
Measuring
Multicore
Performance
Shay Gal-On and Markus Levy, EEMBC

A
s an astute reader of
Computer, you prob-
ably don’t need the
detailed explanation of
why most of the indus-

try has so markedly shifted to multi-
core technology. But in all honesty,
many embedded system designers
are still struggling to determine
whether multicore really buys them
anything in terms of performance.

Resolving this quandary requires
a thorough understanding of the
target application, the character-
istics of multicore processors that
could be used, and the amount of
time that must be invested to make
the transition.

Having reliable performance
information provides a good start-
ing point for analyzing these fac-
tors, but “reliable” is the operative
word. In other words, it’s impera-
tive to pick the right types of bench-
marks to accurately predict the per-
formance of the multicore processor
once it’s in the final product.

MULTITUDES OF MULTICORE
Amazingly, many people—engi-

neers included—think that a spe-
cific x86 manufacturer invented
multicore. While the x86 has gar-
nered the biggest spotlight, it only
represents a fraction of multicore-
enabled devices.

Focusing on the multicore pro-
cessors with characteristics more
or less similar to an x86, there’s
a plethora of general-purpose,
shared-memory, symmetric mul-
t iprocessing (SM P)-featured
products from companies such as
ARM, Freescale Semiconductor,
IBM, and MIPS Technologies.

Beyond this, countless vendors
are building multicore products
in the form of application-spe-
cific systems on a chip. SoCs can
be as simple as a processor with
a general computing core plus a
digital signal processing core.
They might have any number of
cores, ranging in complexity from
single-function hardware acceler-

ators to full-fledged processors.
Further, SoCs could be based on

shared- or distributed-memory archi-
tectures. They could consist of either
homogeneous or heterogeneous
cores. And they could employ a vari-
ety of interconnect technologies.

Multicore technologies are highly
differentiated, so multicore bench-
marks need to be highly differenti-
ating as well.

TRADITIONAL
BENCHMARKING METHODS

Before elaborating on different
multicore benchmarking methods,
it’s useful to provide a brief histori-
cal perspective.

During the past two decades,
benchmarks that only exercised
a processor core’s internal work-
ings were sufficient. In fact, these
benchmarks are still valid depend-
ing on the processor characteristics
to be ascertained.

Most of the EEMBC first-genera-
tion benchmarks fall into this cate-
gory. While still quite popular, they
predominantly exercise the proces-
sor core and have little interaction
with the external memory. For
example, they test functions and
features such as pipelines, branch
prediction units, instruction sets,
and caches.

Although these benchmarks can
run on top of most operating sys-
tems, they’re designed to run bare-
metal. Performance is measured
in iterations per second, where an
iteration is the sequential execution
of the benchmark kernel.

The compiler also plays a big
role in this type of benchmarking.
In fact, we’ve seen as much as 70
percent performance difference
depending on the compiler used to
generate the benchmark results.

EEMBC’s second-generation
benchmarks go a step further, pro-
viding significantly larger code
and datasets to ensure that even
the most robust memory and cache
hierarchies are tested.

Due to the popularity of and
familiarity with the first- and

Multicore benchmarking

techniques must break the

mold of traditional methods.

 November 2008 99

E m b E d d E d c o m p u t i n g

 100	 Computer

E m b E d d E d c o m p u t i n g

second-generation benchmarks,
many entities—including proces-
sor vendors, system developers,
and academic research groups—
want to continue using them
to measure multicore processor
performance.

In theory, multiple instantiations
of each benchmark can be launched
simultaneously. Some might rec-
ognize this method as similar to a
SPECrate, which measures a sys-
tem’s capacity for processing jobs of
a specified type in a given amount
of time. The Standard Performance
Evaluation Corporation notes that
this “metric is used the same for
multi-processor systems and for
uni-processors” (www.spec.org/
spec/glossary).

In fact, even in a multicore sys-
tem, it isn’t possible to guarantee
that the system is utilizing more
than one core unless it’s employing
some form of processor affinity. In
other words, without programmer
intervention, the platform’s sched-
uler will assume control over exe-
cution of the individual benchmark
instantiations.

The question is whether sequen-
tial code really works for this
purpose.

MULTICORE BENCHMARK
CRITERIA

To answer this question, it’s nec-
essary to understand the important
multicore performance character-
istics. At the highest level, bench-
marks for multicore architectures
should be either computationally
or memory intensive, or some com-
bination of both.

Memory bandwidth
Regardless of the type of multi-

core architecture, memory band-
width is a key factor in perfor-
mance. A multicore processor’s
memory bandwidth, as with any
other processor, depends on the
memory subsystem’s design. In
turn, the memory subsystem
depends on the underlying multi-
core architecture.

