LeonardoSpectrum for Altera
HDL Synthesis Manual

Software Version v2001.1

July 2001

i NENTOR GREFHICE COMPANT

Copyright © 2001 Exemplar Logic, Inc., A Mentor Graphics Company. All rights reserved.

This document contains information that is proprietary to Exemplar Logic, Inc and may be duplicated in
whole or in part by the original recipient for internal business purposes only, provided that this entire notice
appears in all copies. In accepting this document, the recipient agrees to make every reasonable effort to
prevent the unauthorized use of this information.

This document is for information and instruction purposes. Exemplar Logic reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Exemplar Logic to determine whether any changes have been made.

The terms and conditions governing the sale and licensing of Exemplar Logic products are set forth in
written agreements between Exemplar Logic and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of
Exemplar Logic whatsoever.

DISCLAIMER

ALTHOUGH EXEMPLAR LOGIC, INC HAS TESTED THE SOFTWARE AND REVIEWED THE
DOCUMENTATION, EXEMPLAR LOGIC, INC MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS SOFTWARE AND DOCUMENTATION,
ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.

EXEMPLAR LOGIC SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED INIT,
EVEN IF EXEMPLAR LOGIC INC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Exemplar Logic Inc.
880 Ridder Park Drive, San Jose, CA 95131
web site: http://www.exemplar.com
email: support@exemplar.com

TRADEMARKS

Exemplar Logic™ and its Logo are trademarks of Exemplar Logic, Inc. LeonardoSpectrum™,
Leonardolnsight™, TimeCloser™, FlowTabs™, Hdllnventor™, SmartScripts™,P&RIntegrator™,
DesktopASIC™, XlibCreator™, SynthesisWizard™, and MODGEN™ are trademarks of Exemplar Logic,
Inc.; Model Sim/VHDL™, Model Sim™, and V-System/Verilog™ are trademarks of Model Technology,
Inc.; Renoir™, Monet™, and PackagedPower™ are trademarks of Mentor Graphics Corporation.
Verilog® and Verilog-XL® are registered trademarks of Cadence Design Systems, Inc. All other
trademarks remain the property of their respective owners.

http://www.exemplar.com

Table of Contents

TABLE OF CONTENTS

Chapter 1

Introduction t0 VHDL SYNINESISovviiiiiie e 1-1
(@ YT V= PRSPPI 1-1
VHDL @Nd SYNTNESIS covviiiiiii et e et r e e e e et e e e e e et e e e aeeraen 1-2......

Chapter 2

VHDL LanQUAQE FEAIUIES.uiiiii ettt et e e e e e s e e e e e e aba e e eaaae e e eeaneaees 2-1

ENtitieS and ArCRITECIUINEScooeiiieeeeeeeee et e e e e e e e e e e e e eeeaeeeeenm 2:1......
(70T 110 U] =14 0] o SO 2:2
PO CESSES ...t et e e s mmmmmnns 2:5

[(=T = | PP 2-7
1137/ 01U 2-8
ENUMETAted TYPES ..ottt et e et e e e e e e e e e e e e e e e e 2:9........

LY =T o 1< g 1Y 01T TP 2:16..
FloatiNg-POINT TYPES ... ciiiitie et et e e e e e e e e e e e e e e e aaan s 2-17.....
PRYSICAI TYPES ...ttt e e e e e 2:18...
SyNtaxX and SEMANTICSuuuuiiii i e e e e e e e e e e e e e aaeeaeeeaees 8....... 2-1
ATTAY TYPES oottt ettt ettt e e e e e et e e e e e e e e rnenn 2-19.

=TT 0] o I I8/ o1 SRR 2-21...

YU 0] 1] 01 PP 2:22

TYPE CONVEISIONS ...ttt et e e e e e e e e bbb r e e et e e e e e e e e e e aeaeaan e 2:23......
IEEE 1076 PredefiNed TYPeS. ...ttt et et e e e e e e e e e 2-24
IEEE 1164 PredefiNed TYPEScoo oottt e e e e e e 2-24

(@] 0] 1= o1 £ 2-26
Y [= 1P 2-26
(07011153 -1 o | £ T PSPPI 2-26
ValADIES ... e ——— 2-26
0] 4 £ OPPPSP 2-27
(=T 1T TS 2:27
LOOP VariabIes - 2-28..

Y= 10T 1 1= 0 SN 2-28
Conditional STAEMENTSiiiiiiiiiie i e e e e e e bbb 8...... 2-2
SeleCtioN STAEMENTS ..ot 2:29.......
Loop Statements and Generate Stat€mMENTS..........coiiiiriiiiioriiii e 2-30
ASSIgNMENT STALEIMENTSo e e e e e e e e e e aeeeeeeerenannnas 2....... 2-3

(@ 01T = 1 (0] £ TP 2-34
IEEE 1076 Predefined OPeratOrS.........cciieeiiieiee ettt e s e e e e e e e e e e e e e et en e e e e e e e e eeaeeeeees 2-34
IEEE 1164 Predefined OPeratOrS......cccuuuuii ittt e e et e e e e e e aaa s 2-36
OPErator OVEIOAINGuuuueieieiiiieiee ettt e e e e e e e e e e e e e en e 31...... 2-

N L 0T =, 2-37
VHDL Predefined AIDULESoviiieiiie e 2-38
Exemplar Predefined AttrDULES. ... 2-38

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d ii

Table of Contents

TABLE OF CONTENTS [continued]

User-Defined Attributes

.. 38.....2-
Usage Of AtHDULESoveiiiiiei e erninn e e a2 PO aaas 2
2 o o 2SR 2-40
FUNCHIONS AN PrOCEUUIES ..ottt s e e s e e e e e e e e e e e e e e aeearannn s 1. 2-4
RESOIULION FUNCLIONS ...ttt e e e e e e 2:44....
SYNaX 8N SEMEANTICS ..eeeiiiiiiieieie et e e e e e e e e e e bbb eeeeeeeas 4. 2-4
SYNTNESIS ISSUBS ..ttt e et e e e e ee et e e e e e aes e e e e eeses mmms 2:45....
Component INSTANTIALIONoiiiiiii e e e e e e eeaaaas 2:46......
BiNdiNg @ COMPONENTuuiiiiiiiiiiiie ettt e e e e e e e e e e e s 48...... 2
Option 1 - Using a Default BiNAINGooovviiiiiiiicie s a e e e e e 2-49
Option 2 - Using a Configuration SPeCifiCation ... 2-50
Option 3 - Matching a Component Name to a Library Celloooovviiiiiiiiieee 2-51
Option 4 - Creating a Black Box by Omitting the Entitycccoooiiiiiiiiii e, 2-51
P ACKAGES ... e ——— 2:-51
ALTBISES ...ttt e e e e e e e e e e eeeeeeanaas 2-52
Chapter 3
The Art Of VHDL SYNTNESIS ...t e e e a s 3-1
Registers, LatChes and RESEISuuuuiiiiiiiii e 1. 3-
Level-Sensitive LatCh ... 3-1.....
Edge-Sensitive FIP-FIOPS.......ooo e 2. 3
WAL STATEIMENTS ... bbbt r e e e e e e e e e e e e e e e e e e aeeans 3:5....
VaAlTADIES ... e ———— 3-6
Predefined Flip-flops and LAtChEsScoooi i 3-7
AssIgning 1/O BUfers From VHDLouuiii e e 3-7
Automatic Buffer Assignment in BatCh MOeuuiiiiiiiiiiii e 3-7
Manual Assignment Using The BUFFER_SIG Propertycccccooeieiiiiiniiiicciiiiieieeee 3-7
Buffer Assignment Using Component InStantiation.............ccooovviiiiiiiiieciiiiiiis e 3-9
Three-state BUTEISooove e e e e e eees 3:10..
Bidirectional BUfEIS........ooii e e e e e e e e e e 3:-12
B S S .. e et e et e et e e et eee s e nnnnns 3-12
StAtE MACKINES ... et e e e e e e e e e e e e e e e e e e rn s 3-13
General State Maching DESCHPLIONvvvveeiiiieiie it e et e e e e e e e e e e eeeaeeeraeneennaa 3-13
VHDL Coding Style For State MacChiNeSccccuiiiiiiiiiiiiiiieieie e 3-15

POWET-UP AN RESEL ...cuiiiiiiiie ettt e e e e e e e e et e e e e s e e e eeeaaaaeeees) 6....... -

3-1
ENCOdING METNOASuiiii e e e e eaanan 17, 3
Arithmetic ANd RelatiONal LOGICuuiiiiiiiiiiiiieiee ettt 3-17
MOAUIE GENETALION ...t e :19...... 3
RESOUICE SNAING et e e e e et e e e e e e e e eeeeemn 3:-19......
RANGE INTEGETS ...ttt e e e e e e e e e e e e e e s 3:21....
Advanced DesSign OptiMIZaAtIONuuuuiiiiie e e e e e e e e e 3-21
TechnNOlogy-SPECITIC MACIOSooeiiiiiiiiii ittt e e e e e e e e e e e e e aeeeeeennnnn s 3-22
MultipleXers and SEIECIOIS.uui i 24...... 3

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Table of Contents

TABLE OF CONTENTS [continued]

Chapter 4
The VHDL ENVIFONMENTueiiiiiieie ettt ettt et ae b ar e e e e e e e e e e e eeeeeeeernnnees 4-1
Entity and Package HandliNg............uuu e 4-1
Entity Compiled as the DeSigN ROOT............uuiiiiiiiiiiii e eenaae 4-2
Finding Definitions of COMPONENTScoviiiiiiiiiiaiiees et e e e e e e e e eeeeeaeeaeenee 4-2
HOW t0 USE PACKAGESoeiiiiiiiiiiiiie ettt ettt e e e e e e e e e e e e e e 4-4
Interfacing With Other VHDL TOOIS.......oouuiiiii et e e e e e aaanens 4-5
VHDL SIMUIALOTS ... s e e e es e e e eeennn e 2D
)4 10] 0153 PSP 4-7
1YL o) (o T € = o] 1o 4:8.....
The EXemMPIar PACKAGEScoooiiiiiie et a e e e 4-8.........
e (=T0 [1T T=To I N o= 4-9.....
Predefined ATDULESccooiiir e e e e e e eeeeee e 2D
Predefined FUNCHIONSuuiiiiiieie et -11...... 4
Predefined PrOCEAUINESuuiiiiii et 15....... 4-
Syntax and SemantiC RESIIICHONS.coooii i 4-17
SYNthesis TOOI RESIICHIONSuuuiiiiii i e e e e e e e e e e e e e e 4-17
VHDL Language RESIICHONScueiiiiiiieieeeeiees ettt e e e e e e e 4-18
Example array_pin_number AtHDULEcoooiiiiiie e e e e e e e 4-21
Chapter 5
Introduction t0 Verilog SYNTNESISooiiiiiiie e 5-1
Verilog and SYNTNESIScooiiiii e e e e e 5:2.....
Synthesizing the Verilog DESIONui it 5-3
Chapter 6
Verilog LAnQUAQE FEALUIES..........covieeieieeiiiiii e e s e e e e e e e e e e et s e s e e e e e e e e e eeeeeeaeesanessnnnnn s 6-1
1770 81T 6-1
B4 F= 1ot £0 1 0o Lo [1= O PPPOPR 6:-2..
NUMDEIS ..ot e e e e e e e e et et et aeeetb et s e e+ ¢ s— 6-2
(D E= 1= B Y/ ST PO P PPN 6-3
N[DT 1= N Y 01T T PSP 6:5.....
T RS (T D F = N Y/ oL SRR 6-6.......
Parameter DAta TYPEccoouuriieeiiieiie e et B 6
CoNtINUOUS ASSIGNIMENLES ...uuviiiiiiiieeeeeeeeee et ee ettt s s e e e e e e e e e e eesaeeeaeesnsnnnanneeseeaaeeeeeess O Y A
Net Declaration ASSIGNMIENT ittt e et e e e e e e e e e e e s e e anne 6-8
Continuous ASSIGNMENT STALEMENTuueeii i e e e e e e e as 6-8
Procedural ASSINMENTScoiiiiiiii e e e e e e e e e e e e arr e e e e 6:9........
AIWAYS BIOCKS ...t e e e e e e e e e e e s 6-10
Y ToTe [0 (I [1] e= Va1 =i o] PP PP PP PR 6-13..
Parameter Override During Instantiation of Module ..o 6-14

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d Vv

Table of Contents

TABLE OF CONTENTS [continued]

Defparam State@MENTcccooi i e e e e e a e 14....... 6-
'unconnected_drive’ and 'nounconnected _driVeccoeeiiiiiiiiiiiiiiii e 6-15
L@ 0 T=] = (] £ PP 6-15
(@ 07=T 7= T [0 L PSSO PPP PP PPPPPPP 6-16
‘signed and ‘unsigned Attributes 0N OPEratorsSoovveiiiiiiiiiiii e 6-20
Operator PreCedeNCecovvviiiiiiiiiii ittt siinsnnsnneseeeee e 2200 6
Y= 1] 1 1T o TP PPRPRRRRY 6-20
[F-E1SE@ STAtEMENTSuiiiiii ettt e e e e e e e e e e e eeeeeeseans 6-21....
CaSE STALEIMENTS ...t e et e e e e e e attr e e e eeeatnaeeeeeeennnnsd 6-22.....
Case Statement and MultipleXxer GENErationcuuviiuiiiiiiiiiiee e 6-23
1(0] GRS F= =T 4[] £ 6:26..
DiISADIE STAEMENTuviiiiiiiiii it 6-27.....
forever, repeat, while and Generalized Form of for LOOPcovevvviiiiiiiiiiiiiiie e, 6-28
FUNCHIONS QN TASKS.. ..o et e e e e e e e e e e e e e e eee e e 6-29.....
FUNCHIONS .. e et e ettt bbbt s e e e e e e e e e e e e e e e e emeennnns 6-29
TS S ettt e et e e e e e et et ettt naa e e e e e e e e e e e e s — 6-30
INOUL POITS IN TASK ...t a e e e e e e e e e s 6:32......
Access of Global Variables from Functions and TasksS.............coviiiiiiiiiiiiiiiiieeiiiinn 6-33
SYSIEM TASK CallS... .o e 6-33...
System FUNCHON CallSuuiiiiiii e e e 6-33......
L LU E U] == 0 0= o | U PPPPTUPPRRRPP 6-34
COMPIIET DIFECHIVES ...ttt e e bbb 6:34.....
Chapter 7
The Art Of VErIOg SYNINESIS......cco e e e e e e e e e e e e e eeaae s 7-1
Registers, LatChes, and RESELSu i L. 7-
LeVvel-Sensitive LatCh ... e 7-1.......
Edge-Sensitive FIP-TIOPS .. .ccooovreiie e P e 7
Assigning /O BUFfErs from VEIIOQ ettt 7-4
Automatic Assignment UsiNg Chip MOE............oovviiiiiiiiiiie e 7-5
Manual Assignment Using the Control File ..o, 7-5
Buffer Assignment Using Component INStantiation...............eeveiviirierioniin e 7-6
THSTAE BUITEIS ...ttt e e e e eeeeeees 7-6
BidireCtioNal BUTTEIS......coi i e e e e e e e e e e ee e s 7-9.
BUS S ..t e e e 7-9
StAte MACKINES e e e e et e e s 7-11
MOOIE MACRINESo 1:13.....
Mealy MACKHINES........iiiii e et e e e e e e e s 1-17.....
Issues in State Maching DESIGNooeiiiiiiiiiiiiiiiieae et e s e e e e e e e e e aaeeeeeeeeanen 7-19
Arithmetic and Relational LOGIC........coooiiiiiiiiiiie et 7-24
MOAUIE GENETALION ... et e :25...... 7
Resource Sharing and Common Subexpression Eliminationccccooovieinieiiiiiiiieiiieinns 7-26
(Of0] 0] 0T U= 100 gD =TS (o | o PP PUSPPPPPY -26...... 7

vi LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Table of Contents

TABLE OF CONTENTS [continued]

TechnNOlogy-SPECITIC MACIOScveeieeiiiii ittt a s e e e e e e e e e e e e e e e aeeseaennnn s 7-27
SYNTNESIS DIFECHIVEScuuiiiiii e e e e e e e et e e e e e et e e e s s 7:28..
parallel_case and full_Case AIr€CHIVESciiiiiiiieie et 7-28
translate_off and translate_on dir€CLVESuvuiiiiiiiiiii e 7-28
ENUM GITECHIVE ... e e eeeeeesnnnnnnnn s emmmn L 22O
o L] o0 (0 1= Tox 1) P 7:30.
ENCOAING DIFECLIVE ... e e e e e e e eera e e e aaeaes 7-31.....
Chapter 8
Verilog and SYNthESIS Of LOGIC........uuiiiiiiiii e e e e aaa s 8-1
Comparing With X and Zcooo it e e e e e e e e e e e 8-1
Variable INdexing Of Bit VECIOISii i e e e 8-2
Syntax and SemantiC RESIICHONS.coiiiiiii e e 8-3
Unsupported VErilog FEAIUIEScooii ittt e e e e e 8-3
Chapter 9
YT o [0 L= =T o T = 14 o] o PSR 9-1
USING MOAUIE GENEIALION......ciiiiiiiiie ettt e e e e et e e e e e e e e aeeesd A 9
Supported TECANOIOGIEScoviiiiiiiiiii e B -
YU o] oo] g (=10 M@ 01T - (o] £ PPPUPTSP 9:4........
CoUNEIS ANU RAMSot a e e e e e e e e e e e e e e eeeaeennnnnnnaaan s 5. 9
Counter and RAM Inferencing and Module Generationccovvvvvviieiiiiiiiiiie e eeeee 9-6
Using Module GeNeration TOOIS.c.uuuuuiiiie e e e e e e e e e e ee e e e e eaanes 9-8
Specifying Module Generation LIDrary ... 9-8
Area/Delay Tradeoff AUIDULESuuuiii e e eaaaaes 9-9
Disabling ModUule GENEIAtION..........uuuiiiiiiiie ettt e a e e e e e e e e e e e e eeeaeearrannnn s 9-10
Counter and RAM EXErACHONuuuuiiieeie e e e eeeiee ettt sss s e e s e e e e e e e e e aeeaeeaeansanns e e e e eeaaeeaaees 9-10
V=][00 LU EST= o PP TPUPPPRRT. 9-10Q..
User-Defined MOAUIE GENEIATOIS.t e e et e e e e e e e aeeeaes 9-11
The Module Generator BOUNGAIYooiiviuiiiiie it s e e e e e e e e e aaraneeeaeens 9-11
MOdule GENEratOr CONTENTS e e e e e e e e e e e et e e e e e e e e aaeaeeeeees 9-14
O FST= T PRSP 9-16

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d Vii

Table of Contents

Figure 1-1.
Figure 5-1.
Figure 7-1.
Figure 9-1.
Figure 9-2.
Figure 9-3.

viii

LIST OF FIGURES

Top-Down Design Flow with LeonardoSpectrum.........ccccoevvieeeiieiieeivveveeiiiiinn, 1-2
Top Down Design Flow with LeonardoSpectrumevveiviviiiiiineeeiviiiiieeeeeeanns 5-2
DRAM Interface with Refresh ... 7-12
LeonardoSpectrum Module Generation ENVIronmMent............coovvvvvvvvvivviennnnneennn. 9-2
Using Module Generation Results in Area Reduction............cccceeeeeeviiiiiiinieeeeinnnnn. 9-3
Using Module Generation Results in Delay Reduction................cccccciviiiiiieneeenn. 9-3
LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Table of Contents

LIST OF TABLES

Table 6-1. Operators Supported by LeonardoSpectrum

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Table of Contents

LIST OF TABLES [continued]

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Chapter 1
Introduction to VHDL Synthesis

Overview

VHDL is a high level description language for system and circuit design. The language supports
various levels of abstraction. In contrast to regular netlist formats that supports only structural
description and a boolean entry system that supports only dataflow behavior, VHDL supports a
wide range of description styles. These include structural descriptions, dataflow descriptions
and behavioral descriptions.

The structural and dataflow descriptions show a concurrent behavior. That is, all statements are
executed concurrently, and the order of the statements is not relevant. On the other hand,
behavioral descriptions are executed sequentially in processes, procedures and functions in
VHDL. The behavioral descriptions resemble high-level programming languages.

VHDL allows a mixture of various levels of design entry. LeonardoSpectrum synthesizes all
levels of abstraction, and minimizes the amount of logic needed, resulting in a final netlist

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 1-1

VHDL and Synthesis Introduction to VHDL Synthesis

description in the technology of your choice. The Top-Down Design Flow is shown in
Figure 1-1

Figure 1-1. Top-Down Design Flow with LeonardoSpectrum

Top-Down Design Flow

Y

translate to behavior/simulate

LeonardoSpectrum ¢

synthesize to gate

Y

optimize speed/area

Y

technology map

Y

physical implementation

Y

CAE simulator

LeoHDL 01

VHDL and Synthesis

VHDL is fully simulatable, but not fully synthesizable. There are several VHDL constructs that
do not have valid representation in a digital circuit. Other constructs do, in theory, have a
representation in a digital circuit, but cannot be reproduced with guaranteed accuracy. Delay
time modeling in VHDL is an example.

State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL) circuit
descriptions and target a specific technology. Scheduling and allocation algorithms, which
perform circuit optimization at a very high and abstract level, are not yet robust enough for
general circuit applications. Therefore, the result of synthesizing a VHDL description depends
on the style of VHDL that is used.

1-2 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Introduction to VHDL Synthesis VHDL and Synthesis

This HDL Synthesis manual is intended to give the VHDL designer guidelines to achieve a
circuit implementation that satisfies the timing and area constraints set for a given target circuit,
while still using a high level of abstraction in the VHDL source code.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 1-3

VHDL and Synthesis Introduction to VHDL Synthesis

1-4 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Chapter 2
VHDL Language Features

This chapter provides an introduction to the basic language constructs in VHDL: defining logic
blocks, structural, dataflow and behavioral descriptions, concurrent and sequential
functionality, design partitioning and more. LeonardoSpectrum synthesizes all levels of
abstraction, and minimizes the amount of logic needed, resulting in a final netlist description in
your technology.

Entities and Architectures

The basic building blocks in VHDL are Entities and Architectures. An entity describes the
boundaries of the logic block. Its ports and its generics are declared here. An architecture
describes the contents of the block in structural, dataflow and behavioral constructs.

entity small_block is

port (a, b, c : in bit ;
ol : out bit ;
02 : out hit

)

end small_block ;

architecture exemplar of small_block is
signal s : bit ;
begin
ol <=s or c;
s <=a and b ;
02 <= S XOor C ;
end exemplar ;

This VHDL description shows the implementationsafall_block , a block that describes
some simple logic functions.

The entity describes the boundary. The port list is given with a direction (in thisrcageut),

and a typelfit) for each port. The name of the entitysigall_block . The name of the
architecture igxemplar which is linked to the entity with the nanseall_block . While

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-1

Entities and Architectures VHDL Language Features

multiple architectures may exist for each entity, only one architecture may be executed. By
default, the last defined architecture is linked to the entity.

The architecture describes the contents okthall_block . The architecture starts with a
declarative region; for example, the internal signa declared. The architecture also has a type
(bit); this is similar to the ports in the entity.

A signal is another form of an object in VHDL. All objects and expressions in VHDL are
strongly typed. This means that all objects are of a defined type and issues an error message if
there is a type mismatch. For example, you cannot assign an integer cfdyqe to abit .

The architecture contents starts afterithgin statement. This is called tloataflow
environmentAll statements in the dataflow environment are executed concurrently; the order
of the statements is irrelevant. This is why it is valid to adeefores is assigned anything.
Assignment of a value to a signal is done with #sesign. In the first statemendy is assigned

the result value of or ¢ . The operatoor is a predefined operator.

Additional details about the various dataflow statements and operators are given in the
following sections:

* Configuration

®* Processes

Configuration

In summary, a configuration declaration provides the mechanism for delayed component
binding specification. The entity name identifies the root entity to be elaborated. The optional
architecture name provides the name of the architecture to be elaborated.

A configuration declaration can configure each component instantiation individually with a
different entity or architecture. The configuration declaration can also configure some lower
level component instantiation of the current component being configured.

With the help of the configuration declaration, you can try out different possible bindings of the
component instantiations by keeping the basic hierarchical structure of the top level design
intact.

NOTE: If you use “con” for configuration and “ent” for entity then the name of the hierarchy
cell created iséon_ent .

2-2 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features

Entities and Architectures

library ieee;
library work;
use ieee.std_logic_1164.all;
package global_decl is

type log arr is array(std_logic) std_logic;
constant std_to_bin : log_arr:=('X",'X','0","2",'X",'X",

'0,'1",'X");

function to_bin (from : std_logic)
end;

package global_decl is

function to_bin (from : std_logic)
begin

return std_to_hin(from);

end;

std_logic;

std_logic is

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Entities and Architectures

VHDL Language Features

library ieee;

library work;

use ieee.std_logic_1164.all;
use work.global_decl.all;

entity enl is port

(a: in std_logic;

b: out std_logic);

end;

architecture arl of enl
begin

b <= to _bin (a);

end;

architecture ar2 of enl
begin

b <= not (to _bin (a));
end;

library ieee;

library work;

use ieee.std logic_1164.all;
use work.global_decl.all;

entity en2 is port
(a: in std_logic;

b, ¢ out std logic);
end;

architecture arc of en2
component enl port

(a: in std_logic;

b: out std_logic);

end component ;

continued.........

is

is

is

2-4

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features

Entities and Architectures

begin
cl: enl port map (a => a, b => bh);
c2: enl port map (a => a, b => ¢);
end;
library work;
configuration binding of en2 is
for arc
for cl: enl use entity work.enl (arl);
end for ;
for c¢2: enl use entity work.enl (ar2);
end for ;
end for ;
end binding ;

Processes

Processeare sections of sequentially executed statements, as opposed to the dataflow
environment, where all statements are executed concurrently. In a process, the order of the
statementsloesmatter. In fact, processes resemble the sequential coding style of high level
programming languages. Also, processes offer a variety of powerful statements and constructs
that make them very suitable for high level behavioral descriptions.

A process can be called from the dataflow area. Each process is a sequentially executed
program, but all processes run concurrently. In a sense, multiple processes resemble multiple
programs that can run simultaneously. Processes communicate with each other via signals that
are declared in the architecture. Also the ports defined in the entity can be used in the processes.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Entities and Architectures

entity experiment is

port (source : in bit_vector(3 downto O0) ;
ce : in bit ;
wrclk @ in bit ;
selector : in bit_vector(1 downto 0) ;
result : out bit
);
end experiment;
architecture exemplar of experiment s
signal intreg : bit_vector(3 downto O0) ;
begin -- dataflow environment
writer : process -- process statement
-- declarative region (empty here)
begin -- sequential environment
-- sequential (clocked) statements
wait until wrclk’event and wrclk = 1" ;

if (ce=1") then
intreg <= source ;
end if ;
end process writer;

reader : process (intreg, selector) -- process statement
-- with sensitivity list
-- declarative region (empty
here)
begin
-- sequential (not-clocked) statements
case selector is
when "00" => result <= intreg(0) ;
when "01" => result <= intreg(1) ;
when "10" => result <= intreg(2) ;
when "11" => result <= intreg(3) ;
end case ;
end process reader;
end exemplar ;

VHDL Language Features

This example describes a circuit that can load a source vector of 4 bits, on the edge of a write
clock (wrclk), store the value internally in a registéneg) if a chip enablede) is active,
while it produces one bit of the register constantly (not synchronized). The bit is selected by a

selector signals of two bits.

The description consists of two processes, one to write the value into the internal register, and
one to read from it. The two processes communicate via the registerimadge .

2-6

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Literals

The first processwriter) includes a wait statement. The wait statement causes the process to
execute only if its condition iSRUE. In this case, the wait statement waits until a positive edge
occurs on the signalrclk (expressionmwrclk’event and wrclk="1’). Each time the edge

occurs, the statements following the wait statements are executed. In this case, the value of the
input signal source is loaded into the internal sign@ég onlyifce is’ 1’ . If ce is’0’ ,

intreg retains its value. In synthesis terms, this translates into a D-flipflop, clockedctn ,

and enabled bye.

The second processéder) does not have a wait statement. Instead, it has a sensitivity list,
with the signalsntreg andselector there. This construct defines that the whole process is
executed each time eithiatreg orselector changes. If the process is executed, the output
signalresult gets updated with depending on the value®tdg andselector . Note that
this leads to combinational behavior, sinesult depends on onlintreg andselector , and
each time either of these signals changesyt gets updated.

A process has an optional name (in this caser andreader), a sensitivity list OR a wait
statement, and a declarative region where signals, variables, functions etc. can be declared
which are used only within the process. Each statement is executed sequentially, as in a
programming language.

Not all constructs, or combinations of constructs, in a process lead to behavior that can be
implemented as logic.

Literals

Constant values in VHDL are given in literaldterals are lexical elements. The following is an
overview, with examples given for each type of literal.

Character Literals: | '0' 'X' ’a’ "%'#

String Literals: “1110100” “XXX* “try mel” “$"&@!"

Bit String Literals: | B“0010_0001" X"5F’ 0“63_07"

Decimal Literals: 27 -5 4E3 76562 4.25

Based Literals: 2#1001# 8#65_07" 14#C5#E+2

Physical Literals: | 2 ns 50V 15 pF

Identifiers: Idle TeSTing a true_story

Literals are used to define types and as constant values in expressions. This list provides a brief
description of their function in VHDL which will be more clear after the descriptions of types
and expressions.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-7

Literals VHDL Language Features

The’_’ in bit string literals, decimal literals and based literals helps to order your literal, but
does not represent a value.

Character literals contain only a single character, and are single quoted.

String literals contain an array of characters, and are double quoted.

Bit String Literals are a special form of string literals. They contain an array of the characters
andi, and are preceded by one of three representation f@&mghe bit representatiom ©r 1
allowed),X the hexadecimal representatiant¢ F allowed) and O the octal representatiortq

7 allowed).xX"5F" is exactly the same @01011111" , which is again the same as the string
literal "01011111" .

Bit string literals can contain underscores, which are ignored and only inserted for readability.
Decimal literals aranteger Orreal values.

Based literals are alsoteger oOrreal values, but they are written in a based foa#z5# is

the same as decimal. However it is not the same as the bit literal vatues" since the bit

literal value is an array (of bits) and the based literal is a integer.

Physical literals are sometimes required for simulation. As they are not used in the synthesized
part of the design, we do not go into detail about them.

Identifiers can be enumerated literals. They are case-insensitive, like all identifiers in VHDL.
Their use becomes more clear with the discussion of VHDL types.

Types

A typeis a set of values. VHDL supports a large set of types, but here we concentrate on types
that are useful for synthesis.

VHDL is a strongly typed language: every object in a VHDL source needs to be declared and
needs to be of a specific type. This allows the VHDL compiler to check that each object stores a
value that is in its type. This avoids confusion about the intended behavior of the object, and in
general allows the user to catch errors early in the design process. It also allows overloading of
operators and subprograms. It also make coding in VHDL a little more difficult, but tends to
produce cleaner, better maintainable code.
VHDL defines four classes of types:

® Scalar types

®* Composite types

® Accesstypes

2-8 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Literals

* File types
Access types and File type cannot be applied for logic synthesis, since they require dynamic
resource allocation, which is not possible in a synthesized hardware. Therefore, we will not
discuss these.

Instead, only scalar types and composite types will be discussed. These are all scalar types in
VHDL:

®* Enumerated types.
® Integer types
®* Floating-point types

®* Physical types

VHDL has two forms of composite types:
* Array types

®* Record types.

Enumerated Types

Syntax and Semantics

An enumerated type consists of a set of literals (values). It indicates that objects of that type
cannot contain any other values than the ones specified in the enumerated type.

An example of an enumerated type is the pre-defined bitpeThis is how the typeit is
declared:

type bit is (0,1) ;

Any object of typebit can only contain the (literal) values and'1’ . The VHDL compiler
will error out (type error) if a different value could be assigned to the object.

Enumerated types are also often used to declare the (possible) states of a state machine. Here is
an example of the declaration of the states of an imaginary state machine are declared:

type states is (IDLE, RECEIVE, SEND) ;

Once an object of this type is declared, the object can contain only one of these three ‘state’
values.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-9

Literals VHDL Language Features

Synthesis Issues

Itis important to understand a logic synthesis tool needs to do state encoding on any enumerated
type. For example, thgates type in the previous section needs at least two bits to represent

the three possible values. This section mainly deals with the various forms of controlling the
enumerated encoding for each enumerated type in your design.

LeonardoSpectrum performsehot encoding on an enumerated type. Use the batch mode or
interactive shell options as follows:

® Use batch mode optio®ncoding
® Use interactive shell variabkncoding .
In addition the following attributes are available:
® TYPE_ENCODING_STYLEdefine the encoding style for state machine type encoding)
®* TYPE_ENCODINGdefine the bit-to-bit encoding for state machine type values manually)

® LOGIC_TYPE_ENCODING&define that the type needs to be synthesized into a single binary
value)

These three attributes are declared ingkenplar_1164 package. So you do not need to
declare them if you usewe exemplar.exemplar_1164.all statement in your design unit.

TheLOGIC_TYPE_ENCODING@ttribute on an enumerated type will give a hint to the compiler that
any object of the type should be encoded with a single bit, even though there might be more
than two value in the type.

An example of a type whenedoGIC_TYPE_ENCODINGs helpful, is the typetd_ulogic in the

IEEE 1164 package. The type consists of nine values, but the synthesis tools should encode any
object ofstd_ulogic ~ as a single bit value. Here is how LeonardoSpectrum encodes

std_ulogic ~ as a single-bit value:

-- Declare the LOGIC_TYPE_ENCODING attribute :
attribute LOGIC_TYPE_ENCODING : string ;

-- Declare the std_ulogic type :
type std_ulogic is (U/X,0,1,Z W LH)

-- Set the LOGIC_TYPE_ENCODING attribute on the std_ulogic type :
attribute LOGIC_TYPE_ENCODINCof std_ulogic:type is
(X',X',0,1,Z2)X,0,1)XY

LOGIC_TYPE_ENCODIN®Gakes an array of characters, as many as there are values in the type, and
each character states how LeonardoSpectrum should treat the related value. There are four

2-10 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Literals

values that LeonardoSpectrum accepts as legal single bit values fav@ine TYPE_ENCODING
attributero ,'1 ,'X ,'Z

'0’ . Treatthe value as a logic zero.
'’ . Treatthe value as a logic one.
X' . Treatthe value as either a logic one or a logic zero. LeonardoSpectrum can decide

which one, depending on the context it is used in. LeonardoSpectrum uses this freedom to
optimize the circuit as much as it can.

'z . Treatthe value as a high-Z values. LeonardoSpectrum will generate a three-state
driver if this value is used in an assignment.

LeonardoSpectrum can work with all values of a type witlogIC_TYPE_ENCODINGttribute.
Only comparisons of 8ON-STATIC value with’x* or’z’ will return FALSE

TheTYPE_ENCODIN@NATYPE_ENCODING_STYLRAttributes on an enumerated type are used to
control state-encoding for state-machine descriptions. Normally, state-machines in VHDL are
described by giving a enumerated type that identifies each possible state of the state machine.
The encoding for this enumerated type is done by LeonardoSpectrum. By default, the encoding
iIs ONEHOTor FPGA andBINARY for ASIC. Otherwise, the encoding depends on the technology
used.

If a process exists with multipheait statements, then the TYPE_ENCODING_STYLE
attribute can be applied to the label of the process to control the encoding of the implicit state
machine.

TheTYPE_ENCODING_STYLBives a hint to the compiler as to what kind of encoding style to
choose. There are five different styles to choose frBIRARY, GRAY ONEHOTRANDONAUTQ
Here is an example of how to use thePE_ENCODING_STYLa&ttribute on a (imaginary) state
enumerated type:

-- Declare the TYPE_ENCODING_STYLE attribute

-- (not needed if the exemplar_1164 package is used) :

type encoding_style is (BINARY, ONEHOT, GRAY, RANDOM, AUTO) ;
attribute TYPE_ENCODING_STYLE : encoding style ;

-- Declare the (state-machine) enumerated type :
type my_state type is (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the TYPE_ENCODING_STYLE of the state type :
attribute TYPE_ENCODING_STYLBEOf my_state_type:type is ONEHOT ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-11

Literals VHDL Language Features

In the example, LeonardoSpectrum will use one-hot encoding for the values of my_state_type.
More specifically, LeonardoSpectrum will use five bits for the type and will encode the states as
follows:

bit4 bit3 bit2 bitl bitO
SEND - - - - 1
RECEIVE - - - 1 -
IGNORE - - 1 - -
HOLD - 1 - - -
IDLE 1 - - - -

The'- value will allow LeonardoSpectrum to only compare a single bit when a state value is
tested for. When a state value is assigned,means @. This scheme allows the synthesis tools

to eliminate almost all logic when testing for the state machine to be in a particular state. On the
other hand, sinceNEHO®Ncoding requires more bits than other encoding styles, the number of
flip-flops will increase ONEHO®Ncoding can therefore be very beneficial for technologies

where flip-flops are not expensive, but combinational logic is (like in the Xilinx architectures).

