
Lecture 6 - Modeling of Memory and

Register Files

11/6/20191

A typical Computing System

11/6/20192

Memory

Control

Datapath

Central Processing

Unit (CPU)

or “Processor”

Input

Output

Types of Computer Memories

11/6/20193

From the cover of:

A. S. Tanenbaum, Structured Computer Organization, Fifth Edition, Upper Saddle

River, New Jersey: Pearson Prentice Hall, 2006.

Random Access Memory (RAM)

11/6/20194

Memory

cell

array

Address

decoder

Read/write

circuits

Address bits

Data bits

Six-Transistor SRAM Cell

11/6/20195

Bit line

Word

line

Bit line

bit bit

Dynamic RAM (DRAM) Cell

11/6/20196

Word line

Bit

line

“Single-transistor DRAM cell”

Robert Dennard’s 1967 invention

Electronic Memory Devices

Memory technology Typical access time
$ per GiB in

2012

SRAM semiconductor

memory
0.5–2.5 ns $500–$1000

DRAM semiconductor

memory
50–70 ns $10–$20

Flash semiconductor

memory
5,000–50,000 ns $0.75–$1.00

Magnetic disk
5,000,000–

20,000,000 ns
$0.05–$0.10

11/6/20197

For more on memories:
Semiconductor Memories: A Handbook of Design, Manufacture and

Application, by Betty Prince, Wiley 1996.

Emerging Memories: Technologies and Trends, by Betty Prince,

Springer 2002.

DRAM Evolution

Year

introduced
Chip size $ per GiB

Total access

time to a new

row/column

Average

column access

time to existing

row

1980 64 KiB $1,500,000 250 ns 150 ns

1983 256 KiB $500,000 185 ns 100 ns

1985 1 MeB $200,000 135 ns 40 ns

1989 4 MeB $50,000 110 ns 40 ns

1992 16 MeB $15,000 90 ns 30 ns

1996 64 MeB $10,000 60 ns 12 ns

1998 128 MeB $4,000 60 ns 10 ns

2000 256 MeB $1,000 55 ns 7 ns

2004 512 MeB $250 50 ns 5 ns

2007 1 GiB $50 45 ns 1.25 ns

2010 2 GiB $30 40 ns 1 ns

2012 4 GiB $1 35 ns 0.8 ns

8

Classical RAM Organization (~Square)

R
o
w

D
e
c
o
d
e
r

row
address

data bit or word

RAM Cell
Array

word (row) line

bit (data) lines

Each intersection

represents a

6-T SRAM cell or

a 1-T DRAM cell

Column Selector &

I/O Circuits
column

address

One memory row holds a block

of data, so the column address

selects the requested bit or word

from that block
11/6/20199

data bit
data bit

11/6/201910

The column address

selects the requested

bit from the row in each

plane

Classical DRAM Organization (~Square Planes)

R
o
w

D
e
c
o
d
e
r

row
address

Column Selector &
I/O Circuits

column
address

data bit

word (row) line

bit (data) lines

Each intersection

represents a

1-T DRAM cellRAM Cell
Array

Classical DRAM Operation

▪ DRAM Organization:

• N rows x N column x M-bit

• Read or Write M-bit at a

time

• Each M-bit access requires

a RAS / CAS cycle

Row Address

CAS

RAS

Col Address Row Address Col Address

N
 r

o
w

s

N cols

DRAM

M bit planes

Row

Address

Column

Address

M-bit Output

1st M-bit Access 2nd M-bit Access

Cycle Time

11/6/201911

N
 r

o
w

s

N cols

DRAM

Column

Address

M-bit Output

M bit planes
N x M SRAM

Row

Address

Page Mode DRAM Operation

▪ Page Mode DRAM

• N x M SRAM to save a row

▪ After a row is read into the

SRAM “register”

• Only CAS is needed to access

other M-bit words on that row

• RAS remains asserted while CAS

is toggled

Row Address

CAS

RAS

Col Address Col Address Col Address Col Address

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit

Cycle Time

11/6/201912

N
 r

o
w

s

N cols

DRAM

Column

Address

M-bit Output

M bit planes
N x M SRAM

Row

Address

Synchronous DRAM (SDRAM) Operation

▪ After a row is read into

the SRAM register
• Inputs CAS as the starting

“burst” address along with a
burst length

• Transfers a burst of data
from a series of sequential
addresses within that row

