, optimized
automatically. Hence, the style of coding combinational behavior, likeif-then-else andcase
statements, has little affect on the final circuit result, but the style of coding sequential beh
has significant impact on your design.

This section shows how sequential behavior is produced with Verilog, so that you underst
why registers are generated at certain places and why not in others.

Most examples explain the generation of these modules with short Verilog descriptions in
always block.

Level-Sensitive Latch

This first example describes a level-sensitive latch:

...
input input_foo, ena ;
reg output_foo ;
...
always @ (ena or input_foo)

if (ena)
output_foo = input_foo ;

...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-1

Registers, Latches, and Resets The Art of Verilog Synthesis

tes the

is
son,
ct.
ructs
The sensitivity list is required, and indicates that thealways block is executed whenever the
signalsena or input_foo change. Also, since the assignment to the registeroutput_foo is
hidden in a conditional clause,output_foo cannot change (preserves its old value) ifena is 0.
If ena is 1, output_foo is immediately updated with the value ofinput_foo , whenever that
changes. This is the behavior of a level-sensitive latch.

In technologies where level-sensitive latches are not available, LeonardoSpectrum transla
initially generated latches to the gate equivalent of the latch, using a combinational loop.

Edge-Sensitive Flip-flops

An edge triggered flip-flop is generated from a Verilog description if a variable assignment
executed only on the leading (or only on the trailing) edge of another variable. For that rea
the condition under which the assignment is done must include an edge-detecting constru
There are a number of edge detecting attributes in Verilog. The two most commonly const
areposedge andnegedge .

Theposedge construct detects transitions (is true) for0 to 1. Thenegedge construct detects
transitions from1 to 0.

Here is one example of theposedge construct, used in the condition clause in analways block.
LeonardoSpectrum generates an edge-triggered flip-flop out of this behavior, withoutput_foo
updated only ifclk shows a leading edge.

If the posedge construct is not in the sensitivity list of thealways block, a warning is issued
that input_foo is not on the sensitivity list.

....
input input_foo, clk ;
reg output_foo ;
....
always @ (posedge clk)

output_foo = input_foo ;
....
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-2

The Art of Verilog Synthesis Registers, Latches, and Resets

nt to
or
Synchronous Sets and Resets

All conditional assignments to variableoutput_foo inside theif clause translate into
combinational logic in front of the D-input of the flip-flop. For instance, we can make a
synchronous reset on the flip-flop by doing a conditional assignment tooutput_foo :

Variablesreset andinput_foo should not be included on the sensitivity list executing this
block should not occur when they change.

Asynchronous Sets and Resets

If we want the reset signal to have immediate effect on the output, but still let the assignme
output_foo from input_foo only happen on the leading clock edge, we require the behavi
of an asynchronous reset.

Now reset HAS TO BE on the sensitivity list. Ifreset is not there, Verilog semantics require
that thealways block does not execute ifreset changes. Thisalways block executes only if a
positive change inclk is detected.

...
input input_foo, clk, reset ;
reg output_foo ;
...
always @ (posedge clk)

if (reset)
output_foo = 1’b0 ;

else
output_foo = input_foo ;

...

...
input input_foo, clk, reset ;
reg output_foo ;
...
always @ (posedge clk or posedge reset)

if (reset)
output_foo = 1’b0 ;

else
output_foo = input_foo ;

...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-3

Assigning I/O Buffers from Verilog The Art of Verilog Synthesis

e set

to

hat

f the
Asynchronous set and reset can both be used. This results in combinational logic driving th
and reset input of the flip-flop of the target signal. The following code fragment shows the
structure of such a process:

There can be several asynchronouselse if clauses, but the synchronous assignments have
be the last one in theif clause. A flip-flop is generated for each signal that is assigned in the
synchronous signal assignment. The asynchronous clauses result in combinational logic t
drives the set and reset inputs of the flip-flops.

Clock Enable

It is also possible to specify an enable signal in a process. Some technologies (specifically
Xilinx) have a special enable pin on their basic flip-flop. The synthesis tools recognize the
function of the enable from the Verilog description and generate a flip-flop with an enable
signal from the following code fragment:

If an enable pin does not exist in the target technology a multiplexer is generated in front o
data input of the flip-flop.

Assigning I/O Buffers from Verilog
There are three ways to assign I/O buffers to your design from Verilog:

• Run LeonardoSpectrum with the -chip batch mode option

always @(<edge of clock> or
<edge_of_asynchronous_signals>)

if (<asynchronous_signal>)
<asynchronous signal_assignments>

else if (<asynchronous_signal>)
<asynchronous signal_assignments>

...
else

<synchronous signal_assignments>

...
input input_foo, clk, enable ;
reg output_foo ;
...
always @ (posedge clk)

if (enable)
output_foo = input_foo ;

...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-4

The Art of Verilog Synthesis Assigning I/O Buffers from Verilog

fer

urce
by

is
s in
• Use thebuffer_sig command in the interactive shell

• Use component instantiation in Verilog of the buffer you require.

Thebuffer_sig command or the direct component instantiation overwrites any default buf
assignment that LeonardoSpectrum would do in “chip” mode.

These approaches can be used together by specifying certain I/O buffers in the Verilog so
description and others in the control file, with the remaining buffers assigned automatically
LeonardoSpectrum. The order the buffers are inserted in the design is important:

1. Components in the Verilog source are instantiated from the source technology.

2. Buffers are added by using thebuffer_sig command from the target technology.

3. Terminals without identifiable I/O gates have buffers inserted from the target
technology.

In all cases, the names of the original I/O terminals are preserved.

Automatic Assignment Using Chip Mode

The easiest way of assigning buffers is to run LeonardoSpectrum in default chip mode. Th
automatically assigns appropriate input, output, tristate, or bidirectional buffers to the port
your module definition. For example,

generates anINPUT_BUFFERfor inp , and anOUTPUT_BUFFERfor outp . outp becomes a
TRISTATE_BUFFERif it was assigned in the following fashion:

Manual Assignment Using the Control File

Special buffers, e.g.,<gate> , can be assigned. The command

module buffer_example (inp, outp, inoutp) ;
input inp ;
output outp ;
inout inoutp;
endmodule

tri outp ;
assign outp = ena ? inp : 1’bZ

BUFFER_SIG <gate> clk
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-5

Tristate Buffers The Art of Verilog Synthesis

ion.
r

d to
urce

ts are

ffers

erate
where<gate> is the name of a gate on the target technology, connects signalclk to the input of
the external clock buffer<gate> . An intermediate node calledclk_manual appears on
CLOCK_BUFFER’s output. Gates are searched for in the target technology library.

Buffer Assignment Using Component Instantiation

It is also possible to instantiate buffers in the Verilog source file with component instantiat
In particular, if you want a specific input or output buffer to be present on a specific input o
output, component instantiation is a very powerful method:

In this example, component instantiation forces anOUTPUT_FFbuffer (complex I/O
output/flip-flop buffer) on the bidirectional pin inoutp. Also an input bufferINPUT_BUFFERis
specified to pick up the value from inp to be used internally.

In the case of component instantiation of I/O buffers, a source technology must be specifie
assure that the synthesis tools take the instantiated I/O buffer from the right library. If no so
library is specified, an error is issued. If the source technology is specified, the componen
instantiated from this library, which automatically gives them the right functionality. The
synthesis tools recognize that the I/O pin is properly buffered, and does not add default bu
around it.

Tristate Buffers
Tristate buffers and bidirectional buffers (covered in the next section) are very easy to gen
from a Verilog description.

module special_buffer_example (inp, clk, outp, inoutp) ;
input inp, clk ;
output outp ;
inout inoutp ;
wire intern_in, intern_out, io_control ;

OUTPUT_FF A1(.c(clk), .d(intern_out),
.t(io_control),.o(inoutp));

INPUT_BUFFER A2(.i(inp), .o(intern_in)) ;

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-6

The Art of Verilog Synthesis Tristate Buffers
Example 1:

Example 2:

Note that in the conditional clause of the assign statement, bothinput_signal andena can be
full expressions. LeonardoSpectrum generates combinational logic driving the input or the
enable of the tristate buffer for these expressions.

However, the use of the’z’ value in an expression is illegal. The use of the’z’ value in any
form inside a clockedalways block is also illegal.

// conditional expression
assign o1 = oe1 ? d1 : 1’bz;
assign x = oe2 ? d2 : 1’bz;
assign o1 = x;

// if statement
always @ (oe3 or d3)

if (oe3)
o2 = d3;

else
o2 = 1’bz;

// case statement
always @ (oe4 or d4)

case (oe4)
default : o2 = 1’bz;
1’b1 : o2 = d4;

endcase

module tristate (input_signal, ena, output_signal) ;
input input_signal, ena ;
output output_signal ;

assign output_signal = ena ? input_signal :
1’bz ;

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-7

Tristate Buffers The Art of Verilog Synthesis

ce it

s
ble
Example 3:

Normally, simultaneous assignment to one signal in Verilog is not allowed for synthesis, sin
would cause data conflicts. However, if a conditional’Z’ is assigned in each assignment,
simultaneous assignment resembles multiple tristate buffers driving the same bus.

You can still introduce a data conflict with these simultaneous assignments tooutput_signal ,
by making bothena_1 andena_2 1’b1 . LeonardoSpectrum does not check for a possible bu
conflict. Make sure that you can never have that possibility by carefully generating the ena
signals for the tristate conditions.