Naming: ForoNEHO®BNcoding, the synthesized bits of a state machine will be named after the
bit number in the table. Here is an example:

signal state : my_state_type ;

The signaktate will be synthesized with one-hot encoding style, and LeonardoSpectrum will
generate five bits for it, where each one gets the state number from the table:

state(4) corresponds to bit4 in the state table
state(3) corresponds to bit3 in the state table
state(2) corresponds to bit2 in the state table
state(1l) corresponds to bitl in the state table
state(0) corresponds to bitO in the state table

For BINARY encoding (the default) the synthesis tools will use the following state table:

bit2 bitl bit0
SEND 0 0 0
RECEIVE 0 0 1
IGNORE 0 1 0
HOLD 0 1 1
IDLE 1 - -

2-12 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Literals

BINARY encoding (asRAYandRANDOMNcOdINg) uses the minimum number of bits needed to
encode all values. In the case (five valu@spNARY encoding needs three bits. The last value
(for IDLE) in the table indicates several s. The'w (justasthe-) value is used to reduce
the size of comparators needed to test the state.

Naming: FOrBINARY encoding, as well as fasRAYandRANDOMNcOdINg, the synthesis tools
will generate the minimum number of bits needed for an object of the type. The sigweal
will now generate three bits, each with the following name:

state(2) corresponds toit2 in the state table
state(1) corresponds toit1 in the state table
state(0) corresponds toit0 in the state table

GRAYencoding lets LeonardoSpectrum build a Gray-code encoding. Gray-code encoding
assures that in each successive value, only one single bit changes:

bit2 bitl bit0
SEND 0 0 0
RECEIVE 0 0 1
IGNORE 0 1 1
HOLD 0 1 0
IDLE 1 1 0

Gray encoding does not use the optimization possible withvthevalue. Gray encoding

reduces glitches in the combinational logic when moving from one vatate () to its

successor. It can be helpful in designs that require very clean logic switching and state machines
that do not perform many jumps to different states.

RANDOMNcoding will create a random encoding scheme. The state table cannot be predicted,
nor is there any way to let the synthesis tools produce it for pgeuboMncoding is interesting

if you would like to see whether or not the circuit size or performance depends heavily on the
state encoding.

For TWOHOT encoding LeonardoSpectrum uses the following state table:

bit 3 bit 2 bit 1 bit 0
SEND - - 1 1
RECEIVE - 1 - 1
IGNORE 1 - - 1
HOLD - 1 1 -
IDLE 1 - 1 -

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

2-13

Literals VHDL Language Features

The*-» don’t care value allows LeonardoSpectrum to only compare two bits when a state value
is tested for. When a state value is assigned;-themeans @. This scheme allows the

synthesis tools to eliminate almost all logic when testing for the state machine to be in a
particular state. The twohot encoding requires more flip flops than binary and fewer flip flops
than onehot. The twohot encoding can be very beneficial for some large FSMs where onehot
uses too many flip flops, and binary requires too much decode logic. The number of states that
can be encoded by n bits is given by the following expression:

n-1

Z n-m-1

m=0

To fully control the state encoding, use thePE_ENCODINGittribute. With therYPE_ENCODING
attribute you can define the state table used. Here is an example:

-- Declare the TYPE_ENCODING attribute :

type exemplar_string_array is array (natural range <>, natural range <>)
of character ;
attribute array_pin_number : exemplar_string_array ;

attribute TYPE_ENCODING : exemplar_string_array ;

-- Declare the (state-machine) enumerated type :
type my_state_type is (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the type-encoding attribute :
attribute TYPE_ENCODINGof my_state_type:type is
("0001","01--","0000","11--","0010") ;

TheTYPE_ENCODINGttribute takes an array of equal-length strings, where each string defines a
row in the state table. TherPE_ENCODINGttribute is declared in thexemplar_1164 package,
so if you use that, you do not have to enter the declaration for it.

2-14 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Literals

This attribute setting will let the synthesis tools to use the following state table:

bit3 bit2 bitl bit0
SEND 0 0 0 1
RECEIVE 0 1 - -
IGNORE 0 0 0 0
HOLD 1 1 -
IDLE 0 0 1 0

The number of bits used in theyPE_ENCODINGttribute value does not have to be the smallest
possible number of bits. Just make sure that you specify as many strings as there are values in
the enumerated type. Also note that you can use'thevalue to let LeonardoSpectrum know

not to use these bits when testing is the state machine is in the given state. You can use this to
reduce the size of the circuit.

Note: Currently LeonardoSpectrum does not have an algorithm to find a good state encoding
for any enumerated type. Still, the various forms of manual state table control explained in this
section should allow you to find a good state encoding for each state machine in your design.

The attributes described in this section allow you to encode each state machine (each state-type)
individually as follows.

® Use the batch mode optieencoding that sets the default encodingJARY) to either
BINARY, ONEHOJTTWOHOTGRAYOr RANDOMT his command-line switch is useful to
quickly switch from one state encoding style to another on a design with a single state
machine. Any of the encoding attributes overwrite any default setting.

®* On the interactive command line shell set #heoding variable toBINARY (default),
ONEHOJTWOHOTGRAYOr RANDOMefore reading in a design to use a different encoding
style for the state machines in the design.

An interesting effect of this way of handling encoding for enumerated types in synthesis of the
predefined typeharacter in VHDL. Thecharacter type is defined in the packageandard ,

as an enumerated of all characters in the 8-bit ASCII set. VBhesrRY encoding (default) is
chosen, each character will be synthesized into seven bits, with exactly its 8-bit ASCII value.
So, LeonardoSpectrum can synthesize characters (and strings) representing them as ASCII
values. If a different default encoding is chosen, the encoding of the character type will change
accordingly.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-15

Literals VHDL Language Features

Integer Types

Syntax and Semantics

When designing arithmetic behavior, it is very helpful to work with integer types. An integer
type defines the set of integer values in its range. This is how an integer type is defined:

type my integer is range O to 15 ;

Any object of typemy_integer can only contain integer values in the range specified. VHDL
pre-defines an integer type callatger |, that at least covers a range of integer values that can
be represented in two’s complement with 32 bits:

type integer is range -2147483647 to 2147483647,

Actually, VHDL 1076 does not define the maximum bounds of the predefinedinyper
nor of any other integer type, it just states that it should at least include this range.

Synthesis issues

LeonardoSpectrum can synthesize with any integer type that contains no values outside the
range-2147483648 t0 2147483647 . LeonardoSpectrum stores integer values (constant ones)
using (32 bit) integers internally. If more than 32 bits are needed for a particular circuit design,
you should use arrays to represent them. Do not use integer types that exceed the range, since
many other VHDL tools have the same restrictions as LeonardoSpectrum.

LeonardoSpectrum needs to do encoding for integer types, since an integer range requires
multiple bits to represent. The synthesis tools will analyze the range of an integer type and
calculate the number of bits needed to represent it.

If there are no negative values in the integer range, LeonardoSpectrum will create an unsigned
representation. For example, consider the following object of thertypteger from the
previous section:

signal count : my_integer ;

The signakount will be represented as unsigned, consisting of four bits. When synthesized, the
four bits will be named as elements of a bus in the resulting netlist:

count(3) the MSB bit
count(2)
count(1)
count(0) the LSB bit

2-16 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Literals

If the range includes negative numbers, LeonardoSpectrum will use two’s-complement
representation of the integer values. For example, any object of the predefinaddyge
will be represented with 32 bits where the MSB bit represents the sign bit.

Example:

signal big_value : integer ;

Now, LeonardoSpectrum will represent the sighigl value as 32 bits:

big_value(31) the sign bit
big_value(30) the MSB bit

big_value(1)
big_value(0) the LSB bit

Floating-point Types

Syntax and Semantics

As any high-level programming language, VHDL defines floating-point typkmating-point
types approximate the real numbers.

Here is an example of the declaration of a floating-point type:

type my real is range 0.0 to 1.0 ;

VHDL pre-defines a very general floating-point type caltedl.

type real is range -1.0E38 to 1.0E38 ;

Like the integer types, maximum bounds of any floating-point type are not defined by the
language. However, the floating-point type should but should at least indlwgss to
1.0E38 .

Nothing in the language defines anything about the accuracy of the resolution of the
floating-point type values.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-17

Literals VHDL Language Features

Synthesis Issues

In general, since the resolution of floating-point types is not defined by the language, it is
difficult to come up with a good rule for encoding floating-point types. While in a regular
(software) compilers floating-point types are represented in 32, 64 or 128 bits, the floating-point
operations just require time. In hardware compilers like a logic synthesis tool, floating-point
operations would require massive amounts of actual synthesized hardware, unless the resolution
and bounds of the floating-point type are kept under very close control.

In summary, LeonardoSpectrum does not currently support synthesis of floating point objects.
Floating-point types and objects can however be used in constant expression.

For example, an attribute could get a (compile time constant) floating-point expression, and the
synthesis tools will calculate the expression and set the floating-point value on the attribute.

Physical Types

Syntax and Semantics

VHDL allows the definition of physical type®hysicaltypes represent relations between
guantities. A good example of a physical type is the predefinedttype:

type time is range -2147483647 to 2147483647
units
fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;
end units;

Objects of physical types can contain physical values of the quantities specified in the type, as
long as the values do not exceed the range of the type. figpeis often used in VHDL
designs to model delay.

Synthesis Issues

Physical types, objects and values are normally only used for simulation purposes. Objects and
values of typaime are used irafter clauses to model delay.

LeonardoSpectrum attempts to synthesize any physical value that is within the range of the
type. The encoding follows the encoding for integer types, and expresses the value with respect

2-18 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Literals

to the base quantityy in the typetime). Itis not common practice however to synthesize logic
circuitry to model physical values.

LeonardoSpectrum handles constant expressions of physical values without any problems. For

example, attributes of typ@ne can receive constant values of typerhis is often used to
model arrival time and required time properties in the design.

Array Types

Syntax and Semantics

An array type in VHDL specifies a collection of values of the same type. There are constrained
and unconstrained array types.

For an constrained array type, the number of elements and the name of the elements (the index)
Is defined and fixed.

Example:

type byte is array (7 downto 0) of bit ;

In this example, typeyte defines an array of 8 element, each of tyjne. The elements are
named with indexes ranging from(for the left most element in the array) dowrtgfor the
right most element in the array). Example of an array object:

constant seven : byte := "00000111" ;

Individual elements of the array object can now be referred to using indexing:
seven(0) is the name of the right most element in artayts value is the bit literal’ .
seven(7) is the name of the left most element in artayts value is the bit literab’ .
Parts of the array can be retrieved using slicing:

seven(3 downto 0) is the name of the right most four elements in agaxen . The value is an
array of four bitsro111" . The indexes of this array range fra@own too.

For an unconstrained array type, the number of elements and the name of the elements in not yet
defined. An example is the pre-defined tygievector

type bit_vector is array (natural range <>) of bit ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-19

Literals VHDL Language Features

Here, the array type defines that the element typ is and that the index type is type
natural . Typenatural is an integer subtype that includes all non-negative integers. The
meaning of this is that the index value for any object of tgperector ~ can never be negative.

By defining an unconstrained array type, you defer specifying a size for the array. Still, in order
to define a valid object of an unconstrained array type, we need to constrain the index range.
This is normally done on the object declaration:

constant eight : bit_vector (7 downto 0) := "00001000" ;

Unconstrained array types are very important, since they allow you to declare many
different-size objects and to use these objects through each other, without introducing type
conflicts.

The type of the element of an (constrained or unconstrained) array type is not restricted to
enumerated typeit as in the examples. Actually, an array element type can be any type except
for an unconstrained array type.

You can define an array of integers, an array of 6-bit arrays, an array of records etc. However,
you cannot declare an array of (the unconstrained array typegctor

If you want an unconstrained array type where you need more indexes to remain unconstrained,
you need a multi-dimensional array type:

type matrix is array (natural range <>, natural range <>) of bit ;

Multi-dimensional (constrained and unconstrained) array type are useful when modeling
RAMs, ROMs and PLAs in VHDL. Indexes and slices of multi-dimensional arrays need to
specify all index dimensions, separated by a comma.

Finally, the index type of an array type does not have to be an integer (sub)type. It can also be an
enumerated type.

Synthesis Issues

There are no synthesis restrictions in LeonardoSpectrum on using arrays. LeonardoSpectrum
supports arrays of anything (within the language rules), multi-dimensional arrays, array types
with enumerated index type. Negative indexes are also allowed.

Naming of array objects is straightforward. LeonardoSpectrum appends the index for each
element after the array name. If the element type consists of multiple bits, the synthesis tools
append the element indexes to the array name with its index.

Itis important to understand that there is no Most Significant Bit (MSB) or Least Significant Bit
(LSB) defined in an array type or array object. The semantics of what is interpreted as MSB or

2-20 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Literals

LSB is defined by the operations on the array. In the example of okgeat the user probably
meant the left most bit to be the MSB, and the right most bit the LSB. However, this is not
defined by the language, just by the user.

Additions, subtractions, and multiplications have to be defined by the user. Most synthesis tool
vendors define (arithmetic) operations on arrays in packages that are shipped with the product.
Most of these packages assume that leftmost bit is the MSB and the rightmost bit is the LSB. As
an example of this, the package@emplar andexemplar_1164 define arithmetic operators the
bit_vector and the IEEE 1164 array equivalesud_logic_vector type. In these packages,

the leftmost bit is assumed to be the MSB.

Record Types

Syntax and Semantics
A recordtype defines a collection of values, just like the array type.

All elements of an array must be of the same type. Elements of a record can be of different
types:

type date is
record
day : integer range 1 to 31 ;
month : month_name ;
year : integer range O to 4000 ;
end record ;

The element typewonth_name in this example could be an enumerated type with all names of
the months as literals.

The elements of a record type can again be of any type, but cannot be an unconstrained array.

Consider the following object of typate :

constant my_birthday : date := (29, june, 1963) ;

Individual elements of a record object can be accessed with a selected name. A selected name
consists of the object name, followed by a dot (.) and the element name:

my_birthday.year selects thgear field out of my_birthday and returns the integer value
1993.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-21

Literals VHDL Language Features

Synthesis Issues

LeonardoSpectrum does not impose any restrictions (except for language rules) on record types
and record objects.

Naming of the individual bits that result after synthesizing a record object follow the selected
naming rule of the language: Each bit in a record object get the record name followed by a dot,
followed by the element name. If the element synthesizes into multiple bits, the index of the bits
in each element are appended to that. As an example, the five bits that representftalel in
my_birthday ~ will be named as follows:

my_birthday.day(0) LSB in my_birthday.day
my_birthday.day(1)
my_birthday.day(2)
my_birthday.day(3)
my_birthday.day(4) MSB in my_birthday.day

Subtypes

A subtypes a type with a constraint.

subtype <subtype_name> is <base_type> [<constraint>] ;

A subtype allows you to restrict the values that can be used for an object without actually
declaring a new type. This speeds up the debugging cycle, since the simulator will do a run-time
check on values being out of the declared range. Declaring a new type would cause type
conflicts. Here is an example:

type big_integer is range 0 to 1000 ;
type small_integer is range 0 to 7,

signal intermediate : small_integer ;
signal final : big_integer ;

final <= intermediate * 5 ; <- type error occurs because
big_integer and small_integer are
NOT the same type

2-22 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Literals

With a type-conversion (see next section), you can 'cast’ one integer into another one to avoid
the error. Still, it is cleaner to use a subtype declaration for the (more constrained)
small_integer type:

type big_integer is range O to 1000 ;
subtype small_integer is big_integer range 0 to 7;

signal intermediate : small_integer ;
signal final : big_integer ;

final <= intermediate * 5 ;<- NO type error occurs ! because
big_integer and small_integer
have the same base-type
(big_integer).

Subtypes can be used to constraint integer types (as in the example), floating-point type, and
unconstrained arrays.

Declaring a subtype that constraints an unconstrained array type is exactly the same as declaring
a constrained array type:

type bit_vector is array (natural range <>) of bit ;
subtype eight_bit_vector is bit_vector (7 downto 0) ;

has the same effect as:

type eight_bit_vector is array (v downto 0) of bit ;

Just as in the integer type example, subtypes of one and the same unconstrained base-type are
compatible (will not cause type errors), but when two constrained array types are used, they will
cause type errors if objects of both types are intermixed in expressions. Type conversion is then
the only possibility to let objects of the two types be used together in expressions without type
errors. There are no synthesis restrictions on the use of subtypes.

Type Conversions

In cases where it is not possible to declare one type and one subtype instead of two separate
types, VHDL has the concept of type conversidype conversiois similar to typecasting’

in high level programming languages. To cast an expression into a type, use the following
syntax:

<type>(<expression>)

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-23

Literals VHDL Language Features

Type conversion is allowed between 'related’ types. There is a long and detailed discussion in
the VHDL LRM about what related types are, but in general, if it is obvious to you that the
compiler should be able to figure out how to translate values of one type to values of another
type, the types are probably related. For example, all integer types are related, all floating-point
types are related and all array types of the same element type are related.

So, the problem of type error between two different types in example of the previous section
could be solved with a type conversion:

type big_integer is range 0 to 1000 ;
type small_integer is range 0 to 7,

signal intermediate : small_integer ;
signal final : big_integer ;

final <= big_integer(intermediate * 5) ;<- NO type error occurs now,
since the compiler knows how to
translate 'small_integer’ into
big_integer with the type
conversion.

IEEE 1076 Predefined Types

The VHDL IEEE 1076 standard predefines a number of types. The following lists the ones
which are most important for synthesis:

type bit is (0,1) ;

type bit_vector is array (integer range <>) of hit ;
type integer is range MININT to MAXINT ;
subtype positive is integer range O to MAXINT ;
subtype natural is integer range O to MAXINT ;

type boolean is (TRUE,FALSE) ;

LeonardoSpectrum also understands the predefined GHERACTER, STRING
SEVERITY_LEVEL TIME, REALandFILE .

IEEE 1164 Predefined Types

A problem with the 1076 standard is that it does not specify any multi-valued logic types for
simulation purposes, but rather left this to the user and/or tool vendor. The IEEE 1164 Standard
specifies a 9-valued logic. LeonardoSpectrum supports these types, although some restrictions
apply to the values you can use for synthesis.

The meaning of the different type values of the IEEE 1164 standard are as follows:

2-24 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features

Literals

(VK Uninitialized

X’ Forcing Unknown
0’ Forcing Low

ga Forcing High

'z High Impedance

‘W Weak Unknown
L Weak Low
'H Weak High
Dont Care

The weak values on a node can always be overwritten by a forcing value. The high impedance
state can be overwritten by all other values.

Most of these values are meaningful for simulation purposes only. Some restrictions apply if
you want to use these values for synthesis. Only the vatueg, X’ ;- and’z’ have a
well-described meaning for synthesis.

Some examples of IEEE 1164 type statements are:

type std_ulogic is (U/X;0,1Z2WULCH)

type std_ulogic_vector is array (natural range <>) of std ulogic ;
subtype std_logic is resolution_func std_ulogic ;

type std_logic_vector is (natural range <>) of std_logic ;

subtype X01Z is resolution_func std_ulogic range 'X' to 'Z' ;

-- includes X,0,1,Z

The identifierresolution_func is a function that defines which value should be generated in
case multiple values are assigned to an object of the same type. This is called the resolution
function of the type. Resolution functions are supported as long as they do not return any
metalogical values.

To use the IEEE 1164 types you must load the IEEE package into your VHDL description. This
is done with the following statements:

library ieee ;
use ieee.std logic_1164.all ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-25

Objects VHDL Language Features

Objects

Objectsin VHDL (signals, variables, constants, ports, loop variables, generics) can contain
values. Values can be assigned to objects, and these values can be used elsewhere in the
description by using the object in an expression. All objects except loop variables have to be
declared before they are used. This section describes the various objects in VHDL and their
semantics.

Signals

Signalsrepresent wires in a logic circuit. Here are a few examples of signal declarations:

signal foo : bit_vector (5 downto 0) := B"000000" ;
signal aux : bit ;
signal max_value : integer ;

Signals can be declared in all declarative regions in VHDL except for functions and procedures.
The declaration assigns a name to the sigteal a type, with or without a range restriction
(bit_vector(5 downto 0)); and optionally an initial (constant) value. Initial values on

signals are usually ignored by synthesis.

Signals can be assigned values using an assignment statement
(e.g.,aux <= '0’ ;). Ifthe signal is of an array type, elements of the signal’s array can be
accessed and assigned using indexing or slicing.

Assignments to signals are not immediate, but scheduled to be executed after a delta delay. This
effect is an essential difference between variables and signals.

Constants

Constants can not be assigned a value after their declaration. Their only value is the initial
constant value. Initialization of a constant is required. An example of declaring a constant is:

constant ZEE_8 : std_logic_vector (7 downto 0) := "Zz27727777" ;

Variables

Variables can not be declared or used in the dataflow areas or in packages, only in processes,
functions and procedures. An example of declaring a variable is:

variable temp : integer range O to 10 := 5 ;

2-26 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Objects

Assignments to a variable are immediate. This effect is an essential difference between
variables and signals. The initial assignment to a variable is optional. The initial assignment to a
variable in a process is usually ignored by synthesis.

Ports

A portis an interface terminal of an entity. A port represents an ordinary port in a netlist
description. Ports in VHDL are, just like other objects, typed and can have an initial value. In
addition, a port has a “direction.” This is a property that indicates the possible information flow
through the port. Possible directions are out , inout andbuffer , whereinout andbuffer

indicate bidirectional functionality.

entity adder is
port (
input_vector : in bit_vector (7 downto 0) ;
output_vector : out bit_vector (7 downto 0)
)
end adder ;

After declaration, a port can be used in the architecture of the entity as if it were a normal signal,
with the following restrictions: first, you cannot assign to a port with direction in, and second,
you cannot use a port of direction out in an expression.

Generics

A genericis a property of an entity. A good example of a generic is the definition of the size of
the interface of the entity. Generics are declared in a generic list.

entity increment s
generic (size : integer = 8) ;
port (ivec : in bit_vector (size-1 downto O0) ;
ovec : out bit_vector (size-1 downto 0)) ;
end increment ;

The generigize can be used inside the entity (e.g., to define the size of ports) and in the
architecture that matches the entity. In this example, the gesiaicis defined as an integer

with an initial values. The sizes of the input and output ports of the entity increment are set to
be 8 bits unless the value of the generic is overwritten by a generic map statement in the
component instantiation of the entity.

inst 1 : increment generic map (size=>16)
port map (ivec=>invec, ovec=>outvec) ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-27

Statements VHDL Language Features

Here, a 16-bit incrementer is instantiated, and connected to the sigralsandoutvec .

LeonardoSpectrum fully supports generics and generic map constructs and imposes no
restriction on the type of the generic. Generics are very useful in generalizing your VHDL
description for essential properties like sizes of interfaces or for passing timing information for
simulation to instantiated components.

Loop Variables

A loop variableis a special object in the sense that it does not have to be declared. The loop
variable gets its type and value from the specified range in the iteration scheme.

for i in 5 downto O loop
a(i) <= b() and ena ;
end loop ;

In this code fragment, becomes an integer with values,2...5 respectively, when the loop
statements are executed 6 times. A loop variable can only be used inside the loop, and there can
be no assignments to the loop variable. For synthesis, the range specified for the loop variable
must be a compile-time constant, otherwise the construct is not synthesizable.

Statements

This section briefly discusses the basic statements that can be used in VHDL descriptions.

Conditional Statements

signal a : integer ;
signal output_signal, X, y, z : bit_vector (3 downto 0) ;

if a = 1 then

output_signal <= x ;
elsif a = 2 then

output_signal <=y ;
elsif a = 3 then

output_signal <= z ;
else

output_signal <= "0000" ;
end if ;

This code fragment describes a multiplexer function, implemented with an if-then-else
statement. This statement can only be used in a sequential environment, such as a process,
procedure or a function.

2-28 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Statements

The same functionality in the dataflow environment is accomplished with the use of the
conditional signal assignment statement:

signal a : integer ;
signal output_signal, x, y, z : bit_vector (3 downto 0) ;

output_signal <= x when a=1 else
y when a=2 else

z when a=3 else

"0000" ;

Selection Statements

If many conditional clauses have to be performed on the same selection signal, a case statement
is a better solution than thiethen-else construct:

signal output_signal, sel, x, y, z : bit_vector (3 downto 0) ;

case sel is
when "0010" => output_signal <= x ;
when "0100" => output_signal <= vy ;
when "1000" => output_signal <= z ;
when "1010" | "1100" | "0110" => output_signal <= x and y and z ;
when others => output_signal <= "0000" ;
end case ;

The*|” sign indicates that particular case has to be entered if any of the given choices is true
(or functionality). Each case can contain a sequence of statements.

The case statement can only be used in a sequential environment. In the dataflow environment,
the selected signal assignment statement has the equivalent behavior:

signal output_signal, sel, x, y, z : bit_vector (3 downto 0) ;

with sel select
output_signal <= x when "0010",
y when "0100",
z when "1000",
x and y and z when "1010" | "1100"
['0110", "0000" when others ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-29

Statements VHDL Language Features

Loop Statements and Generate Statements

In many cases, especially with operations on arrays, many statements look alike, but differ only
on minor points. In that case, you might consider using a loop statement.

signal result, input_signal : bit_vector (5 downto 0) ;
signal ena : bit ;

for i in O to 5 loop
result(i) <= ena and input_signal(i) ;
end loop ;

In this code fragment, each bit of a input signal is “anded” with a single bit enable signal, to
produce an output array signal. The loop varidbldoes not have to be declared. It holds an
integer value since the loop range is an integer range.

The previous example showedoa loop. VHDL also has avhile loop. Here is an example:

process -- no sensitivity list
begin
wait until clk' event AND clk="1’;
output_signal <= 0;
while (input_signal < 6) loop
wait until clk’ event AND clk="1";
output_signal <= output_signal +1;
end loop;
end process;

LeonardoSpectrum supports almost every type of loop. The tool supports afgop with the
exception ofor loops that contaimait unti ~ statements. The tool also supports any kind of
NEXTandeXIT statements applicable on an ous¢fle loop with multiplewait statements.

While loops are supported as long as they have a vadid statement in every possible path
within the loop. If awhile loop does not have a singhait statement, and it is bound by
constants, then the tool synthesized the design correctly. This is shown in the following
example:

variable i . integer ;

i=0;

while (i < 6) loop
result(ii) <= ena AND input_signal(i) ;
=i+ 1;

end loop ;

2-30 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features

Statements

The tool supportexIT andNEXTstatements withiwhile loops.

For example, we could write thehile loop as follows:

process -- no sensitivity list
begin
wait until clk’ event AND clk="1";
output_signal <= 0;
while (TRUE) loop
exit if (input_signal < 6);
wait until clk’ event AND clk="1";
output_signal <= output_signal +1;
end loop ;
end process

The loop statement can only be used inside sequential environments. Its equivalent statement in

the dataflow environment is thgnerate statement:

signal result, input_signal : bit_vector (5
signal ena : bit ;
Gl : for i in O to 5 generate

result(i) <= ena
end generate

and input_signal(i) ;

downto 0) ;

Thegenerate statement is preceded by a labet). A label is required in the generate

statement but is optional in the loop statement.

Thegenerate

statement does not alloBXIT andNEXTstatements. The reason is that the

statements inside thygnerate statement are executed concurrently. So there is no way to
know when to exit. Thgenerate statement has nehile equivalent, for the same reason.
Instead however, there isfa equivalent in theenerate statement:

signal result, input_signal : bit_vector (5
Gl : for i in O to 5 generate
G2 : if i < 3 generate
result(i) <= input_signal(i) ;
end generate
G3 : if (i >=4) generate
result(i) <= NOT input_signal (i);
end generate
end generate

downto 0) ;

The condition must evaluate to a run-time constant. That is a language requirement.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

2-31

Statements VHDL Language Features

Thereis naelse part possible in generate statement. We consider this a flaw in the language,
but the Exemplar synthesis tools has to comply with it.

LeonardoSpectrum does not have any synthesis restrictions fgsrthate statement.

Assignment Statements

Assignments can be done to signals, ports and variables in VHDL. Assignments to signals and
ports are done with the= operator.

signal o, a, b : std_logic_vector (5 downto 0) ;

0 <= a xor b ;

In this code fragmem gets assigned the value of the vector-XOR (bit by bit) of veciaad

b. The type of the object on the left hand side of the assignment should always match the type of
the value on the right hand side of the assignment. Signal assignments can be used both in
dataflow environment and sequential environments.

Assignments to variables are done with the™sign.

variable o : std_logic_vector (5 downto 0) ;
signal a, b : std_logic_vector (5 downto 0) ;

0 ;= a AND NOTb ;

Variable assignments can only be used in sequential environments. Types on left and right hand
side of the “= " sign should match.

There is one important difference between assignments to signals and assignments to variables:
when the values are updated. The value of a variable in a variable assignment is updated
immediately after the assignment. The value of a signal in a signal assignment is not updated
immediately, but gets “scheduled” until after a delta (delay) time.

This delay time is not related to actual time, but is merely a simulation characteristic. This
behavior of the signal assignment does not have any effect for signal assignments in a dataflow
environment, since assignments are done concurrently there. However, in a process, the actual
value of the signal changes only after the complete execution of the process.

2-32 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Statements

The following example illustrates this effect. It shows the description of a multiplexer that can
select one bit out of a four bit vector using two select signals.

entity mux is

port (s1, s2 : in bit ;
inputs : in bit_vector (3 downto 0) ;
result : out bit
)
end mux ;
architecture wrong of mux is
begin
process (s1,s2,inp)
signal muxval : integer range 0 to 3 ;
begin
muxval <= 0 ;
if (sl ="1) then muxval <= muxval+1 ;
if (s2 =) then muxval <= muxval+2 ;
-- use muxval as index of array ’'inputs’
result <= inputs (muxval) ;
end process ;
end wrong ;

This description does not behave as intended. The problem is besatsé is a signal; the

value ofmuxval is notimmediately set to the value defined by kisndb. Insteadmuxval still

has the same value it had when the process started whén gtatement is executed. All
assignments towuxval are scheduled until after the process finishes. This meansitizad!

still has the value it got from the last time the process was executed, and that value is used to
select the bit from the input vector.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-33

Operators VHDL Language Features

The solution to this problem is to makeixval a variable. In that case, all assignments done to
muxval are immediate, and the process works as intended.

entity mux is

port (s1, s2: in bit ;
inputs : in bit_vector (3 downto 0) ;
result : out bit) ;
end mux ;
architecture right of mux is
begin
process (s1,s2,inp)
variable muxval : integer range 0 to 3 ;
begin
muxval = 0
if (s1 ="'1) then muxval := muxval+l ;
if (s2 ='1) then muxval := muxval+2 ;
-- Use muxval as index of array 'inputs’
result <= inputs (muxval) ;
end process ;
end right ;

As a general rule, if you use signal assignments in processes, do not use the value of the signal
after the assignment, unless you explicitly need the previous value of the signal. Alternatively,

you can use a variable instead.

Operators

IEEE 1076 Predefined Operators

VHDL predefines a large number of operators for operations on objects of various types. The
following is an overview:

Relational operators on ALL types (predefined or not):

Logical operators on pre-defined types BIT and BOOLEAN:
AND NOR
OR XOR

2-34 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Operators

NAND NOT

Arithmetic operators on all integer types:
+ mod
- rem

* abs

*%

Concatenation of elements into an array of elements:
& (o)

Relational operators operate on any type. The basis of comparing two values is derived from the
order of definition. For example in thed_logic type the valueu’ is smaller than the value

'1’ becausey is defined first in the order of values in the type. The comparison of two arrays

Is accomplished by comparing each element of the array. The left most element is the most
significant one for comparisons.

signal a : bit_vector (7 downto 0) ;
signal b : bit_vector (9 downto 5) ;

In this examplea(7) is the most significant bit for comparisons with vecigandb(9) is the
most significant bit for comparisons with vectar

Logical operators work in a straightforward manner and do the appropriate operations on types
BIT andBOOLEANand also for one-dimensional arrayssof andBOOLEANIN the latter case,

the logical operation is executed on each element of the array. The result is an array with the
same size and type as the operands.

Arithmetic operators work on integers and on all types derived from integers.

LeonardoSpectrum supports arithmetic operators on vectors, described in the exemplar
package.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-35

Operators VHDL Language Features

Concatenation operators can group elements of the same type into an array of that type.
Consider the following examples:

signal a, b, ¢ : bit ;
signal x : bit_vector (5 downto O0) ;
signal y : bit vector (3 downto 0) ;

-- using concatenation operator

X<=a &b &c &B"00" &0 ;
-- using an aggregate

y <= (1, '0, b, ¢) ;

This description is the same as the following one:

signal a, b, ¢ : bit ;
signal x : bit_vector (5 downto 0) ;
signal y : bit_vector (3 downto 0) ;

X(5) <= a ;
X(4) <= b ;
X@3) <= ¢ ;
x(2 downto 0) <= "000" ;
y(0) <= 1" ;
y(1) <= 0" ;
y(2) <= b ;
y3) <= ¢ ;

The aggregate operator in VHDL is especially useful when assigning to a vector of unknown or
large size:

signal o : bit_vector (255 downto 0) ;

0 <= (0=>1", others =>0) ;

In this examplep(0) is assignecdy’ and all other elements of (independent of its size) get
value'o’ .

IEEE 1164 Predefined Operators

The IEEE 1164 standard logic package describes a set of new types for logic values. However,
the binary operators that are predefined in VHDL only operate on bit and boolean types, and
arrays of bits and booleans. Therefore, the IEEE standard logic type package redefines the
logical operators (and, or, not, etc.) for the typeislogic , std_ulogic and the array types
std_logic_vector andstd_ulogic_vector

2-36 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Attributes

Operator Overloading

The operators, -, *, mod, abs, < ,>, etc. are predefined for integer and floating-point types, and
the operatorand, or , not etc. are predefined on the type andboolean . If you want to use

an operator that is not pre-defined for the types you want to use, use operator overloading in
VHDL to define what the operator should do. Suppose you want to add an integer and a bit
according to your own semantics, and you want to use thegerator:

function “+" (a: integer; b: bit) return integer s
begin
if (b="1) then
return a+l ;

else
return a ;
end if ;
end “+" ;
signal o, t: integer range 0 to 255 ;

signal b : bit ;

t<=0+5+ b ;

The first “+” in the assignment to is the pre-defined+” operator on integers. The second “

is the user defined overloaded operator that adds a bit to an integet.ciagacter around the
“+” operator definition is needed to distinguish the operator definition from a regular function
definition.

Operator overloading is also necessary if you defined your own logic type and would like to use
any operator on it.

If you want to do arithmetic operations, (-, etc.) on the array typest_vector or
std_logic_vector , itwill be more efficient for synthesis to use the pre-defined operators from
theexemplar and theexemplar_1164 packages.

LeonardoSpectrum fully supports operator overloading as described by the language.

Attributes

In VHDL, attributes can be set on a variety of objects, such as signals and variables, and many
other identifiers, like types, functions, labels etc.

An attributeindicates a specific property of the signal, and is of a defined type. Using attributes

at the right places creates a very flexible style of writing VHDL code. An example of this is
given at the end of this section.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-37

Attributes VHDL Language Features

VHDL Predefined Attributes

VHDL pre-defines a large set of attributes for signals. The following example shows the
definition of two vectors and the values of the VHDL predefined attributes for them.

signal vector_up : bit_vector (9 downto 4) ;
signal vector_dwn : bit_vector (25 downto O0) ;

vector_up’'LEFT-- returns integer 9
vector_dwn'LEFT-- returns integer 25
vector_up’RIGHT-- returns integer 4

vector_ dwn’RIGHT-- returns integer 0
vector_up’HIGH-- returns integer 4
vector_dwn’HIGH-- returns integer 25
vector_up’LOW-- returns integer 9
vector_dwn’'LOW-- returns integer 0
vector_Uup’LENGTH-- returns integer 6

vector dwn'LENGTH-- returns integer 26
vector_up’RANGE -- returns range 4 to 4
vector_dwn’RANGE-- returns range 25 to 0
vector_up’REVERSE_RANGE-- returns range 4 to 9
vector_dwn’'REVERSE_RANGE-- returns range 0 to 25

The attributes do not have to be written in capitals; VHDL is case-insensitive for identifiers.