- A clock controls transfer of
successive words in the
burst – 300MHz in 2004

+1

Row Address

CAS

RAS

Col Address

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit

Cycle Time

Row Add

11/6/201913

Other SDRAM Architectures

▪ Double Data Rate SDRAMs – DDR-SDRAMs

• Double data rate because they transfer data on both the rising and

falling edge of the clock

➢Most widely used form of SDRAMs

• For DDR memory, 2n prefetch architecture means

➢ Internal bus width is twice of external bus width

➢Hence, internal column access freq can be half of external data rate

• For users, 2n prefetch means that data access occurs in pairs

➢ A single READ fetches two data words

➢ A single WRITE, two data words must be provided

14

Other SDRAM Architectures- Cont.

https://www.synopsys.com/Company/Publications/DWTB/Pages/dwtb-ddr4-bank-groups-2013Q2.aspx
11/6/201915

Memory Synthesis

▪ Approaches:

• Random logic using flip-flops or latches

• Register files in data paths

• RAM standard components

• RAM compilers

▪ Computer “register files” are often just multi-port

RAMs

• ARM CPU: 32-bit registers R0-R15 => 16 x 32 RAM

• MIPS CPU: 32-bit registers R0-R31 => 32 x 32 RAM

▪ Communications systems often use dual-port

RAMs as transmit/receive buffers

• FIFO (first-in, first-out RAM)

11/6/201916

Basic memory/register array

.

.

.

Word/Register 0

Word/Register 1

Word/Register 2

Word/Register 2N - 1

K bits

AN-1 – A0

DINK-1 – DIN0

DOUTK-1 – DOUT0

N-bit

Address

K-bit

Data

2N Words /

Registers

Control

Signals

-- 2N x K-bit memory VHDL struture

signal MemArray: array (0 to 2**N – 1) of std_logic_vector(K-1 downto 0);

-- ARM register file is 16 32-bit registers

signal ARMregisterFile: array (0 to 15) of std_logic_vector(31 downto 0);

2N x K-bit memory

11/6/201917

Example: 4 x n-bit register file

Data in

Write

Address

Read

Address

Write

enable

Data out

ClkClock

11/6/201918

Technology-independent RAM Models

-- N x K RAM is 2-dimensional array of N K-bit words

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_numeric_std.all;

entity RAM is

generic (K: integer:=8; -- number of bits per word

W: integer:=8); -- number of address bits; N = 2^W

port (

WR: in std_logic; -- active high write enable

ADDR: in std_logic_vector (W-1 downto 0); -- RAM address

DIN: in std_logic_vector (K-1 downto 0); -- write data

DOUT: out std_logic_vector (K-1 downto 0)); -- read data

end entity RAM;

ADDR

DIN

DOUT

WR

N x K

RAM

11/6/201919

RAM Models in VHDL

architecture RAMBEHAVIOR of RAM is

subtype WORD is std_logic_vector (K-1 downto 0); -- define size of WORD

type MEMORY is array (0 to 2**A-1) of WORD; -- define size of MEMORY

signal RAM256: MEMORY; -- RAM256 as signal of type MEMORY

begin

process (WR, DIN, ADDR)

variable RAM_ADDR_IN: natural range 0 to 2**W-1; -- translate address to integer

begin

RAM_ADDR_IN := to_integer(UNSIGNED(ADDR)); -- convert address to integer

if (WR='1') then -- write operation to RAM

RAM256 (RAM_ADDR_IN) <= DIN ;

end if;

DOUT <= RAM256 (RAM_ADDR_IN); -- continuous read operation

end process;

end architecture RAMBEHAVIOR;

Multi-port RAM (two parallel outputs):

DOUT1 <= RAM256(to_integer(UNSIGNED(ADDR1));

DOUT2 <= RAM256(to_integer(UNSIGNED(ADDR2));
11/6/201920

Initialize RAM at start of simulation

process (WR, DIN, ADDR)

variable RAM_ADDR_IN: natural range 0 to 2**W-1; -- to translate address to integer

variable STARTUP: boolean := true; -- temp variable for initialization

begin

if (STARTUP = true) then -- for initialization of RAM during start of simulation

RAM256 <= (0 => "00000101", -- initializes first 4 locations in RAM

1 => "00110100", -- to specific values

2 => "00000110", -- all other locations in RAM are

3 => "00011000", -- initialized to all 0s

others => "00000000");

DOUT <= "XXXXXXXX"; -- force undefined logic values on RAM output

STARTUP :=false; -- now this portion of process will only execute once

else

-- “Normal” RAM operations

11/6/201921

Copyright ©2008, Thomson Engineering, a division of Thomson Learning Ltd.