These examples show assignments to outputs. However, it is certainly possible to do the
assignments to an internal wire as well.

• If the target technology does not have any internal three-state drivers,
LeonardoSpectrum can transform the three-state buffers into regular logic with the
-tristate batch mode option.

• LeonardoSpectrum performs this transformation when thetristate_map variable is set
to TRUEin the interactive shell.

assign output_signal = input_signal & 1’bz;

module tristate_example_2 (input_signal_1, input_signal_2, ena1,
ena2, output_signal) ;
input input_signal_1, input_signal_2, ena1, ena2 ;
output output_signal ;

assign output_signal = ena1 ? input_signal_1 : 1’bz ;
assign output_signal = ena2 ? input_signal_2 : 1’bz ;

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-8

The Art of Verilog Synthesis Bidirectional Buffers

. If
nput

with
nd as

of a
Bidirectional Buffers
Bidirectional I/O buffers can be coded in Verilog as follows:

The difference with the previous examples is that in this case, the output is used again
internally. For that reason, the portbidir_port is declared to be inout.

The enable signalena could also be generated inside the module instead of being a primary
input as in this example.

LeonardoSpectrum selects a suitable bidirectional buffer from the target technology library
there is no bidirectional buffer available, it selects a combination of a tristate buffer and an i
buffer.

Buses
The examples given above all use single bits as signals. In reality, buses or arrays of bits
tristatable (multiple) drivers, are often used. Buses are used both internally to the design a
I/O. For internal tristate buses, the bus signal should be declared as avv net.
**
**

The following example describes a circuit that loads a source vector of 4 bits on the edge
clock (wrclk), and stores the value internally in a register (intreg) if the chip enable (ce) is

module bidirectional (bidir_port, ena, ...) ;
input ena ;
inout bidir_port ;

assign bidir_port = ena ? internal_output :
1’bZ ;

assign internal_input = bidir_port ;
...
// use internal_input
...
// generate internal_output

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-9

Buses The Art of Verilog Synthesis
active. One bit of the register output is put on a tristate bus (result_int), based on a 2-bit
selector signal (selector), with the bus output clocked through a final register (result).

module tri_asgn (source, ce, wrclk, selector, result) ;
input [3:0] source ;
input ce, wrclk ;
input [1:0] selector ;
output result ;
reg [3:0] intreg ;
reg result ;
wire [1:0] sel = selector ;
tri result_int ;

// assignment to internal tristate bus
assign

result_int = (~sel[0] && ~sel [1]) ? intreg[0] : 1’bZ
,

result_int = (sel[0] && ~sel [1]) ? intreg[1] : 1’bZ
,

result_int = (~sel[0] && sel [1]) ? intreg[2] : 1’bZ
,

result_int = (sel[0] && sel [1]) ? intreg[3] : 1’bZ
;

always @(posedge wrclk)
begin

if (ce)
intreg = source;

result = result_int ;
end

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-10

The Art of Verilog Synthesis State Machines

n a
. In a

, the
In the following example of a tristate bus used for output, a source is loaded into a register
(tbuf_in) whose output is a set of tristate buffers.

State Machines
There are basically two forms of state machines, Mealy machines and Moore machines. I
Moore machine, the outputs do not directly depend on the inputs, only on the present state
Mealy machine, the outputs depend directly on the present state and the inputs.

In general, a description of a state machine consists of descriptions of the state transitions
output functions and a register function. Because of the register function, analways block in
Verilog is an appropriate way to describe a state machine.if-else-if or case statements in
analways block perform the state transition and output function descriptions.

module tri_bus (d, clk, en, tbuf_out) ;
parameter n = 8 ;
parameter triZ = 8’bZ ;
input [(n-1):0] d ;
input clk, en ;
output [(n-1):0] tbuf_out ;
reg [(n-1):0] tbuf_in ;

assign tbuf_out = en ? tbuf_in : triZ ;

always @ (posedge clk)
tbuf_in = d ;

endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-11

State Machines The Art of Verilog Synthesis
In the following sections, the DRAM interface state machine shown inFigure 7-1is used to
illustrate state machine design using Verilog.

Figure 7-1. DRAM Interface with Refresh

Altera 04

s0

s1

s2

s3

s4

refresh=1'b1

ras1'b1 cas=1'b1 ready=1'b1

cs=1'b0 refresh=1'b1

cs=1'b1

ras1'b1
cas=1'b1
ready=1'b1

ras1'b1
cas=1'b1
ready=1'b1

ras1'b0 cas=1'b0 ready=1'b0

ras1'b0 cas=1'b0 ready=1'b0

ras1'b0 cas=1'b0 ready=1'b0

cs=1'b1 refresh=1'b0

ras1'b0 cas=1'b1 ready=1'b0

cs=1'b0

ras1'b1 cas=1'b0 ready=1'b0
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-12

The Art of Verilog Synthesis State Machines
Moore Machines

An example of a Moore machine is:

module moore (clk, cs, refresh, ras, cas, ready) ;
input clk, cs, refresh ;
output ras, cas, ready ;

parameter /* exemplar enum ee1 */ s0 = 0, s1 = 1, s2 = 2,
s3 = 3, s4 = 4 ;
reg [2:0]/* exemplar enum ee1 */ present_state ;
reg ras, cas, ready ;

always @ (posedge clk)
begin

case (present_state)
s0 : begin

if (refresh)
present_state = s3 ;

else if (cs)
present_state = s1 ;

else
present_state = s0 ;

end
s1 : begin

present_state = s2 ;
end

s2 : begin
if (~cs)

present_state = s0 ;
else

present_state = s2 ;
end

s3 : begin
present_state = s4 ;

end
s4 : begin

present_state = s0 ;
end
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-13

State Machines The Art of Verilog Synthesis

oding

the
the

. The

d is
Note: Theexemplar enum ee1 directive is added to the Moore machine example. This
directive indicates thatpresent_state is an enumerated type. This directive allows
LeonardoSpectrum to automate the state machine encoding. You can then select the enc
for your design on the GUI or with coded commands.

There are twoalways blocks in the state machine description. The first is synchronized with
clock clk and describes the state transitions. This block depends on the present state and
inputs. The second is not synchronized, but it reacts immediately if there is a change inv . This
secondalways block describes the functions of the outputs depending on the present state
split into two processes is not absolutely necessary. The same functional behavior can be
generated by merging the two always blocks into one. However, the logic that is generate
somewhat different, as explained below.

Below is exactly the same Moore machine description, but this time it consists of only one
always block. In the first description, the outputsras , cas andready were assigned in an
asynchronous (not clocked) always block as a function ofpresent_state . They therefore

default : begin
present_state = s0 ;

end
endcase

end
always @ (present_state)
begin

case (present_state)
s0 : begin

ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;
end

s1 : begin
ras = 1’b0 ; cas = 1’b1 ; ready = 1’b0 ;

end
s2 : begin

ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;
end

s3 : begin
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
s4 : begin

ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;
end

default : begin
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;

end
endcase

end
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-14

The Art of Verilog Synthesis State Machines

rated

of

nd
fter
, and
appear as purely combinational logic. In the description below, the same outputs are gene
in a clocked always block. Therefore, the outputsras , cas andready appear at the Q-output of
flip-flops with the combinational logic computing the value of these signals at the D-inputs
the same flip-flops.

The subtle differences between the two descriptions result in trading off timing behavior a
logic circuitry. The first description builds a circuit where the outputs ripple through logic a
the clock edge. In the second description, the outputs change glitch-free at the clock-edge
are stable immediately after that, but at the cost of an additional flip-flop for each output.

module moore_example_2 (clk, cs, refresh, reset, ras, cas, ready)
;
input clk, cs, refresh, reset ;
output ras, cas, ready ;

parameter /* exemplar enum ee1 */ s0 = 0, s1 = 1, s2 = 2, s3 = 3,
s4 = 4 ;

reg [2:0] /* exemplar enum ee1 */ present_state ;
reg ras, cas, ready ;

always @ (posedge clk or posedge reset)
begin

if (reset) // asynchronous reset
begin

present_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
else
begin

case (present_state)
s0 :

if (refresh)
begin

present_state = s3 ;
ras = 1’b1; cas = 1’b0 ; ready = 1’b0 ;

end
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-15

State Machines The Art of Verilog Synthesis
else if (cs)
begin

present_state = s1 ;
ras = 1’b0; cas = 1’b1 ; ready = 1’b0 ;

end
else
begin

present_state = s0 ;
ras = 1’b1; cas = 1’b1 ; ready = 1’b1 ;

end
s1 :

begin
present_state = s2 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
s2 :

begin
if (~cs)
begin

present_state = s0 ;
ras = 1’b1; cas = 1’b1 ; ready = 1’b1 ;

end
else // cs = 1’b1
begin

present_state = s2 ;
ras = 1’b0; cas = 1’b0 ; ready = 1’b0 ;

end
end

s3 :
begin

present_state = s4 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
s4 :

begin
present_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-16

The Art of Verilog Synthesis State Machines

tputs
w in a

y
hus, in

ll
, on
This example also added an asynchronous reset to the design.