An important predefined attribute for synthesis is BwENTattribute. Its value reveals edges of
signals

Exemplar Predefined Attributes

Apart from the VHDL predefined types, Exemplar also supplies a set of predefined attributes
that are specifically helpful for guiding the synthesis process or controlling down-stream tools.

User-Defined Attributes

Attributes can also be user defined. In this case, the attribute first has to be declared, with a type,
and then its value can be set on a signal or other object. This value can then be used with the
“» 7 construct. The following is an example:

signal my_vector : bit_vector (4 downto O) ;
attribute MIDDLE : integer ;
attribute MIDDLE of my_vector : signal is my_vectorLENGTH/2 ;

my_vectorMIDDLE -- returns integer 2

2-38 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Attributes

Usage Of Attributes

To indicate where attributes in a VHDL description are useful, consider the following example.

entity masked_parity is

port (source : in bit_vector (5 downto 0) ;
mask : in bit_vector (5 downto 0) ;
result : out bit

)

end masked_parity ;

architecture soso of masked_ parity is
begin
process (source, mask)
variable tmp : bit ;
variable masked_source : bit_vector (5

downto 0) ;
begin
masked_source := source and mask ;
tmp := masked_source(0) ;
for i in 1 to 5 loop
tmp = tmp XORmasked_source(i) ;
end loop ;

result <= tmp ;
end process ;
end so0so ;

This example calculates the parity of the bits of a source vector, where each bit can be masked.
This VHDL description is correct, but is not very flexible. Suppose the application changes
slightly and requires a different size input. Then the VHDL description has to be modified
significantly, since the range of the vector affects many places in the description. The
information is not concentrated, and there are many dependencies. Attributes can resolve these
dependencies.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-39

Blocks VHDL Language Features

Here is an improved version of the same example, where attribBFES RIGHT, andRANGE
define the dependencies on the size of the vector.

entity masked_parity is
generic (size : integer = 5) ;

port (source : in bit_vector (size downto 0) ;
mask : in bit_vector (source’RANGE) ;
result : out bit

)

end masked_parity ;

architecture better of masked_parity is
begin
process (source, mask)
variable tmp @ bit ;
variable masked_source : bit_vector (source’RANGE) ;
begin
masked_source := source and mask ;
tmp := masked_source(source’LEFT) ;
for i in source’'LEFT+1 to source’RIGHT loop
tmp = tmp xor masked_source(i) ;
end loop ;
result <= tmp ;
end process ;
end better ;

If the application requires a different size parity checker, this time we only have to modify the
source vector range, and the attributes ensure that the rest of the description gets adjusted
accordingly. Now the information is concentrated.

Blocks

When using processes and dataflow statements it is possible to use VHDL as a high level
hardware description language. However, as the descriptions get more and more complicated,
some form of design partitioning, or hierarchy, is required or desirable.

VHDL offers a variety of methods for design partitioning. One form of partitioning is to divide

a description into various processes. In the following sections four more forms of partitioning
are discussed: blocks, subprograms (functions and procedures), components and packages.

2-40 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Functions And Procedures

A blockis a method to cluster a set of related dataflow statements. Signals, subprograms,
attributes, etc. that are local to the block can be defined in a block declarative region. All
statements in a block are executed concurrently, and thus define a dataflow environment.

architecture xxx of yyy is
signal global_sig ,91,92,c bit ;
begin
B1 : block -- block declarative region
signal local_sig : bit ;
begin -- block concurrent statements
local_sig <= global_sig ;
-- Block in a block
B2 : block (c=1) -- Block has “GUARD” expression
port (01,02 : out bit)-- Block port declarations
port map (0l1=>gl,02=>g2) ;
begin
0l <= guarded local_sig ;
02 <= global_sig ;
end block
end block ;
end XxX ;

Blocks can be nested, for example.

Signals, ports and generics declared outside the block can be used inside the block, either
directly (asglobal_sig is used in blocks2), or via a port map (agl is connected to1l in

block B2) or generic maps (for generics). There is no real difference between the two methods,
except that the port (generic) map construct is a cleaner coding style which could reduce errors
when using or assigning to global objects.

A block can also have @auARDexpressiond="1 ’ in blockB2). In that case, an assignment

inside the block that contains the keywadARDEWvIll only be executed when theUARD
expression iFRUE In the exampleg1 only gets the value décal_sig whenc="1" . GUARDED
blocks and assignments provide a interesting alternative to construct latches or flip-flops in the
synthesized circuit. For examples, refer to Registers, Latches and Resets @lpage

LeonardoSpectrum fully support blocks, with port/generic lists and port/generic maps and the
GUARDptions of blocks.

Functions And Procedures

Subprograms (function and procedures) are powerful tools to implement functionality that is
repeatedly usedtunctionstake a number of arguments that are all inputs to the function, and
return a single valud?roceduregake a number of arguments that can be inputs, outputs or
inouts, depending on the direction of the flow of information through the argument. All
statements in functions and procedures are executed sequentially, as in a process. Also,

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-41

Functions And Procedures VHDL Language Features

variables that are local to the subprogram can be declared in the subprogram. Local signals are
not allowed.

As an example, suppose you would like to add two vectors. In this case, you could define a

function that performs the addition. The following code fragment shows how an addition of two
6-bit vectors is done.

function vector_adder (x : bit_vector(5 downto 0); vy : bit_vector(5
downto 0)) return bit_vector(5 downto Q) is
-- declarative region
variable carry : bit ;
variable result : bit_vector(5 downto O0) ;
begin
-- sequential statements
carry = 0" ;
for i in O to 5 loop
result (i) := x(i) xor y(i) xor carry ;
carry := carry AND (x(i) ORYy(i)) OR x(i) ANDy() ;
end loop ;
return result ;
end vector_adder ;

That vector addition, implemented this way, is not very efficient for synthesis. The packages

exemplar andexemplar_1164 provide vector additions that can implement efficient/fast adders
more easily.

An example of a procedure is shown. The procedure increments a vector only if an enable signal
is high.

procedure increment (vect : inout bit_vector(5 downto 0); ena :
in bit :='1") is
begin

if (ena='1l) then
vect := vector_adder (vect, "000001") ;
end if
end increment ;

This incrementer procedure shows the behavior of an in/out port. The parametes both set

and used in this procedure. Also, the procedure statements use a call to the previously defined
vector_adder function. If an input of a function or a procedure is not connected when it is
used, that input will get the initial value as declared on the interface list.

For example, inpugna will get (initial) value'1’ ifitis not connected in a procedure call to the
procedurencrement . Itis an error if an input is not connected and also does not have an initial
value specified.

2-42 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Functions And Procedures

One important feature of subprograms in VHDL is that the arguments can be unbound. The
given examples operate on vectors of 6 bits. If you want to use the subprograms for arbitrary
length vectors, you could specify the length-dependencies with attributes and not specify a
range on the parameters (leave them unbound). Here is a redefinition of both the vector addition
function and the incrementer procedure for arbitrary length vectors.

function vector_adder (x : bit_vector; y : bit_vector) return
bit_vector is
variable carry : bit ;= '0" ;
variable result : bit_vector(xRANGE) ;
begin
for i in XRANGE loop
result (i) := x(i) XORy(i) XORcarry ;
carry = carry AND (x(i) ORy(i)) OR x(i) ANDy() ;
end loop

return result ;
end vector_adder ;

procedure increment (vect : inout bit_vector; ena : in bit :='1") is
begin
if (ena='1l) then
vect := vector_adder (x=>vect, "000001") ;
end if
end increment ;

In the procedure increment example, name association was added in the parameter list of the
vector_adder call. The name association (e.g=pvect) is an alternative way to connect a
formal parameterx() to its actual parametevdct). Name associations (as well as positional
associations) are helpful if the number of parameters is large.

Subprograms can be called from the dataflow environment and from any sequential
environment (processes and other sub-programs). If a procedure output or inout is a signal, the
corresponding parameter of the procedure should also be declared as a signal.

Subprograms can be overloaded. That is, there could be multiple subprograms with the same
name, but with different parameter list types or return types. LeonardoSpectrum performs the
overlaod resolution.

In the last example, the variable carry was initialized in when it was declared. This is a more
compact way of setting the starting value of a variable in a function or procedure. The initial
value does not have to be a constant. It could be a nonconstant value also (like the value of one
of the parameters).

LeonardoSpectrum fully supports all VHDL language features of functions and procedures.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-43

Resolution Functions VHDL Language Features

Resolution Functions

Syntax and Semantics

In a concurrent area in VHDL, all statements happen concurrently. That means that if there are
two assignments to the same signal, then the final value of the signal needs to be resolved. In
VHDL, you can only have multiple concurrent assignments to a signal if the type of the signal is
resolved . A resolvedype is a type with a resolution function. A good example of a resolved
type is the typestd_logic ~ from the IEEE 1164 package:

subtype std_logic is resolved std_ulogic ;

The wordresolved in this declaration refers to a resolution function calegbived . Here is
how it is specified in thetd_logic_1164 package:

function resolved (s : std_ulogic_vector) return std_ulogic is
variable result : std_ulogic = 'Z’; -- weakest state default
attribute synthesis_return of result: variable is
“WIRED_THREE_STATE” ;
begin

- the test for a single driver is essential otherwise the
- loop would return X’ for a single driver of -’ and that
- would conflict with the value of a single driver unresolved

-- signal.
if (S'LENGTH = 1) then return s(s’LOW);
else
for i in s’ range loop result := resolution_table(result,
s());
end loop ;
end if return result;

end resolved;

The resolution function of typstd_logic ~ takes a vector of the (unresolved) base-type of
std_logic : std_ulogic . It returns a singlatd_ulogic

Now if you have two concurrent assignments to any signal of $ygpéogic , the resolution
function will be called to determine the final value of the signal. The resolution function will be
called with a vector with two elements, where each element contains the value of a concurrent
assignment. Inside the resolution function, the final value of the signal is defined, based on the
two assignment values.

2-44 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Resolution Functions

Synthesis Issues

Resolution functions are especially useful when you want to model nets with multiple drivers
(like busses with three-state drivers). However, VHDL lets you define a resolution function
freely, without any special restrictions. The resolution function is thus just another function,
only it gets called wherever there are multiple assignments to a signal of the (sub) type itis
attached to.

You can define a resolution function and attach it to a subtype, and LeonardoSpectrum will
synthesize the circuitry it implies for each multiple assignment.

In many cases, the resolution function mimics a certain electrical behavior for the simulator. In
the case of the IEEE typed_logic , and its resolution functioresolved the resolution function
resembles tri-states being wired together. Therefore, the synthesis directive attribute
(synthesis_result) is set tOWIRED_THREE_STATE

This synthesis directive is a hint to LeonardoSpectrum to interpret the elements of the incoming
vector as parallel three-state assignments, where the three-state condition is derived from the
assignment. That way, any three-state drivers can be created with multiple assignments.

Let’s go through one example step by step, to show what the resolution function is doing:

entity test_resolver is
port (a, b : bit ;
o : out hit) ;
end test _resolver ;
architecture exemplar of test resolver is
signal tmp : bit ;
begin
tmp <= a ;
tmp <= b ;
0 <= tmp ;
end exemplar ;

When the code is executed, LeonardoSpectrum will give the following error:

file, line 9: Error, multiple sources on unresolved signal TMP; also line 10.

This message is obvious, since you did not explain what should happenaahen force
(different) values concurrently onto sigrahr. For that, write a resolution function. Suppose
you want the concurrent assignments toab®ed Then you should write a resolution function
that performs amNDoperation of the elements of its input vector.

Also attach the resolution function TR You could do that in two ways:

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-45

Component Instantiation VHDL Language Features

1. Create a subtype oft , say,rbit , and attach the resolution function to that subtype,
just as we did for the typstd_logic

2. Directly attach the resolution function to the sigmsik This is the easiest way, and it is
useful if there are not many signals that need the resolution function.

The second method is::

entity test_resolver is
port (a, b : bit ;
0 : out bit) ;

end test_resolver ;

architecture exemplar of test resolver is

-- Write the resolution function that ANDs the elements:

function my_and_resolved (a : bit_vector) return bit is
variable result : bit := "1 ;

begin
for i in a’range loop

result := result AND a(i) ;

end loop

return result ;
end my_and_resolved ;

-- Declare the signal and attach the resolution function to it:
signal tmp : my_and_resolved bit ;
begin
tmp <= a ;
tmp <= b ;
0 <= tmp ;
end exemplar ;

LeonardoSpectrum will synthesize this description amdbecomes theNDof a andb.

Component Instantiation

Componentare a method of introducing structure in a VHDL description. A component
represents a structural module in the design. Using components, it is possible to describe a
netlistin VHDL. Components are instantiated in the dataflow environment. Here is an example

2-46 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features

Component Instantiation

of a structural VHDL description where four one-bit rams and a counter module are

instantiated.
entity scanner is
port (reset : in bit ;
stop ;in hit
load :in bit ;
clk : in bit ;
load_value : in bit_vector (3 downto 0) ;
data : out bit vector (3 downto 0)
)
end scanner ;
architecture exemplar of scanner is
component RAM_32x1
port (a0, al, a2, a3, a4 : in bit ;
we, d : in bit ;
0 : out bit
)
end component ;
component counter
generic (size : integer = 4) ;
port (clk : in bit ;
enable : in bit ;
reset : in bit ;
result : out bit_vector (4 downto 0)
)
end component ;
signal ena : bit ;
signal addr : bit_vector (4 downto 0) ;

begin
for i in 0 to 3 generate

we=>load, o=>data(i)) ;
end generate
ena <= not stop ;
count : counter

end exemplar ;

ram : RAM_32x1 port map (a0=>addr(0), al=>addr(1),
a2=>addr(2), a3=>addr(3), ad4=>addr(4), d=>data(i),

generic map (size=>addr’length)
port map(clk=>clk, enable=>ena,
reset=>reset, result=>addr) ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

2-47

Binding a Component VHDL Language Features

The generate statement is used here to instantiate the four RAMs.

Components have to be declared before they can be used. This is done in the declaration area of
the architecture, or in a package (see next section). The declaration defines the interface of the
component ports with their type and their direction. Actually this example is just a netlist of
components. We added one dataflow statement (the assignnesial) to show that structure

and behavior can be mixed in VHDL.

The ports of the component are connected to actual signals (or ports) with the port map
construct. The generics of the component are connected to actual values with the generic map
construct. In this example the genesigz is set to4 with the attribute length on the arraygdr .

If no generic value was set tive (or if the generic map construct was completely absent),

size gets valuet, as indicated by the initial value aire in the generic list of the component.

Itis an error if a generic (or input port) is not connected in a generic map (or port map) construct
and there is no initial value given in the component generic (or port) list.

In the example, the input ports of the comporeat_32x1 are individual bits §0, a1, a2, a3,
a4). If the input would have been declared astavector (0 to 4), then the individual bits
could be connected with indexed formal names:

. port map (a(0) => addr(0), a(1l) => addr(1), a(2) => addr(2),
a(3) => addr(3), a(4) => addr(4), ...

or with a sliced formal name:

. port map (a(0 to 4) => addr(0 to 4),

or simply with a full identifier association:

. port map (a => addr,

LeonardoSpectrum supports any form of slicing or indexing of formal parameter names, as long
as the VHDL language rules are obeyed (formal name should be static).

LeonardoSpectrum also supports type-transformation functions in port and generic associations

as long as they are synthesizable. Type transformation functions are not very often used and so
are not explained here.

Binding a Component

The definition of the components counter aM_32x1 are not yet given in the example. The
process of giving a contents definition for a component is cdlladingin VHDL. With
LeonardoSpectrum, there are four ways to do component binding:

2-48 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Binding a Component

1. Specify an entity with the same name as the component and an architecture for it. This
way, the component gets bound to the entity with the same name. This is called 'default
binding’ in VHDL.

2. Specify a configuration specification. Here you can bind a component to an entity with a
different name, and you can even connect component ports to entity ports with a
different name.

3. Use a source technology in LeonardoSpectrum that contains a cell with the same name
as the component. LeonardoSpectrum will bind the component to the technology cell
(and include functional, timing and area information for it).

4. Do not specify any entity for the component. This way, LeonardoSpectrum will issue a
warning and create a black-box for the component.

Option 1 - Using a Default Binding

The component counter is a good example of the first option:

entity counter is
generic (size : integer) ;
port (clk : in bit ;

enable : in bit ;
reset in bit ;
result : out bit_vector (size-1 downto 0)
)
end counter ;
architecture exemplar of counter is
begin
process (clk,reset)
begin
if (reset="1") then
result <= (others=>'0") ;
elsif (clk’event and clk="1") then
if (enable="1") then
result <= result + "1" ;
end if ;
end if

end process ;
end exemplar ;

This description only includes behavior. There is no component instantiated, although it is
possible, and it makes hierarchical design possible.

Note that in this case the overloadedoperator is used on vectors, as defined indkemplar
package. Also note that an asynchronous reset construction is used to reset the counter value.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-49

Binding a Component VHDL Language Features

Option 2 - Using a Configuration Specification

The second option gives more freedom to bind an entity to a component. Suppose you have a
counter entity that does exactly what you need, but it is named differently, and (or) has
differently named ports and generics:

entity alternative is
generic (N : integer) ;
port (clock : in bit ;
ena : bit :
reset : bit ;
output : out bit vector (N-1 downto 0)) ;

end alternative ;
architecture ex of alternative is
begin

The following example configuration specification could be used to bind the component
counter to the entityalternative , for a particular or all instances of tikeunter component.

The configuration specification is added after thenter

component declaration:

component counter
generic (size : integer) ;
port (clk : in bit ;
enable : in bit ;
reset : in bit ;
result : out bit_vector(4 downto 0)) ;
end component counter ;
for all :counter use entity work.alternative(ex) generic map
(N=>size)
port map (clock=>clk, ena=>enable,
reset=>reset,output=>result) ;

This configuration specification bindél instances of componendunter to an entity called
alternative (architectureex) in thework library, and it connects the generics and ports of the
entity to differently named generics and ports in the component. If the ports and generics have
the same name in the entity and the architecture, the generic map and port map don’t have to be
given. If there is only one architecture of the entifigrnative then the architecturex) does

not have to be given either. If not all, but just one or two instances of the companerdr

should be bound to the entigjternative ~ , then replacell by a list of instance (label) names.

Configuration specifications are a very powerful method to quickly switch definitions of
components to a different alternative.

2-50 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Packages

LeonardSpectrum fully supports all forms of configuration specifications that are allowed in the
language.

If no configuration specification is given, the synthesis tools use the default binding as
explained in the first option.

Option 3 - Matching a Component Name to a Library
Cell

In the third option, if you use a component name that matches the name of a cell in the target
technology library, then that cell will be instantiated in the design. In this case, assume that the
nameRAM_32x1is the name of a RAM cell in the target technology library.

Option 4 - Creating a Black Box by Omitting the Entity

The fourth option is to omit declaring an entity for the component. This is helpful when

hierarchy has to be preserved. This technique can be effectively used to maintain hierarchy.
LeonardoSpectrum generates an empty module for each component it cannot find in the present
file as an entity or as a library cell in the source technology. Empty modules show up as blocks
in the final netlist. They are not touched by the synthesis and optimization process. Components
without a definition can also help to isolate a particular difficult or user-defined part of the

design from the synthesis operations. Clock generators or other asynchronous circuits or
time-critical user-defined modules are an example of this.

Packages

A packages a cluster of declarations and definitions of objects, functions, procedures,
components, attributes etc. that can be used in a VHDL description. You cannot define an entity
or architecture in a package, so a package by itself does not represent a circuit.

A package consists of two parts. The package header, with declarations, and the package body,

with definitions. An example of a packagesis_logic 1164 , the IEEE 1164 logic types
package. It defines types and operations on types for 9-valued logic.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-51

Aliases VHDL Language Features

To include functionality from a package into a VHDL description, tise clause is used.

library ieee ;
use ieee.std logic_1164.all ;

entity xxx is
port (x : std_logic ; -- type std_logic is known since it
is
-- defined in package
-- std_logic_1164

This example shows how the IEEE 1164 standard logic types and functions become accessible
to the description in entityxx .

This is the general form to include a package in a VHDL description:

library lib
use lib.package.selection ;

Theuse clause is preceded byiarary clause. The predefined librariesrk andstd do not
have to be declared inliarary clause before they are used insa clause. All other libraries
do need to be declared.

Theselectioncan consist of only one name of a object, component, type or subprogram that is
present in the package, or the word all, in which case all functionality defined in the package is
loaded into LeonardoSpectrum, and can be used in the VHDL description.

Allases

An aliasis an alternate name for an existing object. By using an alias of an object, you actually
use the object to which it refers. By assigning to an alias, you actually assign to the object to
which the alias refers.

signal vec : std_logic_vector (4 downto 0) ;
alias mid_bit : std_logic is vec(?) ;

-- Assignment :

mid_bit <= '0" ;

-- is the same as

vec(2) <= 0" ;

Aliases are often useful in unbound function calls. For instance, if you want to make a function
that takes theNDoperation of the two left most bits of an arbitrary array parameter. If you want

2-52 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

VHDL Language Features Aliases

to make the function general enough to handle arbitrary sized arrays, this function could look
like this:

function left_ and (arr: std_logic_vector) return std_logic is
begin
return arr(arr’left) and arr(arrleft-1) ;
end left_and ;
-- Function does not work for ascending index ranges of arr.

This function will only work correctly if the index range afr is descendingdpwnto).

Otherwise arr'left-1 is not a valid index number. VHDL does not have a simple attribute
that will give the one-but-leftmost bit out of an arbitrary vector, so it will be difficult to make a
function that works correctly both for ascending and descending index ranges. Instead, you
could make an alias aiir , with a known index range, and operate on the alias:

function left_and (arr : std_logic_vector) return std_logic is
alias aliased_arr : std_logic_vector (0 to arrlength-1) is
arr ;
begin
return aliased_arr(0) and aliased_arr(1) ;

end left_ and ;
-- Function works for both ascending and descending index
-- ranges of arr.

LeonardoSpectrum fully supports aliases.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 2-53

Aliases VHDL Language Features

2-54 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Chapter 3
The Art of VHDL Synthesis

This chapter explains the relationship between constructs in VHDL and the logic which is
synthesized. It focuses on coding styles with the best performance for synthesis.

Registers, Latches and Resets

VHDL synthesis produces registered and combinational logic at the RTL level. All
combinational behavior around the registers is, unless prohibited by the user, optimized
automatically. The style of coding combinational behavior, sudhtieen-else andcase
statements, has some effect on the final circuit result, but the style of coding sequential behavior
has significant impact on your design.

The purpose of this section is to show how sequential behavior is produced with VHDL, so that
you understand why registers are generated at certain places and not in others.

Most examples explain the generation of these modules with short VHDL descriptions in a
process. If you are not working in a process, but just in the dataflow area of an architecture in

VHDL, it is possible to generate these modules using predefined procedures in the
exemplarvhd ~ package.

Level-Sensitive Latch

This first example describes a level-sensitive latch:

signal input_foo, output _foo, ena : bit ;

process (ena, input_foo)
begin
if (ena = 1) then
output_foo <= input_foo ;
end if
end process

In this example, the sensitivity list is required, and indicates that the process is executed
whenever the signaksa orinput_foo change. Also, since the assignment to the global signal

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-1

Registers, Latches and Resets The Art of VHDL Synthesis

output_foo Is hidden in a conditional clauseytput_foo cannot change (will preserve its old
value) ifena is’0’ . If ena is’'1l’ , output_foo is immediately updated with the value of
input_foo , whenever it changes. This is the behavior of a level-sensitive latch.

In technologies where level-sensitive latches are not available, LeonardoSpectrum translates the
initially generated latches to the gate-equivalent of the latch, using a combinational loop.

Latches can also be generated in dataflow statements, using a guarded block:

bl : block (ena='1)
begin

output_foo <= GUARDEDnNput_foo ;
end block

Edge-Sensitive Flip-Flops
The Event Attribute

An edge triggered flip-flop is generated from a VHDL description only if a signal assignment is
executed on the leading (or on the falling) edge of another signal. For that reason, the condition
under which the assignment is done should include an edge-detecting mechanigveNne
attribute on a signal is the most commonly used edge-detecting mechanism.

TheEVENTattribute operates on a signal and returns a boolean. The result is always FALSE,
unless the signal showed a change (edge) in value. If the signal started the process by a change
in value, theevENTattribute isTRUEall the way through the process.

Here is one example of the event attribute, used in the condition clause in a process.
LeonardoSpectrum recognizes an edge triggered flip-flop from this behaviorpwygth foo
updated only on the leading edged .

signal input_foo, output_foo, clk : bit ;

process (clk)
begin
if (clk’event and clk="1") then
output_foo <= input_foo ;
end if ;
end process

The attributesTABLEIs the boolean inversion of tte/ENTattribute. HenceNlOT CLK'STABLEIS
treated the same @ K'EVENT. LeonardoSpectrum supports both attributes.

3-2 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Registers, Latches and Resets

Synchronous Sets And Resets

All conditional assignments to signaltput_foo inside the if clause translate into
combinational logic in front of the D-input of the flip-flop. For instance, we could make a
synchronous reset on the flip-flop by doing a conditional assignmenitjiot_foo

signal input_foo, output_foo, clk, reset : bit ;

process (clk)

begin
if (clk’event and clk = '1) then
if reset ='1 then
output_foo <= '0’ ;
else
output_foo <= input_foo ;
end if

end if ;
end process

Signalsreset andinput_foo do not have to be on the sensitivity list (although it is allowed)
since a change in their values does not result in any action inside the process.

Alternatively, dataflow statements could be used to specify a synchronous reset, using a
GUARDEIlock and a conditional signal assignment.

b3 : block (clk’event and clk="1")
begin
output_foo <= GUARDEDO' when reset="1’ else
input_foo ;
end block ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-3

Registers, Latches and Resets The Art of VHDL Synthesis

Asynchronous Sets And Resets

If the reset signal should have immediate effect on the output, but the assignment to
output_foo frominput_foo should happen only on the leading clock edge, an asynchronous
reset is required. Here is the process:

signal input_foo, output_foo, clk, reset : bit ;

process (clk,reset)

begin
if (reset = 1) then
output_foo <= '0’ ;
elsif ~ (clk'event and clk = '1") then

output_foo <= input_foo ;
end if ;
end process

Now reset HAS TO BE on the sensitivity list! If it were not there, VHDL semantics require that
the process should not start if reset changes. It would only sttt iEhanges. That means that

if reset becomes’ , output_foo would be settoo’ if clk either goes up, or goes down, but

not before any change ok . This behavior cannot be synthesized into logic.

LeonardoSpectrum issues an error message that reminds you to put reset on the sensitivity list.

Asynchronous set and reset can both be used. It is also possible to have expressions instead of
the fixed'0' or’1’ inthe assignments tautput_foo in the reset and set conditions. This

results in combinational logic driving the set and reset input of the flip-flop of the target signal.
The following code fragment shows the structure of such a process:

process (d ok agndionoud yused 9 gnals)
begin
if (bool ean eqpess on) then
asnchonous § gnal _ass gnments
elsif (bool ean epess on) then
agncionous § gnal _ass gnments
elsif (d oKevent and d ok = oond ant) then
gndionous § gnal _ass gnments
end if ;
end process

There can be several asynchroneiss clauses, but the synchronous elsif clause (if present)

has to be the last one in the if clause. A flip-flop is generated for each signal that is assigned in
the synchronous signal assignment. The asynchronous clauses result in combinational logic that
drives the set and reset inputs of the flip-flops. If there is no synchronous clause, all logic
becomes combinational.

3-4 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Registers, Latches and Resets

Clock Enable

It is also possible to specify an enable signal in a process. Some technologies have a special
enable pin on their basic building blocks. LeonardoSpectrum recognize the function of the

enable from the VHDL description and generates a flip-flop with an enable signal from the
following code fragment:

signal input_foo, output_foo, enable, clk : bit ;

process (clk)
begin
if (clkevent and clk="1") then
if (enable="1") then
output_foo <= input_foo ;
end if
end if
end process

In dataflow statements, a clock enable can be constructed waEtlhanRDEDIock and a
conditional signals assignment.

b4: block (clk’'event and clk="1")
begin
output_foo <= GUARDEDNput_foo when enable="1’
else output_foo ;
end block

Walit Statements

Another way to generate registers is by usingvhe unti statement. Theait until

clause can be used in a process, and is synthesizable, as long as all of the control paths inside the
process contain at least one wait statement. The following code fragment generates an edge
triggered flip-flop between signalput_foo andoutput_foo

signal input_foo, output_foo, clk : bit ;

process

begin
wait until clk'event and clk="1" ;
output_foo <= input_foo ;

end process

There is no sensitivity list on this process. In VHDL, a process can have a sensitivady dist
wait statement, but not both. In this example, the process is executed if clk changes since clk is
present in the wait condition. Also, the wait condition can be simplifiegsio until

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-5

Registers, Latches and Resets The Art of VHDL Synthesis

ck="1" ; , since the process only startsiif changes, and thuskevent is always true.
Multiple wait statements per process are also supported as long as all of the statements have the
samewait untii clause.

LeonardoSpectrum does not support asynchronous reset behavior with wait statements. A
synchronous reset remains possible however, by describing the reset behavior after the wait
statement.

Variables

Variables (like signals) can also generate flip-flops. Since the variable is defined in the process
itself, and its value never leaves the process, the only time a variable generates a flip-flop is
when the variable is used before it is assigned in a clocked process. For instance, the following
code segment generates a three-bit shift register.

signal input_foo, output_foo, clk : bit ;

process (clk)
variable a, b : bit ;
begin
if (clk’event and clk="1") then
output_foo <= b ;
b :=a;
a := input_foo ;
end if
end process

In this case, the variablesandb are used before they are assigned. Therefore, they pass their
values from the last run through the process, which is the assigned value delayed by one clock
cycle. If the variables are assigned before they are used, you will get a different circuit:

signal input_foo, output_foo, clk : bit ;

process (clk)
variable a, b : hit ;

begin
if (clk’event and clk="1") then
a := input_foo ;
b :=a;

output_foo <= b ;
end if
end process

Here, a and b are assigned before used, and therefore do not generate flip-flops. Instead, they
generate a single wire. Only one flip-flop remains in betwiagit_foo andoutput_foo
because of the signal assignment in the clocked process.

3-6 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Assigning 1/O Buffers From VHDL

Predefined Flip-flops and Latches

Flip-flops and latches can also be generated by using predefined procedures from the exemplar
package. These procedure calls cause LeonardoSpectrum to instantiate the required flip-flop or
D-latch. There are various forms of these procedures available, including versions with
asynchronous preset and clear.

Assigning I/O Buffers From VHDL

There are three ways to assign 1/0O buffers to your design from VHDL.:
® Run LeonardoSpectrum in “chip” mode.
® Use thebuffer_sig attribute on a port in the VHDL source
® Use thebuffer sig command.
® Use direct component instantiation in VHDL of the buffer you require.

Thebuffer_sig attribute or the direct component instantiation will overwrite any default
buffer assignment that LeonardoSpectrum does in “chip” mode.

It is important to realize that if you specify buffer names in the VHDL source,
LeonardoSpectrum checks the source technology library to find the buffer you requested. If you

specify buffers in the control file, LeonardoSpectrum checks the target technology library for a
matching buffer.

Automatic Buffer Assignment in Batch Mode

The easiest way of assigning buffers is to use-¢th batch mode option on the command
line.

Manual Assignment Using The BUFFER_SIG Property

Special buffers, e.g. clock buffers, can be assigned usingutiee sig property. This can be
done with theBUFFER_SIGcommand. Here is an example:

BUFFER_SIG CLOCK_BUFFER clk

For LeonardoSpectrum, special buffers can be assigned by usiBg#reER_SIGprocedure.
After reading in a design, use the comma@ukFFER_SIG CLOCK_BUFFER net_names

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-7

Assigning I/O Buffers From VHDL The Art of VHDL Synthesis

Thebuffer_sig property can also be set on a port usingdieer_sig attribute in the VHDL
source.

entity example is

port (inp, clk : in std_logic;
outp : out std_logic;
inoutp : inout std_logic

);
attribute buffer_sig : string ;

attribute buffer_sig of clk: signal is
“CLOCK_BUFFER” ;
end example;

Portclk is connected to the input of the external clock buffeoCk_BUFFERAnN intermediate
node callednanual_clk appears oICLOCK_BUFFER output. Gates specified in the control file
are searched for in the target technology library. Gates specified in the VHDL source are
searched for in the source technology library.

3-8 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Assigning 1/O Buffers From VHDL

Buffer Assignment Using Component Instantiation

Itis also possible to instantiate buffers in the VHDL source file with component instantiation. In
particular, if you want a specific complex input or output buffer to be present on a specific input
or output, component instantiation is a very powerful method:

entity special is

port (inp : in std_logic ;
clk : in std_logic ;
outp : out std_logic;
inoutp : inout std_logic
)
end special ;
architecture exemplar of special s
component OUTPUT_FLIPFLOP
port (c,dt: in std_logic ;

o0 : out std_logic
)
end component
component INPUT_BUFFER
port (i: in std_logic ;
o : out std_logic
)
end component ;
signal intern_in, intern_out, io_control :
std_logic ;
begin
bl : OUTPUT_FLIPFLOP port map (c=>clk,
d=>intern_out,
t=>io_control, o=>inoutp)

b2 : INPUT_BUFFER port map (i=>inoutp,
o=>intern_in) ;

end exemplar ;

In this example, component instantiation forcesoaTPUT_FLIPFLOPbuffer on the
bidirectional pininoutp . Also an input buffeiNPUT_BUFFERIs specified to pick up the value
from this pin to be used internally.

LeonardoSpectrum will look for definitions of VHDL instantiated components in the source
library. Make sure that you specify a source libragprce=lib_name) or set the attribute
NOBUFFon the I/O pin of the instantiated buffer. Otherwise, LeonardoSpectrum will consider
the buffer to be a user-defined block and will add a buffer from the target technology.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-9

Three-state Buffers The Art of VHDL Synthesis

Three-state Buffers

Three-state buffers and bidirectional buffers (covered in the next section) are very easy to
generate from a VHDL description.

A disabled three-state buffer will be in a high-impedance state. VHDL itself does not predefine
a high-impedance state, but the IEEE 1164 standard logic package defires ttearacter

literal to have a behavior that exactly resembles the behavior of the high-impedance state of a
three-state buffer. A signal (a port or an internal signal) of the standard logic type can be
assigned & value. The synthesis tools recognize ttie value and creates a three-state

buffer from a conditional assignment with :

entity three-state is
port (input_signal : in std_logic ;
ena : in std_logic ;
output_signal : out std_logic

end three-state ;

architecture exemplar of three-state is
begin

output_signal <= input_signal when ena = "1’ else
7

end exemplar ;

In the when clause, bothput_signal and the conditiorna="1" can be full expressions.
LeonardoSpectrum generates combinational logic driving the input or the enable of the
three-state buffer for these expressions.

Normally, simultaneous assignment to one signal in VHDL is not allowed for synthesis, since it
would cause data conflicts. However, if a conditiozal is assigned in each assignment,
simultaneous assignment resembles multiple three-state buffers driving the same bus.

entity three-state is
port (input_signal_1, input_signal_2 : in std_logic ;
ena_l, ena 2 : in std_logic ;
output_signal : out std_logic

)

end three-state ;

architecture exemplar of three-state is

begin
output_signal <= input_signal_1 when ena_1 = '1’ else 'Z’' ;
output_signal <= input_signal 2 when ena 2 = "1’ else 'Z’ ;

end exemplar ;

3-10 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Three-state Buffers

LeonardoSpectrum does not check for bus-conflicts on three-state assignments. Therefore,
make sure that the enable signals of the three-state drivers are never simultaneously active. In
this examplegna_1 andena_2 should never b&’ simultaneously.

