
Measuring 
Multicore 
Performance 
Shay Gal-On and Markus Levy, EEMBC 

A
s an astute reader of 
Computer, you prob-
ably don’t need the 
detailed explanation of 
why most of the indus-

try has so markedly shifted to multi-
core technology. But in all honesty, 
many embedded system designers 
are still struggling to determine 
whether multicore really buys them 
anything in terms of performance. 

Resolving this quandary requires 
a thorough understanding of the 
target application, the character-
istics of multicore processors that 
could be used, and the amount of 
time that must be invested to make 
the transition. 

Having reliable performance 
information provides a good start-
ing point for analyzing these fac-
tors, but “reliable” is the operative 
word. In other words, it’s impera-
tive to pick the right types of bench-
marks to accurately predict the per-
formance of the multicore processor 
once it’s in the final product.

MULTITUDES OF MULTICORE
Amazingly, many people—engi-

neers included—think that a spe-
cific x86 manufacturer invented 
multicore. While the x86 has gar-
nered the biggest spotlight, it only 
represents a fraction of multicore-
enabled devices. 

Focusing on the multicore pro-
cessors with characteristics more 
or less similar to an x86, there’s 
a plethora of general-purpose, 
shared-memory, symmetric mul-
t iprocessing (SM P)-featured 
products from companies such as 
ARM, Freescale Semiconductor, 
IBM, and MIPS Technologies. 

Beyond this, countless vendors 
are building multicore products 
in the form of application-spe-
cific systems on a chip. SoCs can 
be as simple as a processor with 
a general computing core plus a 
digital signal processing core. 
They might have any number of 
cores, ranging in complexity from 
single-function hardware acceler-

ators to full-fledged processors. 
Further, SoCs could be based on 

shared- or distributed-memory archi-
tectures. They could consist of either 
homogeneous or heterogeneous 
cores. And they could employ a vari-
ety of interconnect technologies.

Multicore technologies are highly 
differentiated, so multicore bench-
marks need to be highly differenti-
ating as well. 

TRADITIONAL 
BENCHMARKING METHODS

Before elaborating on different 
multicore benchmarking methods, 
it’s useful to provide a brief histori-
cal perspective. 

During the past two decades, 
benchmarks that only exercised 
a processor core’s internal work-
ings were sufficient. In fact, these 
benchmarks are still valid depend-
ing on the processor characteristics 
to be ascertained. 

Most of the EEMBC first-genera-
tion benchmarks fall into this cate-
gory. While still quite popular, they 
predominantly exercise the proces-
sor core and have little interaction 
with the external memory. For 
example, they test functions and 
features such as pipelines, branch 
prediction units, instruction sets, 
and caches. 

Although these benchmarks can 
run on top of most operating sys-
tems, they’re designed to run bare-
metal. Performance is measured 
in iterations per second, where an 
iteration is the sequential execution 
of the benchmark kernel. 

The compiler also plays a big 
role in this type of benchmarking. 
In fact, we’ve seen as much as 70 
percent performance difference 
depending on the compiler used to 
generate the benchmark results.

EEMBC’s second-generation 
benchmarks go a step further, pro-
viding significantly larger code 
and datasets to ensure that even 
the most robust memory and cache 
hierarchies are tested.

Due to the popularity of and 
familiarity with the first- and 
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second-generation benchmarks, 
many entities—including proces-
sor vendors, system developers, 
and academic research groups—
want to continue using them  
to measure multicore processor 
performance. 

In theory, multiple instantiations 
of each benchmark can be launched 
simultaneously. Some might rec-
ognize this method as similar to a 
SPECrate, which measures a sys-
tem’s capacity for processing jobs of 
a specified type in a given amount 
of time. The Standard Performance 
Evaluation Corporation notes that 
this “metric is used the same for 
multi-processor systems and for 
uni-processors” (www.spec.org/
spec/glossary).

In fact, even in a multicore sys-
tem, it isn’t possible to guarantee 
that the system is utilizing more 
than one core unless it’s employing 
some form of processor affinity. In 
other words, without programmer 
intervention, the platform’s sched-
uler will assume control over exe-
cution of the individual benchmark 
instantiations.

The question is whether sequen-
tial code really works for this 
purpose.

MULTICORE BENCHMARK 
CRITERIA

To answer this question, it’s nec-
essary to understand the important 
multicore performance character-
istics. At the highest level, bench-
marks for multicore architectures 
should be either computationally 
or memory intensive, or some com-
bination of both. 