Mealy Machines

So far, we have shown a number of examples of Moore machines. In a Mealy machine, ou
depend on both the present state and the inputs. Below is the state machine again, but no
Mealy machine form. Notice that the behavior changes slightly, since the inputs affect the
outputs immediately, without waiting for the new state to be generated.

In the Moore machine example, it was possible to merge the two processes into one,
synchronized with a clock, since all activity was happening on the clock edge. In this Meal
machine example, however, the outputs are updated even when there is no clock edge. T
this case, it is not possible to merge the two processes into one.

A Mealy machine is, in general, described with two always blocks, where one block does a
combinational functionality and the other just updates the present state with the next state
the clock edge.

default:
begin

present_state = s0 ;
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;

end
endcase

end
end
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-17

State Machines The Art of Verilog Synthesis
This code shows an example of a Mealy machine.

module mealy (clk, cs, refresh, ras, cas, ready) ;
input clk, cs, refresh ;
output ras, cas, ready ;

parameter /* exemplar enum ee1 */ s0 = 0, s1 = 1, s2 = 2, s3 = 3,
s4 = 4 ;

reg [2:0]/* exemplar enum ee1 */ present_state, next_state ;
reg ras, cas, ready ;

always @ (posedge clk)
begin

// always block to update the present state
present_state = next_state ;

end

always @ (present_state or refresh or cs)
begin

// always block to calculate the next state and the outputs
next_state = s0 ;
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;
case (present_state)

s0 : begin
if (refresh)
begin

next_state = s3 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
else if (cs)
begin

next_state = s1 ;
ras = 1’b0 ; cas = 1’b1 ; ready = 1’b0 ;

end
else
begin

next_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
end
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-18

The Art of Verilog Synthesis State Machines

y

value

erve

es:
Combinational loops can be generated easily (and are in most cases unwanted) in a Meal
machine description. If nothing is assigned to a signal in one or more cases (for instance
because you do not care what the value is going to be), Verilog semantics require that the
of the signal is preserved. In an asynchronizedalways block as the one shown above, this
means that synthesis must generate a combinational loop or a level-sensitive latch to pres
the value.

Issues in State Machine Design

This section discusses several issues regarding the design of synthesizable state machin

• State encoding

• Onehot encoding

• Initialization of the state machine

s1 : begin
next_state = s2 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
s2 : begin

if (~cs)
begin

next_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
else
begin

next _st ate= s2 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
end

s3 : begin
next_state = s4 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
s4 : begin

next_state = s0 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
endcase

end
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-19

State Machines The Art of Verilog Synthesis

ne

ding

e

• Power-up conditions

• Semantics of the case statement

State Encoding

States must be explicitly specified by the user. This can be done by explicitly using the bit
pattern (e.g.,3’b101), or by defining a parameter (e.g.,parameter s3 = 3’b101) and using
the parameter as the case item.

Onehot Encoding

The recommended method to implement a onehot state machine is to set the state machi
variable to an enumerated type with theenum pragma. You can review this method in the
previous Mealy and Moore machine examples in this chapter. Then you can use the enco
option or pragma to set the state machine encoding toonehot .

The next Verilog example description is for a onehot encoded state machine with the sam
functionality as shown in the previous Mealy and Moore machine examples. This Verilog
example allows you to explicitly encode the state machine as onehot.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-20

The Art of Verilog Synthesis State Machines
module one_hot_mealy (clk, cs, refresh, reset, ras, cas, ready) ;
input clk, cs, refresh, reset ;
output ras, cas, ready ;

reg [4:0] present_state, next_state ;
reg ras, cas, ready ;

always @ (posedge clk)
begin

// always block to update the present state
if (reset)

present_state = 5’b00001 ;
else

present_state = next_state ;
end

always @ (present_state or refresh or cs)
begin

// always block to calculate the next state and the outputs
next_state = 5’b00000 ;
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;

if (present_state[0])
begin

if (refresh)
begin

next_state = 5’b01000 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
else if (cs)
begin

next_state = 5’b00010 ;
ras = 1’b0 ; cas = 1’b1 ; ready = 1’b0 ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-21

State Machines The Art of Verilog Synthesis

nly
ry
Some key points from this onehot state machine are:

• Thecase statement should not be used for onehot state machine design. When the
casex statement is used for state comparisons, the comparisons must be done on o
one bit of the state vector. If the whole vector is used for comparison, then full bina
encoding logic is synthesized. Also, thecase statement needs to be compiled as
parallel_case .

end
else
begin

next_state = 5’b00001 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
end

if (present_state[1])
begin

next_state = 5’b00100 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
if (present_state[2])
begin

if (~cs)
begin

next_state = 5’b00001 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
else
begin

next_state = 5’b00100 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
end
if (present_state[3])
begin

next_state = 5’b10000 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
if (present_state[4])
begin

next_state = 5’b00001 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
end
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-22

The Art of Verilog Synthesis State Machines

ot

tate
eset
the

up in
l that
nder

riable

lways

ate.
to be

hes

larger.
fact

rovide

one
nt

ch
o be
• Theelse if construct should not be used to do the state comparisons, since that
introduces additional constraints on the values of each state. Usingelse if means that
this code is only entered if the all previous conditions are false. In the case of oneh
encoding, it is certain that all previous conditions are false already.

This state machine description works fine, as long as the machine can never appear in a s
with more than one’1’ in the state vector. In order to assure that condition, the need for a r
becomes inevitable in the one-hot case. The use of resets is discussed in greater detail in
next section.

Initialization and Power-Up Conditions

In synthesis, if the total number of states is not a power of two, the state signal can power-
a state that has not been defined, if binary encoding is used. In this situation, it is essentia
the Verilog description does an assignment to the output variables and the state variable u
all conditions.

This can be done in two ways:

• Do a default assignment to the outputs and state variable before thecase statement that
updates the state machine. This method is used in the first Moore and the Mealy
machine examples from the previous sections. It assures that outputs and state va
always get a value assigned regardless of the state of the state machine.

• Do the default assignment in thedefault clause of thecase statement, as was shown in
the second Moore machine example. This has the same effect; outputs and states a
get a value regardless of the state of the machine.

If you do not do a default assignment, the state machine could power-up in a undefined st
Verilog semantics require that if there is no assignment to a signal, the previous value has
preserved. In case the state transitions are defined in an asynchronous always block, latc
would be generated by the synthesis tools to preserve the state value.

If onehot or another state encoding is used, the number of undefined states could be even
Consider that in onehot encoding, the specification of the state machine has to rely on the
that only one single state bit of the state vector is 1. That means that the designer has to p
a special feature that takes care of the power-up conditions.

One possibility might be to include a special detection function that sets the state to a valid
the moment it occurs in a invalid one. However, it would require too much logic to impleme
this functionality, making the use of one-hot encoding unattractive. In most cases, it is mu
more cost effective to include the possibility of a reset function. The reset can be defined t
synchronous or asynchronous, depending on what you want.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-23

Arithmetic and Relational Logic The Art of Verilog Synthesis

ut

blem
es

of the
, the
Arithmetic and Relational Logic
This section gives an overview of how arithmetic logic is generated from Verilog, what the
synthesis tools do with it and how to avoid getting into combinational explosion with large
amounts of arithmetic behavior.

In general, logic synthesis is very powerful in optimizing random combinational behavior, b
has problems with logic which is arithmetic in nature. Often special precautions have to be
taken into consideration to avoid ending up with inefficient logic or excessive run times.
Alternatively, macros may be used to implement these functions.

The synthesis tools support the operators “+”, “ - ”, “ ==”, “ != ”, “ <”, “ >”, “ >>”, “ <<”, “ * ”,“ / ”,
“<=”, and “>=”.

If you use these operators to calculate compile time constants, there is no restriction or pro
in using them. For example, the following division does not result in a any logic, but replac
signalfoo with a constant 3’d133 .

If you are not working with constant operands, arithmetic logic is generated.

The operator “+” generates an adder. The number of bits of the adder depends on the size
operands. If you use integers, a 32 bit adder is generated. If you add vectors and integers
size of the adder is defined to the range of the vector in bits. For example:

generates a 32-bit adder but:

...
integer largest ;
integer divider ;
assign largest = 800 ;
assign divider = 6 ;
assign foo <= largest / divider ;
...

...
integer a, b, c ;
assign c = a + b ;
...

...
input [7:0] a ;
output [7:0] c ;
integer b ;
assign c = a + b ;
...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-24

The Art of Verilog Synthesis Arithmetic and Relational Logic

e

fic) is

o

ple

o
e.

trum
.
d by

ll to

e

ally
generates an 8-bit adder.

If one of the operands is a constant, initially a full-sized adder is still generated but logic
minimization eliminates much of the logic inside the adder because half of the inputs of th
adder are constant.

The operator “- ” generates a subtracter. Same remarks as with the “+” operator.

The operator “* ” generates a multiplier. Multiplication by a constant power of two is
implemented as a shift operation. In all other cases ModGen (generic or technology speci
required to implement the multiplier.

The operator “/ ” generates a divider. Only division by a power of two is supported, hence n
logic here, only shifting the non-constant operand.

The operators “==”, “ != ”, “ <”, “ >”, “ >>”, “ <<”, “ <=”, and “>=” generate comparators with the
appropriate functionality. Same remarks apply as for the “+” operator.

• Operations on integers are done in twos-complement implementation.