These examples show assignments to output ports (device ports). It is also possible to do the
assignments to an internal signal. This will create internal busses in such a case.

Three-state buffers can also be generated from process statements:

driverl : process (ena_1, input_signal_1) begin
if (ena_1="1") then
output_signal <= input_signal_1 ;

else
output_signal <= 'Z’ ;
end if ;
end process
driver2 : process (ena_2, input_signal_2) begin

if (ena_2="1") then
output_signal <= input_signal_2 ;
else
output_signal <= 'Z’ ;
end if
end process

If the target technology does not have any internal three-state drivers, then use one of the
following methods:

* Transform the three-state buffers into regular logic with-theate batch mode
option.

® Setthearistate_ map variable is set tadRUEIn the interactive shell.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-11

Bidirectional Buffers The Art of VHDL Synthesis

Bidirectional Buffers

Bidirectional 1/0 buffers will be created by LeonardoSpectrum if an external port is both used
and assigned inside the architecture. Here is an example:

entity bidir_function is
port (bidir_port : inout std_logic ;
ena : in std_logic ;

);...

end bidir_function ;

architecture exemplar of bidir_function is
signal internal_signal, internal_input : std_logic

begin
bidir_port <= internal_signal when ena = '1' else
YZI ;
internal_input <= bidir_port ;

-- use internal_input

-- generate internal_signal
end exemplar ;

The difference with the previous example is that in this case, the output itself is used again
internally. Note that for that reason, the pbittir_port is declared to béout .

The enable signaina could also be generated from inside the architecture, instead of being a
primary input as in this example.

LeonardoSpectrum selects a suitable bidirectional buffer from the target technology library. If

there is no bidirectional buffer available, it selects a combination of a three-state buffer and an
input buffer.

Buses

The examples in the previous sections all use single bits as signals. In reality, busses are often
used: arrays of bits with (multiple) three-state drivers. In that case, the type of the bus signal

3-12 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis State Machines

should bestd_logic_vector . All examples given still apply for busses, although the
character literal now has to be a string literal. Here is one example:

entity three-state is
port (input_signal_1, input_signal_2 : in
std_logic_vector (7 downto 0) ;
ena_1, ena_2 : in std_logic ;
output_signal : out std_logic_vector(7 downto
0)

) s

end three-state ;

architecture exemplar of three-state is
begin
output_signal <= input_signal_1 when ena 1 = '1
else “Z7277777" ;
output_signal <= input_signal_2 when ena_2="1

else “2727277777" ;
end exemplar ;

This generates two set of eight three-state buffers, two on each line of tletputssignal

As with single three-state drivers, busses can be internal signal, or ports. Similarly, busses can
be created using processes.

State Machines

This section describes a basic form of a general state machine description. VHDL coding style,
power-up and reset, state encoding and other issues will be discussed.

General State Machine Description

There are various ways to describe a state machine in VHDL. This section will only show the
most commonly used description.

The possible states of the state machine are listed in an enumerated type. A signal of this type
(present_state) defines in which state the state machine appearscémea statement of one
process, a second signal (next_state) is updated depending on present_state and the inputs. In
the samease statement, the outputs are also updated. Another process updates present_state
with next_state on a clock edge, and takes care of the state machine reset.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-13

State Machines The Art of VHDL Synthesis

Here is the VHDL code for such a typical state machine description. This design implements a
RAS-CAS controller for DRAM refresh circuitry.

entity ras cas is
port (clk, cs, refresh, reset : in bit ;

ras, cas, ready : out hit) ;
end ras_cas ;

architecture exemplar of ras_cas is
-- Define the possible states of the state machine
type state type is (s0O, s1, s2, s3, s4) ;
signal present_state, next_state : state_ type ;

begin
registers : process (clk, reset)
begin
-- process to update the present state
if (reset="1") then
present_state <= sO ;
elsif clk’'event and clk = ' then

present_state <= next_state;
end if

end process

3-14 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis State Machines

transitions : process (present_state, refresh, cs)
begin
-- process to calculate the next state and the outputs
case present state is
when sO =>
ras <= 1’ ; cas <= '1' ; ready <= '1" ;
if (refresh = '1") then
next_state <= s3 ;
elsif (cs ='1) then
next_state <= sl ;
else
next_state <= sO ;
end if
when s1 =>
ras <= '0’ ; cas <="'1" ; ready <= 0’ ;
next_state <= s2 ;
when s2 =>
ras <= '0" ; cas <= 0" ; ready <= 0" ;
if (cs = '0) then
next_state <= sO ;
else
next_state <= s2 ;
end if ;
when s3 =>
ras <= 1’ ; cas <= 0" ; ready <= 0" ;
next_state <= s4 ;
when s4 =>
ras <= '0’ ; cas <= '0" ; ready <= 0" ;
next_state <= sO ;
end case
end process
end exemplar ;

VHDL Coding Style For State Machines

There are various issues of coding style for state-machines that might affect performance of the
synthesized result.

A first issue is the form of state machine that will be created. There are basically two forms of
state machines, Mealy machines and Moore machines. In a Moore machine, the outputs do not
directly depend on the inputs, only on the present state. In a Mealy machine, the outputs depend
directly on the present state and the inputs.

In the RAS-CAS state machine described in the previous section, the outputs ras, cas and ready
only depend on the value pfesent_state . This means that the description implements a

Moore machine. If the outputs would be set to different values under the input conditions in the

if statements inside thase statement, a Mealy machine would have been created. In a Moore

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-15

State Machines The Art of VHDL Synthesis

machine, there is always a register in between the inputs and the outputs. This does not have to
be the case in Mealy machines.

A second issue in coding style is thase statement that has been used to test the

present_state . A case Statement is more efficient thanfahen-elsif-else statement,

since that would build a priority encoder to test the state (which could mean more logic in the
implementation). It is also important to note that there i®MBERSENLry in thecase statement.

An OTHERSenNtry could create extra logic if not all the states are mentioned icatlee

statement.

This extra logic will have to determine if the machine is in any of the already mentioned states
or not. Unless there are a number of states where the state machine behaves exactly the same
(which is not likely since then you could reduce the state machine easiyjiERNtry is not
beneficial and will, in general, create more logic than is required.

A third issue is the assignments to outputs aad_state in the state transition process.

VHDL defines that any signal that is not assigned anything should retain its value. This means
that if you forget to assign something to an outputr@it_state) under a certain condition in
thecase statement, the synthesis tools will have to preserve the value.

Since the state transition process is not clocked, latches will have to be generated. You could
easily forget to assign to an output if the value does not matter. The synthesis tools will warn
you about this, since it is a common user error in VHDL:

"file.vhd", line xx : Warning, latches might be needed for XXX.

Make sure to always assign somethingéet_state and the state machine outputs under
every condition in the process to avoid this problem. To be absolutely sure, you could also
assign a value to the signal at the very beginning of the process (before the staragtthe
statement).

Graphical state-machine entry tools often generate state machine descriptions that do not always
assign values to the outputs under all conditions. LeonardoSpectrum will issue a warning about
this, and you could either manually fix it in the VHDL description, or make sure you fully

specify the state machine in the graphical entry tool. The synthesis tools cannot fill in the
missing specifications, since it is bounded by the semantics of VHDL on this issue.

Power-up And Reset

For simulation, the state machine will initialize into the leftmost value of the enumeration type,
but for synthesis it is unknown in which state the machine powers up. Since LeonardoSpectrum
does state encoding on the enumeration type of the state machine, the state machine could even
power up in a state that is not even defined in VHDL. Therefore, to get simulation and synthesis
consistencyi, it is very important to supply a reset to the state machine.

3-16 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Arithmetic And Relational Logic

In the example state machine shown in General State Machine, an asynchronous reset is used,
but a synchronous reset would be possible. Registers, Latches, and Reset explains more about
how to specify resets on registers in VHDL.

Encoding Methods

LeonardoSpectrum has several methods to control encoding for state machines that use an
enumerated type for the declaration of the states. In this chapter, the section Enumerated Types
discusses state encoding methods in detail

Arithmetic And Relational Logic

Logic synthesis is very powerful in optimizing “random” combinational behavior, but has
problems with logic which is arithmetic in nature. Often special precautions have to be taken
into consideration to avoid ending up with inefficient logic or excessive run times.
Alternatively, macros may be used to implement these functions.

LeonardoSpectrum supports the overloaded operatdrs-”, “*”, and “abs”. These operators
work on integers (and on arrays; with the exemplar package).

If you use overloaded operators to calculate compile time constants, the synthesis tools will not
generate any logic for them. For example, the following code segments do not result in logic,
but assign a constant integey to signalfoo .

function add_sub (a: integer, b: integer, add : boolean)
return integer is
begin
if (add = TRUE) then
return a + b ;
else
return a - b ;
end if ;
end my_adder ;
signal foo . integer ;
constant left : integer := 12 ;

foo <= add_sub (left,6,TRUE) - 5 ;-- Expression evaluates to 13

If you are not working with compile time constant operands, arithmetic logic is generated for
arithmetic operators.

The pre-defined+” on integers generates an adder. The number of bits of the adder depends on
the size of the operands. If you use integers, a 32 bit adder is generated. If you use ranged

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-17

Arithmetic And Relational Logic The Art of VHDL Synthesis

integers, the size of the adder is defined so that the entire range can be represented in bits. For
example, if variablea andb do not evaluate to constants, the following code segment:

variable a, b, c : integer ;
c =a+b;

generates a 32-bit (signed) adder, but

variable a, b, ¢ : integer range 0 to 255 ;
c=a+b;

generates an 8-bit (unsigned) adder.

If one of the operands is a constant, initially a full-sized adder is still generated but logic
minimization eliminates much of the logic inside the adder, since half of the inputs of the adder
are constant.

The pre-defined-"" on integers generates a subtracter. Same remarks apply as witH the “
operator.

The pre-defined*” multiplication on integers generates a multiplier. Full multiplication is
supported when a module generator is used. See the LeonardoSpectrum Synthesis and
Technology Manual for information on module generators supported for specific technologies.
You can also define your own technology specific multiplier.

The pre-defined/” division on integers generates a divider. Only division by a power of two is
supported. In this case, there is no logic generated, only shifting of the non-constant operand.
With module generation you could define your own technology-specific divider.

The predefined* ” exponentiation on integers is only supported if both operands are constant.
=M= RS <= and “>=" generate comparators with the appropriate functionality.

Operations on integers are done in two-complement implementation if the integer range extends
belowo. If the integer range is only positive, an unsigned implementation is used.

There are a number of other ways to generate arithmetic logic. The predefined exemplar
functionsadd, add2, sub, sub2, +, and- onbit_vector = andstd_logic_vector types are
examples of functions which do this. For descriptions of these functions, see Predefined
Functions.

By default, LeonardoSpectrum generates “random” logic for all pre-defined operators.
Alternatively, if a module generator for a particular target technology is supplied,
LeonardoSpectrum will generate technology specific solutions (e.g., hard macros) instead of
random logic.

3-18 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Arithmetic And Relational Logic

Module Generation

When arithmetic and relational logic are used for a specific VHDL design, the synthesis tools
provide a method to synthesize technology specific implementations for these operations.
Generic modules (for bit-sizes > 2) have been developed for many of the FPGAs supported by
LeonardoSpectrum to make the most efficient technology specific implementation for
arithmetic and relational operations. Use the following:

® Use the batch mode optionmodgen= modgen_library to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a user VHDL design.

® Use the interactive shethodgen read modgen_libraycommand to load the module
generation library into the HDL database. Since these modules have been designed
optimally for a target technology, the synthesis result is, in general, smaller and/or faster
and takes less time to compile.

If you want to define your own module generator for a specific technology, you can do so by
describing a module generator in VHDL.

Resource Sharing

LeonardoSpectrum performs automatic common subexpression elimination for arithmetic and
boolean expressions. The following example has two adders in the code, but they are adding the
same numbers, andb.

signal a,b,c,d : integer range 0 to 255 ;

process (a,b,c,d) begin
if (atb =c) then <statements>
elsif (atb = d) then <more_statements>
end if ;

end process

After automatic common subexpression elimination, only one adder will be used in the final
circuit. Thus, it would create the same logic as the following example.

process (a,b.c.d)
variable tmp : integer range 0 to 255 ;
begin
tmp = atb ;
if (tmp = c) then <statements>
elsif (tmp = d) then <more_statements>
end if ;
end process

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-19

Arithmetic And Relational Logic The Art of VHDL Synthesis

Proper use of parentheses guide the synthesis tools in eliminating common subexpressions. The
following code segment, for example, can be properly modified to share an adder.

Using parentheses, the logic can share an adder for ibpansic, as shown below.

0l <=a + (b + ¢);
02 <= (b + ¢) + d;

LeonardoSpectrum automatically performs a limited amount of resource sharing of arithmetic
expressions that are mutually exclusive. Consider the following example:

process (a,b,c,test) begin
if (test=TRUE) then
o<=a+b;
else
0<=a+c;
end if ;
end process

Initially, two adders and a multiplexer are created, but after the automatic resource sharing one
adder is reduced, and the final circuit is same as would be created from the following code:

process (a,b,c,test) begin
variable tmp : integer range 0 to 255 ;
begin
if (test=TRUE) then
tmp = b ;
else
tmp = ¢ ;
end if ;
0 <=a + tmp ;
end process

The limitations of automatic resource sharing are as follows:
® Complex operators must drive the same signal.

®* Complex operators must be of the same type (for example, two adders) and have the
same width (for example, 8-bit adders).

3-20 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Arithmetic And Relational Logic

Ranged Integers

It is best to use ranged integers instead of “unbound” integers. In VHDL, an unbound integer
(integer with no range specified) is guaranteed to include the rangms3647 to

+2147483647 . This means that at least 32 bits are needed to implement an object of this type.
LeonardoSpectrum has to generate large amounts of logic in order to perform operations on
these objects. Some of this logic may become redundant and get eliminated in the optimization
process, but the run time is slowed down considerably.

If you use integers as ports, all logic has to remain in place and synthesis algorithms are faced
with a complex problem. Therefore, if you do not need the full range of an integer, specify the
range that you need in the object declaration:

signal small_int : integer range 255 downto O ;

small_int only uses eight bits in this example, instead of the 32 bits if the range was not
specified.

Advanced Design Optimization

Module generation, resource sharing and the use of ranged integers are all examples of how a
particular design can be improved for synthesis without changing the functionality. Sometimes
it is possible to change the functionality of the design slightly, without violating the design
specification constraints, and improve the implementation for synthesis. This requires
understanding of VHDL and what kind of circuitry is generated, as well as understanding of the
specifications of the design. One example of this is given, in the form of a loadable loop
counter.

Often, applications involve a counter that counts up to a input signal value, and if it reaches that
value, some actions are needed and the counter is reset to

process begin
wait until clk'event and clk="1" ;
if (count = input_signal) then
count <= 0 ;
else
count <= count + 1 ;
end if
end process ;

In this example, LeonardoSpectrum builds an incrementer and a full-size comparator that
compares the incoming signal with the counter value.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-21

Technology-Specific Macros The Art of VHDL Synthesis

In this example, a full comparator has to be created since the VHDL description indicates that
the comparison has to be done each clock cycle. If the specification allows that the comparison
is only done during the reset, we could re-code the VHDL and reduce the overall circuit size by
loading the counter with thieput_signal , and then counting down to zero:

process begin
wait until clk'event and clk="1";
if (count = 0) then
count <= input_signal ;
else
count <= count - 1 ;
end if ;
end process ;

Here, one decrementer is needed plus a comparison to a constant (0). Since comparisons to
constants are a lot cheaper to implement, this new behavior is much easier to synthesize, and
results in a smaller circuit.

This is a single example of how to improve synthesis results by changing the functionality of the
design, while staying within the freedom of the design specification. However, the possibilities
are endless, and a designer should try to use the freedom in the design specification to get truly
optimal synthesis performance.

Technology-Specific Macros

In many cases, the target technology library includes a number of hard macros and soft macros
that perform specific arithmetic logic functions. These macros are optimized for the target
technology and have high performance.

This section will explain how to instantiate technology specific macros in the VHDL source to
assure full control over the synthesized logic. The VHDL description will become technology
dependent.

Note that LeonardoSpectrum does automatic inference of technology specific macros from
standard (technology independent) arithmetic and relational operators when Module Generation
Is used. However, if a particular hard-macro is required, or there is no Module Generator
available for the your technology, manual instantiation will be needed.

With LeonardoSpectrum, it is possible to use component instantiation of soft macros or hard
macros in the target technology, and use these high performance macros. An added benefit is
that the time needed for optimization of the whole circuit can be significantly reduced since the
synthesis tools do not have to optimize the implementation of the dedicated functions anymore.

As an example, suppose you would like to build an 8-bit counter in the device family FPGAX.
There is a hard-macro available in theGAXlibrary that will do this. Call it thecOUNT8INn order

3-22 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Technology-Specific Macros

to directly instantiate this macro in VHDL, declare a compor@miNTgand instantiate it with a
component instantiation statement.

component COUNTS8

port (pe, c, ce, rd : in std_logic ;
d : in std_logic_vector (7 downto 0) ;
g : out std_logic_vector (7 downto 0)

)

end component ;

-- clock, count_enable, reset, load, load_data and output are signals
-- in the VHDL source

counter_1 : COUNT8 port map (c=>clock, ce=>count_enable,
rd=>reset, pe=>load, d=>load_data, g=>output) ;

LeonardoSpectrum synthesizes this component as a black-box, since there is no
entity/architecture description. The black box appears in the output file as a symbol.

If you use hard-macros in a VHDL description, specify a source technology so the synthesis
tools can include area and timing information. For this example, you would use the following to
load the source library into the design database:

® Batch mode optionsource=fpgax

® Interactive shell,load_library fpgax command.
If simulation is required on the source VHDL design, you have to supply an entity and
architecture foCOUNT8In that case, make sure to set the attribub®P1o TRUEON the
componentOUNT8so that the synthesis tools treat the component as a black-box, otherwise
they will synthesizecOuNTanto general logic.
Using technology specific macro instantiation can speed-up the synthesis and optimization

process considerably. It also often leads to more predictable area and delay costs of the design.
The VHDL description however becomes technology dependent.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-23

Multiplexers and Selectors The Art of VHDL Synthesis

Multiplexers and Selectors

From acase statement, LeonardoSpectrum creates either muxes or selector circuits. In the
following example, a selector circuit is created.

case test_vector is
when “000" => 0 <= bus(0) ;
when “001" | "010" | “100" => o <= bus(1)
when “011" | "101" | “110" => o <= bus(2) ;
when “111" => 0 <= bus(3) ;

end case ;

If the selector value is the index to be selected from an array, the selector resembles a
multiplexer. It is still possible to express this ir@e statement, but it is also possible to use a
variable indexed array. For example, if an integer value defines the index of an array, a variable
indexed array creates the multiplexer function:

signal vec : std_logic_vector (15 downto O0) ;
signal o : std_logic ;

signal i : integer range 0 to 15 ;

o <= vec() ;

selects bit out of the vectorec . This is equivalent to the more complex writing style with a
case statement:

case i is
when 0 => o <= vec(0) ;
when 1 => o <= vec(l) ;
when 2 => o0 <= vec(2) ;
when 3 => o0 <= vec(3) ;
end case ;

For the prior description, LeonardoSpectrum creates the same multiplexers as they do for the
variable-indexed array.

LeonardoSpectrum fully supports variable-indexed arrays, including index values that are

enumerated types rather then integers, and index values that are expressions rather then singe
identifiers.

3-24 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Multiplexers and Selectors

RO M sPLAsANd D ecodes

There are many ways to express decoder behavior from a ROM or PLA table. The clearest
description of a ROM would be @se statement with the ROM addresses in the case
conditions, and the ROM data in these statements. In this section, two other forms are
discussed:

1. Decoder as a constant array of arrays.

2. Decoder as a constant two-dimensional array.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-25

Multiplexers and Selectors The Art of VHDL Synthesis

The following is an example of a ROM implemented with an array of array type. The ROM
defines a hexadecimal to 7-segment decoder:

LIBRARY ieee;
USE ieee.std_logic_1164. ALL;
USE ieee.numeric_std. ALL;

ENTITY async_sevenseg IS
PORT
addr : IN unsigned (3 DOWNT®);
data : OUT unsigned (6 DOWNT®)

)i
END async_sevenseg ;
ARCHITECTURErtl OF async_sevenseg IS

SUBTYPEseven_segment IS unsigned(6 DOWNTQ) ;

TYPE rom_type IS ARRAY (natural RANGE<>) OF seven_segment ;
CONSTANThex_to_7 : rom_type (O TO 15) :=

("0111111", - O

"0011000", --
"1101101",
"1111100",
"1011010",
"1110110",
"1110111",
"0011100",
"1111111",
"1111110",
"1011111",
"1110011",
"0100111",
"1111001",
"1100111",
"1000111") ; -

Display segment index numbers :
2
13

6
0 4
5

" MUOW>O0Oo~NO 0N WNER

F
BEGIN
data <= hex_to_7 (to_integer(addr)) ;

END rtl;

The ROM with array of array implementation has the advantage that it can be accessed via a
simple integer value as its address. A disadvantage is that each time another ROM is defined, a
new element typeséven_segment) and a new ROM typerdm_type) have to be defined.

PLA descriptions should allow'a or’- dont-care value in the input field, to indicate a
product lines’ insensitivity for a particular input. You cannot usese statement for a PLA

3-26 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of VHDL Synthesis Multiplexers and Selectors

with dont cares in the input field since a comparison with a value that i®’nodr'1" will
returnFALSE in a case condition (as opposed to just ignoring the input). Instead, a small
procedure or function is needed that explicitly defines comparisows tor’- . The

following example describes such a procedure. First, a general 2-dimensional PLA array type is
declared.

type std_logic_pla is array (natural range <>, natural range <>)
of std_logic;

procedure pla_table (constant invec: std_logic_vector;
signal outvec: out std_logic_vector;

constant table: std_logic_pla) is
variable X . std_logic_vector (table’range(1)) ; -- product lines
variable y : std_logic_vector (outvec'range) ; -- outputs
variable b : std_logic ;

begin
assert (invec’length + outvec’length = table’length(2))
report “Size of Inputs and Outputs do not match table size”
severity ERROR ;

-- Calculate the AND plane
x = (others =>1)) ;
for i in table’range(1) loop
for j in invec'range loop
b := table (i,table’left(2)-invec’left+j) ;
if (b=1) then
x(i) = x(i) AND invec (j) ;
elsift (b='0) then
x(@) = x(i) AND NOTinvec()) ;
end if
- If b is not '0’ or '1' (e.g.) product line is insensitive to
invec(j)
end loop
end loop ;
-- Calculate the OR plane
y = (others =>'0") ;
for i in table'range(1) loop
for j in outvec’range loop
b := table(i,table’right(2)-outvec’right+j) ;
if (b="1") then
y() = y() OR x(i);
end if ;
end loop ;
end loop ;
outvec <=y ;
end pla_table ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 3-27

Multiplexers and Selectors The Art of VHDL Synthesis

Once the two-dimensional array type and the PLA procedure are defined, it is easy to generate
and use PLAs (or ROMs). As a simple example, here is a PLA description of a decoder that
returns the position of the first’ in an array. The PLA has five product lines (first dimension)
and seven 10s (four inputs and three outputs) (second dimension).

constant pos_of fist one : std_logic_pla (4 downto 0, 6 downto 0) :=
(“1---000",-- first '1’ is at position 0
“01--001",-- first "1’ is at position 1
“001-010",-- first '1’ is at position 2
“0001011",-- first "1’ is at position 3

“0000111") ;-- There is no 'l’ in the input
signal test vector : std_logic_vector (3 downto O0) ;
signal result_vector : std_logic_vector (2 downto O0) ;

-- Now use the pla table procedure with PLA pos_of first one
-- test vector is the input of the PLA, result_vector the output.

pla_table (test_vector, result vector, pos_of first one) ;

The PLA could have been defined in a array-of-array type also, just as the ROM described
above. A procedure or function for the PLA description will always be necessary to resolve the
dont-care information in the PLA input field.

LeonardoSpectrum will do a considerable amount of compile-time constant propagation on
each call to the procedupta_table . This does not affect the final circuit result at all. It just

adds the possibility to specify dont-care information in the PLA input table. In fact, a ROM
described with an array-of-array type and a variable integer index as its address will produce the
same circuit as the ROM specified in a two-dimensional array and usinggtheble

procedure. If the modeled ROM or PLA becomes large, consider a technology-specific solution
by directly instantiating a ROM or PLA component in the VHDL description. Many FPGA and
ASIC vendors supply ROM and/or PLA modules in their library for this purpose.

3-28 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Chapter 4
The VHDL Environment

This chapter discusses LeonardoSpectrum and the VHDL tool environment, including search
paths, interfacing with other VHDL tools, and the Exemplar package.

Entity and Package Handling

Packages and entities in VHDL are stored in libraries. You can load VHDL files (with packages
and entities) separately into a directory that is assigned to a library.

An example of a predefined package is the package STANDARD (which is

pre-defined for VHDL), that LeonardoSpectrum loads from ditendard.vhd in
$EXEMPLAR/data/packages.syn . Other packages are available both in that directory, and in
$EXEMPLAR/data .

spectrum <inp_file.vhd> <out_file.edf>

With the -vhdl_file=<filename> batch mode option, it is possible to load a VHDL file into
LeonardoSpectrum before the source VHDL file is read. Multiyhel_file batch mode

options allow you to load multiple files. The order in which the files are included is important. If
you use a package A in file B, make sure that the file in which A is defined is loaded before file
B.

After all the-vhdl_file batch mode options are executed, and their corresponding VHDL files
are loaded into LeonardoSpectrum, the source VHDL file is read.

LeonardoSpectrum can handle either VHDL IEEE 1076-1987 or IEEE 1076-1993 dialects of
VHDL. The default is 87. To run 93-style VHDL, use the batch mode optibei_93

Note: LeonardoSpectrum does not handle all 93 style features. The most commonly used

features of the ‘93 extension: shifter and rotator operators, xnor operator and extended
identifiers are supported.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-1

Entity and Package Handling The VHDL Environment

If there is only one design file, you can read the file directly into LeonardoSpectrum GUI. If the
design is split into multiple source files, however, you need to analyze them in the proper order
so that all terms are defined before they are used in the design. For example, if there is a
package declaration in one file that must be used by the whole design, that file must be analyzed
first. In LeonardoSpectrum, all the design units are stored in the HDL database, and you can
analyze as many of them as required.

Entity Compiled as the Design Root

When the VHDL source is loaded, LeonardoSpectrum starts compiling the top level entity and
start the synthesis process. By default, the last entity found in the source file is used as the
top-level entity. This behavior can be changed, however.

-entity=ent ity name

The batch mode optiomntity= entity name on the command line allows LeonardoSpectrum
find the entity specified and consider that the root of the design. An entity from an included
VHDL file can be specified as the root of the design.

-architecture=achi tedue name

After the root entity is found, LeonardoSpectrum tries to find a matching architecture. By
default, the tools will choose the LAST architecture described in the source VHDL file that
matches the top-level entity. Use the batch mode opti@hitecture= architecture_name

to overwrite this default.

By default, LeonardoSpectrum assumes that the last entity or configuration analyzed is the root
entity. By default, the LAST architecture analyzed for the root entity is compiled. You can use

theelaborate command withentity — entity _nameand-architecture arch_namebatch
mode arguments to selectively compile a particular entity/architecture pair.

Finding Definitions of Components

In order to instantiate an entity into a VHDL description, you must first declare a component for
it. If you use a component instantiation in your VHDL design, LeonardoSpectrum tries to find
the definition of that component. There are three possibilities.

1. The componentis a cell in a source technology library.

2. The component has a matching (named) entity in the VHDL source

3. The component has no definition.

4-2 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Entity and Package Handling

If a source technology is specified, then the component in the source technology library is
searched for. This is especially helpful if the component represents a particular macro in the
source technology.

If the component is not present in the source technology, LeonardoSpectrum tries to find an
entity and architecture for it. The entity (and architecture) could be present in the same file, or in
an included VHDL file.

If LeonardoSpectrum cannot find a matching entity for the component, then the contents of the
component are undefined, and the following warning is issued:

Warning, component component _name has no definition

Working with components without a definition can be useful if a particular module of the design
Is not synthesizable. A clock generator or a delay-module is an example of this. The contents of
that module should be provided separately to the physical implementation tools. Leaving
components undefined is also useful in two other cases:

1. To preserve hierarchy through the synthesis process.
2. For using hard and soft macros in the target technology.

It is possible to explicitly leave the contents of a component empty, even though there is a
entity/architecture for it or a cell in the source technology library. In that case, specify the
boolean attributelooPTon the component, or on the corresponding entity; or use batch mode
-noopt =entity _nameption.

This can be useful when only a part of the hierarchy of a design has to be synthesized or if a
user-defined simulatable but not synthesizable block is run through LeonardoSpectrum. Here is
an example of how to set theopt attribute:

component clock _gen

end component

attribute noopt : boolean ;

attribute noopt of clock gen: component is TRUE ;

Components with aoopt attribute or undefined components are handled as black boxes by the
synthesis tools, and show up as cells in the target netlist. Supplying the technology-specific
contents of these cells is left to the user. You can appbypt to a particular instance of a
component by setting this attribute on the label of the component instantiation statement. This
has the same effect as if the attribute were added to the underlying entity.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-3

Entity and Package Handling The VHDL Environment

How to Use Packages

A functionality described in a VHDL package is included into the VHDL design using the use
clause. This is the general form of the use clause:

library lib ;
use lib.packagesd edion ;

The use clause is preceded by a library clause. There are predefined libtakiesdstd that

do not have to be declared in a library clause before they are used in a use clause. All other
libraries need the top to be declared. Librawy is normally only used to include packages
predefined in VHDL1076, but librarywork is free to be used for any user-defined packages.
User-defined library names are also allowed.

If a particular package is not found in the specified library, LeonardoSpectrum completes the
following steps to find the package:

1. The currentvork library is searched for the package.

2. If the package is not there, LeonardoSpectrum searches for a file with the name
package.vhd in the present working directory. The present working directory is the
directory where LeonardoSpectrum was invoked.

3. Ifthe package is not there, LeonardoSpectrum searches the directories specified by the
hdl_input_location variable, in the order specified.

4. If the file is not there, LeonardoSpectrum tries to find the package in the
$EXEMPLAR/data Or the$SEXEMPLAR/data/packages.syn directory and checks if the
file is a pre-defined package.

5. Ifthe file is not there, LeonardoSpectrum issues an error message that the package can
not be found.

Theselectioncan consist of only one name of an object, component, type or subprogram that is
present in the package, or the ward , in which case all functionality defined in the package is
loaded into the synthesis tools and can be used in the VHDL description.

As an example, thEEEE 1164 std_logic_1164 package (that defines the multi-valued logic
types that are often used for circuit design), is included with the following statements:

library ieee ;
use ieee.std_logic_1164.all ;

4-4 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Interfacing With Other VHDL Tools

This package is loaded from tBeEXEMPLAR/data/packages.syn file. This file contains only
the declarations of the functions of thil_logic_1164 package. The bodies of the functions
are built into LeonardoSpectrum for synthesis efficiency.

The contents of the package you include witlisg clause becomes visible and is usable only
within the scope where you use thse clause. The VHDL scoping rules are not explained in
this manual. However, if you start a new entity (and architecture), always make sure that you
include the packages you need witke clauses just before the entity.

Interfacing With Other VHDL Tools

The VHDL parsers in LeonardoSpectrum are compliant with the IEEE VHDL 1076-1987
standard. Hence, apart from the VHDL restrictions for synthesis, interfacing with tools that
generate VHDL or operate on VHDL should not introduce compatibility problems.

However, since VHDL 1076 does not define file handling, there might be mismatches in the
way the tools handle files. Many VHDL simulators incorporate a directory structure to store
separately compiled VHDL files. LeonardoSpectrum does not use separate compilation of
VHDL files. Therefore, all packages and components that are used for a VHDL design
description should be identified before running LeonardoSpectrum, as explained in the previous
section.

VHDL Simulators

You should always load the packages and entities in your design into the simulator prior to
simulating the root entity. For simulation, teeemplar andexemplar_1164 packages can be
found in thesEXEMPLAR/data directory. The files are namesemplar.vhd andex_1164.vhd
respectively. Refer to the topiche Exemplar Packagésr more information on these
packages.

Post-Synthesis Functional Simulation

If desired, post-synthesis functional simulation can be performed using the structural VHDL
output from LeonardoSpectrum. In your design flow, choose the appropriate netlist output for
the target technology. Then use the batch metig@t=reformat switch to produce

structural VHDL for simulation. The flow is, assuming an ASIC as the target technology for this
example,

1. VHDL synthesis with LeonardoSpectrum:

spectrum my_design.vhd my_design.edf -target=asic
-effort=exhaustive -report=2

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-5

Interfacing With Other VHDL Tools The VHDL Environment

2. Produce VHDL netlist:

spectrum my_design.edf my_test.vhd -source=asic
-target=asic -effort=reformat -report=2

This produces the structural VHDL filay_test.vhd , which may now be simulated.

LeonardoSpectrum synthesizes all port types into single-bit values. These get written out in
VHDL as ports of typestd_logic . The original port types are not preserved.

In LeonardoSpectrum, the same design can be written into multiple files in multiple formats.
After optimization, choose the appropriate netlist output format for the target technology; then,
you can write a VHDL description of the same synthesized design. By using a simulatable
library of the target technology, this VHDL output can be simulated. The sequence of synthesis
statements should be similar to the following:

load_lib asic

read original.vhd

optimize -tar asic <other options>

write synthesized.edf -- required for target technology
write synthesized.vhd -- can be used for simulation.

When doing synthesis from a VHDL description, one goal of post-synthesis VHDL simulation
is to simulate the design with the original set of ports (same type, io mode etc.).

® Use the batch mode optievhdl_wrapper =filename
® Use thecreate_wrapper interactive shell option to create the wrapper file.

The wrapper consists of an architecture (that connects to the original entity) that instantiates a
component that refers to the synthesized description. Type-conversion functions connect ports
of the synthesized description to the ports of the original description. Since both the synthesized
description and the original description have the same name, we need to store the synthesized
description into a different library (in the simulator) than the original one.

Load the synthesized VHDL description in a library calégdthesis in your simulator. Then
load the wrapper architecture into the work library. The wrapper links with the originally
compiled entity of the original VHDL description. The wrapper file uses type transformation
functions from a package callegetran to translate the port types. This packages is in the file
$EXEMPLAR/vhdl/typetran.vhd . You have to load this package into the simulator before you
load the wrapper description.

Now, the original entity can be simulated with the wrapper architecture. Since the wrapper

instantiates the synthesized description, simulation of the synthesized design is done by using
the original entity (ports). The original test vectors can then be used to simulate.

4-6 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Interfacing With Other VHDL Tools

Synopsys

Users that have existing VHDL files for Synopsys VHDL Compiler can rely on one or more of
the Synopsys pre-defined VHDL packages. LeonardoSpectrum supports all these packages; a
use clause includes the packages in your design.

The Synopsys packages define a set of types and functions that contain Synopsys pragmas that
VHDL Compiler uses as synthesis directives. These pragmas are correctly interpreted by the
following Exemplar tools:

pragma translate_on
pragma translate_off
synopsys translate _on
synopsys translate_off
synopsys synthesis_on
synopsys synthesis_off

Except for ause clause for each Synopsys package that you need in your VHDL file, you
should NOT have to load any Synopsys package into LeonardoSpectrum. LeonardoSpectrum
locates the packages that you want to use in the dire¢EXgMPLAR/data . Here is the list of

files with the contained packages:

File Name Package Name
syn_ari.vhd ARITHMETIC
syn_attr.vhd ATTRIBUTES
syn_type.vhd TYPES

syn_arit.vhd STD_LOGIC_ARITH
syn_misc.vhd STD_LOGIC_MISC
syn_unsi.vhd STD_LOGIC_UNSIGNED
syn_sign.vhd STD_LOGIC_SIGNED

Note: LeonardoSpectrum locates the packages (from the use clause in your VHDL description).
LeonardoSpectrum loads any of the listed files fromstheEMPLAR/data directory, or reads a

file without the synthesis directives. However, without the synthesis directives,
LeonardoSpectrum CANNOT efficiently synthesize any of the Synopsys packages.

LeonardoSpectrum assumes that the Synopsys libraries are called from either the VHDL library
SYNoOPSY®r the VHDL library IEEE.Note: The VHDL library IEEE is a storage recommended
by Synopsys.