Memory bandwidth
Regardless of the type of multi-

core architecture, memory band-
width is a key factor in perfor-
mance. A multicore processor’s 
memory bandwidth, as with any 
other processor, depends on the 
memory subsystem’s design. In 
turn, the memory subsystem 
depends on the underlying multi-
core architecture. 

Shared memory, t ypica l ly 
accessed through a bus and con-
trolled by some type of locking 
mechanism to avoid simultaneous 
access by multiple cores, provides 
a straightforward programming 
model because each processor 
can directly access the memory. 
Typically associated with homo-
geneous multicore systems, shared 
memory also facilitates program-
ming with traditional languages 
because it allows passing data by 
reference, without actually mov-
ing the data. 

For cores with individual caches, 
there must be a coherency mechanism 
between the caches. The ease of use 
of this architecture can lead to perfor-
mance bottlenecks due to competition 
between multiple cores accessing the 
same memory locations.

In a distributed memory system, 
which is more common within an 
SoC, each processor can access 
its own local memory but doesn’t 
have to share it with other cores, 
even though there might also be 
a global memory address space 
across them. 

When one core requires that data 
from another core or cores must syn-
chronize, the system must physically 
move data or the control code must 
switch to run on a different core. Even 
though each core has its own local 
memory, there might still be memory 
bottlenecks depending on how data 
moves on or off the chip itself.

Scalability
Another important benchmark 

criterion is scalability, in which the 
processor incurs performance pen-

alties when it oversubscribes com-
puting resources. 

In familiar terms, assume that 
an application program consists of 
a varying number of threads—it’s 
not unreasonable to have hundreds 
of threads in a relatively complex 
program. If the number of threads 
exactly matches the number of pro-
cessor cores, performance could 
scale linearly assuming no limita-
tions on memory bandwidth. 

However, realistically the num-
ber of threads will exceed the num-
ber of cores, and performance will 
depend on other factors such as 
cache utilization, memory and I/O 
bandwidth, intercore communica-
tions, OS scheduling support, and 
synchronization efficiency.

Example 
So does sequential code work for 

benchmarking multicore proces-
sors? The answer is yes with respect 
to the cumulative throughput of 
each individual core. In this case, 
memory bandwidth and computa-
tion can be evaluated. 

In fact, we’re aware of at least 
one example of this. A telecom 
equipment manufacturer transi-
tioned its application from a mul-
tiprocessor to a multicore system. 
Merely switching from a system in 
which each processor had its own 
memory subsystem to one in which 
the two cores shared the memory 
subsystem resulted in a critical per-
formance reduction, regardless of 
how much inherent parallelism the 
code possessed. 

This is the type of information we 
must be able to derive using bench-
marks before going through the 
massive porting effort required to 
switch to a new platform.

SMP-BASED MULTICORE 
BENCHMARKS

Executing multiple copies of 
sequential code doesn’t account for 
one of the most important potential 
benefits of multicore: using paral-
lelism to improve the performance 
of individual tasks rather than 
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improving overall throughput. One 
example, assuming a dual-core pro-
cessor, would be using both cores 
to load one web page twice as fast. 
Alternatively, you could parallelize 
the work by using both cores to load 
two web pages (one per core) in the 
same amount of time it would take 
to load one.

Accomplishing that would require 
benchmarks that utilize task decom-
position, functional decomposition, 
or data decomposition. These meth-
ods could more comprehensively 
exercise all of the major multicore 
benchmark criteria. Of course, the 
devil’s in the details. 

Further, for a benchmark to be 
relevant for multiple cores and 
produce comparable results, it 
must be able to execute the same 
amount of work regardless of the 
number of contexts used, and it 
must be able to show the perfor-
mance improvement (or degrada-
tion) that results from the number 
of contexts used. The benchmark 
must be able to utilize any number 
of computation contexts because 
it will be used across many differ-
ent platforms.

MULTIBENCH
Primarily addressing the embed-

ded market, EEMBC has imple-
mented MultiBench, an extensive 
suite of multicore benchmarks that 
utilizes an API abstraction to more 
easily support SMP architectures 
(www.eembc.org/press/pressrelease/ 
223001_M30_EEMBC.pdf). 

Given the variety of architec-
tures in the embedded industry, 
f lexibility is key. Hence, when 
porting to a new platform, only 
13 API calls are needed to allow 
the framework and all bench-
marks to run and to exploit par-
allel execution. 

