
ELEC 4200 Lab#0 Tutorial

1

Objectives(1)

▪ In this Lab exercise, we will design and implement a 2-to-1

multiplexer (MUX), using Xilinx Vivado tools to create a

verilog model of the design, verify the model, and implement

the model in a Field Programmable Gate Array (FPGA)

▪ The behavior of the multiplexer will be implemented in two

different ways:

➢ 1) Logic equations, which should be familiar from Digital Logic

Circuits.

➢ 2) Behavioral description, in which we specify the desired

input/output behavior and allow the Vivado synthesis tool to

implement the required logic.

2

Objectives(2)

▪ Vivado simulator will be used to simulate and verify the

design, with model debugging and correction performed as

needed.

▪ After the design is fully verified, we will use Vivado to

synthesize the design into an Artix-7 FPGA, generating a

configuration data file which will then be downloaded onto a

Diligent Nexus 4 DDR circuit board, where the implemented

design will be verified on the hardware using switches to

stimulate the circuit and LEDs to observe the outputs.

▪ If you have no idea what any of this means, don’t worry.

That is why this is a tutorial!

3

Warning:

▪ You will need to actually read the instructions.

▪ If you attempt to just look at the pictures, you will

miss steps, make mistakes, encounter errors,

etc.

▪ When you ask for help with problems resulting

from not reading the directions, your GTA will

make fun of you before telling you to read the

directions.

▪ You have been warned.

4

New Project (1)

▪ Click the start menu, and type “Vivado.” Then look

for “Vivado 2018.2” (or the latest installed version)

and click on it.

5

New Project (2)

▪ Launch the New Project Wizard by clicking “Create New Project” on

the Quick Start page, or “New Project” in the “File” dropdown menu.

▪ Click “Next” on the first screen to produce the New Project window.

▪ Enter the project name and location in the corresponding boxes.

▪ Note: It is HIGHLY recommended that while working in the lab your

projects be located on an external flash drive or the C: drive (NOT

your H: drive). If your project is located on the H: drive one of the

later synthesis steps will ALWAYS fail! If using the C: drive you can

use the “C:\TEMP\” directory.

▪ Give the project a descriptive name, like “LAB0” and click “Next”.

6

New Project (3)

▪ Select “RTL Project” as the project type and click

“Next”.

7

New Project (4)

▪ In the Add Sources window, set the “Target Language” to

verilog and the “Simulator language” to Mixed.

▪ After setting the language options, click “Create File”

8

(1)

(2)

(3)

New Project (5)

▪ In the Create Source File dialog box, make sure the “File

type” is set to Verilog and enter the name of your file.
• Again, it is always a good idea to use a descriptive name, in this case

Mux21 because this is a 2-1 multiplexor.

▪ Click “OK” to close the dialog box and then “Next”.

9

New Project (6)

▪ We do not have any constraints yet, but in future

projects, you may import and edit existing

constraints files to save time. So click “Next” for now.

10

New Project (7)

▪ Here we need to select our device. You can use the search function,

filters, or just scroll until you find our device: XC7A100tcsg324-1.
• This FPGA is from the Xilinx Artix-7 family (XC7A100T).

• The device is contained in a 324-pin csg324 package.

• The speed grade of the part is “-1”.

▪ Click “Next”

11

New Project (8)

▪ The New Project Summary window lists information

selected in the previous screens.
• If necessary, use the “Back” button to return to previous screens to make

changes/corrections.

▪ Click “Finish” to open the Project Manager window.

12

Create the Verilog model

▪ Since we chose to create a new verilog file, Vivado will automatically

launch a wizard to assist in creating the entity and architecture

structures that comprise a verilog model. This can all be done by

hand (and you can edit all of this later), but there is no reason not to

take advantage of the wizard utility.

▪ Leave the Entity and Architecture names as their defaults.