If you store your Synopsys library (on your VHDL simulator) somewhere else than in these
libraries, then you have to manually include the (package) files needed from the

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-7

The Exemplar Packages The VHDL Environment

$EXEMPLAR/data directory. LeonardoSpectrum does not recognize the libraries as Synopsys
packages.

* Manually include these packages with the batch mode option
-vhdl_file =libname: filenamein the appropriate library.

® Usetheanalyze libname filenaménteractive command line shell option and argument.
Make sure again that you use the files from $EXEMPLAR/data directory (with
synthesis directive attributes).

Mentor Graphics

LeonardoSpectrum is source-code compatible with the latest version of Autologic Il. Therefore,
you should not encounter any problems when running VHDL designs from Mentor Graphics.
LeonardoSpectrum supports two VHDL packages from Autologic II, both of which are stored
in the SEXEMPLAR/data directory:

File Name Package Name
std_arit.vhd STP_LOGIC_ARITH
gsim_logic.vhd QSIM_LOGIC

These files are automatically read when you specify the package names in a use clause in your
VHDL description.

The Exemplar Packages

There are a number of operations in VHDL that occur regularly. An example is the translation
of vectors to integers and back. For this reason, Exemplar Logic provides packages that define
attributes, types, functions and procedures that are frequently used. Using the functions and
procedures reduces the amount of initial circuitry that is generated, compared to writing the
behavior explicitly in a user-defined function or procedure. This reduces the cpu-time for
compilation and also could result in a smaller circuit implementation due to improved
optimization.

This section discusses the defined functionality in the Exemplar Logic packeagesar and
exemplar_1164 . The package bodies are not read by the synthesis tools; the functions are
built-in. The packages are used for simulation only, and editing them does NOT change the
synthesized logic. The VHDL source for these packages is given in thefdeglar.vhd and
exemplar_1164.vhd , respectively in th@EXEMPLAR/data directory.

Theexemplar_1164 package defines the same functionality asetteenplar package, but
operates on the IEEE 1164 multi-valued logic types.

4-8 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment The Exemplar Packages

If you are using the IEEE 1164 types in your VHDL description, you should include the IEEE
standard logic type definition into your VHDL description withse clause. The VHDL source

of the IEEE 1164 types package is in the fte_1164.vhd in the SEXEMPLAR/data directory.

If you also want to use the Exemplar functions that operate on these types, you should include
the packagexemplar_1164 with ause clause. For example:

library ieee;

use ieee.std_logic_1164.all;
library exemplar;

use exemplar_1164.all;

If you do not use the IEEE 1164 types, but still want to use the Exemplar functions, just include
the packagexemplar in your VHDL description with aise clause. All functions are then

defined with the predefined types andbit_vector , and on the four-valued typewit and
elbit_vector

Predefined Types

Theexemplar package defines a four-valued type cak#gt and its array equivalent
elbit_vector . Theelbit type includes the bitvalues ,'1 ,’X’ andz’ .

Exemplar recommends that you use the IEEE 1164 standard logic types, and the
exemplar_1164 package.

Predefined Attributes

LeonardoSpectrum uses attributes to control synthesis of the described circuit. You can use the
set_attribute interactive shell command to set object attributes within the hierarchical
database.

You may find it more convenient to define attributes in the VHDL source. The following
attributes are recognized by the VHDL parser, and declared in botix¢helar and the
exemplar_1164 package:

Attribute Type Description

required_time time Set required time on output
arrival_time time Setirrival_time on input
output_load real Specify load set on output
max_load real Specify max load allowed on input
clock_cycle time Specify clock length on clock pin
pulse_width time Specify pulse width on clock pin

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-9

The Exemplar Packages

The VHDL Environment

Attribute Type Description

input_drive time Specify delay/unit load for input
nobuf boolean Reject buffer insertion for a input
pin_number string Specify location of input or output pin

array_pin_number¥

array of strings

Specify location for each bit of a bus

S

preserve_signal boolean Signal’s function will survive synthesis

buffer_sig string Specify explicit buffer on a pin

modgen_sel modgen_select Specify time requirement for module generato
driving this signal

*VHDL only.

In order to set a particular attribute on a signal (or port) in VHDL, use the normal attribute
specification statement in VHDL. Here are some examples:

begin

library exemplar ;
use exemplar.exemplar. all -- Include the 'exemplar’ package
entity test is
port (my_input : in bit ;
my_output : out bit vector (5 downto 0) ;
)
attribut pin_number of my_input: signal is "P15" ;
attribute array_pin_number of my_output:signal is
("P14","P13""P12","P11","P10","P9") ;
attribute required_time of my_output:signal is 5 ns ;
end test ;
architecture exemplar of test is
signal internal_signal : bit ;
attribute preserve_signal of internal_signal: signal is TRUE ;
attribute modgen_sel of internal_signal: signal is FAST ;

Since variables do not represent one unique node in the circuit implementation (they represent a

different circuit node after each
variable represents. This could
attributes on variables.

assignment) the attributes are effective on all circuit nodes the
lead to unexpected behavior. So be careful using the exemplar

All attributes work both on single-bit signals and on arrays of bits. In the case an attribute is set

on a signal that is an array of bitsit(vector

4-10

, elbit_vector or std_logic_vector) the

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment The Exemplar Packages

value of the attribute is set to all circuit nodes in the vector. An exception igrth@mber
attribute which only operates on single bit ports. Usesth®_pin_number attribute to set pin
numbers on all bits of a bus.

Predefined Functions

The package exemplar defines a set of functions that are often used in VHDL for synthesis. First
of all, the package defines the overloaded operatatsnand, or , nor , xor , andnot for the

typeselbit andelbit_vector , as well a forelbit_matrix ~ , a two-dimensional array type of

elbit values.

The Exemplar package defines a large set of functions for both the stasdaadd

bit_vector types. For backwards compatibility, these functions are also definetbfior and
elbit_vector types. These functions are discussed below.

All functions are also defined with the IEEE 1164 types logic, std_ulogic ,
std_logic_vector , andstd_ulogic_vector in the packagex_1164 in file ex_1164.vhd

bool 2d b (I:bool ean) e ung dlogic

Takes a boolean, and returnsta logic bit. Boolean valugRUEWill becomestd_logic
value’'l’ , FALSEwill become .

eb2bool (I:2 dlogio et unbool ean;

Takes astd_logic value and returns a boolean. Tae logic value’’’ will becomeTRUE
all other values beconmaLsE

int2zboo (I ntege) et unbool ean;

Takes an integer and returns a boolean. Integer valuavill return FALSE, all other integer
values returimrRUE

boo2int (I:bool ean) e uni nteger;
Takes a boolean and returns an integer. Boolean viauewill return 1, FALSE will return o.
eec2int (l:2dlogicwved o et uni nteger,

Takes a vector of bits and returns the (positive) integer representation. The left most bit in the
vector is assumed the MSB for the value of the integer. The vector is interpreted as an unsigned
representation.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-11

The Exemplar Packages The VHDL Environment

int2evec(I:i nteger 3 z2:i nteger: =32) & ung dlogicwed or
Takes a integer and returns the vector representation. The size of the vector becomes equal to
the value of an optional second argument (size). If this argument is not specified, the size of the

return vector defaults to 32. The left most bit in the resulting vector is the MSB of the returned
value. If the integer value of the first parameter is negative, the MSB is the sign bit.

gdb2int (l:4 dlogic e uni ntegey,

Takes astd_logic ~ value and returns an integer. Tée _logic value’s’ will return integer
valuei, all other values will return integer valwe

For all shifter functions that follow, the shift amount (r) could either be a compile time constant

or not. If it is, the synthesized circuit will only consist of a re-ordering of the wires in the array.
Otherwise, LeonardoSpectrum will synthesize a shifter circuit.

d (l:'g dlogicwved orri ntege) et ung dlogicwed or
Takes a vectorand an integer and returns a vector. The resulting vector is the same size as

but all bits ofi are shifted left places. The bits on the right side of the result vector are
zero-filled. The integer must be non-negative.

d2 (I:'g dlogicwved orri ntege) et ung dlogicved or

Same asl , but the vector is treated as a 2-complement (signed) representation. Sign bit is the
left most bit in vector. Bits on the right are zero-filled.

g (g dlogicwed orri ntege) et ung dlogicwed o
Same asl , but bits are shifted to the right side of the vector. Bits on left side are zero-filled.
2 (l:g dlogicwed orri ntege) et ung dlogicwed o

Same asr , but the vector is treated as a 2-complement representation. Sign bit is the left most
bit in vector. Bits on the left side are sign-bit filled.

add (oploprd dlogicwved o) et ung dlogicwved or
Takes two vectors and returns a vector. The resulting vector is one bit larger than the largest of

the input vectors, and represents the addition of the input vectors, including the carry bit. The
left most bit is assumed to be the MSB. The add function is a vector addition of two unsigned

4-12 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment The Exemplar Packages

vectors. The smallest input vectoras , extended on the MSB side to the size of the largest
input vector before addition is performed.

add ("1011","0100") result : "01111" (add (11,4) == 15)
add ("0011","100") result : "00111" (add (3,4) == 7)

add2 (oploprs dlogcved o) et ung dlogicwed o

Same aadd, but now the vectors are assumed to be in 2-complement representation. Sign bit is
the left most bit in the vectors. The smallest input vector is sign-bit extended on the MSB side to
the size of the largest vector before addition is performed.

add2 ("1011","0100") result : "00001" (add2 (-5,4) == 1)
add2 ("0011""100") result : "11111" (add2 (3,-4) ==
_1)

ab (oploprd dlogicwved o) et ung dlogicwed or

Same asadd, but the subtraction function is implemented on unsigned veabprs.is
subtracted fronop_|.

sub ("1011","0100")result : "00111" (sub (11,4) == 7)
sub ("0011","100") result : "11111" (sub(3,4) == 31)

Actually this is an under-flow of unsigned !

b2 (op lop rd¢ dlogicved o) et und dlogicwved or

Same aadd2, but the subtraction function is implemented on 2-complement representation
vectors.op_ris subtracted fronop_1

sub2 ("1011","0100") result : "10111" (sub2(-5,4) == -9)
sub2 ("1011", "100") result : "11111" (sub2(-5,-4) ==
_1)

edtend(op |:4 d logic vedt orop i ntege)
etun ¢ dlogic ved or

Takes a vectoop_l|land an integeop_rand returns a vector. The vectyp_|lis extended in size
up toop_relements. The input vectop_lis zero-extended on the MSB side. The left most bit

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-13

The Exemplar Packages The VHDL Environment

in the vector is assumed the MSB. There is also a version of extend that takes a single
(std_logic) value and extends it to a vector of size .

extend ("1001",7) result : "001001"
extend ('1’,3) result : "001"
extend ("011001001", 4)result : "1001" -- Truncation

edtend2(op |:d4 dlogic ved orop ri ntege)
et ung d logic ved or

Same asxtend , but the vector is in 2’s-complement representation. The input vector is sign-bit
extended. There is also a version of extend?2 that takes a single (std_logic) value and
sign-extends it to a vector of sizg _r.

extend2 ("1001",7) result : "1111001"
extend2 ('1',3) result : "111"
extend2 ("011001001",4) result : "1001" -- Truncation

com p2 (op:d d logic ved o) et ung dlogic vt or

Takes a vector and returns a vector of the same size. This function assumes the input vector to
be in 2-complement representation and will return the complement (negative) value of the input
value. The right most bit is assumed to be the LSB.

comp2 ("1001") result : "0111" (comp2 (-7) == 7)

+" (oplopres dlogcved o et und dlogicwed or

Takes two vectors and returns a vector. As add, but now the carry bit is not saved. The resulting
vector is the same size as the largest input vector. Overflow wraps around. This function
implements addition of unsigned vectors.

”10110" + Illolll
result : "11011" (22 + 5 == 27)

4-14 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment The Exemplar Packages

“"(oploprs dlogcved o et ung dlogicved or

69

Same as+”, only the subtraction function is performeap_ris subtracted fronop_| This
function implements subtraction of unsigned vectors.

"10110" - "101"
result : "10001" (22 - 5 == 17)

mult"(op loprd duogicvwearo)y e undg dulogcwed or

Takes two vectors and returns a vector. The size of the resulting vector is the size of both input
vectors added. In each vector, the left most bit is the MSB. The mult function performs
UNSIGNED multiplication of the two input vectors. In case of unequal-length input vectors, the
smallest vector is zero-extended on the MSB side to the size of the largest input vector before
the multiplication is performed.

mult ("1011", "0100") result: "00101100" (mult(11,4)==44)
mult (“1", "1111") result: "00001111" (mult(1,15)==15)

mult2’(op loprd duogicwvedo) e und dulogicwved or

Like mult , but now the vectors are assumed to be in 2-complement representation. The sign bit
Is the left most bit in each vector. In case of unequal-length input vectors, the smallest vector is
sign-bit extended on the MSB side to the size of the largest input vector before the
multiplication is performed.

Predefined Procedures

There are various ways to generate flip-flops and d-latches with VHDL, such as using processes
and specifying behavior that represents the behavior of flip-flops and dlatches. However, in
some cases it is useful to instantiate technology independent flip-flops or dlatches in the VHDL
dataflow environment immediately.

A more structural oriented VHDL style will be possible that way. The exemplar package
includes the definition of procedures that represent flip-flops or dlatches with various set or
reset facilities that operate on single bits or vectors (to create registers).

Theexemplar package defines these procedures on signals ofdiypevit_vector , elbit
andelbit_vector , while the packagexemplar_1164 defines the same procedures for the
IEEE 1164 typestd_logic , std_ulogic , std_logic_vector andstd_ulogic_vector .In

the description below only examples foit andbit_vector are given, but the full definition

of the procedures, for the types listed above, is available for simulation purposes in the files
exemplar.vhd andexemplar_1164.vhd

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-15

The Exemplar Packages The VHDL Environment

Flip-flops

dff[_v](data, clock, q)

dffc[_v](data, clear, clock, q)
dffp[_v](data, preset, clock, q)
dffpc[_v](data, preset, clear, clock, q)

Heredff is the single bit D flip-flop andiff_v is the vectored D flip-flopdff has no preset or
clear inputsdffic has an active-high asynchronous clear ¢set’o’) input,dffp has an
active-high asynchronous preset (¢&b°'1’) input, anddffpc has both a preset and a clear
input. If both preset and clear are assertgid,not defined. All inputs are active high, the clock
input is positive edge triggered. For the vectored dffs, the number of flip-flops that will be
instantiated is defined by the size of the inpdjt&dnd outputq) vectors of theiff#_v
instantiation. (The size af andq vectors must be the same.)

If g is a port of the VHDL entity, it must be declared asiI®OUT port, sincey is used
bidirectionally in each of these functions.

Latches

dlatch[_v](data, enable, q)
dlatchc[_v](data, clear, enable, q)
dlatchp[_v](data, preset, enable, q)
dlatchpc[_v](data, preset, clear, enable, q)

These define a level sensitive D-type latch with an enable. The latch is enabled (transparent)
when the enable input i5 disabled when the input &s dlatch has no preset or clear
capability,diatcnc has an asynchronous active-high clear ¢set’o’) input, dlatchp has an
asynchronous active-high preset (§¢b'1 ’), anddiatchpc has both preset and clear. If both
preset and clear are asserteds not defineddlatch_v ~ creates the vector equivalent
procedures to generate registers of dlatches.

Tristate Buses

When a signal is assigned in multiple concurrent statements, the synthesis implementation
requires that in each statement the signal is assigret @alue under at least one condition. A
tristate gate is created in this case, with the enable of the gate corresponding to the inverse of the
condition where thez’ is assigned in the model. This is the only case where multiple
assignments to a signal in different concurrent statements is allowed.

It is also possible for the user to specify what to do in the case where none of the drivers of the
bus are enabled. To address this situation, three pre-defined procedures have been declared to
handle the three standard tristate bus conditiensLUR, PULLDNandTRSTMEMThese drive an
otherwise undriven bus to the valug, orretain the current value , respectively. Only

one of these functions may be specified for a given bus. LeonardoSpectrum will build the

4-16 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Syntax and Semantic Restrictions

appropriate logic to implement the specified function in the technology. If the technology
includes pull-up or pull-down resistors or repeater cells on internal busses these will be used. If
these resistors are not available, an additional tristate gate, with an enable whichasttall

the other enable. The tristate gate input is eith&t, GNDor the value on the bus is created to
implement the specified function. LeonardoSpectrum also determines what the default state for
a bus is in the technology. If the default matches the specified function, no extra logic is created.
If no termination is specified, then the undriven tristate value depends on the technology used.

The tristate bus procedures defined below may be used with signals dfitypebit
(packagesxemplar) std_logic andstd_ulogic (packageex_1164).

pul lup (busham €)

When a bus is not driven, this procedure pulls the bus up to 1.

pul Idn (busham €)

When a bus is not driven, this procedure pulls the bus down to 0.

td mem Busam €)

When a bus is not driven, this procedure drives the bus to the last driven state.

Syntax and Semantic Restrictions

VHDL as the IEEE Standard 1076 is a extended language with many constructs that are useful
for simulation. However, during the initial development of the language, logic synthesis was not
taken into account. Therefore, a number of constructs or combination of constructs cannot be
implemented in actual circuits. VHDL 1076 is fully simulatable, but not fully synthesizable.

Synthesis Tool Restrictions

This section discusses the syntax and semantic restrictions of the VHDL parsers of
LeonardoSpectrum.

® Operations on files not supported. Files in VHDL could behave like ROMs or RAMSs,
but LeonardoSpectrum does not support using file (types), and will ignore, but accept,
file (type) declarations.

® Operations on objects odal types are not supported. Objects@fi types have no

defined bit-resolution. LeonardoSpectrum ignores, but accepts declarations of (objects
of) real types.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-17

Syntax and Semantic Restrictions The VHDL Environment

® QOperations on objects atcess types are not supported, since they lead to
unsynthesizable behavior. LeonardoSpectrum ignores, but accepts declarations of
(objects of)access types.

® AttributeSBEHAVIOR STRUCTURELAST_EVENTLAST_ACTIVE, andTRANSACTIONare not
supported.

® Global, non-constant signals are not supported, that is, signals declared in a package.

® Allocators are not supported, because they perform dynamic allocation of resources,
which is not synthesizable.

® Resolution functions with a synthesis directive are allowed.

VHDL Language Restrictions

Apart from these restrictions, which are mostly tool-related, there are some basic restrictions
that apply to VHDL descriptions for synthesis. Since they occur quite often, additional
descriptions are presented here to clarify the problems involved for synthesis. Here is the list:

* after clause ignored.

® Restrictions on Initialization values.

® Loop restrictions

® Restrictions on edge-detecting attributesENTandSTABLE).

® Restrictions on wait statements.

® Restrictions on multiple drivers on one signal.

A more detailed description of these restrictions follows below:

After Clause Ignored

Theafter clause refers to delay in a signal. Since delay values cannot be guaranteed in
synthesis, they are ignored by the synthesis tools after they issue a warning.

Restrictions on Initialization Values

Initialization values are allowed in a number of constructs in VHDL:
1. Initial value of a signal in a signal declaration.

2. Initial value of a variable in a variable declaration in a process.

4-18 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Syntax and Semantic Restrictions

3. Initial value of a variable in a variable declaration in a subprogram (procedure or
function).

4. Initial value of a generic or port in a component declaration.

5. Initial value of a parameter in a subprogram interface list.
The problem with initialization values for synthesis is that some initial values define the initial
value of an object before actual simulation is done. This behavior corresponds to controlling the
power-up state of a device that would be synthesized from the VHDL description. Since
synthesis cannot control the power-up state of a device, this kind of initial value cannot be
synthesized. However, if after initialization there is never an change of value, the behavior can
be synthesized, and resembles a simple constant value.
LeonardoSpectrum fully supports initialization values, except for initializing objects that can
change their value after initialization. That is, the following form of initialization values are
NOT supported because they imply power-up behavior of the synthesized device:

1. Initial values of a signal in a signal declaration.

2. Initial value of a variable in a variable declaration in a process.

3. Initial value of anoUTPUTOr INOUT port in an interface list.

All other forms of initialization values are supported by the synthesis tools.
Loop Restrictions

Loops are supported if they are bound by constants or theywsiventi statements to
prevent combinational loops.

Restrictions On Edge-Detecting Attributes ('event)
Most restrictions on VHDL to assure correct compilation into a logic circuit are on the
constructs that define edges or changes on signalseVEeIT attribute is the best example of
this. signalEVENT is TRUEONIy if signalchanges. Then it isSRUEfor one simulation delta of
time. In all other cases it IBALSE. TheSTABLEattribute is the boolean inversion BYENT

There are two restrictions for synthesis on usage oftleNTand theSTABLEattribute:

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-19

Syntax and Semantic Restrictions The VHDL Environment

1. AnEVENToOr STABLEattribute can be used only to specify a leading or falling clock edge.

For example:
clk'event and clk="1’ -- Leading edge of clk
clk'event and clk="0’ -- Falling edge of clk
NOT clk'stable and clk="0" -- Falling edge of clk
clk'event and clk -- Leading edge of (boolean)
clk

2. Clock edge expressions can only be used as conditions. For example:

if (clkevent and clk="1") then ...

wait until NOT clk’'stable and clk="0" ;

wait until clk="1" ; --Implicit clock edge due to
--VHDL semantics of ’'wait’

block (clk’'event and clk="1"... --Block GUARD condition

These restrictions originate from the fact that binary logic circuits have a restricted number of
elements that are active ONLY during signal edges. Basically, only (set/resettable) edge
triggered flip-flops show that behavior. Within these restrictions, LeonardoSpectrum allows
free usage of the clock edge conditions, either in guarded blocks, processes or subprograms.

Restrictions on Wait Statements

All state-of-the-art VHDL synthesis tools on the market right now have strong restrictions with
respect to wait statements and use of edge-detecting attribatest(and'stable). Here are
the (informal) restrictions for the wait statement:

® Multiple wait statements are supported in a process with some synthesis restrictions.
All the control paths should have at least ovit statement and all of theait
statements should be identical with a single bit clock expression.

®* The expression in thenti condition must specify a leading or falling single clock
edge. (Examples are shown above ingheNTattribute section.)

All assignments inside the process result in the creation of registers. Each register (flip-flop) is
clocked with the single clock signal.

There are a number of cases where multipdes are synthesizable and resemble
state-machine behavior. In LeonardoSpectrum, muliiple are supported.

4-20 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Example array_pin_number Attribute

Restrictions on Multiple Drivers on One Signal

VHDL does not allow multiple drivers on a signal of an unresolved type. For signals of resolved
types, VHDL defines that a (user-defined) resolution function defines what the signal value is
going to be in case there are multiple driver (simultaneous assignments) to the signal.

A resolution function with meta-logical valueg'(, 'x' , etc.) in general leads to behavior that

is not synthesizable (since logic circuits cannot produce meta-logical values). Therefore, in
general, VHDL synthesis tools do not allow multiple drivers on a signal. However, if the
resolution function defines the behavior of multiple three-state drivers on a bus, multiple drivers
of a signal could represent synthesizable behavior.

The'z’ value is in general used to identify three-state behavior. The resolution function of the
IEEE std_logic (resolved) type is written so that multiple drivers on a signat@flogic do
resemble multiple three-state drivers on a bus. Therefore, the synthesis tools accept multiple
assignments to the same signal as long as each assignment is conditionally set tovtilee.

The synthesis tools allow free usageof assignments (either from dataflow statements,
process statements or from within procedures). LeonardoSpectrum implements three-state
drivers to mimic the three-state behavior.

It is important to note that LeonardoSpectrum does not check if there could be a bus-conflict on
the driven bus. In this case, the simulation would just call the resolution function again to
resolve the value (normally producing a meta-logical value), but the behavior for synthesis is
not defined. Avoiding bus conflicts is the responsibility of the user.

Example array pin_number Attribute

The following is a working example of the application of the array_pin_attribute in
LeonardoSpectrum. This attribute is not supported for Verilog. The example design implements
a UART.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 4-21

Example array_pin_number Attribute The VHDL Environment

LIBRARY ieee;

use ieee.std_logic_1164.all;
LIBRARY exemplar ;

use exemplar.exemplar_1164.all;

ENTITY uart IS

PORT (clkx16 : IN std_logic;

--Input clock. 16x bit clock
read : IN std_logic;
--Received data read strobe
write : IN std_logic;
--Transmit data write strobe
rx : IN std_logic;
--Receive data line
reset : IN std_logic;
--clear dependencies
tx : OUT std_logic;
--Transmit data line
rxrdy : OUT std_logic;
--Received data ready to be read
txrdy : OUT std_logic;
--Transmitter ready for next byte
parityerr : OUT std_logic;
--Receiver parity error
framingerr : OUT std_logic;
--Receiver framing error
overrun : OUT std_logic;
--Receiver overrun error
data : INOUT std_logic_vector(0 TO 7));
--Bidirectional data bus
attribute array_pin_number of data: signal is
("A0", "A1", "A2", "A3", "A4", "A5", "A6", "AT");
attribute clock_node : boolean;
attribute clock_node of clkx16 : signal is TRUE;
attribute low_reset : boolean;
attribute high_reset : boolean;
attribute high_reset of reset : signal is TRUE;

END uart;

--(continued...)

4-22 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Example array_pin_number Attribute

ARCHITECTURE exemplar OF uart IS
-- Transmit data holding register
SIGNAL txhold : std_logic_vector(0 TO 7);

-- Transmit shift register bits

SIGNAL txreg : std_logic_vector(0 TO 7);
SIGNAL txtag2 : std_logic;

-- tag bits for detecting

SIGNAL txtagl : std_logic;

-- empty shift reg

SIGNAL txparity : std_logic;

-- Parity generation register

-- Transmit clock and control signals
SIGNAL txclk : std_logic;

-- Transmit clock: 1/16th of clkx16
SIGNAL txdone : std_logic;

-- '1' when shifting of byte is done
SIGNAL paritycycle : std_logic;

-- '1' on next to last shift cycle
SIGNAL txdatardy : std_logic;

-- '1' when data is ready in txhold

-- Receive shift register bits

SIGNAL rxhold : std_logic_vector(0 TO 7);
-- Holds received data for read

SIGNAL rxreg : std_logic_vector(0 TO 7);
-- Receive data shift register

SIGNAL rxparity : std_logic;

-- Parity bit of received data

SIGNAL paritygen : std_logic;

-- Generated parity of received data
SIGNAL rxstop : std_logic;

-- Stop bit of received data

-- Receive clock and control signals
SIGNAL rxclk : std_logic;

-- Receive data shift clock

SIGNAL rxidle : std_logic;

-- '1' when receiver is idling
SIGNAL rxdatardy : std_logic;

-- '1' when data is ready to be read

--cont inued

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

4-23

Example array_pin_number Attribute

The VHDL Environment

BEGIN
make_txclk:
PROCESS (reset, clkx16)
VARIABLE cnt : std_logic_vector(2 DOWNTO 0);
BEGIN
--Toggle txclk every 8 counts, which divides the clock by 16
IF reset='1" THEN
txclk <= '0' ;
cnt ;= (OTHERS=>'0") ;
ELSIF clkx16'event AND clkx16="1" THEN
IF (cnt = "000") THEN
txclk <= NOT txclk;
END IF;
cnt := cnt + "001";
-- Use the exemplar_1164 "+" on std_logic_vector
END IF;
END PROCESS;

make_rxclk:

PROCESS (reset, clkx16)
VARIABLE rxcnt : std_logic_vector(0 TO 3);
-- Count of clock cycles
VARIABLE rx1: std_logic;
-- rx delayed one cycle
VARIABLE hunt : boolean;
-- Hunting for start bit

BEGIN
IF reset='1" THEN
--Reset all generated signals and variables

hunt := FALSE ;

rxent := (OTHERS=>'0") ;
rxi :='0";

rxclk <= '0' ;

ELSIF clkx16'EVENT AND clkx16 = '"1' THEN
--rxclk = clkx16 divided by 16
rxclk <= rxcnt(0);

--Hunt=TRUE when we are looking for a start bit:
--A start bit is eight clock times with rx=0 after a falling edge

IF (rxidle = '1' AND rx = '0" AND rx1 = '1") THEN
--Start hunting when idle and falling edge is found
hunt := TRUE;

END IF ;

--continued

4-24

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Example array_pin_number Attribute

IF rxidle = '0" OR rx = '1' THEN
--Stop hunting when shifting in data or a 1 is found on rx
hunt := FALSE;
END IF;
rxl := rx;-- rx delayed by one clock for edge detection
--(Must be assighed AFTER reference)
--Increment count when not idling or when hunting
IF (rxidle = '0" OR hunt) THEN
--Count clocks when not rxidle or hunting for start bit
rxent = rxcnt + "0001";
ELSE
--hold at 1 when rxidle and waiting for falling edge
rxcnt := "0001";
END IF;

END IF ;

END PROCESS;

-- transmit shift register:

txshift:
PROCESS (reset, txclk)
BEGIN

IF reset='1" THEN
txreg <= (OTHERS=>'0") ;
txtagl <= '0" ;
txtag2 <= '0' ;
txparity <= '0" ;
tx <= '0" ;

ELSIF txclk'event AND txclk = "1 THEN

IF (txdone AND txdatardy) = '1' THEN
-- Initialize registers and load next byte of data
txreg <= txhold;
-- Load tx register from txhold
txtag2 <= "1}
-- Tag bits for detecting
txtagl <= "1}
-- when shifting is done
txparity <= '1";
-- Parity bit.Initializing to 1==odd parity
tx <= '0"
-- Start bit

--continued

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

4-25

Example array_pin_number Attribute The VHDL Environment

ELSE
-- Shift data
txreg <= txreg(l TO 7) & txtagl;
txtagl <= txtag2;
txtag2 <= '0,

-- Form parity as each bit goes by

txparity <= txparity XOR txreg(0);
-- Shift out data or parity bit or stoplidle bit

IF txdone = '1' THEN
tx <= '1%
-- stoplidle bit

ELSIF paritycycle = '1' THEN
tx <= txparity;
-- Parity bit
ELSE
tx <= txreg(0);
--Shift data bit
END IF;
END IF ;
END IF;
END PROCESS;

--paritycycle = 1 on next to last cycle (When txtag2 has reached txreg(1))
--(Enables putting the parity bit out on tx)

paritycycle <= txreg(l) AND NOT (txtag2 OR txtagl OR

txreg(7) OR txreg(6) OR txreg(5) OR

txreg(4) OR txreg(3) OR txreg(2));

--txdone = 1 when done shifting (When txtag2 has reached tx)
txdone <= NOT (txtag2 OR txtagl OR

txreg(7) OR txreg(6) OR txreg(5) OR txreg(4) OR

txreg(3) OR txreg(2) OR txreg(l) OR txreg(0));

--continued

4-26 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Example array_pin_number Attribute

rX_proc:
--Shift data on each rxclk when not idling
PROCESS (reset, rxclk)
BEGIN
IF reset='1" THEN
rxreg <= (OTHERS=>'0") ;
rxparity <= '0" ;
paritygen <= '0' ;
rxstop <= '0" ;
ELSIF rxclk'event AND rxclk = '1' THEN
IF rxidle = "1' THEN
-- Load all ones when idling
rxreg <= (OTHERS=>1");
rxparity <= 'l
paritygen <= '1";
-- Odd parity
rxstop <= '04
ELSE
--Shift data when not idling
--bug in assigning to slices
--rxreg (0 TO 6) <= rxreg (1 TO 7);
--rxreg(7) <= rxparity;
rxreg <= rxreg (1 TO 7) & rxparity;
rxparity <= rxstop;
paritygen <= paritygen XOR rxstop;
-- Form parity as data shifts by
rxstop <= rx;
END IF ;
END IF;
END PROCESS;

async:

-- its value determines whether rxclk gets generated

PROCESS (reset, rxclk)

BEGIN
IF reset = '1' THEN
rxidle <= '0";
ELSIF rxclkEVENT and rxclk = '1'" THEN
rxidle <= NOT rxidle AND NOT rxreg(0);
END IF;

END PROCESS async;

--continued

-- rxidle requires async preset since it is clocked by rxclk and

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

4-27

Example array_pin_number Attribute

The VHDL Environment

txio:
-- Load txhold and set txdatardy on falling edge of write
-- Clear txdatardy on falling edge of txdone
PROCESS (reset, clkx16)
VARIABLE wrl,wr2: std_logic;
-- write signal delayed 1 and 2 cycles
VARIABLE txdonel: std_logic;
-- txdone signal delayed one cycle
BEGIN
IF reset='1" THEN
txdatardy <= '0" ;

wrl = 0" ;
wr2 = '0" ;
txdonel = '0' ;

ELSIF clkx16'event AND clkx16 = '1' THEN

IF wrl = '0'" AND wr2= '1' THEN
--Falling edge on write signal. New data in txhold latches
txdatardy <= 'l

ELSIF txdone = '0' AND txdonel = '1' THEN
--Falling edge on txdone signal. Txhold has been read.
txdatardy <= '0;

END IF;

--Delayed versions of write and txdone signals for edge detection
wr2 = wrl;

wrl = write;

txdonel := txdone;
END IF ;

END PROCESS;

--continued

4-28

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The VHDL Environment Example array_pin_number Attribute

rxio:

PROCESS (reset, clkx16)
VARIABLE rd1, rd2 : std_logic;
--Read input delayed 1 and 2 cycles
VARIABLE rxidlel : std_logic;
--rxidle signal delayed 1 cycle

BEGIN
IF reset="1" THEN
overrun <= '0' ;
rxhold <= (OTHERS=>'0) ;
parityerr <= '0' ;
framingerr <= '0' ;
rxdatardy <= '0' ;

rdl = '0' ;
rd2 = '0" ;
rxidlel := 'O’

ELSIF cIkle'event’AND clkx16 = '1' THEN

--Look for rising edge on idle and update output registers
IF rxidle = '1' AND rxidlel = '0' THEN
IF rxdatardy = '1' THEN
--Overrun error if previous data is still there
overrun <= '1';
ELSE
--No overrun error since holding register is empty
overrun <= '0"

--Update holding register
rxhold <= rxreg;

--paritygen = 1 if parity error
parityerr <= paritygen;

--Framing error if stop bit is not 1
framingerr <= NOT rxstop;

--Signal that data is ready for reading
rxdatardy <= '1';
END IF;
END IF;
rxidlel := rxidle;
--rxidle delayed 1 cycle for edge detect

--continued

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

4-29

Example array_pin_number Attribute The VHDL Environment

--Clear error and data registers when data is read
IF (NOT rd2 AND rdl) = '1' THEN
rxdatardy <= '0'
parityerr <= '0';
framingerr <= '0';

overrun <= '0%
END IF;
rd2 = rdi;
-- Edge detect for read
rdl := read;

-- (Must be assigned AFTER reference)
IF reset = '1' THEN
rxdatardy <= '0';
END IF;
END IF ;
END PROCESS;

-- Drive data bus only during read
data <= rxhold WHEN read = '1' ELSE (OTHERS=>'Z") ;

-- Latch data bus during write
txhold <= data WHEN write = '1' ELSE txhold;

-- Receive data ready output signal
rxrdy <= rxdatardy;

-- Transmitter ready for write when no data is in txhold
txrdy <= NOT txdatardy;

-- Run-time simulation check for transmit overrun
ASSERT write = '0' OR txdatardy = 'O’

REPORT "Transmitter overrun error" SEVERITY WARNING;
END exemplar;

--end of example

4-30 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Chapter 5
Introduction to Verilog Synthesis

Verilog HDL is a high level description language for system and circuit design. The language
supports various levels of abstraction. Where a regular netlist format supports only structural
description, Verilog supports a wide range of description styles. This includes structural
descriptions, data flow descriptions and behavioral descriptions.

The structural and data flow descriptions show a concurrent behavior. All statements are
executed concurrently, and the order of the statements does not matter. On the other hand,
behavioral descriptions are executed sequentially in always blocks, tasks and functions in
Verilog. The behavioral descriptions resemble high-level programming languages.