Moreover, many systems sup-
port the Portable Operating Sys-
tem Interface (Posix) threads 
interface, and EEMBC carefully 
chose the API abstraction such 
that there is a direct mapping to 
the more complex Pthreads inter-

face. This means that if the sys-
tem already supports Pthreads, no 
porting is necessary.

The multicore benchmarks are 
delivered as a set of workloads, 
each comprising one or more 
work items. Although it’s easier 
said than done, users can select 
from this list the workloads that 
most closely resemble their appli-
cation.

BEYOND SMP
It’s important to note that the  

MultiBench tests are oriented 
toward general-purpose proces-
sors based on an SMP architec-
ture. Although MultiBench is 
significantly more parallel than 
the first- and second-generation 
benchmarks, it still doesn’t support 
the heterogeneous cores found in 
SoCs. This calls for an entirely dif-
ferent benchmarking strategy. 

Unlike the SMP benchmarks, 
which can essentially consist of 
orthogonal threads, heterogeneous 
cores require careful analysis and 
workload partitioning. Bench-
marking these devices in a relevant 
manner with portable code is a 
huge challenge because each part 
of the system might use a different 
tool chain, and communication 
between different parts of the sys-
tem isn’t standardized.

There are several options for 
benchmarking such systems. 
Extending the existing MultiBench 
framework to support heteroge-
neous systems requires some stan-
dard to allow the benchmarks to 
be portable. For example, the Mul-
ticore Communications API from 
the Multicore Association (www.
multicore-association.org/home.
php) provides a standardized frame-
work for partitioning benchmark 

code into blocks that use MCAPI 
to communicate.

APPLICATION-SPECIFIC 
STANDARD BENCHMARKS

While the demand for SMP-based 
benchmarks and for those that sup-
port heterogeneous cores is grow-
ing almost exponentially, a move to 
application-specific standard bench-
marks is afoot. Also known as sce-
nario-oriented benchmarks, ASSBs 
are designed to take into account 
more system-level features. 

Black-box benchmarks
We view ASSBs as black-box 

benchmarks. From the simplest 
perspective, they specify the input, 
expected output, and interface 
points. In other words, it doesn’t 
matter what’s inside the system as 
long as the benchmark can handle 
the input and deliver the expected 
output.

Unlike complete off-the-shelf sys-
tems, many embedded systems are 
tested using evaluation boards or 
similar preproduction platforms. 
The problem is that developers can 
tinker with these platforms in subtle 
ways to indicate better performance 
than a system will achieve as a com-
mercial product. 

For example, suppose you were 
evaluating the performance of an 
SoC running the Session Initiation 
Protocol. SIP is used to set up and 
tear down multimedia communica-
tion sessions such as voice and video 
calls over the Internet. 

In normal operation, a com-
mercial product should be able to 
receive and handle packet streams 
consisting of mostly valid, but 
some invalid, packets. However, in 
an evaluation platform, a perfor-
mance advantage could hypotheti-
cally be obtained by leaving out the 
code that processes invalid packets. 
Therefore, the ASSB must also inject 
and test for bad packets.

Challenges
Although ASSBs have been 

described as the way forward in 
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computer benchmarking (S.M. 
Pieper et al., “A New Era of Per-
formance Evaluation,” Computer, 
Sept. 2007, pp. 23-30), they don’t 
come without challenges. 

First, creating an industry stan-
dard, at least within the EEMBC 
domain, requires a consensus 
among the members to select the 
right mix of scenarios to test from 
among an almost infinite number of 
possibilities. 

Second, getting an ASSB to run 
properly on an evaluation platform 
requires the assembly of many 
system-level components, includ-
ing both hardware and software. 
In many cases, the company run-
ning the ASSB might not have all 
the components at its disposal. For 
example, a processor vendor could 
have all the supporting hardware 
to run a SIP benchmark but be 

missing various components of the 
software stack.

Another challenge of ASSBs lies 
in analyzing the results. While an 
embedded platform is the sum of 
its components, running an ASSB 
makes it difficult to isolate any par-
ticular component. In other words, 
assuming that an ASSB requires the 
hardware (SoC, memory system,  
I/O) and the software (OS, applica-
tion, runtime stacks), finding bottle-
necks can be as difficult as agreeing 
on a performance metric.

R egardless of the architecture, 
measuring multicore perfor-
mance requires new ways of 

benchmarking. Coming up with the 
benchmarks is only half of the chal-
lenge; the other half is interpreting 
the results. Of course, that’s where 
the fun really begins. ■
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