All arithmetic behavior is translated into logic functions and is part of the logic
optimization process. The result is that depending on area and timing criteria and
constraints set, the final logic circuit can include, for example, carry lookahead or rip
carry adder implementation. If the design is getting large, run-time and memory
requirements increase rapidly.

Some large designs can run forever without any improvement, if any solution is
produced at all. The reason is that the logic synthesis optimization algorithms try to
many possible circuit implementations from the exponentially growing search spac
Good design practices are needed to help avoid this problem.

Module Generation

When arithmetic and relational logic are used for a specific Verilog design, LeonardoSpec
provides a method to synthesize technology specific implementations for these operations
Generic modules (for bit-sizes > 2) have been developed for many of the CPLDs supporte
LeonardoSpectrum to make the most efficient technology specific implementation for
arithmetic and relational operations. You can use either batch mode or the interactive she
load a library.

Use the batch mode-modgen=<modgen_library> option to include a module generation library
of the specified technology and infer the required arithmetic and relational operations of th
required size from a design.

Use the interactive shellmodgen_read <modgen_library> command to load the module
generation library into the HDL database. Since these modules have been designed optim
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-25

Arithmetic and Relational Logic The Art of Verilog Synthesis

less

se

alue
for a target technology, the synthesis result is, in general, smaller and/or faster and takes
time to compile. You may define your own module generator for a specific technology.

Resource Sharing and Common Subexpression
Elimination

LeonardoSpectrum automatically does CSE. For the following example, only one adder(a+b)
is created. The adder is used for both theif conditions. For bigger expressions user need to u
parentheses properly to direct the synthesis tool for CSE, e.g.,y = a+(b-c) , z = d+(b-c) , v is
shared. ***

Comparator Design

Applications may involve a counter that counts up to an input signal value, and when that v
is reached, some actions are needed and the counter is reset to 0.

...
reg a, b, c, d ;

always @ (a or b)
begin

if (a+b == c) //This adder will be shared
...

else if (a+b == d) // with this one.
...

else
...

end ;
...

...
begin

if (count == input_signal)
...
count = 0 ;

else
count = count + 1 ;

end ;
...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-26

The Art of Verilog Synthesis Technology-Specific Macros

ter to

and

rget
this

acros

rd
f the
the

your
to
u want
utput
ing to

ute
In this example LeonardoSpectrum builds an incrementer and a full-size comparator that
compares the incoming signal with the counter value. It is usually better to preset the coun
the input_signal and count down, until zero is reached.

Now, one decrementer is needed plus a comparison to a constant (0). Since comparisons to
constants are a lot cheaper to implement, this new behavior is much easier to synthesize,
results in a smaller circuit.

Even better results can be obtained with the use of hard macros and soft macros of the ta
technology, as well as the use of hierarchy in the design. The following two sections explain
in more detail.

Technology-Specific Macros
In many cases, the target technology library includes a number of hard macros and soft m
that perform specific arithmetic logic functions. These macros are optimized for the target
technology and have high performance.

With LeonardoSpectrum, it is possible to use component instantiation of soft macros or ha
macros in the target technology. An added benefit is that the time needed for optimization o
whole circuit can be significantly reduced since the synthesis tools do not have to optimize
implementation of the dedicated functions any more.

Suppose you want to add two 8 bit vectors, and there is an 8 bit adder macro available in
target technology. You could use the “+” operator to add these two vectors. The alternative is
define a component that has the same name and inputs and outputs as the hard macro yo
to use. Instantiate the component in your Verilog description and connect the inputs and o
to the their appropriate signals. The synthesis tools instantiate the hard macro without hav
bother with the complicated optimization of the internal logic implemented by the macro.

This speeds up the optimization process considerably. In the netlist produced by
LeonardoSpectrum, the macro appears as a “black box” that the downstream place and ro
tools recognize.

...
begin

if (count == 0)
...
count = input_signal ;

else
count = count - 1 ;

end ;
...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-27

Synthesis Directives The Art of Verilog Synthesis

y (for

e
there

the

n

If your arithmetic functions cannot be expressed in hard macros or soft macros immediatel
instance if you need a 32 bit adder, but only have an 8 bit adder macro), you could write a
Verilog description that instantiates the appropriate number of these macros.

Synthesis Directives

parallel_case and full_case directives

parallel_case andfull_case directives are allowed as synthesis directive on case by cas
basis. LeonardoSpectrum detects the true full and parallel cases automatically. However,
are cases (like onehot encoded state machine) that are not inherently parallel/full, but the
environment guarantees that the case statement is parallel and/or full. In such a condition
following two synthesis directives are very useful.

translate_off and translate_on directives

translate_off andtranslate_on synthesis directives are allowed to comment out a portio
of code that you may want to retain for some purpose other than synthesis.

input [3:0] inp_state;
// example of onehot encoded machine
case (1'b1) // exemplar parallel_case full_case

inp_state[0]:
inp_state[1]:
inp_state[2]:
inp_state[3]:

endcase

// code for synthesis
// exemplar translate_off
$display (.....); // not for synthesis
// exemplar translate_on
// code for synthesis
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-28

The Art of Verilog Synthesis Synthesis Directives

nsitive

es;
uts

ects

or
other

other
jects.

uch

e

enum directive

The enum synthesis directive is supported for user convenience when trying out different
encoding on a state machine. With the synthesis directive, the synthesis tool becomes se
to the global state encoding switch (-encoding), and the enumerated values are encoded
according to the setting of that option (onehot , twohot , gray , binary , random , or auto).

Using theenum synthesis directive, a set of parameters can be treated as enumerated valu
resources like wire and reg can be declared as that enumerated type. The synthesis tool p
some restrictions on these enumerated types. Elements are allowed with enumerated obj
areas in the following instances:

In case statements: The enum type of case expression should match with the case tags. F
comparison of the enumerated types with each other, assigning enumerated types to each
(type should match).

These objects are treated as strongly typed so they cannot be mixed with the object of any
type. Any boolean or arithmetic operations are considered to be in error for enumerated ob
The synthesis tool gives an appropriate error when any one of these rules is violated. In s
cases, you may not use theenum synthesis directive.

The encoding style of the enumerated objects can be selected from boolean (default),
onehot , twohot , gray , random , or auto using the global-encoding option on the synthesis
tool mainline, or using the state encoding selection on the Verilog input options dialog of th
user interface.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-29

Synthesis Directives The Art of Verilog Synthesis

tic
d type

iciency

nce
he
State andS0, S1, S2, S3 are ofenum type ee1. They cannot be used for any boolean or arithme
operation. Bit or port select from state or its values is also considered an error. Enumerate
module ports are not allowed.

attribute directive

The user can set some simple attributes on signals/instances to enhance the synthesis eff
of the Exemplar synthesis tool. For example, by setting themodgen_select attribute to
fastest on a signal on a critical path of a design, the user can improve the timing performa
of the design.Note: An attribute can only be set on an object after declaration of the object. T
synthesis of this directive is as follows:

// exemplar attribute <object_name> <attribute_name> <attribute_value>

module state_mc (clk, reset, o, i1, i2, i_state);
input clk, reset, i1, i2;
output o, i_state;
reg o;
parameter [1:0] /* exemplar enum ee1
*/S0=1,S1=2,S2=3,S3=0;
reg [1:0] /* exemplar enum ee1 */ state;
assign i_state = (state == S1 | state == S3); //
legal.
always @ (posedge clk or posedge reset)
if (reset) begin

o = 0;
state = S0; // Note state = 1, will cause a type

mismatch error
end
else

case (state) // No need of full and parallel case
S0: begin o = i1; state = S1; end
S1: begin o = ~i1; state = S2; end
S2: begin o = i2; state = S3; end
S3: begin o = ~i2; state = S0; endNote case tag

0: would cause type
mismatch error
endcase
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-30

The Art of Verilog Synthesis Synthesis Directives

tiple
Encoding Directive

This directive can be used to control the encoding of the state machines described by mul
“@ posedge clk ” statements within analways block (implicit state machine).

// exemplar encoding onehot|twohot|binary|gray|random|auto

The encoding variable determines how LeonardoSpectrum encodes enumerated types.
Moreover, the encoding variable determines how LeonardoSpectrum implements state
machines with an enumerated type state vector.

The default setting on the GUI or on the command line is auto. The auto setting allows
LeonardoSpectrum to select the encoding on a case-by-case basis.

//example
module expr (a, b, c, out1, out2);
input [15:0] a, b, c;
output [15:0] out1, out2;

assign out1 = a + b;
assign out2 = b + c;

// exemplar attribute out1 modgen_sel fastest
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-31

Synthesis Directives The Art of Verilog Synthesis
//example
module encoding_example (clk, clk1, i1, i2, 0, i3,
i4);
input clk1, clk;
input i1, i2, i3, i4;
output o
reg o;

always @(posedge clk)
begin
// exemplar encoding binary
o = 0;
while (1)
begin
if (i1 == i2) begin
@ (posedge clk);
o = i3;
end
else begin
@ (posedge clk);
o = i4;
end
end
end
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d7-32

t an
ructs
ts

ed
tain a

ing
e
and
our

or has
is as

ve
most

ll,
Chapter 8
Verilog and Synthesis of Logic

Verilog is a language that has been developed for simulation purposes. Synthesis was no
issue in the development of the language. As a result, there are a number of Verilog const
that cannot be synthesized. There has been very little written that explains which construc
cannot be synthesized into logic circuits and why.