Verilog allows a mixture of various levels of design entry. LeonardoSpectrum synthesizes all

levels of abstraction, and minimizes the amount of logic needed, resulting in a final netlist
description in the technology of your choice.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 5-1

Verilog and Synthesis Introduction to Verilog Synthesis

The high level devsign flow enabled by the use of LeonardoSpectrum is shdviguire 5-1

Figure 5-1. Top Down Design Flow with LeonardoSpectrum

Top-Down Design Flow

Y

translate to behavior/simulate

LeonardoSpectrum ¢

synthesize to gate

Y

optimize speed/area

Y

technology map

Y

physical implementation

Y

CAE simulator

LeoHDL 01

Verilog and Synthesis

Verilog is completely simulatable, but not completely synthesizable. There are a number of
Verilog constructs that have no valid representation in a digital circuit. Other constructs do, in
theory, have a representation in a digital circuits, but cannot be reproduced with guaranteed
accuracy. Delay time modeling in Verilog is an example of that.

State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL) circuit
descriptions and target a specific technology. Scheduling and allocation algorithms, that
perform circuit optimization at a very high and abstract level, are not yet available for general
circuit applications. Therefore, the result of synthesis of a Verilog description depends on the
style of Verilog that is used. Users of LeonardoSpectrum should understand some of the
concepts of synthesis specific to Verilog coding style at the RTL level, in order to achieve the
desired circuit implementation.

5-2 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Introduction to Verilog Synthesis Synthesizing the Verilog Design

This manual is intended to give the Verilog designer guidelines to achieve a circuit
implementation that satisfies the timing and area constraints that are set for the target circuit,
while still using a high level of abstraction in the Verilog source code. This goal will be
discussed both in the general case for synthesis applications, as well as for LeonardoSpectrum
specifically. Examples are used extensively; Verilog rules are not emphasized.

Knowledge of the basic constructs of Verilog is assumed. For more information on the Verilog

language, refer to théerilog Hardware Description Language Reference Manpablished
by Open Verilog International.

Synthesizing the Verilog Design

Using LeonardoSpectrum to synthesize your Verilog design is easy. If you run from the
command line, use the following batch mode option:

-input_format=verilog

If you run LeonardoSpectrum from the interactive shell, use the following command and
argument:

read -format verilog f ile name

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 5-3

Synthesizing the Verilog Design Introduction to Verilog Synthesis

5-4 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Chapter 6
Verilog Language Features

This chapter provides an introduction to the basic language constructs in Verilog: defining logic
blocks:

® Data flow and behavioral descriptions
® Concurrent and sequential functionality
®* Numbers and data types.

LeonardoSpectrum synthesizes all levels of abstraction and minimizes the amount of logic
needed resulting in a final netlist description in the technology of your choice.

Modules

A basic building block in Verilog is a module. The module describes both the boundaries of the
logic block and the contents of the block, in structural, data flow and behavioral constructs.

module small_block (a, b, ¢, 01, 02);
input a, b, c;
output ol, 02,
wire s;

assign ol =s || c ;

assign s = a && b ;

assign 02 =s ™ ¢ ;
endmodule

Note: LeonardoSpectrum supports empty top level modules.

This Verilog description shows the implementatiors@hll_block , a block that describes
some simple logic functions.

The port list is declared, the port directions are specified, then an int@raals declared. A
wire in Verilog represents physical connection in hardware. It can connect betwseaias or

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-1

Numbers Verilog Language Features

gates, and does not store a valuavie can be used anywhere inside thedule , but can only
be assigned by:

® Connecting it to an output of a gate omadule .

® Assigning to it using a continuous assignment.
Thismodule contains only dataflow behavior. Dataflow behavior is described using continuous
assignments. All continuous assignments are executed concurrently, thus the order of these
assignments does not matter. This is why it is valid tosubefores is assigned. In the first
statemenb1 is assigned the result of the logicaikof s andc. “| | ” denotes the logical OR
operation.

More details about the various dataflow statements and operators are given in the following
sections.

'macromodule’

LeonardoSpectrum supports ‘'macromodule’, which is treated as 'module’.

Numbers

Numbers in Verilog can be either constants or parameters. Constants can be either sized or
unsized. Either one can be specified in binary, octal, hexadecimal, or decimal format.

Name Prefix Legal Characters
binary 'b 01xXzZ_?
octal '0 0-7xXzZ_?
decimal 'd 0-9_
hexcadecimal 'h 0-9a-fA-FxXzz_?

If a prefix is preceded by a number, this number defines the bit width of the number, for
instanceg’b 01010101 . If no such number exists, the number is assumed to be 32 bits wide. If
no prefix is specified, the number is assumed to be 32 bits decimal.

LeonardoSpectrum produces a warning when encountering non-synthesizable constants such as
float. The value is assumed.

6-2 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Data Types

For example, in

X = 25 + 8;

x will evaluate tos.

Special characters in numbers:

a separator to improve readability.

X X unknown value.

'z’ 2", '? tri-state value.

Examples:
334 32 bitswide ded m anum ber
32'b101 32 bitswide bi nary num ber(zer o I €ftf illed)
3'bll 3 bitswide bi nary num ber(ie,011)
20'h’f_ffff 20 bitswide hexaded m anum ber
10'bz 10 bi tswidedlt ri-gae

Data Types

Verilog defines three main data types:
® net
® register
® parameter

By default these data types are scalars, but all can take an optional range specification as a
means of creating a bit vector. The range expression is of the following form:

[<most significant bit> : <least significant bit>]

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-3

Data Types Verilog Language Features

Some of these data types are used in the example below, along with the range expression syntax.
Further details on the data types are presented in the following sections.

/[This design implements a Manchester Encoder

1

module manenc (reset, clk , data , load , sdata, ready);
parameter max_count = 7;

input clk, load;
input [max_count:0] data;
output sdata, ready ;

reg sdata, ready ;

reg [2:0] count;

reg [max_count:0] sout;
reg phase;

/I Phase encoding
always @ (posedge clk)

begin
sdata = sout[max_count] * phase;
phase = ~phase ;

end

6-4 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Data Types

// Shift data
always @ (posedge phase)
begin
if ((count == 0) & !load) begin
sout[max_count:1] = sout[0:max_count - 1];
sout[0] = 1'bO;
ready = 1'bl;
end
else if ((count == 0) & load) begin
sout = data;
count = count + 1,
ready = 1'b0;
end
else if (count == max_count) begin
sout[max_count:1] = sout[0:max_count - 1];
sout[0]= 1'bO;
count = 0;
end
else begin
sout[max_count:1] = sout[0:max_count - 1];
sout[0]= 1'bO;
count = count + 1;
end
end
endmodule

Net Data Types

The net data types supported by LeonardoSpectrum are
* wire
® tri
® supplyO
* supplyl
® wand
® wor

These data types are used to represent physical connections between structural entities in the
Verilog design, such as a wire between two gates, or a tristate bus. Values cannot be assigned to

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-5

Data Types Verilog Language Features

net data types withialways blocks. ri0 ,tri1 ,triand , trior andtrireg are also net data
types, but are not yet supported by LeonardoSpectrum).

wire and tri Nets

Thewire andtri net data types are identical in usage (syntax and function). The two different
names are provided for design clarity. Nets driven by a single gate are usually declaned as
nets, as shown in Modules in this chapter, while nets driven by multiple gates are usually
declared agi nets.

Supply Nets
Thesupplyl andsupplyd0 net data types are used to describe the power (VCC) and ground

supplies in the circuit. For example, to declare a ground net with the name GND, the following
code is used:

supply0 GND ;

wand and wor Net Types

wand and wor statements result into and or logic respectively, since wired logic is not available
in all technologies.

wor out;

out = a&b
out = c&d;
endmodule

Register Data Type

A register, declared with keyworég , represents a variable in Verilog. Where net data types do
not store valuesgg data types do. Registers can be assigned only amays block, task or
function. When a variable is assigned a value irmlaays block that has a clock edge event
expressiongdosedge Or negedge), a flip-flop is synthesized by LeonardoSpectrum. To avoid
the creation of flip-flops foreg data types, separate the combinational logic into a different
always block (that does not have a clock edge event expression as a trigger).

Parameter Data Type

The parameter data type is used to represent constants in Verilog. Parameters are declared by
using the keyworgarameter and a default value. Parameters can be overridden when a
module is instantiated.

6-6 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features

Continuous Assignments

Declaration Local to Begin-End Block

Local declaration of registers and integers is allowed inside a nasyedend block. If the
begin-end block contains & posedge ck” statement, then the declaration is not supported.

input [10:0] data;
always @ (data)
begin : named_block

integer i
parity = O;
for i = 0; i < 11; i= i + 1)

parity = parity ~ datali];
end //named_block

Array of reg and integer Declaration

Memory declaration and usage of an array of registers or integers is now allowed.

input [3:0] address;

input [7:0] date_in;

output [7:0] data_out;

reg [7:0] data_out, mem [3:0];

always @ (address or date_in or we)
if (we) mem [address] = date_in;
else data_out = mem [address];

Continuous Assignments

A continuous assignment is used to assign values to nets and ports. The nets or ports may be
either scalar or vector in nature. (Assignments to a bit select or a constant part select of a vector
are also allowed.) Because nets and ports are being assigned values, continuous assignments are
allowed only in the dataflow portion of the module. As such, the net or port is updated whenever

the value being assigned to it changes.

Continuous assignments may be made at the same time the net is declared, or by using the

assign statement.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

6-7

Continuous Assignments Verilog Language Features

Net Declaration Assignment

The net declaration assignment uses the same statement for both the declaration of the net and
the continuous assignment:

wire [1:0] sel = selector ;

Only one net declaration assignment can be made to a specific net, in contrast to the continuous
assignment statement, where multiple assignments are allowed.

Continuous Assignment Statement

The continuous assignment statemessign) is used to assign values to nets and ports that
have previously been declared.

The following example describes a circuit that loads a source vector of 4 bits on the edge of a
clock @wrclk), and stores the value internally in a regisietrdg) if the chip enablede) is

6-8 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features

Procedural Assignments

active. One bit of the register output is put on a tristate bassif_int
signal gelector

) based on a bit selector

), with the bus output clocked through a final registes{it).

module tri_asgn (source, ce, wrclk, selector, result) ;
input [3:0] source ;

input ce, wrclk ;

input [1:0] selector ;

output result ;

reg [3:0] intreg ;

reg result ;

/I net declaration assignment

wire [1:0] sel = selector ;

tri result_int ;

/I continuous assignment statement

assign
result_int = (sel == 2'b00) ? intreg[0] : 1'bZ
result_int = (sel == 2'b01) ? intreg[l] : 1'bZ
result_int = (sel == 2'b10) ? intreg[2] : 1'bZ
result_int = (sel == 2'b11) ? intreg[3] : 1'bZ
always @(posedge wrclk)
begin
if (ce)
begin
intreg = source ;
result = result_int ;
end
end
endmodule

Procedural Assignments

Procedural assignments are different from continuous assignments in that procedural
assignments are used to update register variables. Assignments may be made to the complete

variable, or to a bit select or part select of the register variable.

Both blocking and non-blocking procedural assignments are allowed.

Blocking assignments, specified with th€’‘operator, are used to designate assignments that
must be executed before the execution of the statements that follow it in a sequential block. This

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Always Blocks Verilog Language Features

means that the value of a register variable in a blocking assignment is updated immediately after
the assignment.

Non-blocking assignments, specified with the™ operator, are used to schedule assignments
without blocking the procedural flow. It can be used whenever register assignments within the
same time step can be made without regard to order or dependence upon each other.

Also, in contrast to the blocking assignment, the value of a register variable in a non-blocking
assignment is updated at the end of the time step. This behavior does not affect assignments
done in the dataflow environment, since assignments are done concurrently there. However, in a
sequential block, such as an always block, the value of the variable in a non-blocking
assignment changes only after the complete execution of the sequential block.

Always Blocks

Always blocks are sections of sequentially executed statements, as opposed to the dataflow
environment, where all statements are executed concurrently.dwais block, the order of

the statements DOES matter. In fagtyays blocks resemble the sequential coding style of
high level programming languages. Alstways blocks offer a variety of powerful statements
and constructs that make them very suitable for high level behavioral descriptions.

An always block can be called from the dataflow area. Eaelays block is a sequentially

executed program, but allways blocks run concurrently. In a sense, multipieays blocks
resemble multiple programs that can run simultaneoushays blocks communicate with

6-10 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features

Always Blocks

each other via variables of typeg which are declared in theodule . Also, the ports andires
defined in themodule can be used in thelways blocks.

input [3:0] source;
input ce, wrclk;
input [1:0] selector;
output result;

reg [3:0] intreg;
reg result, result_int;

always
begin

@(posedge wrclk)
if (ce)

result = result_int;

intreg = source;

module mux_case (source, ce, wrclk, selector, result);

end
always @(intreg or selector)
case (selector)
2'b00: result_int = intreg[O];
2'b01: result_int = intreg[1];
2'b10: result_int = intreg[2];
2'b11: result_int = intreg[3];
endcase
endmodule

This example describes a circuit that can load a source vector of 4 bits, on the edge of a write
clock (wrclk), store the value internally in a registenfeg) if a chip enablede) is active,

while it produces one bit of the register constantly (not synchronized). The bit is selected by a
selector signal of 2 bits, and is clocked out through the register result.

The description consists of twadways blocks, one to write the value into the internal register
and clock the output, and one to read from it. The amays blocks communicate via the
register valuesitreg andresult_int

The firstalways block is a synchronous block. As is explained later divays block executes
only if the event expression at the event control evaluates to true. In this case, the event
expression evaluates to true when a positive edge occurs on theviaut(event expression
posedge wrclk). Each time the edge occurs, the statements insidehgs statement are
executed. In this case, the value of the inguiirce is loaded into the internal variabireg
onlyifceis't’ . Ifceis'0’ ,intreg retains its value. In synthesis terms, this translates into a
D flip-flop, clocked onwrclk , and enabled bye. Also, the intermediate outpuisult_int IS
loaded into the outputsult (a D flip-flop clocked onwrclk).

The secondlways block is a combinational block. In this case, the event expression evaluates
to true when eitheintreg orselector changes. When this happens, the statements inside the

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-11

Always Blocks Verilog Language Features

always Statement are executed, and the outpstit_int gets updated depending on the
values ofintreg andselector . Note that this leads to combinational behavior (essentially a
multiplexer), sinceesult_int only depends omtreg andselector , and each time either of
these signals changessult_int gets updated.

The reason for separating the tal@ays blocks is to avoid the creation of a register for the
variableresult_int .result_int ~ must be ofeg datatype, because itis assigned irammays
block, but it does not need to be registered logic.

Not all constructs, or combinations of constructs, iraays block lead to behavior that can
be implemented as logic. LeonardoSpectrum supports eavatys statements.

Note that constants on the sensitivity list have no effect in simulation or synthesis. Any kind of
expression inside a sensitivity list is legal in Verilog and is accepted by the synthesis tools. For
synthesis, all the leaf level identifiers of the expression are considered to be in the sensitivity
list, so some simulation mismatch might be seen after synthesis.

always @ (inp1[2:0] or 3'b011 or {a, b}) // allowed

6-12 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Module Instantiation

Module Instantiation

Module instantiation can be used to implement individual gates or cells, macros, or to add
hierarchy to your design. Here is an example that generates an address for RAM and instantiates
the RAM cells:

module scanner (reset, stop, load, clk, load_value, data) ;
input reset, stop, load, clk;

input [3:0] load_value;

output [3:0] data;

reg [4:0] addr;

/I Instantiate and connect 4 32x1-bit rams
RAM_32x1 UO (.a(addr), .d(load_value[0]), .we(load), .o(data[0])

)i
)i
);
)i

RAM_32x1 Ul (.a(addr), .d(load_value[l]), .we(load), .o(data[1])
RAM_32x1 U2 (.a(addr), .d(load_value[2]), .we(load), .o(data[2])
RAM_32x1 U3 (.a(addr), .d(load_value[3]), .we(load), .o(data[3])

/I Generate the address for the rams
always @(osedge clk or posedge reset)

begin
if (reset)
addr = 5b0 ;
else if (~stop)
addr = addr + 5b1 ;
end
endmodule

module RAM_32x1 (a, we, d, 0);
input [4:0] a;

input we, d ;

output 0;

endmodule

For this example, if the RAM moduleAaM_32x1is a cell or macro in a library, the synthesis

tools will implement that cell or macro in the output netlist. To do that, the library in which the
cell or macro exists must be specified as the Input Design Technology. If no Input Design
Technology is specified, LeonardoSpectrum implements the RAM module as a black box in the
output netlist, with inputs and outputs defined, but no functionality.

LeonardoSpectrum uses different techniques to indicate which source technology to use before
reading the design into the database:

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-13

Module Instantiation Verilog Language Features

® the-source=lib_name batch mode option
® theload_library <lib_name> interactive shell command

LeonardoSpectrum supports empty named port connections, e.g.,

nd2 x1 (a(f), .b();

Parameter Override During Instantiation of Module

Parameter overriding during module instantiation is supported by LeonardoSpectrum.

module top (a, b);

input [3:0] a;

output [3:0] b;
do_assign #(4) name (a, b);

endmodule

module do_assign (a, b);
parameter n = 2;
input [n-1:0] a;
output [n-1:0] b;

assign b = a;
endmodule

Defparam Statement

When using the defparam statement, parameter values can be changed in any module instance
throughout the design, provided the hierarchical name of the parameter is used.

Note: In LeonardoSpectrum, the hierarchical name is restricted to single level only. This means

that when the defparam statement is used, you can override any parameter value of an instance
in the current module only.

6-14 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features

Operators

Example:

module top (a, b);

input [3:0] a;
output [3:0] b;
wire top;

do_assign name (a, b);
defparam name.n = 4;
endmodule

module do_assign (a, b);
parameter n = 2;

input [n-1:0] a;

output [n-1:0] b;

assign b = g
endmodule

'unconnected_drive’ and 'nounconnected_drive’

These directives are specified as outside modules anbonnected_drive’
pull0 orpulll as a parameter and causes all the unconnected input ports to be pulled down or
restores the normal condition
(where the unconnected input ports are connected to high-Z).

up, according to the parametenounconnected_ drive’

takes either

‘'unconnected_drive’ pulll
module with_unconn_port (o, i);

output ©;
input i;
assign o = i
endmodule

'nounconnected_drive’

module test (i, 01, 02);

input i;

output ol, 02,

with_unconn_port 11 (ol,); Il ol =1
with_unconn_port 12 (02, i); // 02 =i
endmodule

Operators

This section describes the operators available for use in Verilog expressions.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

6-15

Operators Verilog Language Features

Operands

An operand in an expression can be one of the following:
®* Number
® Net (including bit-select and part-select)
® Register (including bit-select and part-select)
® Acallto a function that returns any of the above

Bit-selects take the value of a specific bit from a vector net or register. Part-selects are a set of
two or more contiguous bits from a vector net or register. For example:

wire bit_int ;
reg [1:0] part_int ;
reg [3:0] intreg;

bit_int = intreg[1] ;// bit-select of intreg assigned to bit_int
part_int = intreg[2:1] ;// part-select of intreg assigned to
part_int

The operators supported by LeonardoSpectrum are listédbie 6-1

Table 6-1. Operators Supported by LeonardoSpectrum

Operator Description
+ - arithmetic
< > <= >= relational

== logical equality

I= logic inequality

! logical negation

&& logical and

I logical or

~ bit-wise negation

& bit-wise and

6-16 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Operators

bit-wise inclusive or
A bi t-wise exd ud ve or
N or~N bi t-wise equi vd ence
& reduct ion and
| r edud ion or
A redud ion xor
<< lefshi ft
>> rightshi ft
?: condi tiond
{ oncat enation

Arithmetic Operators

LeonardoSpectrum supports the following arithmetic operators:

If the bit value of any operand ig” (unknown), then the entire resulting valueXs . The 7~
operator is supported in the case where the divisor is a constant and a power of two.

Relational and Equality Operators

LeonardoSpectrum supports the following relational and equality operators:

If the bit value of any operand i’ (unknown), then the entire resulting valuexs .
=== and!== Operators are Treated as and!=

=== and!== operators are treated as and!= for synthesis purposes if either one of the
operands is nonconstant. If both the operands are constant, they can be used to compare
metalogical values. In simulation, the difference betweeand=== is that one can compare
metalogical characters exactly with= but not with==. Any metalogical character causes the
output of==to be unknowrx. The difference betweern and'== is the same.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-17

Operators Verilog Language Features

module triple_eq_neq (in1, in2, O);
output [10:0] O;
input [2:0] inl, in2;
assign
O[0] = 3'bOx0 === 3'bOx0, // output is 1
O[1] = 3'bOx0 !== 3'b0x0, // output is 0
O[2] = 3'b0Ox0 === 3'b1x0, // output is O
O[3] = 3'bOx0 !'== 3'b1x0, // output is 10[4]=in1===3'b0x0,
/I LHS is non constant so this
/I produces warning that comparison
/I metalogical character is
/I with zero. output is 0
O[5] = in1 == 3'b0Ox0, /[LHS is non constant so this
/I produces warning that comparison
/I with metalogical character is
/I zero.output is 1,because it
/I checks for not equality
0O[6] = in1 === 3'b010, /Il normal comparison
O[7] = in1 !== 3'b010, /I normal comparison
O[8] = inl === in2, /I normal comparison
O[9] = inl == in2, /[normal comparison
O[10] = 3'b00x === 1'bx; // output is 1
endmodule

Logical Operators

LeonardoSpectrum supports the following logical operators:

I && ||

Bit-Wise Operators

LeonardoSpectrum supports the followibigwise operators:

~ & | AN N ~N

These operators perform bit-wise operations on equivalent bits in the operands.

Reduction Operators

Leonar doSpect rum supportsthe following redud ion oper aos

& | n

6-18 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Operators

These operators perform reduction operations on a single operand. Operations are performed on
the first and second bits of the operand, then on the result of that operation with the third bit of
the operand, until the limit of the vector is reached. The result is a single bit value.

The following operators:

~& ~| ~N

are negations of thee”, “| ”, and “*” operators.

Shift Operators

LeonardoSpectrum supports the following shift operators:

<< >>

Conditional Operator

The conditional operator statement has the following syntax:

conditional_expression ? true_expression : false_expression

The result of this operation teue_expression if conditional_expression evaluates to
true, andalse_expression if false. In the following example, result is assigned the value of
intreg[0] if sel = 2’b00 , otherwise result is assigned

output result ;
reg [3:0} intreg ;
wire [1:0] sel ;
assign result = (~sel[0] && ~sel[1]) ? intreg[0] : 1'bZ ;

Concatenation

The concatenation of bits from multiple expressions is accomplished using the charatdrs
}. For example, the following expressions are equivalent:

foo = {a[4:3], 1'b0O, c[1:0]} ;
foo = {a[4], a[3], 1'b0, c[1], c[O]} ;

Fora = 5b11010 ,c = 5b10101 , the resultiSoo = 5b11001

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-19

Statements Verilog Language Features

“ signed and ‘ unsigned Attributes on Operators

'signed and‘unsigned attributes change the type of a particular operator. Comparison
between two bit vectors are always done unsigned, but if the functionality needs to be signed, a
‘signed attribute can be used just after the comparator.

input [3:0] A, B;
output 0;
assign o = A < ‘signed B; // Signed comparator.

Similarly, an‘unsigned attribute can be used to perform an unsigned operation between two
integers.

The shift operators always do a logical shift. By using‘tiywed directive, they can be made
to do an arithmetic shift. Arithmetic right shift shifts in the sign bit and the left shift shifts in the
least significant bit (e.g4’b0001 << ‘signed 1 produces‘b0011).

Operator Precedence

The operator precedence rules determine the order in which operations are performed in a given
expression. Parentheses can be used to change the order in an expression. The operators
supported by LeonardoSpectrum are listed below in order from highest precedence to lowest,
with operators on the same line having the same precedence.

+ - ! ~ (unary)
* / (binary)

+ - (binary)

<< >>

? (ternary)

Statements

This section presents information on the usé-ete , case andfor statements for
specifying designs.

6-20 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Statements

If-Else Statements

Theif-else conditional construct is used to specify conditional decisions. As an example, here
is the design from “Procedural Assignments,” with the multiplexer described with this construct
instead of thease statement:

module mux_case (source, ce, wrclk, selector, result);
input [3:0]source;

input ce, wrclk;

input [1:0]selector;

output result;

reg [3:0]intreg;

reg result, result_int;

always @(posedge wrclk)
begin
/I if statement for chip enable on register
if (ce)
intreg = source;
result = result_int;
end

always @(intreg or selector)
begin
/I if-else construct for multiplexer functionality
if (sel == 2’b00)
result_int = intreg[0] ;
else if (sel == 2'b01)
result_int = intreg[1] ;
else if (sel == 2'b10)
result_int = intreg[2] ;
else if (sel == 2'b11)
result_int = intreg[3] ;
end

endmodule

This example describes a circuit that can load a source vector of 4 bits, on the edge of a write
clock (wrclk), store the value internally in a registéteg) if a chip enablede) is active,

while it produces one bit of the register constantly (not synchronized). The bit is selected by a
selector signal of 2 bits, and is clocked out through the register result.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-21

Statements Verilog Language Features

Case Statements

If many conditional clauses have to be performed on the same selection sigasel, statement
is a better solution than thieelse ~ construct. The following example describes a traffic light
controller (state machine with binary encoding):

module traffic (clock, sensorl, sensor2,
redl, yellowl, greenl, red2, yellow2, green2);

input clock, sensorl, sensor2;
output redl, yellowl, greenl, red2, yellow2, green2;
parameter stO = 0, st1 = 1, st2 = 2, st3 = 3,

st4 = 4, st = 5, st6 = 6, st7 = 7;
reg [2:0] state, nxstate ;
reg redl, yellowl, greenl, red2, yellow2, green2;

always @(osedge clock)
state = nxstate;

always @(state or sensorl or sensor2)

begin
redl = 1'b0; yellowl = 1'b0; greenl = 1'bO;
red2 = 1'b0; yellow2 = 1'b0; green2 = 1'b0;
case (state)
st0: begin
greenl = 1'b1;
red2 = 1'bl;
if (sensor2 == sensorl)

nxstate = sti,;
else if (~sensorl & sensor2)
nxstate = st2;

end
stl: begin
greenl = 1'bl;
red2 = 1'bi;
nxstate = st2;
end

6-22 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Statements

st2: begin
greenl = 1'bl;
red2 = 1'bl;
nxstate = st3;
end
st3: begin
yellowl = 1'bl;
red2 = 1'bl;
nxstate = st4;
end
st4: begin
redl = 1'bl;
green2 = 1'bl;

if (~sensorl & ~sensor2)
nxstate = st5;

else if (sensorl & ~sensor2)
nxstate = st6;

end
sts: begin
redl = 1'bl;
green2 = 1'bl;
nxstate = st6;
end
st6: begin
redl = 1'bl,;
green2 = 1'bl;
nxstate = st7,
end
st7: begin
redl = 1'bl;
yellow2 = 1'bl;
nxstate = stO;
end
endcase
end
endmodule

Case Statement and Multiplexer Generation

Thecase statement, as defined by the Verilog LRM, is evaluated by order, and the first
expression to match the control expression is executed (during simulation). For synthesis, this
implies a priority encoding. However, in many casesdise statement is used to imply a
multiplexer. This is true whenever these conditions are mutually exclusive (the control
expressions equals only one condition at any given time).

In Verilog, the case items can be non-constants also. In such a situation, LeonardoSpectrum
cannot detect that thease statements are parallel as follows:

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-23

Statements Verilog Language Features

® Global batch mode switclparallel_case

® Set Tcl variableparallel_case to TRUEto inform the tool that all thease statements
in the design is mutually exclusive.

For example, the following Verilog code:

case (1'bl)
s[0]: 0 = a;
S[1]: o = b;
endcase
results in the equation:
o =¢g[0] *a + Is[0] * s[1] * b;

If parallel case is used, the following equation will be synthesized:

o=s[0] *a + s[1] * b;

This equation is simpler than the first. For a biggese statement the amount of logic
reduction can be significant. This cannot be determined automatically since the case items are
nonconstants.

The use of this option can cause simulation differences between behavioral and post-synthesis
netlists.

Automatic Full Case Detection

Thecasex statement below is full case (it covers all possible vahesto 111). The default
statement is not necessary and is ignored by the synthesis tools, resulting in a warning message.
The synthesis tools also do full-case detection for nowassl andcasez statements.

input [2:0] sel;

casex (sel)
3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default : ...

endcase

6-24 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Statements

LeonardoSpectrum does full coverage analysis foiftthen-else structure. The following
example is considered a fulthen-else . The lastelse is ignored and a warning is issued.

wire [1:0] data;
if (data == 2)
else if (data == 1)
else if (data == 3)

else if (data == 0)

/I Ignored for synthesis purpose
endmodule

Automatic Parallel Case Detection

casex Statements are priority-encoded by definition. LeonardoSpectrum automatically detects
parallel case and produce a warning message saying that case conditions are mutually exclusive.
The followingcase statement is treated as parallel case.

input [2:0] sel;

casex (sel)
3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default : ...

endcase

LeonardoSpectrum does parallel case detectionaf@ andcasez statements. It also extracts
the parallelism of a mutually exclusivehen-else structure as shown below.

wire [1:0] data;
if (data == 2)
else if (data == 1)
else if (data == 3)

else if (data == 0)

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-25

Statements Verilog Language Features

casex Statement

Thecasex statementis used when comparison to only a subset of the selection signal is desired.
For example, in the following Verilog code only the three least significant bite@f are
compared t@o1. The comparison ignores the three most significant bits.

casex (vect)

6’bXXX001 : <statement> ;
/I this statement is executed if vect[2:0] = 3'b001
endcase

casez Supported

casez is used in Verilog to specify “don't care” bits of the case tags. The in the case tags
are not compared when a comparison between the case expressiamd the tags is done.

casez (sel)
3'b10z: ...
3'bz10: ...
3'bz11: ...
3'b00z: ...
default : ...

endcase

'case’ and 'default’ Statements

LeonardoSpectrum allows the default statement to appear anywhecesin,aasez , Or casex
statement, and supports ttese statement with only one default entry.

for Statements

for loops are used for repetitive operations on vectors. In the following example, each bit of an
input signal is ANDed with a single bit enable signal to produce the result:

input clk ;
reg [4:0] input_signal, result ;
reg enable ;

always @ (posedge clk)
for (i=0;i<65i=1i+1)
resultli] = enable & input_signalli] ;

6-26 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Statements

for loops are supported if they are bound by constamtsloops are also supported if they
contain a@ posedge clk " statement which prevents infinite combinatorial loops.

Disable Statement

The disable statement disables a named block or a task. Disabling of one block from another
block is supported only if the second block is contained in the first one. Below is an example of
disabling a named block.

module add_up_to (up_to_this, the_out);
input [3:0] up_to_this;

output the_out;

reg [7:0] the_out;

integer i;
always @ (up_to_this)
begin : blk
the out = 0O;
for (i=0;i<16;i =i+ 1)
begin
the_out = the out + i
if (i == up_to_this) disable blk;
end
end
endmodule

/[Below is an example of disabling a task.
module add_up_to (up_to_this, the_out);
input [3:0] up_to_this;
output the_out;
reg [7:0] the_out;

always @ (up_to_this)
begin

add_upto_this (up_to_this, the_out);

end

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-27

Statements Verilog Language Features

task add_upto_this;
input [3:0] up_to_this;
output [7:0] the_out;

integer i
begin
the_out = 0O;
for (i=0;i<16;i=1i+1)
begin
the_out = the_out + i
if (i == up_to_this) disable
add_upto_this;
end
end
endtask
endmodule

forever, repeat, while and Generalized Form of for
Loop
forever ,repeat ,while , and the generalized form of the loop are supported as long as they

satisfy the conditions dbr loops. The followingorever example, is a counter with
synchronous reset.

module forever_example (clk, reset, out);
input clk, reset;

output [3:0]out;

reg [3:0]out;

always

begin

@(posedge clk) out = O;
begin : for_ever

forever

begin : name

@@posedge clk)

if (reset) disable for_ever;
out = out + 1,

end

end

end

endmodule

6-28 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features Functions and Tasks

module repeat_example (i, 0);

input i;

output ©;

reg o;

always @ (i)

begin
o =i

repeat (4'h1011)
o=-~0, /l 0o=~i

end

endmodule

If any loop construct is NOT bound by constants or by clock events, then LeonardoSpectrum
issues the “iteration limit reached” error.

Functions and Tasks

Pieces of Verilog can be grouped together in functions and tasks, which can then be used as
subprograms in the Verilog code. This is useful for repeated code, or for readability of the main
module.

Tasks and functions appear similar, but are used in different ways. A task is a subprogram with
inputs and outputs, and replaces any piece of verilog code in a module. Expressions in a task can
be both combinational and sequential.

Functions have only inputs and returns a value by its name. Functions are purely combinational.

Functions

Functions are defined inside a module and can be freely used once they are defined. Functions
are always used in an expression, behavioral or dataflow:

assign y = func(a,b);

or

x = func(z);

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-29

Functions and Tasks

An example of a function is given below.

Tasks

module calculator (a, b, clk, s, operator);
input [7:0] a, b;
input clk;
input [1:0] operator;
output [7:0] s;
reg [7:0] s;

parameter ADD = 2'b00, SUB = 2'b01, MUL = 2'bl0;

function [15:0] mult;
input [7:0] a, b ;
reg [15:0] r;
integer i;

begin
if (a[0] == 1)

r = b;

else

for (i=1;i<7;i

end

mult = r;
end
endfunction

always @ (posedge clk)
begin
case (operator)
ADD: s
SUB: s
MUL: s
endcase
end
endmodule

a+b;
a-b;
mult(a,b);

Tasks are always displayed as statements:

my_task(a,b,c,d);

LeonardoSpectrum supports empty tasks.

6-30

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features

Verilog Language Features Functions and Tasks

An example of a task is presented below.

task demux (state, load, bait, enable, ready, write, read);

input [2:0] state;

output load, bait, enable, ready, write, read,;

parameter LOAD = 3'b000, WAIT = 3'b100, ENAB = 3'b110,
READ = 3'bl1ll, WRIT = 3'b011, STRO = 3'b001;

case (state)

LOAD:

{state, load, bait, enable, ready, write, read} = 6’b100000;

WAIT:

{state, load, bait, enable, ready, write, read} = 6'b010000;

ENAB:

{state, load, bait, enable, ready, write, read} = 6’b001000;
READ:

{state, load, bait, enable, ready, write, read} = 6’b000100;
WRIT:

{state, load, bait, enable, ready, write, read} = 6'b000010;
STRO:

{state, load, bait, enable, ready, write, read} = 6’b000001;

endcase

endtask

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-31

Functions and Tasks Verilog Language Features

Inout Ports in Task

LeonardoSpectrum supports inout ports ilask statement. Any value passed through inout
ports can be used and modified inside e .

module inoutintask (i, ol, 02);
input i;
output ol, 02,
reg r, ol, o2;
task T ;
inout io;
output o©;
begin
0 = io;
io = ~io;
end
endtask
always @ (i)
begin
r =i
T (r, 0l); // ol =i, r = ~i
02 =, Il 02 = ~i;
end
endmodule

6-32 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog Language Features System Task Calls

Access of Global Variables from Functions and Tasks

Global variables can be accessed for both reading and writing.

module x (clk, reset, i1, i2, 0);
input clk, reset, i1, i2;

output 0;

reg o;

reg [1.0] state;

task T; //without any port
begin
case (state)
2'b00: o
2'b01: o
2'b10: o
2'bl1: o
endcase
state = state + 1; // next state
end
endtask

i1;
i2;
~il;
~i2;

always @ (posedge clk or posedge reset)
if (reset) begin
state = O;
o= 0;
end
else T;
endmodule

System Task Calls

LeonardoSpectrum accepts system task calls. System task calls are ignored, and a warning is
issued.

System Function Calls

LeonardoSpectrum accepts system function calls. The vakiassumed for system function
calls, and a warning is issued.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 6-33

Initial Statement Verilog Language Features

Initial Statement

LeonardoSpectrum accepisgial statements. The actual value is ignored.

Compiler Directives

Verilog supports a large list of compiler directives. Most of them are useful for simulation, but
are meaningless for synthesis purposes. A few directives are supported by the synthesis tools,
and those directives have to do with macro substitution and conditional compilation. Following
is a list of these directives:

‘define

‘ifdef

‘else

‘endif

‘include

‘signed

‘unsigned
‘unconnected_drive
‘nounconnected_drive

The symbol exemplar is predefined by LeonardoSpectrum.

Therefore, the statement:

‘ifdef exemplar

will always be true, and the else part will always be false. This is useful if some parts need to be
excluded from synthesis, but used by simulation or other tools. For example:

‘ifdef exemplar

/I do nothing here when running simulator

‘else

initial

/I do all initialization here. This will be ignored by the
synthesis tools.