Shared memory, t ypica l ly
accessed through a bus and con-
trolled by some type of locking
mechanism to avoid simultaneous
access by multiple cores, provides
a straightforward programming
model because each processor
can directly access the memory.
Typically associated with homo-
geneous multicore systems, shared
memory also facilitates program-
ming with traditional languages
because it allows passing data by
reference, without actually mov-
ing the data.

For cores with individual caches,
there must be a coherency mechanism
between the caches. The ease of use
of this architecture can lead to perfor-
mance bottlenecks due to competition
between multiple cores accessing the
same memory locations.

In a distributed memory system,
which is more common within an
SoC, each processor can access
its own local memory but doesn’t
have to share it with other cores,
even though there might also be
a global memory address space
across them.

When one core requires that data
from another core or cores must syn-
chronize, the system must physically
move data or the control code must
switch to run on a different core. Even
though each core has its own local
memory, there might still be memory
bottlenecks depending on how data
moves on or off the chip itself.

Scalability
Another important benchmark

criterion is scalability, in which the
processor incurs performance pen-

alties when it oversubscribes com-
puting resources.

In familiar terms, assume that
an application program consists of
a varying number of threads—it’s
not unreasonable to have hundreds
of threads in a relatively complex
program. If the number of threads
exactly matches the number of pro-
cessor cores, performance could
scale linearly assuming no limita-
tions on memory bandwidth.

However, realistically the num-
ber of threads will exceed the num-
ber of cores, and performance will
depend on other factors such as
cache utilization, memory and I/O
bandwidth, intercore communica-
tions, OS scheduling support, and
synchronization efficiency.

Example
So does sequential code work for

benchmarking multicore proces-
sors? The answer is yes with respect
to the cumulative throughput of
each individual core. In this case,
memory bandwidth and computa-
tion can be evaluated.

In fact, we’re aware of at least
one example of this. A telecom
equipment manufacturer transi-
tioned its application from a mul-
tiprocessor to a multicore system.
Merely switching from a system in
which each processor had its own
memory subsystem to one in which
the two cores shared the memory
subsystem resulted in a critical per-
formance reduction, regardless of
how much inherent parallelism the
code possessed.

This is the type of information we
must be able to derive using bench-
marks before going through the
massive porting effort required to
switch to a new platform.

SMP-BASED MULTICORE
BENCHMARKS

Executing multiple copies of
sequential code doesn’t account for
one of the most important potential
benefits of multicore: using paral-
lelism to improve the performance
of individual tasks rather than

At the highest level,
benchmarks for multicore

architectures should be
either computationally or

memory intensive, or some
combination of both.

 November 2008 101

improving overall throughput. One
example, assuming a dual-core pro-
cessor, would be using both cores
to load one web page twice as fast.
Alternatively, you could parallelize
the work by using both cores to load
two web pages (one per core) in the
same amount of time it would take
to load one.

Accomplishing that would require
benchmarks that utilize task decom-
position, functional decomposition,
or data decomposition. These meth-
ods could more comprehensively
exercise all of the major multicore
benchmark criteria. Of course, the
devil’s in the details.

Further, for a benchmark to be
relevant for multiple cores and
produce comparable results, it
must be able to execute the same
amount of work regardless of the
number of contexts used, and it
must be able to show the perfor-
mance improvement (or degrada-
tion) that results from the number
of contexts used. The benchmark
must be able to utilize any number
of computation contexts because
it will be used across many differ-
ent platforms.

MULTIBENCH
Primarily addressing the embed-

ded market, EEMBC has imple-
mented MultiBench, an extensive
suite of multicore benchmarks that
utilizes an API abstraction to more
easily support SMP architectures
(www.eembc.org/press/pressrelease/
223001_M30_EEMBC.pdf).

Given the variety of architec-
tures in the embedded industry,
f lexibility is key. Hence, when
porting to a new platform, only
13 API calls are needed to allow
the framework and all bench-
marks to run and to exploit par-
allel execution.

Moreover, many systems sup-
port the Portable Operating Sys-
tem Interface (Posix) threads
interface, and EEMBC carefully
chose the API abstraction such
that there is a direct mapping to
the more complex Pthreads inter-

face. This means that if the sys-
tem already supports Pthreads, no
porting is necessary.

The multicore benchmarks are
delivered as a set of workloads,
each comprising one or more
work items. Although it’s easier
said than done, users can select
from this list the workloads that
most closely resemble their appli-
cation.