▪ Create three inputs (Direction “input”): Din0, Din1, Sel

▪ Create two outputs (Direction “output”): Dout1, Dout2

▪ Click “OK”

13

Edit Verilog Model(1)

▪ Open your new verilog file from the Sources window
(double click on the Design Source name, Mux21)

14

Edit Verilog Model(2)

▪ Scroll down and add the code in the red rectangles

between the Begin and End statements of the

architecture section of the model.

▪ After saving, we can then set up the simulator.

15

Mux models:

1st statement:

logic equation

2nd statement:

“behavior”

Simulator Setup(1)

▪ Xilinx Vivado integrates support for its own simulator,

as well as several other commercial simulation tools.

Therefore, you must select Vivado simulator from a

list of simulators.

▪ As long as you use the same computer week to

week, this setting should only have to be made this

one time. However, if you ever get errors from

Vivado about not being able to find the simulator,

check this setting first.

16

Simulator Setup(2)

1. In the Project Manager pane, select Project Settings

2. In the Project Settings window, select Simulation

3. Select Vivado Simulator in the Target simulator drop-down menu.

4. Click OK to close the window.

17

1

2 3

4

Simulation(1)

▪ This tutorial describes only how to perform a basic simulation, but its

is recommended that you experiment with its many capabilities, as

you may find ways it can help you debug in later lab sessions.

▪ Click on “Run Simulation" in the Flow Navigator, and then Run

“Behavioral Simulation” in the popup menu.

18

Simulation(2)

▪ When the simulator is finished launching you should

see the following window. If you do not, call the GTA

to show you to set up the proper view windows.

19

You should see your signal names. If there are any

signals whose names are of the form XLXN, these are

internal nets that can be deleted, unless you need

them for debugging. Omit them from simulation

screenshots captured for reports.

Simulation(3)

▪ Design verification requires that you stimulate the inputs and observe

the outputs. You are to stimulate the inputs with all possible input

combinations and observe each output to verify its correctness.

▪ This is called “exhaustive testing”. It is suitable for a simple circuit

(such as the mux) but is not practical for large circuits with many

inputs.

20

• Right click on one of your

input signals (ex: Din0) and

select “Force clock” from

the context menu.

Simulation(4)

▪ For the 2-1 MUX we have 3 inputs (Din0, Din1, and Sel)

where each input can be either logic high (1) or logic low

(0).

▪ There are 2^3=8 possible input combinations. While we

could stimulate each combination individually, an easier

approach would be to use the simulator’s clock stimulator

to generate the input timing diagrams below.

21

Din0

Din1

Sel

0 40 80 120 160

Time (ns)

Simulation(5)

▪ The right side of the Stimulators dialog box should now

show the clock parameters.

▪ You can set the starting value (0 or 1), adjust the offset

value to start the clock, adjust the period, and adjust the

duty cycle

22

• Set the options as

shown on the right to

create a waveform that

starts low and repeats

every 40ns with a 50%

duty cycle.

• Click “Apply”

Simulation(6)

▪ Repeat the clock procedure for Din1 and Sel with the

following periods. Click “Apply” after each signal is

added.
• Din1: 80ns period

• Sel: 160ns period

23

• Click “Close”

when you are

finished.

Simulation(7)

▪ Now we need to run the simulation using the following simulation

controls.

▪ Whenever you begin a new simulation you should clear the

waveforms window. Do this by clicking the “Restart Simulation”

button or by typing “restart” into the Console Window.

▪ Run the simulation for 160ns by typing 160 ns into the “Run

Duration” box and then click “Run For”. Your output should look

similar to this. Use the zoom controls as needed to make the

waveform fill the window.

24

restart

run

all

run

for
run

duration restart

Simulation(8)

▪ Examine your results and ensure that they accurately

match the operation of a 2-1 MUX for both Dout1 and

Dout2.

▪ If you observe any incorrect results during simulation, go

back and debug your circuit. Do not proceed any further

until your simulation produces the correct results.

▪ If time allows you may want to experiment with some of

the other “types” in the Stimulators window so that you

can become familiar with their operation and know how to

use them for future labs.