This chapter provides explanations on why certain Verilog constructs cannot be synthesiz
into logic circuits and what changes have to be made to reach the intended behavior to ob
synthesizable Verilog description.

Some obvious restrictions of the language are first presented, followed by a list summariz
Verilog syntax and semantic restrictions for the Exemplar synthesis tools. In addition, som
guidelines are presented that should enable you to write Verilog that is easy to synthesize
give you a feeling for synthesis complexity problems you might introduce when you write y
Verilog design.

Comparing With X and Z
Consider the Verilog modeling case where an if clause should be entered if a part of a vect
a particular value. The rest of the vector does not really matter. You might want to write th
follows:

The user intention is to do a comparison to001 (the right most three bits) and forget about the
left three bits. However, Verilog defines comparison on vectors as theANDof comparison of
each individual element. Also, comparison of two elements is only true if both elements ha
exactly the same value. This means that in order for this condition to be true, the three left
bits have to be'X' . But in logic synthesis, a bit can only be'0' or '1' , so the condition is
always be false. In fact, this condition is not doing what was intended for simulation as we
since if any of the left most three bits does not have the value'X' explicitly, the result is false.

if (vect == 6’bXXX001) begin ...
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 8-1

Variable Indexing of Bit Vectors Verilog and Synthesis of Logic

le

one

hand
ling.
However, comparison to'X' is allowed using thecasex construct. This is implemented in the
following manner:

In this case, only the three least significant bits of vect are compared to"001" . The comparison
ignores the three most significant bits.

Variable Indexing of Bit Vectors
LeonardoSpectrum supports variable indexing of a vector. The limitation is that only variab
indexing of the form ’bit select’ is supported. Or more specifically, variable indexing of the
form ’part select’ is not supported because it is not a synthesizable construct.

The semantics of variable indexing varies depending on whether the variable indexing is d
on the left hand side of an assignment or on the right hand side of the assignment. The
right-hand side variable indexing generates a multiplexer controlled by the index. The left-
variable indexing generates a de-multiplexer controlled by the index. set of decoders enab
The following example shows both examples.

casex (vect)
6’bXXX001 : <statement> ;

endcase

module tryit (input_bus, in_bit, control_input, output_bus,
out_bit);
input [3:0] input_bus ;
input [1:0] control_input ;
input in_bit ;
output [3:0] output_bus ;
output out_bit ;

reg [1:0] control_input ;
reg [3:0] input_bus, output_bus ;
reg in_bit, out_bit ;

always @ (control_input or input_bus or in_bit)
begin

out_bit = input_bus [control_input] ;
output_bus [control_input] = in_bit ;

end
endmodule
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d8-2

Verilog and Synthesis of Logic Syntax and Semantic Restrictions

ich
Syntax and Semantic Restrictions
This section provides a summary of the syntax and semantic restrictions of the
LeonardoSpectrum Verilog HDL parser.

Unsupported Verilog Features

• UDPprimitives

• specify block

• real variables and constants

• initial statement

• tri0 , tri1 , tri1 , tri1 , tri1 , net types

• time data type

• Named events and event triggers

• The following gates:pulldown , pullup , nmos, mmos, pmos, rpmos , cmos, rcmos , tran ,
rtran , tranif0 , rtranif0 , tranif1 , rtranif1

• wait statements

• Parallelblock , join andfor .

• System task enable and system function call

• force statement

• release statement

• Blocking assignment with event control

• Named port specification (not to be confused with passing arguments by name, wh
is supported)

• Concatenation inport specification

• Bit selection in port specification

• Procedural assign and de-assign

• Supported Verilog Features
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 8-3

Syntax and Semantic Restrictions Verilog and Synthesis of Logic

ion.
• Edge triggers on sensitivity list must be single bit variable, or array indexing express

• Indexing of parameters is not allowed.

• Loops must be bounded by constants or contain (@ posedge clk) statement.

• Supported Verilog Features

• Delay and delay control.

• ’vectored’ declaration.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d8-4

re

and

s an

o

ation

for
Chapter 9
Module Generation

Arithmetic and relational logic, commonly known as data path logic, has traditionally been
difficult to synthesize with logic synthesis software. This is especially true for FPGAs, whe
each target technology has a different way to optimally utilize resources. Introduction

Exemplar Logic’s module generation capability provides VHDL and Verilog HDL designers
with a mechanism to overload data path operators, such as “+”, “-” and “>”, with
technology-specific implementations.

Module generation provides a mechanism that matches behavioral operators like “+”, “-”,
“>”, with pre-designed implementations. This allows designers to describe logic in a purely
behavioral fashion, while making optimal use of technology-specific hard or soft macros. A
example, consider the following VHDL statement:

When implementing this VHDL statement in an FPGA architecture, designers would like t
utilize vendor-provided adder hard macros, dependent on the size ofn.

In HDLs, the user can explicitly instantiate a desired component (using component instanti
in VHDL or module instantiation in Verilog).

Three drawbacks exist with using component/module instantiation:

• The design methodology is no longer behavioral.

• The HDL source becomes technology dependent.

• Component instantiation is not allowed in operator or function definitions.

However, if neither component/module instantiation nor module generation is used,
LeonardoSpectrum generates logic without any knowledge of an optimal implementation
the target technology. This typically produces sub-optimal results.

signal a, b, s : std_logic_vector(n downto 0);
s <= a + b;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-1

Module Generation

logic
rator

DL
pported
Module generation solves this problem by matching certain data path operators with
pre-designed implementations from a side library. Whenever a supported operator is
encountered in the source design, a technology-specific module generation library is consulted
for a matching implementation. If an implementation is found, it is used in the network. If a
technology dependent implementation is not found, the synthesis tools default to a generic
implementation which is applicable for a CMOS gate array implementation and for the ope
(ripple carry for the above adder).

Figure 9-1shows the general flow of data in the module generation environment. After the H
source code is successfully parsed, it is passed on to an inference engine that matches su
operators (addition) with preferred implementations in the module generation library.

Figure 9-1. LeonardoSpectrum Module Generation Environment

HD L source
code

HD L parser

m odule

gener icsm odule gener ation
inference engi ne

synt hesi s,
opt im izat ion,
and m apping

FPG A
netlist

m odule
gener ation

library
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d9-2

Module Generation
As examples of the benefits ofModule Generation, Figure 9-2presents the average area
reduction achieved when Module Generation is used for synthesis targeting FPGAs, while
Figure 9-3presents the average delay reduction achieved.

Figure 9-2. Using Module Generation Results in Area Reduction

Figure 9-3. Using Module Generation Results in Delay Reduction

0 10 20 30 40 50

0

20

40

60

80

100

Width (bits)

A
re

a
R

ed
uc

tio
n

(%
)

Altera 06

0 10 20 30 40 50

0

20

40

60

80

100

Width (bits)

D
el

ay
 R

ed
uc

tio
n

(%
)

Altera 07
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-3

Using Module Generation Module Generation
Using Module Generation
This chapter focuses on usingModule Generationfor the technologies that are supported in
LeonardoSpectrum.

Supported Technologies

Performance information for the module generators are presented in theLeonardoSpectrum
Synthesis and Technology Manual.

Supported Operators

The following operations are recognized by LeonardoSpectrum for matching with module
generation libraries:

Verilog VHDL ’87 Operation

"+" "+" addition

"-" "-" binary subtraction, unary
negation

"+ 1" "+ 1" increment

"- 1" "- 1" decrement

"==" "=" equal

"!=" "/=" not equal

">" ">" greater than

"=>" "=>" greater than or equal

"<" "<" less than

"<=" "<=" less than or equal

"*" "*" multiplication

"/" "/" division

N/A "**" power

"%" "mod" modulo

N/A "rem" remainder
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d9-4

Module Generation Using Module Generation

ed)

al

e is
• From VHDL, LeonardoSpectrum recognizes these operations for operators on the
predefined typeinteger . It also recognizes these operations from operators for the
bit_vector andstd_logic_vector types, as long as the packageexemplar or
numeric_std package is included with ause clause.

• For Verilog HDL, LeonardoSpectrum recognizes these operations from all (predefin
supported operators in the Verilog HDL language.