‘endif

6-34 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Chapter 7
The Art of Verilog Synthesis

This chapter explains how particular logic constructs can be synthesized with Verilog
restrictions taken into account.

Registers, Latches, and Resets

Verilog synthesis produces registers and combinational logic at the RTL level. All
combinational behavior around the registers is, unless prohibited by the user, optimized
automatically. Hence, the style of coding combinational behaviorifliken-else andcase
statements, has little affect on the final circuit result, but the style of coding sequential behavior
has significant impact on your design.

This section shows how sequential behavior is produced with Verilog, so that you understand
why registers are generated at certain places and why not in others.

Most examples explain the generation of these modules with short Verilog descriptions in an
always block.

Level-Sensitive Latch

This first example describes a level-sensitive latch:

input input_foo, ena ;
reg output_foo ;

always @ (ena or input_foo)
if (ena)
output_foo = input_foo ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-1

Registers, Latches, and Resets The Art of Verilog Synthesis

The sensitivity list is required, and indicates thatdheays block is executed whenever the
signalsena orinput_foo change. Also, since the assignment to the regsiut_foo is
hidden in a conditional clauseytput_foo ~ cannot change (preserves its old valuei is 0.
If ena is 1, output_foo is immediately updated with the valueioput_foo , whenever that
changes. This is the behavior of a level-sensitive latch.

In technologies where level-sensitive latches are not available, LeonardoSpectrum translates the
initially generated latches to the gate equivalent of the latch, using a combinational loop.

Edge-Sensitive Flip-flops

An edge triggered flip-flop is generated from a Verilog description if a variable assignment is
executed only on the leading (or only on the trailing) edge of another variable. For that reason,
the condition under which the assignment is done must include an edge-detecting construct.
There are a number of edge detecting attributes in Verilog. The two most commonly constructs
areposedge andnegedge .

Theposedge construct detects transitions (is true) oo 1. Thenegedge construct detects
transitions fromi to 0.

Here is one example of th@sedge construct, used in the condition clause inaétays block.
LeonardoSpectrum generates an edge-triggered flip-flop out of this behavionuipiih foo
updated only itlk shows a leading edge.

input input_foo, clk ;
reg output foo ;

always @ (posedge clk)
output_foo = input_foo ;

If the posedge construct is not in the sensitivity list of théwvays block, a warning is issued
thatinput_foo is not on the sensitivity list.

7-2 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis Registers, Latches, and Resets

Synchronous Sets and Resets

All conditional assignments to variabdetput_foo inside thef clause translate into
combinational logic in front of the D-input of the flip-flop. For instance, we can make a
synchronous reset on the flip-flop by doing a conditional assignmeitjiot_foo

input input_foo, clk, reset ;
reg output foo ;

always @ (posedge clk)

if (reset)

output_foo = 1'b0 ;
else

output_foo = input_foo ;

Variablesreset andinput_foo should not be included on the sensitivity list executing this
block should not occur when they change.

Asynchronous Sets and Resets

If we want the reset signal to have immediate effect on the output, but still let the assignment to

output_foo frominput_foo only happen on the leading clock edge, we require the behavior
of an asynchronous reset.

input input_foo, clk, reset ;
reg output foo ;

always @ (posedge clk or posedge reset)
if (reset)
output_foo = 1'b0 ;
else
output_foo = input_foo ;

Now reset HAS TO BE on the sensitivity list. lfeset is not there, Verilog semantics require
that thealways block does not executeréset changes. Thislways block executes only if a
positive change inlk is detected.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-3

Assigning I/O Buffers from Verilog The Art of Verilog Synthesis

Asynchronous set and reset can both be used. This results in combinational logic driving the set

and reset input of the flip-flop of the target signal. The following code fragment shows the
structure of such a process:

always @(<edge of clock> or
<edge_of asynchronous_signals>)
if (<asynchronous_signal>)
<asynchronous signal_assignments>
else if (<asynchronous_signal>)
<asynchronous signal_assignments>

else

<synchronous signal_assignments>

There can be several asynchroneiss if clauses, but the synchronous assignments have to
be the last one in thie clause. A flip-flop is generated for each signal that is assigned in the
synchronous signal assignment. The asynchronous clauses result in combinational logic that
drives the set and reset inputs of the flip-flops.

Clock Enable

It is also possible to specify an enable signal in a process. Some technologies (specifically
Xilinx) have a special enable pin on their basic flip-flop. The synthesis tools recognize the
function of the enable from the Verilog description and generate a flip-flop with an enable
signal from the following code fragment:

input input_foo, clk, enable ;
reg output_foo ;

always @ (posedge clk)
if (enable)
output_foo = input_foo ;

If an enable pin does not exist in the target technology a multiplexer is generated in front of the
data input of the flip-flop.

Assigning I/O Buffers from Verilog

There are three ways to assign 1/0O buffers to your design from Verilog:

®* Run LeonardoSpectrum with the -chip batch mode option

7-4 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis Assigning I/O Buffers from Verilog

® Use thebuffer sig command in the interactive shell
® Use component instantiation in Verilog of the buffer you require.

Thebuffer_sig command or the direct component instantiation overwrites any default buffer
assignment that LeonardoSpectrum would do in “chip” mode.

These approaches can be used together by specifying certain 1/0 buffers in the Verilog source
description and others in the control file, with the remaining buffers assigned automatically by
LeonardoSpectrum. The order the buffers are inserted in the design is important:

1. Components in the Verilog source are instantiated from the source technology.

2. Buffers are added by using theffer_sig command from the target technology.

3. Terminals without identifiable 1/0 gates have buffers inserted from the target
technology.

In all cases, the names of the original I/O terminals are preserved.

Automatic Assignment Using Chip Mode

The easiest way of assigning buffers is to run LeonardoSpectrum in default chip mode. This
automatically assigns appropriate input, output, tristate, or bidirectional buffers to the ports in
your module definition. For example,

module buffer_example (inp, outp, inoutp) ;
input inp ;

output outp ;

inout inoutp;

endmodule

generates amPUT_BUFFERfor inp , and anOUTPUT_BUFFEHROr outp . outp becomes a
TRISTATE_BUFFERIf it was assigned in the following fashion:

tri outp ;
assign outp = ena ? inp : 1bzZ

Manual Assignment Using the Control File

Special buffers, e.gsgate> , can be assigned. The command

BUFFER_SIG <gate> clk

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-5

Tristate Buffers The Art of Verilog Synthesis

where<gate> is the name of a gate on the target technology, connects signéb the input of
the external clock buffetgate> . An intermediate node calletk_manual appears on
CLOCK_BUFFER output. Gates are searched for in the target technology library.

Buffer Assignment Using Component Instantiation

It is also possible to instantiate buffers in the Verilog source file with component instantiation.
In particular, if you want a specific input or output buffer to be present on a specific input or
output, component instantiation is a very powerful method:

module special_buffer_example (inp, clk, outp, inoutp) ;
input inp, clk ;

output outp ;

inout inoutp ;

wire intern_in, intern_out, io_control ;

OUTPUT_FF Al1(.c(clk), .d(intern_out),
.t(io_control),.o(inoutp));
INPUT_BUFFER A2(.i(inp), .o(intern_in)) ;

endmodule

In this example, component instantiation forcesoarrPUT_Frouffer (complex I/O
output/flip-flop buffer) on the bidirectional pin inoutp. Also an input buffi@PUT_BUFFERIS
specified to pick up the value from inp to be used internally.

In the case of component instantiation of I/O buffers, a source technology must be specified to
assure that the synthesis tools take the instantiated I/O buffer from the right library. If no source
library is specified, an error is issued. If the source technology is specified, the components are
instantiated from this library, which automatically gives them the right functionality. The
synthesis tools recognize that the 1/O pin is properly buffered, and does not add default buffers

around it.

Tristate Buffers

Tristate buffers and bidirectional buffers (covered in the next section) are very easy to generate
from a Verilog description.

7-6 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis Tristate Buffers

Example 1:

/I conditional expression

assign o0l = oel ? dl1 : 1'bz;
assign x = oe2 ? d2 : 1'bz;
assign ol = x;

/I if statement
always @ (oe3 or d3)
if (0e3)
02 = d3;
else
02 = 1'bz

/I case statement
always @ (oed or d4)
case (o0ed)
default . 02 = 1'bz
1'bl . 02 = d4;
endcase

Example 2:

module tristate (input_signal, ena, output_signal) ;
input input_signal, ena ;
output output_signal ;

assign output_signal = ena ? input_signal :
1'bz ;

endmodule

Note that in the conditional clause of the assign statement,ifyaihsignal andena can be
full expressions. LeonardoSpectrum generates combinational logic driving the input or the
enable of the tristate buffer for these expressions.

However, the use of the' value in an expression is illegal. The use of the value in any
form inside a clockediways block is also illegal.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-7

Tristate Buffers The Art of Verilog Synthesis

Example 3:

assign output_signal = input_signal & 1'bz;

Normally, simultaneous assignment to one signal in Verilog is not allowed for synthesis, since it
would cause data conflicts. However, if a conditiozal is assigned in each assignment,
simultaneous assignment resembles multiple tristate buffers driving the same bus.

module tristate_example_2 (input_signal_1, input_signal_2, enal,
ena2, output_signal) ;

input input_signal_1, input_signal_2, enal, ena2 ;

output output_signal ;

enal ? input_signal_1 : 1'bz ;
ena2 ? input_signal_2 : 1'bz ;

assign output_signal
assign output_signal

endmodule

You can still introduce a data conflict with these simultaneous assignment®to signal

by making botrena_1 andena_2 1'b1 . LeonardoSpectrum does not check for a possible bus
conflict. Make sure that you can never have that possibility by carefully generating the enable
signals for the tristate conditions.

These examples show assignments to outputs. However, it is certainly possible to do the
assignments to an internal wire as well.

® |f the target technology does not have any internal three-state drivers,
LeonardoSpectrum can transform the three-state buffers into regular logic with the
-tristate batch mode option.

® LeonardoSpectrum performs this transformation whenrihate_map variable is set
to TRUEIN the interactive shell.

7-8 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis Bidirectional Buffers

Bidirectional Buffers

Bidirectional I/0O buffers can be coded in Verilog as follows:

module bidirectional (bidir_port, ena, ...) ;
input ena ;
inout bidir_port ;

assign bidir_port = ena ? internal_output :

1'bz ;
assign internal_input = bidir_port ;
/I use internal_input
/I generate internal_output
endmodule

The difference with the previous examples is that in this case, the output is used again
internally. For that reason, the paitir_port is declared to be inout.

The enable signaina could also be generated inside the module instead of being a primary
input as in this example.

LeonardoSpectrum selects a suitable bidirectional buffer from the target technology library. If

there is no bidirectional buffer available, it selects a combination of a tristate buffer and an input
buffer.

Buses

The examples given above all use single bits as signals. In reality, buses or arrays of bits with
tristatable (multiple) drivers, are often used. Buses are used both internally to the design and as
I/0. For internal tristate buses, the bus signal should be declaredvased.

kkhkkkkkkkkkkkkkhkkkhkkkkkkhkkhkkkhkkhkkkkkkhkkhkkhkhkhkkhkkhkkhhkkkkkkkkhkkhkkhkkhkkhkkkkkkkkkk
**

The following example describes a circuit that loads a source vector of 4 bits on the edge of a
clock (wrclk), and stores the value internally in a regisietrdg) if the chip enablede) is

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-9

Buses

The Art of Verilog Synthesis

active. One bit of the register output is put on a tristate s int
selector signalsglector

), based on a 2-bit

), with the bus output clocked through a final registesdt).

module tri_asgn (source, ce, wrclk, selector, result) ;
input [3:0] source ;

input ce, wrclk ;

input [1:0] selector ;

output result ;

reg [3:0] intreg ;

reg result ;

wire [1:0] sel = selector ;

tri result_int ;

/I assignment to internal tristate bus

assign
result_int = (~sel[0] && ~sel [1]) ? intreg[O] :
result_int = (sel[0] && ~sel [1]) 7 intreg[1] :
result_int = (~sel[0] && sel [1]) ? intreg[2] :
result_int = (sell0] && sel [1]) ? intreg[3] :
always @(posedge wrclk)
begin
if (ce)
intreg = source;
result = result_int ;
end
endmodule

1'bz

1'bz

1'bz

1'bz

7-10

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis State Machines

In the following example of a tristate bus used for output, a source is loaded into a register
(tbuf_in) whose output is a set of tristate buffers.

module tri_bus (d, clk, en, tbuf out) ;
parameter n = 8 ;
parameter triZ = 8bZ ;
input [(n-1):0] d ;

input clk, en ;

output [(n-1):0] tbuf out ;
reg [(n-1):0] tbuf_in ;

assign tbuf out = en ? thuf in : triZ ;

always @ (posedge clk)
tbuf in = d ;

endmodule

State Machines

There are basically two forms of state machines, Mealy machines and Moore machines. In a
Moore machine, the outputs do not directly depend on the inputs, only on the present state. In a
Mealy machine, the outputs depend directly on the present state and the inputs.

In general, a description of a state machine consists of descriptions of the state transitions, the
output functions and a register function. Because of the register functiaiwas block in

Verilog is an appropriate way to describe a state macfkfiage-if or case statements in
analways block perform the state transition and output function descriptions.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-11

State Machines The Art of Verilog Synthesis

In the following sections, the DRAM interface state machine showfignire 7-1is used to
illustrate state machine design using Verilog.

Figure 7-1. DRAM Interface with Refresh

ras1'bl cas=1b1 ready=1'b1]

¢s=1'b0 refresh=1'b1

rasl'bl cas=1'b0 ready=1'b0

ras1'b0 cas=1'b1 ready=1'b0

refresh=1'b1 cs=1'b1 refresh=1'b0

rasl'bl cs=1'b0
cas=1'bl -
ready=1'b1| |raslbl
cas=1'bl ras1'b0 cas=1'b0 ready=1'b0
ras1'b0 cas=1'b0 ready=1'h0| ready=1'b1

cs=1'bl
ras1'b0 cas=1'b0 ready=1'b0

Altera 04

7-12 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis

State Machines

Moore Machines

An example of a Moore machine is:

module moore (clk, cs, refresh, ras, cas, ready) ;
input clk, cs, refresh ;
output ras, cas, ready ;

s3 =3, 84 =4,
reg [2:0]/* exemplar enum eel */ present_state ;
reg ras, cas, ready ;

always @ (posedge clk)
begin
case (present_state)
sO : begin
if (refresh)
present_state = s3 ;
else if (cs)
present_state = sl ;

else
present_state = sO ;
end
sl : begin
present_state = s2 ;
end
s2 : begin
if (~cs)
present_state = sO ;
else
present_state = s2 ;
end
s3 : begin
present_state = s4 ;
end
s4 : begin
present_state = sO ;
end

parameter /* exemplar enum eel */ sO = 0, s1 =1, s2 = 2,

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

7-13

State Machines

The Art of Verilog Synthesis

default : begin
present_state = sO ;
end
endcase
end
always @ (present_state)
begin
case (present_state)
sO : begin
ras = 1'bl ; cas = 1'bl ; ready = 1'bl ;
end
sl : begin
ras = 1'b0 ; cas = 1'bl ; ready = 1'b0 ;
end
s2 : begin
ras = 1'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end
s3 : begin
ras = 1'bl ; cas = 1'b0 ; ready = 1'b0 ;
end
s4 : begin
ras = 1'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end
default : begin
ras = 1'bX ; cas = 1'bX ; ready = 1'bX ;
end
endcase
end
endmodule

Note: Theexemplar enum eel

directive indicates thatresent_state

directive is added to the Moore machine example. This
is an enumerated type. This directive allows

LeonardoSpectrum to automate the state machine encoding. You can then select the encoding
for your design on the GUI or with coded commands.

There are twalways blocks in the state machine description. The firstis synchronized with the
clockclk and describes the state transitions. This block depends on the present state and the
inputs. The second is not synchronized, but it reacts immediately if there is a chandgéhis
secondhlways block describes the functions of the outputs depending on the present state. The
split into two processes is not absolutely necessary. The same functional behavior can be
generated by merging the two always blocks into one. However, the logic that is generated is
somewhat different, as explained below.

Below is exactly the same Moore machine description, but this time it consists of only one
always block. In the first description, the outpuiss , cas andready were assigned in an
asynchronous (not clocked) always block as a functiogresfent_state . They therefore

7-14 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis State Machines

appear as purely combinational logic. In the description below, the same outputs are generated
in a clocked always block. Therefore, the outpuats, cas andready appear at the Q-output of
flip-flops with the combinational logic computing the value of these signals at the D-inputs of
the same flip-flops.

The subtle differences between the two descriptions result in trading off timing behavior and
logic circuitry. The first description builds a circuit where the outputs ripple through logic after
the clock edge. In the second description, the outputs change glitch-free at the clock-edge, and
are stable immediately after that, but at the cost of an additional flip-flop for each output.

module moore_example_2 (clk, cs, refresh, reset, ras, cas, ready)

input clk, cs, refresh, reset ;
output ras, cas, ready ;

parameter /* exemplar enum eel */ sO = 0, s1 = 1, s2 = 2, s3 = 3,
s4 = 4

reg [2:0] /* exemplar enum eel */ present state ;
reg ras, cas, ready ;

always @ (posedge clk or posedge reset)
begin
if (reset) // asynchronous reset
begin
present_state = sO ;
ras = 1'bl ; cas = 1'bl ; ready = 1'bl ;
end
else
begin
case (present_state)
sO :
if (refresh)
begin
present_state = s3 ;
ras = 1'bl; cas = 1'b0 ; ready = 1'b0 ;
end

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-15

State Machines The Art of Verilog Synthesis

else if (cs)
begin
present_state = sl ;
ras = 1'b0; cas = 1'bl ; ready = 1'b0 ;
end
else
begin
present_state = sO ;
ras = 1'bl; cas = 1'bl ; ready = 1'b1 ;
end
sl :
begin
present_state = s2 ;
ras = 1'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end
S2 :
begin
if (~cs)
begin
present_state = sO ;
ras = 1'bl; cas = 1'bl ; ready = 1'b1 ;
end
else /I cs = 1'bl
begin
present_state = s2 ;
ras = 1'b0; cas = 1'b0 ; ready = 1'b0 ;
end
end
s3
begin
present_state = s4 ;
ras = 1'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end
s4
begin
present_state = sO ;
ras = 1'bl ; cas = 1'bl ; ready = 1'bl ;
end

7-16 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis

State Machines

default:
begin
present_state = sO ;
ras = 1'bX ; cas =
end
endcase
end
end
endmodule

I'bX ;

ready = 1'bX ;

This example also added an asynchronous reset to the design.

Mealy Machines

So far, we have shown a number of examples of Moore machines. In a Mealy machine, outputs
depend on both the present state and the inputs. Below is the state machine again, but now in a
Mealy machine form. Notice that the behavior changes slightly, since the inputs affect the
outputs immediately, without waiting for the new state to be generated.

In the Moore machine example, it was possible to merge the two processes into one,
synchronized with a clock, since all activity was happening on the clock edge. In this Mealy
machine example, however, the outputs are updated even when there is no clock edge. Thus, in
this case, it is not possible to merge the two processes into one.

A Mealy machine is, in general, described with two always blocks, where one block does all
combinational functionality and the other just updates the present state with the next state, on

the clock edge.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

7-17

State Machines

The Art of Verilog Synthesis

This code shows an example of a Mealy machine.

module mealy (clk, cs, refresh, ras, cas, ready) ;
clk, cs, refresh ;
ras, cas, ready ;

input
output

parameter

s4 = 4

reg [2:0)/* exemplar enum eel */ present state, next_state ;
reg ras, cas, ready ;

always
begin
end

always
begin

@ (posedge clk)

/I always block to update the present state

@ (present_state or refresh or cs)

/I always block to calculate the next state and the outputs
next_state = sO ;
ras = 1'bX ; cas = 1'bX ; ready = 1'bX ;
case (present_state)
sO :

[* exemplar enum eel */ sO = 0, s1 = 1, s2 = 2, s3 = 3,

present_state = next_state ;

begin
if (refresh)
begin
next_state = s3 ;
ras = 1'bl ; cas = 1'b0 ; ready = 1'b0 ;

end
else if (cs)
begin
next_state = sl ;
ras = 1'b0 ; cas = 1'bl ; ready = 1'b0 ;
end
else
begin
next_state = sO ;
ras = 1'bl ; cas = 1'bl ; ready = 1'bl ;
end
end

7-18

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis State Machines

sl : begin
next_state = s2 ;
ras = 1'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end
s2 . begin
if (~cs)
begin
next_state = sO ;
ras = 1'bl ; cas = 1'bl ; ready
end
else
begin
next date=9;
ras = 1'b0 ; cas = 1'b0 ; ready
end
end
s3 . begin
next_state = s4 ;
ras = 1'bl ; cas = 1'b0 ; ready = 1'b0 ;
end
s4 : begin
next_state = sO ;
ras = 1'b0 ; cas = 1'b0 ; ready
end

1bl ;

1'b0 ;

1'b0 ;

endcase
end
endmodule

Combinational loops can be generated easily (and are in most cases unwanted) in a Mealy
machine description. If nothing is assigned to a signal in one or more cases (for instance
because you do not care what the value is going to be), Verilog semantics require that the value
of the signal is preserved. In an asynchroniaedys block as the one shown above, this

means that synthesis must generate a combinational loop or a level-sensitive latch to preserve
the value.

Issues in State Machine Design

This section discusses several issues regarding the design of synthesizable state machines:
® State encoding
® Onehot encoding

® |nitialization of the state machine

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-19

State Machines The Art of Verilog Synthesis

* Power-up conditions

® Semantics of the case statement
State Encoding

States must be explicitly specified by the user. This can be done by explicitly using the bit
pattern (e.g.,3'b101), or by defining a parameter (e.garameter s3 = 3'b101) and using
the parameter as the case item.

Onehot Encoding

The recommended method to implement a onehot state machine is to set the state machine
variable to an enumerated type with #r&m pragma. You can review this method in the
previous Mealy and Moore machine examples in this chapter. Then you can use the encoding
option or pragma to set the state machine encodingedmot .

The next Verilog example description is for a onehot encoded state machine with the same

functionality as shown in the previous Mealy and Moore machine examples. This Verilog
example allows you to explicitly encode the state machine as onehot.

7-20 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis State Machines

module one_hot_mealy (clk, cs, refresh, reset, ras, cas, ready) ;
input clk, cs, refresh, reset ;
output ras, cas, ready ;

reg [4:0] present_state, next_state ;
reg ras, cas, ready ;

always @ (posedge clk)

begin
/I always block to update the present state
if (reset)
present_state = 5'b00001 ;
else
present_state = next_state ;
end

always @ (present_state or refresh or cs)

begin
/I always block to calculate the next state and the outputs
next_state = 5’00000 ;
ras = 1'bX ; cas = 1'bX ; ready = 1'bX ;

if (present_state[0])

begin
if (refresh)
begin
next_state = 5’01000 ;
ras = 1'bl ; cas = 1'b0 ; ready = 1'bO ;
end
else if (cs)
begin
next_state = 5'b00010 ;
ras = 1'b0 ; cas = 1'bl ; ready = 1'b0 ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-21

State Machines The Art of Verilog Synthesis

end
else
begin
next_state = 5’b00001 ;

end
end
if (present_state[1])
begin
next_state = 5’00100 ;
ras = 1’'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end
if (present_state[2])
begin
if (~cs)
begin
next_state = 5’b00001 ;
ras = 1'bl ; cas = 1'bl ; ready
end
else
begin
next_state = 5’00100 ;
ras = 1'b0 ; cas = 1'b0 ; ready
end
end
if (present_state[3])
begin
next_state = 5’10000 ;
ras = 1'bl ; cas = 1'b0 ; ready
end
if (present_state[4])
begin
next_state = 5’b00001 ;
ras = 1'b0 ; cas = 1'b0 ; ready
end

1'bl ;

1'b0 ;

1'b0 ;

1'b0 ;

end
endmodule

ras = 1'bl ; cas = 1'bl ; ready = 1'bl ;

Some key points from this onehot state machine are:

®* Thecase statement should not be used for onehot state machine design. When the
casex Statement is used for state comparisons, the comparisons must be done on only
one bit of the state vector. If the whole vector is used for comparison, then full binary
encoding logic is synthesized. Also, ttese statement needs to be compiled as

parallel_case

7-22 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis State Machines

® Theelse if construct should not be used to do the state comparisons, since that
introduces additional constraints on the values of each state. elsing means that
this code is only entered if the all previous conditions are false. In the case of onehot
encoding, it is certain that all previous conditions are false already.

This state machine description works fine, as long as the machine can never appear in a state
with more than onel’ in the state vector. In order to assure that condition, the need for a reset
becomes inevitable in the one-hot case. The use of resets is discussed in greater detail in the
next section.

Initialization and Power-Up Conditions

In synthesis, if the total number of states is not a power of two, the state signal can power-up in
a state that has not been defined, if binary encoding is used. In this situation, it is essential that
the Verilog description does an assignment to the output variables and the state variable under
all conditions.

This can be done in two ways:

* Do a default assignment to the outputs and state variable befotesthestatement that
updates the state machine. This method is used in the first Moore and the Mealy
machine examples from the previous sections. It assures that outputs and state variable
always get a value assigned regardless of the state of the state machine.

® Do the default assignment in thefault clause of thease statement, as was shown in
the second Moore machine example. This has the same effect; outputs and states always
get a value regardless of the state of the machine.

If you do not do a default assignment, the state machine could power-up in a undefined state.
Verilog semantics require that if there is no assignment to a signal, the previous value has to be
preserved. In case the state transitions are defined in an asynchronous always block, latches
would be generated by the synthesis tools to preserve the state value.

If onehot or another state encoding is used, the number of undefined states could be even larger.
Consider that in onehot encoding, the specification of the state machine has to rely on the fact
that only one single state bit of the state vector is 1. That means that the designer has to provide
a special feature that takes care of the power-up conditions.

One possibility might be to include a special detection function that sets the state to a valid one
the moment it occurs in a invalid one. However, it would require too much logic to implement
this functionality, making the use of one-hot encoding unattractive. In most cases, it is much
more cost effective to include the possibility of a reset function. The reset can be defined to be
synchronous or asynchronous, depending on what you want.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-23

Arithmetic and Relational Logic The Art of Verilog Synthesis

Arithmetic and Relational Logic

This section gives an overview of how arithmetic logic is generated from Verilog, what the
synthesis tools do with it and how to avoid getting into combinational explosion with large
amounts of arithmetic behavior.

In general, logic synthesis is very powerful in optimizing random combinational behavior, but
has problems with logic which is arithmetic in nature. Often special precautions have to be
taken into consideration to avoid ending up with inefficient logic or excessive run times.
Alternatively, macros may be used to implement these functions.

The synthesis tools support the operater - 7, “==", “1=", “ < “>7 55" M “x7 8"

“<=", and “>=".

If you use these operators to calculate compile time constants, there is no restriction or problem
in using them. For example, the following division does not result in a any logic, but replaces
signalfoo with aconstant 3'd133

integer largest ;

integer divider ;

assign largest = 800 ;

assign divider = 6 ;

assign foo <= largest / divider ;

If you are not working with constant operands, arithmetic logic is generated.

The operator +” generates an adder. The number of bits of the adder depends on the size of the
operands. If you use integers, a 32 bit adder is generated. If you add vectors and integers, the
size of the adder is defined to the range of the vector in bits. For example:

integer a, b, ¢
assign c =a + b ;

generates a 32-bit adder but:

input [7:0] a ;
output [7:0] ¢ ;
integer b ;
assign c = a + b ;

7-24 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis Arithmetic and Relational Logic

generates an 8-bit adder.

If one of the operands is a constant, initially a full-sized adder is still generated but logic
minimization eliminates much of the logic inside the adder because half of the inputs of the
adder are constant.

The operator -’ generates a subtracter. Same remarks as with+theperator.

The operator *” generates a multiplier. Multiplication by a constant power of two is
implemented as a shift operation. In all other cases ModGen (generic or technology specific) is
required to implement the multiplier.

The operator /" generates a divider. Only division by a power of two is supported, hence no
logic here, only shifting the non-constant operand.

The operators==", “1=","<" “>" “>>" “<<” *<=" and “>=" generate comparators with the
appropriate functlonallty Same remarks apply as for teoperator.

® Operations on integers are done in twos-complement implementation.

All arithmetic behavior is translated into logic functions and is part of the logic
optimization process. The result is that depending on area and timing criteria and
constraints set, the final logic circuit can include, for example, carry lookahead or ripple
carry adder implementation. If the design is getting large, run-time and memory
requirements increase rapidly.

Some large designs can run forever without any improvement, if any solution is
produced at all. The reason is that the logic synthesis optimization algorithms try too
many possible circuit implementations from the exponentially growing search space.
Good design practices are needed to help avoid this problem.

Module Generation

When arithmetic and relational logic are used for a specific Verilog design, LeonardoSpectrum
provides a method to synthesize technology specific implementations for these operations.
Generic modules (for bit-sizes > 2) have been developed for many of the CPLDs supported by
LeonardoSpectrum to make the most efficient technology specific implementation for
arithmetic and relational operations. You can use either batch mode or the interactive shell to
load a library.

Use the batch modeodgen=<modgen_library> option to include a module generation library
of the specified technology and infer the required arithmetic and relational operations of the
required size from a design.

Use the interactive shallodgen_read <modgen_library> command to load the module
generation library into the HDL database. Since these modules have been designed optimally

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-25

Arithmetic and Relational Logic The Art of Verilog Synthesis

for a target technology, the synthesis result is, in general, smaller and/or faster and takes less
time to compile. You may define your own module generator for a specific technology.

Resource Sharing and Common Subexpression
Elimination

LeonardoSpectrum automatically does CSE. For the following example, only one(aslgjer
is created. The adder is used for bothitheconditions. For bigger expressions user need to use
parentheses properly to direct the synthesis tool for CSEye-ga+(b-c) ,z = d+(b-c) ,viS

S h ared kkkkkkkkkkkhkkhkkkkkkkkkkkhkhkkkkkkkkkhkkkkhkkkkkkkkkkhkkkhkkkkkkkkkkkkkkkk

reg a, b, c, d;

always @ (a or h)

begin
if (atb == ¢) //This adder will be shared
else if (atb == d) // with this one.
else

end ;

Comparator Design

Applications may involve a counter that counts up to an input signal value, and when that value
Is reached, some actions are needed and the counter is reset to 0.

begin
if (count == input_signal)
count = 0 ;
else
count = count + 1 ;
end ;

7-26 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis Technology-Specific Macros

In this example LeonardoSpectrum builds an incrementer and a full-size comparator that
compares the incoming signal with the counter value. It is usually better to preset the counter to
the input_signal and count down, until zero is reached.

begin
if (count == 0)

count = input_signal ;
else
count = count - 1 ;

end ;

Now, one decrementer is needed plus a comparison to a congtafince comparisons to
constants are a lot cheaper to implement, this new behavior is much easier to synthesize, and
results in a smaller circuit.

Even better results can be obtained with the use of hard macros and soft macros of the target
technology, as well as the use of hierarchy in the design. The following two sections explain this
in more detail.

Technology-Specific Macros

In many cases, the target technology library includes a number of hard macros and soft macros
that perform specific arithmetic logic functions. These macros are optimized for the target
technology and have high performance.

With LeonardoSpectrum, it is possible to use component instantiation of soft macros or hard
macros in the target technology. An added benefit is that the time needed for optimization of the
whole circuit can be significantly reduced since the synthesis tools do not have to optimize the
implementation of the dedicated functions any more.

Suppose you want to add two 8 bit vectors, and there is an 8 bit adder macro available in your
target technology. You could use the'‘bperator to add these two vectors. The alternative is to
define a component that has the same name and inputs and outputs as the hard macro you want
to use. Instantiate the component in your Verilog description and connect the inputs and output
to the their appropriate signals. The synthesis tools instantiate the hard macro without having to
bother with the complicated optimization of the internal logic implemented by the macro.

This speeds up the optimization process considerably. In the netlist produced by

LeonardoSpectrum, the macro appears as a “black box” that the downstream place and route
tools recognize.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-27

Synthesis Directives The Art of Verilog Synthesis

If your arithmetic functions cannot be expressed in hard macros or soft macros immediately (for
instance if you need a 32 bit adder, but only have an 8 bit adder macro), you could write a
Verilog description that instantiates the appropriate number of these macros.

Synthesis Directives

parallel _case and full_case directives

parallel_case andfull_case directives are allowed as synthesis directive on case by case
basis. LeonardoSpectrum detects the true full and parallel cases automatically. However, there
are cases (like onehot encoded state machine) that are not inherently parallel/full, but the
environment guarantees that the case statement is parallel and/or full. In such a condition the
following two synthesis directives are very useful.

input [3:0] inp_state;
I/l example of onehot encoded machine
case (1'bl) // exemplar parallel_case full_case
inp_state[0]:
inp_state[1]:
inp_state[2]:
inp_state[3]:
endcase

translate off and translate_on directives

translate_off andtranslate_on synthesis directives are allowed to comment out a portion
of code that you may want to retain for some purpose other than synthesis.

/I code for synthesis

I/l exemplar translate_off

$display (.....); // not for synthesis
/I exemplar translate_on

/I code for synthesis

endmodule

7-28 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis Synthesis Directives

enum directive

The enum synthesis directive is supported for user convenience when trying out different
encoding on a state machine. With the synthesis directive, the synthesis tool becomes sensitive
to the global state encoding switclar(coding), and the enumerated values are encoded
according to the setting of that optiommghot , twohot , gray , binary , random, Or auto).

Using theenum synthesis directive, a set of parameters can be treated as enumerated values;
resources like wire and reg can be declared as that enumerated type. The synthesis tool puts
some restrictions on these enumerated types. Elements are allowed with enumerated objects
areas in the following instances:

In case statements: The enum type of case expression should match with the case tags. For
comparison of the enumerated types with each other, assigning enumerated types to each other
(type should match).

These objects are treated as strongly typed so they cannot be mixed with the object of any other
type. Any boolean or arithmetic operations are considered to be in error for enumerated objects.
The synthesis tool gives an appropriate error when any one of these rules is violated. In such
cases, you may not use theum synthesis directive.

The encoding style of the enumerated objects can be selected from boolean (default),
onehot , twohot , gray , random, Orauto using the globalencoding option on the synthesis

tool mainline, or using the state encoding selection on the Verilog input options dialog of the
user interface.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-29

Synthesis Directives The Art of Verilog Synthesis

module state_mc (clk, reset, o, i1, i2, i_state);
input clk, reset, i1, i2;

output o, i_state;

reg o;

parameter [1:0] /* exemplar enum eel
*/S0=1,51=2,52=3,S3=0;

reg [1:0] /* exemplar enum eel */ state;
assign i_state = (state == S1 | state == S3); //
legal.

always @ (posedge clk or posedge reset)

if (reset) begin

o =0;
state = SO; // Note state = 1, will cause a type
mismatch error
end
else
case (state) // No need of full and parallel case
SO: begin o = il1; state = S1; end
S1: begin o = ~il; state = S2; end
S2: begin o = i2; state = S3; end

S3: begin o = ~i2; state = SO; endNote case tag
0: would cause type
mismatch error
endcase
endmodule

State ando, S1, S2, s3 are ofenumtype eel. They cannot be used for any boolean or arithmetic
operation. Bit or port select from state or its values is also considered an error. Enumerated type
module ports are not allowed.

attribute directive

The user can set some simple attributes on signals/instances to enhance the synthesis efficiency
of the Exemplar synthesis tool. For example, by settingribéyen_select attribute to

fastest on a signal on a critical path of a design, the user can improve the timing performance

of the designNote: An attribute can only be set on an object after declaration of the object. The
synthesis of this directive is as follows:

/I exemplar attribute <object_name> <attribute_name> <attribute_value>

7-30 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

The Art of Verilog Synthesis Synthesis Directives

/lexample

module expr (a, b, ¢, outl, out2);
input [15:0] a, b, c;

output [15:0] outl, out2;

assign outl

+ b;
assign out2 c

a
b +

/I exemplar attribute outl modgen_sel fastest
endmodule

Encoding Directive

This directive can be used to control the encoding of the state machines described by multiple
“@ posedge clk " statements within aaiways block (implicit state machine).

/I exemplar encoding onehot|twohot|binary|gray|random|auto
The encoding variable determines how LeonardoSpectrum encodes enumerated types.
Moreover, the encoding variable determines how LeonardoSpectrum implements state
machines with an enumerated type state vector.