BEYOND SMP
It’s important to note that the

MultiBench tests are oriented
toward general-purpose proces-
sors based on an SMP architec-
ture. Although MultiBench is
significantly more parallel than
the first- and second-generation
benchmarks, it still doesn’t support
the heterogeneous cores found in
SoCs. This calls for an entirely dif-
ferent benchmarking strategy.

Unlike the SMP benchmarks,
which can essentially consist of
orthogonal threads, heterogeneous
cores require careful analysis and
workload partitioning. Bench-
marking these devices in a relevant
manner with portable code is a
huge challenge because each part
of the system might use a different
tool chain, and communication
between different parts of the sys-
tem isn’t standardized.

There are several options for
benchmarking such systems.
Extending the existing MultiBench
framework to support heteroge-
neous systems requires some stan-
dard to allow the benchmarks to
be portable. For example, the Mul-
ticore Communications API from
the Multicore Association (www.
multicore-association.org/home.
php) provides a standardized frame-
work for partitioning benchmark

code into blocks that use MCAPI
to communicate.

APPLICATION-SPECIFIC
STANDARD BENCHMARKS

While the demand for SMP-based
benchmarks and for those that sup-
port heterogeneous cores is grow-
ing almost exponentially, a move to
application-specific standard bench-
marks is afoot. Also known as sce-
nario-oriented benchmarks, ASSBs
are designed to take into account
more system-level features.

Black-box benchmarks
We view ASSBs as black-box

benchmarks. From the simplest
perspective, they specify the input,
expected output, and interface
points. In other words, it doesn’t
matter what’s inside the system as
long as the benchmark can handle
the input and deliver the expected
output.

Unlike complete off-the-shelf sys-
tems, many embedded systems are
tested using evaluation boards or
similar preproduction platforms.
The problem is that developers can
tinker with these platforms in subtle
ways to indicate better performance
than a system will achieve as a com-
mercial product.

For example, suppose you were
evaluating the performance of an
SoC running the Session Initiation
Protocol. SIP is used to set up and
tear down multimedia communica-
tion sessions such as voice and video
calls over the Internet.

In normal operation, a com-
mercial product should be able to
receive and handle packet streams
consisting of mostly valid, but
some invalid, packets. However, in
an evaluation platform, a perfor-
mance advantage could hypotheti-
cally be obtained by leaving out the
code that processes invalid packets.
Therefore, the ASSB must also inject
and test for bad packets.

Challenges
Although ASSBs have been

described as the way forward in

Heterogeneous cores
require careful analysis and

workload partitioning.

 102	 Computer

E m b E d d E d c o m p u t i n g

Editor: Tom Conte, College of
Computing, Georgia Institute of
Technology; conte@cc.gatech.edu.

computer benchmarking (S.M.
Pieper et al., “A New Era of Per-
formance Evaluation,” Computer,
Sept. 2007, pp. 23-30), they don’t
come without challenges.

First, creating an industry stan-
dard, at least within the EEMBC
domain, requires a consensus
among the members to select the
right mix of scenarios to test from
among an almost infinite number of
possibilities.

Second, getting an ASSB to run
properly on an evaluation platform
requires the assembly of many
system-level components, includ-
ing both hardware and software.
In many cases, the company run-
ning the ASSB might not have all
the components at its disposal. For
example, a processor vendor could
have all the supporting hardware
to run a SIP benchmark but be

missing various components of the
software stack.

Another challenge of ASSBs lies
in analyzing the results. While an
embedded platform is the sum of
its components, running an ASSB
makes it difficult to isolate any par-
ticular component. In other words,
assuming that an ASSB requires the
hardware (SoC, memory system,
I/O) and the software (OS, applica-
tion, runtime stacks), finding bottle-
necks can be as difficult as agreeing
on a performance metric.

R egardless of the architecture,
measuring multicore perfor-
mance requires new ways of

benchmarking. Coming up with the
benchmarks is only half of the chal-
lenge; the other half is interpreting
the results. Of course, that’s where
the fun really begins. ■

Shay Gal-On is director of software
engineering for EEMBC and leader
of the EEMBC Technology Center.
Contact him through www.eembc.
org/contact.

Markus Levy is president of EEMBC
and the Multicore Association, as well
as chairman of the Multicore Expo.
Contact him through www.eembc.
org/contact.

In cooperation with the ACM, IEEE, IFIP

CALL FOR PARTICIPATIONCALL FOR PARTICIPATION

CTSCTS 20092009

http://cisedu.us/cis/cts/09/main/callForPapers.jsp

May 18May 18 –– 22, 200922, 2009
The Westin Baltimore Washington International Airport Hotel

Baltimore, Maryland, USA

The 2009 International Symposium onThe 2009 International Symposium on

Collaboration Technologies and SystemsCollaboration Technologies and Systems