Counters and RAMs

LeonardoSpectrum can recognize counter and RAM behavior in a VHDL or Verilog HDL
description and infer module generators. Counters are positive edge-triggered with option
clock enable and/or count enable, asynchronous clear and/or set, synchronous clear, and
synchronous load. Up, down, and up-down counters are supported. The following exampl
recognized as an 8-bit loadable down-counter with asynchronous clear and clock enable:

N/A "abs" absolute value

Verilog VHDL ’93 Operation

">>" "sra" shift right logical

"<<" "sla" shift left logical

N/A "sra" shift right arithmetic

N/A "sla" shift left arithmetic

N/A "rol" rotate left

"!=" "ror" rotate right

">" ">" greater than

"=>" "=>" greater than or equal

"<" "<" less than

"<=" "<=" less than or equal

"*" "*" multiplication

"/" "/" division

N/A "**" power

Verilog VHDL ’87 Operation
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-5

Using Module Generation Module Generation

put
AM
s use a
Example

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity cnt_dn_ac_sl_en is
port (clk, clk_en, aclear, sload: in std_logic;

data: in std_logic_vector(7 downto 0);
q: out std_logic_vector(7 downto 0));

end cnt_dn_ac_sl_en;

architecture ex of cnt_dn_ac_sl_en is
signal q_int: std_logic_vector(q'range);

begin
process (clk, aclear)

begin
if (aclear = '1') then

q_int <= (q_int'range => '0');
elsif (clk'event and clk'last_value = '0' and clk = '1') then

if (clk_en = '1') then
if (sload = '1') then

q_int <= data;
else

q_int <= q_int - "1";
end if ;

end if ;
end if ;

end process ;
q <= q_int;

end ex;

Counter and RAM Inferencing and Module Generation

There are two basic types of RAM Module Generators: a single-port RAM with separate in
and output data lines, and a single-port RAM with bidirectional data lines. Both of these R
types support synchronous or asynchronous read and write operation. Synchronous write
positive edge-triggered clock to latch the write-enable, address, and data signals. The
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d9-6

Module Generation Using Module Generation

ered
s

gen
inferencing process distinguishes between RAMs that perform the read operation with an
address that is clocked or not clocked with the write clock.

The RAM output signals may also be latched by the same or a different positive edge-trigg
clock. The following two VHDL examples demonstrate the difference between synchronou
RAMs that do or do not clock the read address with the write clock. The first example,
ram_example1 , does clock the read address, while the second example,ram_example2 ,
does not clock the read address.

Most technologies only support one of these types. In addition, particular technology Mod
libraries may not contain module generators for all types of RAMs recognized by
LeonardoSpectrum.

Example 1

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity ram_example1 is
port (data: in std_logic_vector(7 downto 0);

address: in std_logic_vector(5 downto 0);

we, inclock, outclock: in std_logic;

q: out std_logic_vector(7 downto 0));

end ram_example1;

architecture ex1 of ram_example1 is
type mem_type is array (63 downto 0) of

std_logic_vector (7 downto 0);

signal mem: mem_type;

begin
l 0: process (inclock, outclock, we, address) begin

if (inclock = '1' and inclock'event) then

if (we = '1') then

mem(evec2int(address)) <= data;

end if ;

end if ;

if (outclock = '1' and outclock'event) then

q <= mem(evec2int(address));

end if ;

end process ;

end ex1;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-7

Using Module Generation Tools Module Generation
Example 2

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity ram_example2 is
port (data: in std_logic_vector(7 downto 0);

address: in std_logic_vector(5 downto 0);

we, inclock, outclock: in std_logic;

q: out std_logic_vector(7 downto 0));

end ram_example2;

architecture ex2 of ram_example2 is
type mem_type is array (63 downto 0) of

std_logic_vector (7 downto 0);

signal mem: mem_type;

signal address_int: std_logic_vector(5 downto 0);

begin
l0: process (inclock, outclock, we, address) begin

if (inclock = '1' and inclock'event) then

address_int <= address;

if (we = '1') then

mem(evec2int(address)) <= data;

end if ;

end if ;

if (outclock = '1' and outclock'event) then

q <= mem(evec2int(address_int));

end if ;

end process ;

end ex2;

Using Module Generation Tools
This section discusses using module generation tools with LeonardoSpectrum.

Specifying Module Generation Library

Module Generationis invoked by including a module generation library during logic synthesis.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d9-8

Module Generation Using Module Generation Tools

rget
pile.

dule

ill

logy
rary

s.

ng
t

• Use the-modgen= modgen_librarybatch mode option to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a user VHDL design.

• Use themodgen_read modgen_librarycommand to load the module generation library
into the HDL database. Since these modules have been designed optimally for a ta
technology, the synthesis result is smaller and/or faster and takes less time to com

• The module generation library can have any name, without an extension. All the mo
generator files provided by Exemplar Logic are namedlib_base_name.vhd, where
lib_base_nameis the technology library base name. These files can be found in the
directory$EXEMPLAR/data/modgen . Since the directory is in the search path for
the synthesis tools, if you specify a module generation library, the synthesis tools w
read the file with the matching technology name. These files are encrypted.

• LeonardoSpectrum does not validate the generator. If, for example, an Actel techno
is specified as the target technology, but accidentally a Xilinx module generation lib
is specified, Xilinx macros will appear in the output netlist.

Area/Delay Tradeoff Attributes

Implementations of area and delay tradeoff may vary between module generator package

• Choose batch mode-area or -delay option.

• Choose between smaller and faster implementations with the-area or -delay
options to theoptimize interactive shell command.

Specific implementations can be configured in the VHDL file through attributes on specific
signals. The attributemodgen_sel is used for this purpose.modgen_sel is an attribute of
enumerated typemodgen_select , with four values:smallest , small , fast , fastest .
This attribute controls which implementation of a module generator is used. By default, the
synthesis tools usesmall if the global optimization criteria is-area . The synthesis tools
choosefast if the -delay switch is set. The user can overwrite these defaults by specifyi
the attributemodgen_sel on a target signal or variable that is driven by an expression tha
calls module generators. Here is an example:

type modgen_select is (smallest, small, fast, fastest) ;
attribute modgen_sel : modgen_select ;
signal a,b,c,s : bit_vector (7 downto 0) ;
attribute modgen_sel of s: signal is smallest ;
...
s <= a + b + c ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-9

Using Module Generation Tools Module Generation

lected.

is

ion
on

d,
In this example, for both adders that drives , Module Generationwill choose the smallest
implementation possible. In essence, themodgen_sel attribute is passed to the module
generator inference engine where a different implementation, other than the default, is se

The typemodgen_select and the attributemodgen_sel are declared in the packages
exemplar andexemplar_1164 . Hence, if you use one of these packages, declaring them
not required in the user code.

Disabling Module Generation

Once the-modgen option is specified,Module Generationis enabled for all arithmetic and
relational operators in the design.Module Generationcan be switched off for all operator calls
driving a particular signal, by setting the booleanuse_modgen to FALSE.

In this case, for both adders that drives , Module Generationis disabled and the adders will be
implemented in random logic. DisablingModule Generationfor specific signals or variables
can be useful when large portions of the operators can be eliminated during the boolean
optimization and synthesis process. This often happens for user defined type-transformat
functions, where the operators implement simulation behavior, but for synthesis the functi
should implement a simple set of wires. UsingModule Generationfor such function would
generate a large amount of arithmetic logic when it is not required. The attributeuse_modgen
is defined in theexemplar andexemplar_1164 packages. If one of these packages is use
declaring the attribute is not required in the user code.

Counter and RAM Extraction

Use one of these methods:

• Counters and RAMs are recognized and extracted by default.

• Thepre_optimize interactive shell command with the-extract option can be
executed.

Verilog Usage

Verilog usage ofModule Generationis completely straightforward.Module Generationwill
infer the arithmetic and relational operators from Verilog descriptions and implement them
accordingly.

attribute use_modgen : boolean ;
signal a,b,c,s : bit_vector (7 downto 0) ;
attribute use_modgen of s: signal is FALSE ;
--
s <= a + b + c ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d9-10

Module Generation User-Defined Module Generators

e

of
g

le

is the
n

d for

h (of

is
d the

ke

of the
User-Defined Module Generators
Apart from the module generators that have been developed by Exemplar to support the
standard FPGA technologies, a user can build a module generator. Module generators ar
described in VHDL, regardless of the actual HDL input design language.

User-defined module generators, as opposed to using overloaded functions, allow the use
technology specific macros (with component instantiation) for operators in VHDL or Verilo
HDL.

The Module Generator Boundary

Since all operators in VHDL are defined for various sized vectors and integers, each modu
generator description for a particular operator should be an entity with generics.

Only one generic affects the amount of inputs and outputs that have to be generated. This
integer genericsize . The amount of inputs and outputs generated by a modgen descriptio
should exactly match the amount required bysize . Any discrepancy will be labeled as an
error. Of course, the functionality inside the modgen description is the responsibility of the
modgen description designer. It is relatively easy to let a"+" in VHDL work as a"-" with this
amount of freedom.

Since the function of some operators is defined both for unsigned integers (or vectors) an
signed integers, a boolean genericsigned is supplied to indicate that a signed or unsigned
function needs to be generated.

Refer to Table 9-1 which shows which VHDL operators are supported in theModule
Generationenvironment, which generics are required, how many inputs are needed for eac
the two) parameters of the operator, and how many outputs should be generated.

Note: the genericsigned is not required for arithmetic operations. The reason is that there
no difference between signed and unsigned arithmetic functions if the input parameters an
output all have the samesize , and thus the carry bit is not used. The synthesis tools will ma
sure that this always happens.