The default setting on the GUI or on the command line is auto. The auto setting allows
LeonardoSpectrum to select the encoding on a case-by-case basis.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 7-31

Synthesis Directives

The Art of Verilog Synthesis

7-32

/lexample

module encoding_example (clk, clki, i1, i2, 0, i3,

i4);

input clkl, clk;
input i1, i2, i3,
output o

reg o;

always @(posedge clk)

begin

/I exemplar encoding binary

o =0;

while (1)

begin

if (i1 == i2)

@ (posedge clk);
o = i3;

end

else begin

@ (posedge clk);
o = i4;

end

end

end

endmodule

i4;

begin

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Chapter 8
Verilog and Synthesis of Logic

Verilog is a language that has been developed for simulation purposes. Synthesis was not an
issue in the development of the language. As a result, there are a number of Verilog constructs
that cannot be synthesized. There has been very little written that explains which constructs
cannot be synthesized into logic circuits and why.

This chapter provides explanations on why certain Verilog constructs cannot be synthesized
into logic circuits and what changes have to be made to reach the intended behavior to obtain a
synthesizable Verilog description.

Some obvious restrictions of the language are first presented, followed by a list summarizing
Verilog syntax and semantic restrictions for the Exemplar synthesis tools. In addition, some
guidelines are presented that should enable you to write Verilog that is easy to synthesize and
give you a feeling for synthesis complexity problems you might introduce when you write your
Verilog design.

Comparing With X and Z

Consider the Verilog modeling case where an if clause should be entered if a part of a vector has
a particular value. The rest of the vector does not really matter. You might want to write this as
follows:

if (vect == 6'bXXX001) begin

The user intention is to do a comparisorota (the right most three bits) and forget about the

left three bits. However, Verilog defines comparison on vectors asNbef comparison of

each individual element. Also, comparison of two elements is only true if both elements have
exactly the same value. This means that in order for this condition to be true, the three left most
bits have to bex' . But in logic synthesis, a bit can only lie or'1' , so the condition is

always be false. In fact, this condition is not doing what was intended for simulation as well,
since if any of the left most three bits does not have the valuesxplicitly, the result is false.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 8-1

Variable Indexing of Bit Vectors Verilog and Synthesis of Logic

However, comparison ta' is allowed using theasex construct. This is implemented in the

following manner:

casex (vect)
6'bXXX001 : <statement> ;
endcase

In this case, only the three least significant bits of vect are compared1o. The comparison

ignores the three most significant bits.

Variable Indexing of Bit Vectors

LeonardoSpectrum supports variable indexing of a vector. The limitation is that only variable
indexing of the form ’bit select’ is supported. Or more specifically, variable indexing of the
form 'part select’ is not supported because it is not a synthesizable construct.

The semantics of variable indexing varies depending on whether the variable indexing is done
on the left hand side of an assignment or on the right hand side of the assignment. The

right-hand side variable indexing generates a multiplexer controlled by the index. The left-hand
variable indexing generates a de-multiplexer controlled by the index. set of decoders enabling.

The following example shows both examples.

module tryit (input_bus, in_bit, control_input, output_bus,
out_bit);

input [3:0] input_bus ;

input [1:0] control_input ;

input in_bit ;

output [3:0] output _bus ;

output out_bit ;

reg [1:0] control_input ;
reg [3:0] input_bus, output_bus ;
reg in_bit, out bit ;

always @ (control_input or input_bus or in_bit)
begin
out_bit = input_bus [control_input] ;
output_bus [control_input] = in_bit ;
end
endmodule

8-2 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Verilog and Synthesis of Logic Syntax and Semantic Restrictions

Syntax and Semantic Restrictions

This section provides a summary of the syntax and semantic restrictions of the
LeonardoSpectrum Verilog HDL parser.

Unsupported Verilog Features
® UDPprimitives
® specify block
®* real variables and constants
® iniial statement
® 0 ,til ,til ,til ,til , nettypes
®* time datatype
®* Named events and event triggers

® The following gatespulldown , pullup , nmos, mmos pmos, rpmos , cmos, rcmos , tran
rtran , tranif0 , rtranifO , tranifl , rtranifl

®* wait statements

® Parallelblock ,join andfor .

® System task enable and system function call
® force sStatement

® release Statement

® Blocking assignment with event control

®* Namedport specification (not to be confused with passing arguments by name, which
Is supported)

® Concatenation iport specification
® Bit selection inport specification
®* Procedural assign and de-assign

® Supported Verilog Features

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 8-3

Syntax and Semantic Restrictions Verilog and Synthesis of Logic

* Edge triggers on sensitivity list must be single bit variable, or array indexing expression.
® [ndexing of parameters is not allowed.

* Loops must be bounded by constants or cont@inppsedge clk) statement.

® Supported Verilog Features

* Delay and delay control.

® 'vectored’ declaration.

8-4 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Chapter 9
Module Generation

Arithmetic and relational logic, commonly known as data path logic, has traditionally been
difficult to synthesize with logic synthesis software. This is especially true for FPGAs, where
each target technology has a different way to optimally utilize resources. Introduction

Exemplar Logic’s module generation capability provides VHDL and Verilog HDL designers
with a mechanism to overload data path operators, such as “+”, “-” and “>”, with
technology-specific implementations.

Module generation provides a mechanism that matches behavioral operators like “+”, “-”, and
“>" with pre-designed implementations. This allows designers to describe logic in a purely
behavioral fashion, while making optimal use of technology-specific hard or soft macros. As an
example, consider the following VHDL statement:

signal a, b, s : std_logic_vector(n downto 0);
S <= a + b;

When implementing this VHDL statement in an FPGA architecture, designers would like to
utilize vendor-provided adder hard macros, dependent on the size of

In HDLs, the user can explicitly instantiate a desired component (using component instantiation
in VHDL or module instantiation in Verilog).

Three drawbacks exist with using component/module instantiation:

®* The design methodology is no longer behavioral.

®* The HDL source becomes technology dependent.

* Component instantiation is not allowed in operator or function definitions.
However, if neither component/module instantiation nor module generation is used,

LeonardoSpectrum generates logic without any knowledge of an optimal implementation for
the target technology. This typically produces sub-optimal results.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-1

Module Generation

Module generation solves this problem by matching certain data path operators with
pre-designed implementations from a side library. Whenever a supported operator is
encountered in the source design, a technology-specific module generatiopisbransulted

for a matching implementation. If an implementation is found, it is used in the network. If a
technology dependent implementation is not found, the synthesis tools default to a generic logic
implementation which is applicable for a CMOS gate array implementation and for the operator
(ripple carry for the above adder).

Figure 9-Bhows the general flow of data in the module generation environment. After the HDL
source code is successfully parsed, it is passed on to an inference engine that matches supported
operators (addition) with preferred implementations in the module generation library.

Figure 9-1. LeonardoSpectrum Module Generation Environment

HD L source
code

HD L parser
m odule gener ation| _ 9enerics p /M odule
inference engi ne gener ation

m odule library

'

synt hesis,
optim kation,
and m apping

FPGA
netlist

9-2 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Module Generation

As examples of the benefits Module GenerationFigure 9-presents the average area
reduction achieved when Module Generation is used for synthesis targeting FPGAs, while
Figure 9-3presents the average delay reduction achieved.

Figure 9-2. Using Module Generation Results in Area Reduction

100
80
60
40
20

0

Area Reduction (%)
X

0 10 20 30 40 50
Width (bits)

Altera 06

Figure 9-3. Using Module Generation Results in Delay Reduction
100
80 * X
60 <
40
20
0

Delay Reduction (%)

0 10 20 30 40 50
Width (bits)

Altera 07

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-3

Using Module Generation Module Generation

Using Module Generation

This chapter focuses on usiMpdule Generatiorfior the technologies that are supported in
LeonardoSpectrum.

Supported Technologies

Performance information for the module generators are presentedliedmardoSpectrum
Synthesis and Technology Manual

Supported Operators

The following operations are recognized by LeonardoSpectrum for matching with module
generation libraries:

Verilog VHDL '87 Operation
e " addition
binary subtraction, unary
negation
"+ 1" "+ 1" increment
"1 "-1" decrement
== = equal
=" =" not equal
"> "> greater than
"= =" greater than or equal
"< "< less than
"<=" =" less than or equal
e e multiplication
" " division
N/A k! power
%" "mod" modulo
N/A "rem" remainder

9-4 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Module Generation Using Module Generation

Verilog VHDL '87 Operation
N/A "abs" absolute value
Verilog VHDL '93 Operation
">>" "sra” shift right logical
3 "sla" shift left logical
N/A "sra" shift right arithmetic
N/A "sla" shift left arithmetic
N/A “rol" rotate left
=" "ror" rotate right
"> "> greater than
t=>" r=>" greater than or equal
< "< less than
=" =" less than or equal
e e multiplication
" " division
N/A Rl power

®* From VHDL, LeonardoSpectrum recognizes these operations for operators on the
predefined typénteger . It also recognizes these operations from operators for the
bit_vector andstd_logic_vector types, as long as the packagemplar or
numeric_std package is included withase clause.

® For Verilog HDL, LeonardoSpectrum recognizes these operations from all (predefined)
supported operators in the Verilog HDL language.

Counters and RAMSs

LeonardoSpectrum can recognize counter and RAM behavior in a VHDL or Verilog HDL
description and infer module generators. Counters are positive edge-triggered with optional
clock enable and/or count enable, asynchronous clear and/or set, synchronous clear, and
synchronous load. Up, down, and up-down counters are supported. The following example is
recognized as an 8-bit loadable down-counter with asynchronous clear and clock enable:

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-5

Using Module Generation Module Generation

Example

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity cnt_dn_ac_sl_en is
port (clk, clk_en, aclear, sload: in std_logic;
data: in std_logic_vector(7 downto 0);
g: out std_logic_vector(7 downto 0));

end cnt_dn_ac_sl_en;

architecture ex of cnt_dn_ac_sl en is
signal g_int: std_logic_vector(q'range);
begin
process (clk, aclear)
begin
if (aclear = '1% then
g_int <= (g_int'range => '0%;
elsif (clk'event and clk'last_value = '0' and clk = 1" then
if (clk_en = '1Y then
if (sload = '17 then
g_int <= data;
else
g_int <= qg_int - "1"
end if ;
end if ;
end if ;
end process
g <= q_int;
end ex;

Counter and RAM Inferencing and Module Generation

There are two basic types of RAM Module Generators: a single-port RAM with separate input
and output data lines, and a single-port RAM with bidirectional data lines. Both of these RAM
types support synchronous or asynchronous read and write operation. Synchronous writes use a
positive edge-triggered clock to latch the write-enable, address, and data signals. The

9-6 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Module Generation Using Module Generation

inferencing process distinguishes between RAMs that perform the read operation with an
address that is clocked or not clocked with the write clock.

The RAM output signals may also be latched by the same or a different positive edge-triggered
clock. The following two VHDL examples demonstrate the difference between synchronous
RAMs that do or do not clock the read address with the write clock. The first example,
ram_examplel , does clock the read address, while the second exanapte,example2 ,

does not clock the read address.

Most technologies only support one of these types. In addition, particular technology Modgen

libraries may not contain module generators for all types of RAMs recognized by
LeonardoSpectrum.

Example 1

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity ram_examplel is

port (data: in std_logic_vector(7 downto 0);
address: in std_logic_vector(5 downto 0);
we, inclock, outclock: in std_logic;

g: out std logic_vector(7 downto 0));

end ram_examplel;

architecture exl of ram_examplel is
type mem_type is array (63 downto 0) of
std_logic_vector (7 downto 0);
signal mem: mem_type;
begin
I 0: process (inclock, outclock, we, address) begin
if (inclock = '1' and inclock'event) then
if (we = "1 then
mem(evec2int(address)) <= data;
end if ;
end if ;
if (outclock = '1' and outclock'event) then
g <= mem(evec2int(address));
end if ;
end process
end ex1,;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-7

Using Module Generation Tools Module Generation

Example 2

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity ram_example2 is

port (data: in std_logic_vector(7 downto 0);
address: in std_logic_vector(5 downto 0);
we, inclock, outclock: in std_logic;

g: out std_logic_vector(7 downto 0));

end ram_example2;

architecture ex2 of ram_example2 is
type mem_type is array (63 downto 0) of
std_logic_vector (7 downto 0);
signal mem: mem_type;
signal address_int: std_logic_vector(5 downto 0);
begin
[0: process (inclock, outclock, we, address) begin
if (inclock = '1' and inclock'event) then

address_int <= address;
if (we = "1 then
mem(evec2int(address)) <= data;

end if ;
end if ;
if (outclock = "1 and outclock'event) then
g <= mem(evec2int(address_int));
end if ;
end process

end ex2;

Using Module Generation Tools

This section discusses using module generation tools with LeonardoSpectrum.

Specifying Module Generation Library

Module Generatiois invoked by including a module generation librauring logic synthesis.

9-8 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Module Generation Using Module Generation Tools

® Use theemodgen= modgen_librarybatch mode option to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a user VHDL design.

® Usethemodgen_read modgen_lioraycommand to load the module generation library
into the HDL database. Since these modules have been designed optimally for a target
technology, the synthesis result is smaller and/or faster and takes less time to compile.

®* The module generation library can have any name, without an extension. All the module
generator files provided by Exemplar Logic are narliledbase_namehd, where
lib_base names the technology library base name. These files can be found in the
directory$SEXEMPLAR/data/modgen . Since the directory is in the search path for
the synthesis tools, if you specify a module generation library, the synthesis tools will
read the file with the matching technology name. These files are encrypted.

® LeonardoSpectrum does not validate the generator. If, for example, an Actel technology
Is specified as the target technology, but accidentally a Xilinx module generation library
is specified, Xilinx macros will appear in the output netlist.

Area/Delay Tradeoff Attributes

Implementations of area and delay tradeoff may vary between module generator packages.
® Choose batch modarea or-delay option.

®* Choose between smaller and faster implementations witkatiea or -delay
options to theoptimize interactive shell command.

Specific implementations can be configured in the VHDL file through attributes on specific
signals. The attributenodgen_sel is used for this purposenodgen_sel is an attribute of
enumerated typmodgen_select , with four valuessmallest ,small ,fast ,fastest

This attribute controls which implementation of a module generator is used. By default, the
synthesis tools usemall if the global optimization criteria isarea . The synthesis tools
choosdast ifthe-delay switch is set. The user can overwrite these defaults by specifying
the attributenodgen_sel on a target signal or variable that is driven by an expression that
calls module generators. Here is an example:

type modgen_select is (smallest, small, fast, fastest) ;

attribute modgen_sel : modgen_select ;
signal a,b,c,s : bit vector (7 downto 0) ;
attribute modgen_sel of s: signal is smallest ;

s<=a+b+c;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-9

Using Module Generation Tools Module Generation

In this example, for both adders that drizeModule Generationvill choose the smallest
implementation possible. In essence, thedgen_sel attribute is passed to the module
generator inference engine where a different implementation, other than the default, is selected.

The typemodgen_select and the attributenodgen_sel are declared in the packages
exemplar andexemplar_1164 . Hence, if you use one of these packages, declaring them is
not required in the user code.

Disabling Module Generation

Once themodgen option is specifiedModule Generatioms enabled for all arithmetic and
relational operators in the desigiodule Generatiorran be switched off for all operator calls
driving a particular signal, by setting the boolas® _modgen to FALSE.

attribute use_modgen : boolean ;
signal a,b,c,s : bit vector (7 downto 0) ;
attribute use_modgen of s: signal is FALSE ;

s<=a+b+c;

In this case, for both adders that driveModule Generatioms disabled and the adders will be
implemented in random logic. Disabliddodule Generatiorior specific signals or variables

can be useful when large portions of the operators can be eliminated during the boolean
optimization and synthesis process. This often happens for user defined type-transformation
functions, where the operators implement simulation behavior, but for synthesis the function
should implement a simple set of wires. UsiMgdule Generatiorfior such function would
generate a large amount of arithmetic logic when it is not required. The atttibatenodgen

is defined in theexemplar andexemplar_1164 packages. If one of these packages is used,
declaring the attribute is not required in the user code.

Counter and RAM Extraction

Use one of these methods:
® Counters and RAMs are recognized and extracted by default.

®* Thepre_optimize interactive shell command with thextract option can be
executed.

Verilog Usage

Verilog usage oModule Generatioris completely straightforwarddodule Generationvill
infer the arithmetic and relational operators from Verilog descriptions and implement them
accordingly.

9-10 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Module Generation User-Defined Module Generators

User-Defined Module Generators

Apart from the module generators that have been developed by Exemplar to support the
standard FPGA technologies, a user can build a module generator. Module generators are
described in VHDL, regardless of the actual HDL input design language.

User-defined module generators, as opposed to using overloaded functions, allow the use of
technology specific macros (with component instantiation) for operators in VHDL or Verilog
HDL.

The Module Generator Boundary

Since all operators in VHDL are defined for various sized vectors and integers, each module
generator description for a particular operator should be an entity with generics.

Only one generic affects the amount of inputs and outputs that have to be generated. This is the
integer generisize . The amount of inputs and outputs generated by a modgen description
should exactly match the amount requiredsige . Any discrepancy will be labeled as an

error. Of course, the functionality inside the modgen description is the responsibility of the
modgen description designer. It is relatively easy to Iet'a in VHDL work as a*-" with this

amount of freedom.

Since the function of some operators is defined both for unsigned integers (or vectors) and for
signed integers, a boolean genesigned is supplied to indicate that a signed or unsigned
function needs to be generated.

Refer to Table 9-1 which shows which VHDL operators are supported iMtuile
Generatiorenvironment, which generics are required, how many inputs are needed for each (of
the two) parameters of the operator, and how many outputs should be generated.

Note: the generisigned is not required for arithmetic operations. The reason is that there is

no difference between signed and unsigned arithmetic functions if the input parameters and the
output all have the samgze , and thus the carry bit is not used. The synthesis tools will make
sure that this always happens.

In general, the module description should have two input vectors (one for each parameter of the
operator it represents), and one output vector.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-11

User-Defined Module Generators Module Generation

VHDL'87 Modgen Required # of Input Bits
Operator Module Name Generics par.l par. 2 # of Output Bits
"4 modgen_add size size size size
modgen_sub size size size size
modgen_umin size size n/a size
"+ 1" modgen_inc size size n/a size
"1 modgen_dec size size n/a size
a modgen_mult size size size size
A modgen_div size size size size
=" modgen_eq size size size 1 bit
=" modgen_ne size size size 1 bit
"< modgen_It size, signed| size size 1 bit
"> modgen_gt size, signed| size size 1 bit
=" modgen_le size, signed, size size 1 bit
"=>" modgen_ge size, signed, size size 1 bit
ke modgen_power size size size size
"mod" modgen_mod size size size size
"rem" modgen_rem size size size size
"abs" modgen_abs size size n/a size
"si sli size size size size
"srl" srl size size size size
"sla" sra size size size size
"sra” sra size size size size
"ror" ror size size size size

9-12 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Module Generation User-Defined Module Generators

VHDL'87 Modgen Required # of Input Bits

"rol" rol size size size size

As an example, the entity VHDL description for a module generator that implements a “<="
operator should look like this:

entity modgen_le is

generic (
size : integer = 8 ;
signed : boolean := FALSE

)

port (
X, Yy : std_logic_vector (size-1 downto 0) ;
result : out std_logic

)

end modgen_le ;

Below are some important facts to keep in mind when defining module generators:

® The initial assignments to bo#igned andsize are optional. These two generics are
required for thé'<=" operator and therefore are always inferred by the synthesis tools
for each call of d<=" operator in VHDL.

®* The types of the ports should represent arrays of bit values or single bit values. The type
std_logic_vector for vector types andtd_logic for bit values are advised
because they comply with the IEEE 1164 standard type definitions. Make sure you
include the IEEE 1164 package in your description. Use the following statement before
each new entity:

library ieee ;
use ieee.std logic_1164. all

®* The names of the ports can be chosen freely. The associations are order dependent. The
firstinput port & in this example) will be associated with the parameter on the left of the
operator. The second port mentioned in the port interface list will be associated with the
parameter on the right of the operator.

®* The output port mentioned (there can be only one) will be associated with the result of
the operator function.

®* The 'weight’ of the bits in a port which is a vector is also order dependent. The LEFT
most bit in the array range definition of the port is the MSB. In this examgpis,
defined with arangsize-1 downto 0 and thereforex(size-1) is MSB, and
x(0) isLSB. Ifthe range would have been defined@sto size-1) , X(0) would
have been MSB.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-13

User-Defined Module Generators Module Generation

® |f signed operation is required (signed is TRUE), Medule Generatioenvironment
expects the MSB bit to be the sign bit, and the bit next to it will be the new MSB.

Module Generator Contents

The VHDL entity for a module generator is relatively fixed for each module generator, as
shown in the previous section. This is needed to provide a guaranteed interface between the
module generators and VHDL operators they implement.

The contents of the module generators (the VHDL architecture) is completely left up to the user.
You can use all VHDL constructs as long as they do not violate the VHDL synthesis
restrictions.

Typically, component instantiations of technology specific macros will be used in the module
generators. Some guidelines should be considered when making module generators:

1. Make sure that the module generator has a definition for each generic 'size’ that could
be used from a user HDL description.

2. The synthesis tools do not check the functionality of the module generator. It would be
fairly easy to implement subtractor functionality for ti@dgen_add module
generator. In that case, edeti operator in VHDL will build a subtractor circuit. Make
sure you verify the module generators for each generic size they could implement.

3. Ifyou use operators inside a module generator description, the synthesis tools will NOT
try to infer a module generator for these. Instead, the default random-logic
implementation for the operator will be chosen. This prevents infinite recursion from
occurring (module generators calling themselves). It also allows the user to utilize a
specific implementation operator for just a few sizes, and rely on the default
implementation for all others.

Below is an example of a module generator that implemenSZIDER&ard-macro if the size
of the required adder is between 4 and 8.

9-14 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Module Generation User-Defined Module Generators

library ieee ;
use ieee.std logic_1164. all -- Include IEEE 1164 type
-- definition
library exemplar ;
use exemplar.exemplar_1164. all ; -- Include functions ’extend’, "+
-- eftc.
entity modgen_add is
generic (size : integer) ;
port (X, y : std_logic_vector (size-1 downto 0) ;
o : out std_logic_vector (size-1 downto 0)) ;
end modgen_add ;

architecture exemplar of modgen_add is
-- Declare the Hard Macro
component ADDERS
port (a, b: in std_logic_vector(7 downto 0);

add: in std_logic;
s: out std_logic_vector(7 downt o 0);
of: out std_logic);

end component ;

-- Declare internally used signals

signal intern_a, intern_b, intern_o :

std_logic_vector (7 downto O0) ;
constant pwr : std_logic = 1" ;

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

9-15

User-Defined Module Generators Module Generation

--ADDERS8 hard macro example (cont.)
begin

11 : if size>=4 and size <=8 generate
-- Adjust the inputs to the size of the hard macro
intern_a <= extend (x,8) ;
intern_b <= extend (y,8) ;

-- Instantiate the Hard Macro

il : ADDER8 port map (a=>intern_a, b=>intern_b,
add=>pwr,

s=>intern_o, ofl=> OPEN ;

-- For the output :pick-up the LSB bits from the hard macro
0 <= intern_o (size-1 downto O0) ;

end generate

-- Default "+" for all other sizes :

2 : if size<4 or size>8 generate
0 <= X + y ;

end generate ;

end exemplar ;

This is the description of a full definition of a module generator that instantiaté&ERS
hard macro (generic name, not from any specific library, used for this example) for adders
between 4 and 8 bits. A default implementation (random logic) is provided for all sizes of
adders that should not generate a hard macro.

Usage
To include a module generator description into use the following:
® Use theemodgen= modgen_librarybatch mode option to include a module generation
library of the specified technology and infer the required arithmetic and relational

operations of the required size from a user VHDL design.

® Use themodgen_read modgen_libranyinteractive shell command to load the module
generation library into the HDL database.

The search path for these files is:
1. The current working directory

2. The$EXEMPLAR/data/modgen directory

9-16 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Module Generation User-Defined Module Generators

3. The$EXEMPLAR/data directory

Multiple module generator files can be included. If there is an overlap of operators in two
included files, the operator from the last included file will be resolved. In any case, for each
operator resolved, LeonardoSpectrum reports the file that was used. Therefore, it will be clear

which operator has been resolved from which modgen file.

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d 9-17

User-Defined Module Generators Module Generation

9-18 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Index

INDEX

A
alias,2-52
architecture2-1, 2-2
area/delay trade-off attribute®,9
arithmetic and relational logi&-17
advanced design optimizatiod,;21
comparator desigrv,-26
module generatiorg8-19, 7-25
ranged integer3-21
resource sharing-19, 7-26
arithmetic operations]-29
array type2-9, 2-19
syntax and semanticg;19
synthesis issue-20
array types2-9, 2-19, 2-20, 2-23 2-24, 2-36, 2-
37
assignment statemer;32
signal,2-32
variable,2-32
attribute,2-37
exemplar predefined attribut2;38
usage of attribute?-39
user-defined attribut&-38
vhdl predefined attribute?-38
Autologic 11, 4-8

B

bidirectional buffer3-12
binary encoding2-13
block, 2-40

boolean operations-29
bus,3-12

bus class2-46

C

case statemen?-29
automatic full case detectiof;24
automatic parallel case detectid@i25
casex statemend;26
casez statemert;26

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

enum type of case expressiah29

multiplexer generatiorg-23
case statement§;22
clock

clock enable3-5
component instantiatior2-46
component/module instantiatio®s1
conditional statemeng-28
configuration declaratiorg-2
continuous assignment

net declaration assignmegt38

statement6-8

D
data type6-3
net data type§-5
parameter data typé;6
decoder3-25
design root4-2
directives
parallel_case and full_casgé28
translate off and translate _of28
disable statemen§-27
disabling module generatiof;10

E

Encoding,3-17

encoding style7-29

entity, 2-1

entity and packagel-1
usage4-4

enum synthesis directivé;29

enumerated type-9, 2-10, 2-11, 2-15, 2-20, 2-

21

exemplar packagé;-8
predefined attribute4-9
predefined functiory-11
predefined procedurd;15
predefined type4-9

Index-1

Index

INDEX [continued]

F
finding definition of componeny-2
flip-flop, 3-2, 7-2
asynchronous set and resét3
asynchronous sets and rest
clock enable3-5, 7-4
predefined procedurd;16
synchronous set and res@t3, 7-3

floating-point types2-9, 2-17, 2-18 2-24, 2-37

for loop, 2-30
for statement6-26
function,2-41, 6-29

G

generate statemer#t; 30
generic
generic list2-27
size,2-27
gray encoding2-13

H
HDL source code9-2

I

I/O buffer,3-7, 7-4
automatic assignmer; 7
component instantiatior3-9, 7-6
manual assignmend;7, 7-5

IEEE 1076,2-24

IEEE 1076-19934-1

IEEE 1164 standard logi@-36

if-else statemeng-21

integer,2-16

integer type2-9, 2-16, 2-18 2-23 2-24, 2-35

L
latch,3-1, 3-7, 7-1
literal, 2-7
literals
constant value-7

Index-2

loop variable2-28

M

Mentor Graphics4-8
module generation
data path logic9-1
data path operatorS;1
target technology9-1
module instantiation
parameter override&-14
multiplexer,3-24

N

net data type
supply net6-6
wand and wor ne§-6
wire and tri net6-6
number,6-2

@
object,2-26
array,2-19
array naming2-20
declared?2-8
elements2-21
encoding2-13
enumeration type2-9, 2-10
generic2-27
loop variable2-28
physical type2-18
port, 2-27
record,2-22
signal,2-2, 2-26
variable,2-26, 3-6
operandf-16
operator2-34
arithmetic operatorg-17
bit-wise operator6-18
concatenationg-19
conditional operatoi6-19

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

Index

INDEX [continued]

logical operatorf-18

reduction operato§-18

relational and equality operatdi;17

shift operator6-19

signed and unsigned attribu@& 20
operator overloadin@®-37
operators2-2, 2-8, 2-21, 2-34, 2-35

)

package2-51

physical type2-18

physical types2-9, 2-18

pla, 3-25

port, 2-27

post-synthesis functional simulatiof5
predefined flip-flops and latche3;7
procedure2-41

processes2-5

R

random encoding?-13
record,2-21

record types2-9, 2-22
register,3-1

reset,/-1

resolution function2-44
rom, 3-25

S

selector3-24
signal,2-26
specifying module generation librar§;8
state encoding/-20
state machine3-13
general state machine descripti@al3
issues in state machine designl9
Mealy machine7-17
Moore machine7-13
power-up and rese8-16
state encoding3-17

LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

vhdl coding style for state machin&;15
statement2-28
assignment statemer;32
conditional statemeng-28
generate statemer#;30
loop, 2-28
loop statement2-30
selection statemen;29
statements2-2, 2-7, 2-11, 2-25
dataflow environmen-2
processes-5
std_logic,2-25 2-35, 2-44
subtype2-22
subtypes2-23
supported operator8;4
Synopsys integration and packagés,
syntax and semantic restrictiof,17
synthesis tool restrictiond;17
VHDL language Restrictior}-18
synthesis directives
attribute,7-30
encoding,7-31
translate_off and translate_ofR28

T
task,6-30
technology-specific macr@-22
the module generator boundagy¢11
three-state buffe3-10
type,2-8
array type2-19
enumeration type2-9
floating-point type2-17
IEEE 1076 predefined typ@;24
integer type2-16
physical type2-18
record type2-21
subtype2-22
type conversion?2-23

Index-3

Index

INDEX [continued]

V
variable,3-6
Verilog
module instantiatior®-1
VHDL environment
interfacing with other VHDL tools4-5

W
while loop,2-30

Index-4 LeonardoSpectrum for Altera HDL Synthesis Manual, v2001.1d

	Bookcase
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1 Introduction to VHDL Synthesis
	Overview
	VHDL and Synthesis

	Chapter 2 VHDL Language Features
	Entities and Architectures
	Configuration
	Processes

	Literals
	Types
	Enumerated Types
	Syntax and Semantics
	Synthesis Issues

	Integer Types
	Syntax and Semantics
	Synthesis issues

	Floating-point Types
	Syntax and Semantics
	Synthesis Issues

	Physical Types
	Syntax and Semantics
	Synthesis Issues

	Array Types
	Syntax and Semantics
	Synthesis Issues

	Record Types
	Syntax and Semantics
	Synthesis Issues

	Subtypes
	Type Conversions
	IEEE 1076 Predefined Types
	IEEE 1164 Predefined Types

	Objects
	Signals
	Constants
	Variables
	Ports
	Generics
	Loop Variables

	Statements
	Conditional Statements
	Selection Statements
	Loop Statements and Generate Statements
	Assignment Statements

	Operators
	IEEE 1076 Predefined Operators
	IEEE 1164 Predefined Operators
	Operator Overloading

	Attributes
	VHDL Predefined Attributes
	Exemplar Predefined Attributes
	User-Defined Attributes
	Usage Of Attributes

	Blocks
	Functions And Procedures
	Resolution Functions
	Syntax and Semantics
	Synthesis Issues

	Component Instantiation
	Binding a Component
	Option 1 - Using a Default Binding
	Option 2 - Using a Configuration Specification
	Option 3 - Matching a Component Name to a Library Cell
	Option 4 - Creating a Black Box by Omitting the Entity

	Packages
	Aliases

	Chapter 3 The Art of VHDL Synthesis
	Registers, Latches and Resets
	Level-Sensitive Latch
	Edge-Sensitive Flip-Flops
	The Event Attribute
	Synchronous Sets And Resets
	Asynchronous Sets And Resets
	Clock Enable

	Wait Statements
	Variables
	Predefined Flip-flops and Latches

	Assigning I/O Buffers From VHDL
	Automatic Buffer Assignment in Batch Mode
	Manual Assignment Using The BUFFER_SIG Property
	Buffer Assignment Using Component Instantiation

	Three-state Buffers
	Bidirectional Buffers
	Buses
	State Machines
	General State Machine Description
	VHDL Coding Style For State Machines
	Power-up And Reset
	Encoding Methods

	Arithmetic And Relational Logic
	Module Generation
	Resource Sharing
	Ranged Integers
	Advanced Design Optimization

	Technology-Specific Macros
	Multiplexers and Selectors

	Chapter 4 The VHDL Environment
	Entity and Package Handling
	Entity Compiled as the Design Root
	Finding Definitions of Components
	How to Use Packages

	Interfacing With Other VHDL Tools
	VHDL Simulators
	Post-Synthesis Functional Simulation

	Synopsys
	Mentor Graphics

	The Exemplar Packages
	Predefined Types
	Predefined Attributes
	Predefined Functions
	Predefined Procedures
	Flip-flops
	Latches
	Tristate Buses

	Syntax and Semantic Restrictions
	Synthesis Tool Restrictions
	VHDL Language Restrictions
	After Clause Ignored
	Restrictions on Initialization Values
	Loop Restrictions
	Restrictions On Edge-Detecting Attributes (’event)
	Restrictions on Wait Statements
	Restrictions on Multiple Drivers on One Signal

	Example array_pin_number Attribute

	Chapter 5 Introduction to Verilog Synthesis
	Verilog and Synthesis
	Synthesizing the Verilog Design

	Chapter 6 Verilog Language Features
	Modules
	’macromodule’

	Numbers
	Data Types
	Net Data Types
	wire and tri Nets
	Supply Nets
	wand and wor Net Types

	Register Data Type
	Parameter Data Type
	Declaration Local to Begin-End Block
	Array of reg and integer Declaration

	Continuous Assignments
	Net Declaration Assignment
	Continuous Assignment Statement

	Procedural Assignments
	Always Blocks
	Module Instantiation
	Parameter Override During Instantiation of Module
	Defparam Statement
	Example:

	’unconnected_drive’ and ’nounconnected_drive’

	Operators
	Operands
	Arithmetic Operators
	Relational and Equality Operators
	Logical Operators
	Bit-Wise Operators
	Reduction Operators
	Shift Operators
	Conditional Operator
	Concatenation

	‘signed and ‘unsigned Attributes on Operators
	Operator Precedence

	Statements
	If-Else Statements
	Case Statements
	Case Statement and Multiplexer Generation
	Automatic Full Case Detection
	Automatic Parallel Case Detection
	casex Statement
	casez Supported
	’case’ and ’default’ Statements

	for Statements
	Disable Statement
	forever, repeat, while and Generalized Form of for Loop

	Functions and Tasks
	Functions
	Tasks
	Inout Ports in Task
	Access of Global Variables from Functions and Tasks

	System Task Calls
	System Function Calls
	Initial Statement
	Compiler Directives

	Chapter 7 The Art of Verilog Synthesis
	Registers, Latches, and Resets
	Level-Sensitive Latch
	Edge-Sensitive Flip-flops
	Synchronous Sets and Resets
	Asynchronous Sets and Resets
	Clock Enable

	Assigning I/O Buffers from Verilog
	Automatic Assignment Using Chip Mode
	Manual Assignment Using the Control File
	Buffer Assignment Using Component Instantiation

	Tristate Buffers
	Example 1:
	Example 2:
	Example 3:

	Bidirectional Buffers
	Buses
	State Machines
	Moore Machines
	Mealy Machines
	Issues in State Machine Design
	State Encoding
	Onehot Encoding
	Initialization and Power-Up Conditions

	Arithmetic and Relational Logic
	Module Generation
	Resource Sharing and Common Subexpression Elimination
	Comparator Design

	Technology-Specific Macros
	Synthesis Directives
	parallel_case and full_case directives
	translate_off and translate_on directives
	enum directive
	attribute directive
	Encoding Directive

	Chapter 8 Verilog and Synthesis of Logic
	Comparing With X and Z
	Variable Indexing of Bit Vectors
	Syntax and Semantic Restrictions
	Unsupported Verilog Features

	Chapter 9 Module Generation
	Using Module Generation
	Supported Technologies
	Supported Operators
	Counters and RAMs
	Example

	Counter and RAM Inferencing and Module Generation
	Example 1
	Example 2

	Using Module Generation Tools
	Specifying Module Generation Library
	Area/Delay Tradeoff Attributes
	Disabling Module Generation
	Counter and RAM Extraction
	Verilog Usage

	User-Defined Module Generators
	The Module Generator Boundary
	Module Generator Contents
	Usage

	INDEX