RAM with bidirectional data bus

11/6/201922

Single-port distributed RAM

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_04 is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_04;

architecture syn of rams_04 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin

if (clk'event and clk = '1') then
if (we = '1') then

RAM(conv_integer(a)) <= di;
end if;

end if;
end process;
do <= RAM(conv_integer(a));

end syn; From Xilinx “Synthesis and Simulation

Design Guide”

a

di

do

we

clk

64x16

LUT

RAM

11/6/201923

11/6/201924

Block RAM inferred

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_01 is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_01;

architecture syn of rams_01 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM: ram_type;

begin
process (clk)
begin

if clk'event and clk = '1' then
if en = '1' then

if we = '1' then
RAM(conv_integer(addr)) <= di;

end if;
do <= RAM(conv_integer(addr)) ; -- read-first operation

end if;
end if;

end process;
end syn;

addr

di

do

we

en

clk

64x16

BRAM

From Xilinx “Synthesis and Simulation

Design Guide”

11/6/201925

11/6/201926

Register File in Verilog

Read_Addr_1

Read_Addr_2
Data_Out_1

Data_Out_2

Write_Addr

Data_In

5

5

5

32

32
32

Register File

Write_Enable

Clock

Alu_Zero

Data_out

opcode

module Register_File (Data_Out_1,Data_Out_2,Data_in,

Read_Addr_1,Read_Addr_2,Write_Addr,Write_Enable,Clock);

output [31: 0] Data_Out_1, Data_Out_2;

input [31: 0] Data_in;

input [4: 0] Read_Addr_1, Read_Addr_2, Write_Addr;

input Write_Enable, Clock;

reg [31: 0] Reg_File [31: 0]; // 32bit x32 word memory declaration

assign Data_Out_1 = Reg_File[Read_Addr_1];

assign Data_Out_2 = Reg_File[Read_Addr_2];

always @ (posedge Clock) begin

if (Write_Enable) Reg_File [Write_Addr] <= Data_in;

end

endmodule

“Concept of Memory” in Verilog

▪ Memory
• Declaration an array of words

• E.g. reg [31:0] data_out; // one 32-bit word

reg [31:0] Reg_file [31:0]; // 32x32 bit word memory

▪ Verilog does not support 2-dimensional array
• However, a word in a Verilog memory can be addressed directly

➢ E.g., Reg_file [12]

• A cell bit in a word can also be addressed indirectly by first loading
the word into a buffer register then addressing the bit of the word

➢ E.g. Data_out = Reg_file [12];

Data_out [1:0]

▪ Decoder are synthesized automatically by synthesis tool
in Reg_file[] to decode the address which locates a
specific register

Bus Interface

▪ Unidirectional Bus

11/6/201929

module Uni_dir_bus (data_to_bus, bus_enable);

Input bus_enable;

output [31: 0] data_to_bus;

reg [31: 0] ckt_to_bus;

assign data_to_bus = (bus_enable)? ckt_to_bus: 32'bz;

II Description of core circuit goes here to drive ckt_to_bus

endmodule

Michael D. Ciletti, Advanced digital design with the Verilog HDL.

Core

Circuit
ckt_to_bus

bus_enable

data_to_bus

32 32

Uni_dir_bus

Driver_1

Driver_2

Bus Interface

▪ Bidirectional Bus

11/6/201930

module Bi_dir_bus (data_to_from_bus, send_data, rcv_data);

inout [31: 0] data_to_from_bus;

Input send_data, rcv_data;

wire [31: 0] ckt_to_bus;

wire [31: 0] data_to_from_bus, data_from_bus;

assign data_from_bus = (rcv_data)? data_to_from_bus: 32'bz;

assign data_to_from_bus = (send_data)? ckt_to_bus: data_to_from_bus;

// Behavior using data_from_bus and generating

II ckt_to_bus goes here

endmodule

Michael D. Ciletti, Advanced digital design with the Verilog HDL.

data_from_bus

ckt_to_bus

send_data

rcv_data

data_to_from_bus

32

32 32
Core

Circuit

Bi_dir_bus

Driver_1

Driver_2