▪ If your final circuit does not work and it is traced it back to

an error in simulation, the GTA reserves the right to laugh

at you publicly in front of your classmates.

25

Add Constraints (1)

▪ We need to define a “constraints file” that defines which signals (Din,

Dout, Sel) go to which pins on the FPGA.

▪ Right click on the “Constraints” folder in the project manager and

select “Add Sources”.

26

Add Constraints (2)

▪ This opens the “Add Sources Wizard”. Make sure

“Add or create constraints” is selected and click

“Next”.

27

Add Constraints (3)

▪ Click “Create File” and in the dialog box that opens,

name your constraints file. As always, use a

descriptive name, like “LAB0_Constraints”. Then

click “OK”.

28

Add Constraints (4)

▪ Click “Finish” to add your file to the project.

29

Add Constraints (5)

▪ Open your newly added file by double clicking on it

from the Project Manager.

30

Add Constraints (6)

▪ Add the following lines in the constraints file, renaming the ports to match those in

your design. Save after you are done.

set_property -dict { PACKAGE_PIN J15 IOSTANDARD LVCMOS33 } [get_ports { Din0 }];

set_property -dict { PACKAGE_PIN L16 IOSTANDARD LVCMOS33 } [get_ports { Din1 }];

set_property -dict { PACKAGE_PIN M13 IOSTANDARD LVCMOS33 } [get_ports { Sel }];

set_property -dict { PACKAGE_PIN H17 IOSTANDARD LVCMOS33 } [get_ports { Dout1 }];

set_property -dict { PACKAGE_PIN K15 IOSTANDARD LVCMOS33 } [get_ports { Dout2 }];

31

Implement the design(1)

▪ Now you are going to have Vivado “synthesize” your design into

generic digital logic components.

▪ In the Flow Navigator, click “Run Synthesis”.

▪ This may take several minutes to run, so be patient.

▪ A dialog box will open on completion, either select “Run

Implementation” or hit “Cancel”.

32

Implement the design (2)

▪ Click on “Run Implementation”. This maps the synthesized design

to the hardware, and routes I/O ports to the pins specified in the

constraints file.

▪ Again, this will take several minutes to run.

▪ A dialog box will open on completion, either select “Generate

Bitstream” or hit “Cancel”.

33

Generate Bitstream

▪ With the design now implemented, it is time to generate the

bitstream, or the file that will be downloaded to the FPGA.

▪ Click “Generate Bitstream”

▪ A dialog box will open on completion, either select “Open Hardware

Manager” or hit “Cancel”.

34

Download to Hardware(1)

▪ Plug in the USB cable between a PC USB port and the USB port on

the FPGA board to access the JTAG programming module.

▪ Flip the board power switch from OFF to ON

35

Download to Hardware (2)

▪ Click on “Hardware Manager”

36

Download to Hardware (3)

▪ Click “Auto Connect” to connect to your Nexys 4 board.

▪ If you encounter any errors, verify that the board is plugged in and

powered on.

37

Download to Hardware(4)

▪ Click “Program Device” and select xc7a100t_0 from

the list.

38

Download to Hardware(5)

▪ In the dialog box, make sure the correct bit file is

selected.

▪ Leave the “Debug probes file” box empty for now.

▪ Click “Program”

39

Download to Hardware(6)

▪ Verify correct operation of the circuit using the

switches and observe the output on the LEDs. If you

encounter any bugs, attempt to figure out what went

wrong before asking for help.

▪ Ensure that you apply all possible input

combinations, as you did in simulation, and verify

that the outputs match the simulation results.

▪ After verifying the circuit is correct, call the GTA over

and demonstrate the circuit.

40

Clean up

▪ Turn off the board, unplug the USB cable, put them

back in their box, and return the box to the shelf.

▪ Close Vivado, any other open programs, and save all

files.

▪ Don’t forget to log out of your machine and take any

USB drives with you.

41