In general, the module description should have two input vectors (one for each parameter
operator it represents), and one output vector.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-11

User-Defined Module Generators Module Generation
VHDL’87 Modgen Required # of Input Bits

Operator Module Name Generics par.1 par. 2 # of Output Bits

"+" modgen_add size size size size

"-" modgen_sub size size size size

"-" modgen_umin size size n/a size

"+ 1" modgen_inc size size n/a size

"- 1" modgen_dec size size n/a size

"*" modgen_mult size size size size

"/" modgen_div size size size size

"=" modgen_eq size size size 1 bit

"/=" modgen_ne size size size 1 bit

"<" modgen_lt size, signed size size 1 bit

">" modgen_gt size, signed size size 1 bit

"<=" modgen_le size, signed size size 1 bit

"=>" modgen_ge size, signed size size 1 bit

"**" modgen_power size size size size

"mod" modgen_mod size size size size

"rem" modgen_rem size size size size

"abs" modgen_abs size size n/a size

"sll" sll size size size size

"srl" srl size size size size

"sla" sra size size size size

"sra" sra size size size size

"ror" ror size size size size
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d9-12

Module Generation User-Defined Module Generators

”

e
ols

type

fore

t. The
he
the

t of

T

As an example, the entity VHDL description for a module generator that implements a “<=
operator should look like this:

Below are some important facts to keep in mind when defining module generators:

• The initial assignments to bothsigned andsize are optional. These two generics ar
required for the"<=" operator and therefore are always inferred by the synthesis to
for each call of a"<=" operator in VHDL.

• The types of the ports should represent arrays of bit values or single bit values. The
std_logic_vector for vector types andstd_logic for bit values are advised
because they comply with the IEEE 1164 standard type definitions. Make sure you
include the IEEE 1164 package in your description. Use the following statement be
each new entity:

• The names of the ports can be chosen freely. The associations are order dependen
first input port (x in this example) will be associated with the parameter on the left of t
operator. The second port mentioned in the port interface list will be associated with
parameter on the right of the operator.

• The output port mentioned (there can be only one) will be associated with the resul
the operator function.

• The ’weight’ of the bits in a port which is a vector is also order dependent. The LEF
most bit in the array range definition of the port is the MSB. In this example,x is
defined with a rangesize-1 downto 0 and thereforex(size-1) is MSB, and
x(0) is LSB. If the range would have been defined as(0 to size-1) , x(0) would
have been MSB.

"rol" rol size size size size

entity modgen_le is
generic (

size : integer := 8 ;
signed : boolean := FALSE

) ;
port (

x, y : std_logic_vector (size-1 downto 0) ;
result : out std_logic

) ;
end modgen_le ;

library ieee ;
use ieee.std_logic_1164. all ;

VHDL’87 Modgen Required # of Input Bits
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-13

User-Defined Module Generators Module Generation

the

user.

le

uld

be

NOT
• If signed operation is required (signed is TRUE), theModule Generationenvironment
expects the MSB bit to be the sign bit, and the bit next to it will be the new MSB.

Module Generator Contents

The VHDL entity for a module generator is relatively fixed for each module generator, as
shown in the previous section. This is needed to provide a guaranteed interface between
module generators and VHDL operators they implement.

The contents of the module generators (the VHDL architecture) is completely left up to the
You can use all VHDL constructs as long as they do not violate the VHDL synthesis
restrictions.

Typically, component instantiations of technology specific macros will be used in the modu
generators. Some guidelines should be considered when making module generators:

1. Make sure that the module generator has a definition for each generic ’size’ that co
be used from a user HDL description.

2. The synthesis tools do not check the functionality of the module generator. It would
fairly easy to implement subtractor functionality for themodgen_add module
generator. In that case, each"+" operator in VHDL will build a subtractor circuit. Make
sure you verify the module generators for each generic size they could implement.

3. If you use operators inside a module generator description, the synthesis tools will
try to infer a module generator for these. Instead, the default random-logic
implementation for the operator will be chosen. This prevents infinite recursion from
occurring (module generators calling themselves). It also allows the user to utilize a
specific implementation operator for just a few sizes, and rely on the default
implementation for all others.

Below is an example of a module generator that implements anADDER8hard-macro if the size
of the required adder is between 4 and 8.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d9-14

Module Generation User-Defined Module Generators
library ieee ;
use ieee.std_logic_1164. all ; -- Include IEEE 1164 type

-- definition
library exemplar ;
use exemplar.exemplar_1164. all ; -- Include functions ’extend’, "+"

-- etc.
entity modgen_add is

generic (size : integer) ;
port (x, y : std_logic_vector (size-1 downto 0) ;

o : out std_logic_vector (size-1 downto 0)) ;
end modgen_add ;

architecture exemplar of modgen_add is
-- Declare the Hard Macro
component ADDER8

port (a, b: in std_logic_vector(7 downto 0);
add: in std_logic;
s: out std_logic_vector(7 downt o 0);
ofl: out std_logic);

end component ;
-- Declare internally used signals
signal intern_a, intern_b, intern_o :

std_logic_vector (7 downto 0) ;
constant pwr : std_logic := ’1’ ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-15

User-Defined Module Generators Module Generation
This is the description of a full definition of a module generator that instantiates anADDER8
hard macro (generic name, not from any specific library, used for this example) for adders
between 4 and 8 bits. A default implementation (random logic) is provided for all sizes of
adders that should not generate a hard macro.

Usage

To include a module generator description into use the following:

• Use the-modgen= modgen_librarybatch mode option to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a user VHDL design.

• Use themodgen_read modgen_libraryinteractive shell command to load the module
generation library into the HDL database.

The search path for these files is:

1. The current working directory

2. The$EXEMPLAR/data/modgen directory

--ADDER8 hard macro example (cont.)
begin

l1 : if size>=4 and size <=8 generate
-- Adjust the inputs to the size of the hard macro
intern_a <= extend (x,8) ;
intern_b <= extend (y,8) ;

-- Instantiate the Hard Macro
i1 : ADDER8 port map (a=>intern_a, b=>intern_b,

add=>pwr,
s=>intern_o, ofl=> OPEN) ;

-- For the output :pick-up the LSB bits from the hard macro
o <= intern_o (size-1 downto 0) ;

end generate ;

-- Default "+" for all other sizes :
l2 : if size<4 or size>8 generate
o <= x + y ;
end generate ;

end exemplar ;
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d9-16

Module Generation User-Defined Module Generators

lear
3. The$EXEMPLAR/data directory

Multiple module generator files can be included. If there is an overlap of operators in two
included files, the operator from the last included file will be resolved. In any case, for each
operator resolved, LeonardoSpectrum reports the file that was used. Therefore, it will be c
which operator has been resolved from which modgen file.
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-17

User-Defined Module Generators Module Generation
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d9-18

Index

INDEX
A
alias,2-52
architecture,2-1, 2-2
area/delay trade-off attributes,9-9
arithmetic and relational logic,3-17

advanced design optimization,3-21
comparator design,7-26
module generation,3-19, 7-25
ranged integer,3-21
resource sharing,3-19, 7-26

arithmetic operations,7-29
array type,2-9, 2-19

syntax and semantics,2-19
synthesis issue,2-20

array types,2-9, 2-19, 2-20, 2-23, 2-24, 2-36, 2-
37

assignment statement,2-32
signal,2-32
variable,2-32

attribute,2-37
exemplar predefined attribute,2-38
usage of attribute,2-39
user-defined attribute,2-38
vhdl predefined attribute,2-38

Autologic II, 4-8

B
bidirectional buffer,3-12
binary encoding,2-13
block,2-40
boolean operations,7-29
bus,3-12
bus class,2-46

C
case statement,2-29

automatic full case detection,6-24
automatic parallel case detection,6-25
casex statement,6-26
casez statement,6-26

enum type of case expression,7-29
multiplexer generation,6-23

case statements,6-22
clock

clock enable,3-5
component instantiation,2-46
component/module instantiation,9-1
conditional statement,2-28
configuration declaration,2-2
continuous assignment

net declaration assignment,6-8
statement,6-8

D
data type,6-3

net data type,6-5
parameter data type,6-6

decoder,3-25
design root,4-2
directives

parallel_case and full_case,7-28
translate_off and translate_on,7-28

disable statement,6-27
disabling module generation,9-10

E
Encoding,3-17
encoding style,7-29
entity,2-1
entity and package,4-1

usage,4-4
enum synthesis directive,7-29
enumerated type,2-9, 2-10, 2-11, 2-15, 2-20, 2-

21
exemplar package,4-8

predefined attribute,4-9
predefined function,4-11
predefined procedure,4-15
predefined type,4-9
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d Index-1

INDEX [continued]

Index
F
finding definition of component,4-2
flip-flop, 3-2, 7-2

asynchronous set and reset,7-3
asynchronous sets and reset,3-4
clock enable,3-5, 7-4
predefined procedure,4-16
synchronous set and reset,3-3, 7-3

floating-point types,2-9, 2-17, 2-18, 2-24, 2-37
for loop,2-30
for statement,6-26
function,2-41, 6-29

G
generate statement,2-30
generic

generic list,2-27
size,2-27

gray encoding,2-13

H
HDL source code,9-2

I
I/O buffer,3-7, 7-4

automatic assignment,3-7
component instantiation,3-9, 7-6
manual assignment,3-7, 7-5

IEEE 1076,2-24
IEEE 1076-1993,4-1
IEEE 1164 standard logic,2-36
if-else statement,6-21
integer,2-16
integer type,2-9, 2-16, 2-18, 2-23, 2-24, 2-35

L
latch,3-1, 3-7, 7-1
literal, 2-7
literals

constant values,2-7

loop variable,2-28

M
Mentor Graphics,4-8
module generation

data path logic,9-1
data path operators,9-1
target technology,9-1

module instantiation
parameter override,6-14

multiplexer,3-24

N
net data type

supply net,6-6
wand and wor net,6-6
wire and tri net,6-6

number,6-2

O
object,2-26

array,2-19
array naming,2-20
declared,2-8
elements,2-21
encoding,2-13
enumeration type,2-9, 2-10
generic,2-27
loop variable,2-28
physical type,2-18
port,2-27
record,2-22
signal,2-2, 2-26
variable,2-26, 3-6

operand,6-16
operator,2-34

arithmetic operator,6-17
bit-wise operator,6-18
concatenation,6-19
conditional operator,6-19
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1dIndex-2

Index

INDEX [continued]
logical operator,6-18
reduction operator,6-18
relational and equality operator,6-17
shift operator,6-19
signed and unsigned attribute,6-20

operator overloading,2-37
operators,2-2, 2-8, 2-21, 2-34, 2-35

P
package,2-51
physical type,2-18
physical types,2-9, 2-18
pla,3-25
port,2-27
post-synthesis functional simulation,4-5
predefined flip-flops and latches,3-7
procedure,2-41
processes,2-5

R
random encoding,2-13
record,2-21
record types,2-9, 2-22
register,3-1
reset,7-1
resolution function,2-44
rom,3-25

S
selector,3-24
signal,2-26
specifying module generation library,9-8
state encoding,7-20
state machine,3-13

general state machine description,3-13
issues in state machine design,7-19
Mealy machine,7-17
Moore machine,7-13
power-up and reset,3-16
state encoding,3-17

vhdl coding style for state machine,3-15
statement,2-28

assignment statement,2-32
conditional statement,2-28
generate statement,2-30
loop,2-28
loop statement,2-30
selection statement,2-29

statements,2-2, 2-7, 2-11, 2-25
dataflow environment,2-2
processes,2-5

std_logic,2-25, 2-35, 2-44
subtype,2-22
subtypes,2-23
supported operators,9-4
Synopsys integration and packages,4-7
syntax and semantic restriction,4-17

synthesis tool restrictions,4-17
VHDL language Restriction,4-18

synthesis directives
attribute,7-30
encoding,7-31
translate_off and translate_on,7-28

T
task,6-30
technology-specific macro,3-22
the module generator boundary,9-11
three-state buffer,3-10
type,2-8

array type,2-19
enumeration type,2-9
floating-point type,2-17
IEEE 1076 predefined type,2-24
integer type,2-16
physical type,2-18
record type,2-21
subtype,2-22
type conversion,2-23
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d Index-3

INDEX [continued]

Index
V
variable,3-6
Verilog

module instantiation,9-1
VHDL environment

interfacing with other VHDL tools,4-5

W
while loop,2-30
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1dIndex-4

	Bookcase
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1 Introduction to VHDL Synthesis
	Overview
	VHDL and Synthesis

	Chapter 2 VHDL Language Features
	Entities and Architectures
	Configuration
	Processes

	Literals
	Types
	Enumerated Types
	Syntax and Semantics
	Synthesis Issues

	Integer Types
	Syntax and Semantics
	Synthesis issues

	Floating-point Types
	Syntax and Semantics
	Synthesis Issues

	Physical Types
	Syntax and Semantics
	Synthesis Issues

	Array Types
	Syntax and Semantics
	Synthesis Issues

	Record Types
	Syntax and Semantics
	Synthesis Issues

	Subtypes
	Type Conversions
	IEEE 1076 Predefined Types
	IEEE 1164 Predefined Types

	Objects
	Signals
	Constants
	Variables
	Ports
	Generics
	Loop Variables

	Statements
	Conditional Statements
	Selection Statements
	Loop Statements and Generate Statements
	Assignment Statements

	Operators
	IEEE 1076 Predefined Operators
	IEEE 1164 Predefined Operators
	Operator Overloading

	Attributes
	VHDL Predefined Attributes
	Exemplar Predefined Attributes
	User-Defined Attributes
	Usage Of Attributes

	Blocks
	Functions And Procedures
	Resolution Functions
	Syntax and Semantics
	Synthesis Issues

	Component Instantiation
	Binding a Component
	Option 1 - Using a Default Binding
	Option 2 - Using a Configuration Specification
	Option 3 - Matching a Component Name to a Library Cell
	Option 4 - Creating a Black Box by Omitting the Entity

	Packages
	Aliases

	Chapter 3 The Art of VHDL Synthesis
	Registers, Latches and Resets
	Level-Sensitive Latch
	Edge-Sensitive Flip-Flops
	The Event Attribute
	Synchronous Sets And Resets
	Asynchronous Sets And Resets
	Clock Enable

	Wait Statements
	Variables
	Predefined Flip-flops and Latches

	Assigning I/O Buffers From VHDL
	Automatic Buffer Assignment in Batch Mode
	Manual Assignment Using The BUFFER_SIG Property
	Buffer Assignment Using Component Instantiation

	Three-state Buffers
	Bidirectional Buffers
	Buses
	State Machines
	General State Machine Description
	VHDL Coding Style For State Machines
	Power-up And Reset
	Encoding Methods

	Arithmetic And Relational Logic
	Module Generation
	Resource Sharing
	Ranged Integers
	Advanced Design Optimization

	Technology-Specific Macros
	Multiplexers and Selectors

	Chapter 4 The VHDL Environment
	Entity and Package Handling
	Entity Compiled as the Design Root
	Finding Definitions of Components
	How to Use Packages

	Interfacing With Other VHDL Tools
	VHDL Simulators
	Post-Synthesis Functional Simulation

	Synopsys
	Mentor Graphics

	The Exemplar Packages
	Predefined Types
	Predefined Attributes
	Predefined Functions
	Predefined Procedures
	Flip-flops
	Latches
	Tristate Buses

	Syntax and Semantic Restrictions
	Synthesis Tool Restrictions
	VHDL Language Restrictions
	After Clause Ignored
	Restrictions on Initialization Values
	Loop Restrictions
	Restrictions On Edge-Detecting Attributes (’event)
	Restrictions on Wait Statements
	Restrictions on Multiple Drivers on One Signal

	Example array_pin_number Attribute

	Chapter 5 Introduction to Verilog Synthesis
	Verilog and Synthesis
	Synthesizing the Verilog Design

	Chapter 6 Verilog Language Features
	Modules
	’macromodule’

	Numbers
	Data Types
	Net Data Types
	wire and tri Nets
	Supply Nets
	wand and wor Net Types

	Register Data Type
	Parameter Data Type
	Declaration Local to Begin-End Block
	Array of reg and integer Declaration

	Continuous Assignments
	Net Declaration Assignment
	Continuous Assignment Statement

	Procedural Assignments
	Always Blocks
	Module Instantiation
	Parameter Override During Instantiation of Module
	Defparam Statement
	Example:

	’unconnected_drive’ and ’nounconnected_drive’

	Operators
	Operands
	Arithmetic Operators
	Relational and Equality Operators
	Logical Operators
	Bit-Wise Operators
	Reduction Operators
	Shift Operators
	Conditional Operator
	Concatenation

	‘signed and ‘unsigned Attributes on Operators
	Operator Precedence

	Statements
	If-Else Statements
	Case Statements
	Case Statement and Multiplexer Generation
	Automatic Full Case Detection
	Automatic Parallel Case Detection
	casex Statement
	casez Supported
	’case’ and ’default’ Statements

	for Statements
	Disable Statement
	forever, repeat, while and Generalized Form of for Loop

	Functions and Tasks
	Functions
	Tasks
	Inout Ports in Task
	Access of Global Variables from Functions and Tasks

	System Task Calls
	System Function Calls
	Initial Statement
	Compiler Directives

	Chapter 7 The Art of Verilog Synthesis
	Registers, Latches, and Resets
	Level-Sensitive Latch
	Edge-Sensitive Flip-flops
	Synchronous Sets and Resets
	Asynchronous Sets and Resets
	Clock Enable

	Assigning I/O Buffers from Verilog
	Automatic Assignment Using Chip Mode
	Manual Assignment Using the Control File
	Buffer Assignment Using Component Instantiation

	Tristate Buffers
	Example 1:
	Example 2:
	Example 3:

	Bidirectional Buffers
	Buses
	State Machines
	Moore Machines
	Mealy Machines
	Issues in State Machine Design
	State Encoding
	Onehot Encoding
	Initialization and Power-Up Conditions

	Arithmetic and Relational Logic
	Module Generation
	Resource Sharing and Common Subexpression Elimination
	Comparator Design

	Technology-Specific Macros
	Synthesis Directives
	parallel_case and full_case directives
	translate_off and translate_on directives
	enum directive
	attribute directive
	Encoding Directive

	Chapter 8 Verilog and Synthesis of Logic
	Comparing With X and Z
	Variable Indexing of Bit Vectors
	Syntax and Semantic Restrictions
	Unsupported Verilog Features

	Chapter 9 Module Generation
	Using Module Generation
	Supported Technologies
	Supported Operators
	Counters and RAMs
	Example

	Counter and RAM Inferencing and Module Generation
	Example 1
	Example 2

	Using Module Generation Tools
	Specifying Module Generation Library
	Area/Delay Tradeoff Attributes
	Disabling Module Generation
	Counter and RAM Extraction
	Verilog Usage

	User-Defined Module Generators
	The Module Generator Boundary
	Module Generator Contents
	Usage

	INDEX

