Combinational Logic Design Process

Create truth table from specification
Generate K-maps & obtain logic equations
Draw logic diagram (sharing common gates)

Simulate circuit for design verification

— Debug & fix problems when output is incorrect
 Check truth table against K-map population
« Check K-map groups against logic equation product terms
» Check logic equations against schematic

Circuit optimization for area and/or performance

— Analyze verified circuit for optimization metric
* G, Gy, Gyens Pyel
— Use Boolean postulates & theorems

Re-simulate & verify optimized design

V. P. Nelson ELEC 4200 1

K-mapping & Minimization Steps
Step 1: generate K-map

— Put a 1 in all specified minterms
— Put a 0 in all other boxes (optional)

Step 2: group all adjacent 1s without including any 0s

— All groups (aka prime implicants) must be rectangular and
contain a “power-0f-2” number of 1s

« 1,2,4,8, 16,32, ...

— An essential group (aka essential prime implicant) contains
at least 1 minterm not included in any other groups

A given minterm may be included in multiple groups

Step 3: define product terms using variables common to
all minterms in group

Step 4: sum all essential groups plus a minimal set of
remaining groups to obtain a minimum SOP

V. P. Nelson ELEC 4200 2

K-map Minimization Goals

 Larger groups:
— Smaller product terms

. Fewer variables in common ° Alternate method:

— Smaller AND gates »Group 0s
« In terms of number of inputs » Could produce
_ fewer and/or
* Fewer groups: smaller product
— Fewer product terms terms
» Fewer AND gates » Invert output
« Smaller OR gate Use NOR instead
— In terms of number of inputs of OR gate

V. P. Nelson ELEC 4200 3

K-map example (text)

FIGURE 1-3: AB AB
Four-Vafi::‘b'e CDN_ 00 01 11 10 CDN_00 01 11 10 Four corner terms
Karnaugh Maps P —— . . P
9 P 0lolalnls 00 j 00 b_/ combine to give B” D
01| 1|5 |13]9 o1 | oM[(M| o |0 |
G == A’'BD
o N
11 3 1 13 | 11 11 | \1_) X 1
10|26 |14]10 10|\ 1 | x|
F=xm(0,2,3,9,6,7,8, 10, 11)+24d (14, 15)
=C+B’'D’+A’ BD
(a) Location of minterms (b) Looping terms

V. P. Nelson ELEC 4200 1-4

Circuit Analysis

« We can implement different circuits for same logic function that are

functionally equivalent (produce the correct output response for all
Input values)

— Which implementation is the best?
» Depends on design goals and criteria
» Area analysis

— Number of gates, G (most commonly used)
— Number of gate inputs and outputs, G,5 (more accurate)
 Bigger gates take up more area

« Performance analysis (worst case path from inputs to outputs)
— Number of gates in worst case path from input to output, G4
— More accurate delay measurement per gate

 Propagation delay = intrinsic (internal) delay + extrinsic (external) delay
* Relative prop delay, Py, = # inputs to gate (intrinsic) + # loads (extrinsic)

V. P. Nelson ELEC 4200 5

Circuit Analysis Example

* From previous example:
/=(A+B’)C+A’BC’
—#gates: G =7 A, A+B’

2B Bros |l —(A+B)C
-#0ate 1/0: G =19 sty 24 -) "" e Z

— Gate delay: G, =4 A = 540
1+1 T,
* worst case path: B—»Z A’BC
— Prop delay: Py, = 12
 worst case path: B—»Z

V. P. Nelson ELEC 4200

Design Verification Guidelines

« Use all audits and analysis aids possible to help find potential design bugs
— Investigate and correct all errors/warnings
« Simulate thoroughly but use stimuli that “eat their way into the design™
testing one function at a time
— more important for complex circuits
When circuit doesn’t work, see what works and what doesn’t to narrow
down the search space for the problem
— Which outputs work
— Which outputs fail and under what conditions
— Monitor lots of internal nodes
— Additional simulations (with different vectors) can be helpful
* “Debugging is just like solving a puzzle”
— “If something doesn’t look right, stop and check it out”
* Don’t overlook potential bugs
— “When you’ve found the problem, everything starts makes sense”
« Always re-run audits and simulation after correcting any problem (or after
making any changes)
— Another bug could be lurking, or
— The fix may have messed up something else

V. P. Nelson ELEC 4200

Sequential Logic Design Steps

Derive circuit state diagram from design specs
Create state table

Choose flip-flops (D, T, SR, JK)

Create circuit excitation table

— use flip-flop excitation tables

Construct K-maps for:

— flip-flop inputs

— primary outputs

Obtain minimized SOP equations

Draw logic diagram

Simulate to verify design & debug as needed

Perform circuit analysis & logic optimization

V. P. Nelson ELEC 4200

Flip-Flop Excitation Tables & State

Diagrams
D=1
gogop
QQ+ | D | T|SR|JK
OO0 o) O | OX | OX 0
01 1 | 1|10] 1X T=1
10 o) 1 01 X1
gogoD
11 1 0 X0 | X0
1
SR=10 JK=1X
coger
01 X1

V. P. Nelson ELEC 4200

Sequential Design Example

Design a 3-bit gray code counter with
active low synchronous reset (R)

State Diagram Inputs | Current state| Next state
R (XY 2) (XY 2)
State order: 0 XXX 000
RY <2 1 000 001
1 001 011
1 010 110
1 011 010
1 100 000
1 101 100
1 110 111
1 111 101
State Table

V. P. Nelson ELEC 4200 10

3-bit Gray Code Counter

Choose flip-
flops:
— Let X be a
JK
— LetYbeaD
— LetZbea
SR
Create circuit
excitation
table

V. P. Nelson

Inputs | Current state| Nextstate | QX |QY| QZ
R (XY 2Z) (XY Z) |IXKx|Dy|SzRz
0 XXX 000 01 (0|01
1 000 001 OX | 0] 10
1 001 011 OX | 1] X0
1 010 110 1X | 1]0X
1 011 010 O0X | 1|01
1 100 000 X1|0]|]0X
1 101 100 X0 0] 01
1 110 111 X0|1]10
1 111 101 X0 | 0] X0

ELEC 4200

11

3-bit Gray Code Counter (cont)

» Generate K-Maps & obtain minimized SOPs
YZ

YZ
RX

00 01 11 10

00

01

11

X

X

X

10

1

YZ
RX

JX=RYZ’

00 01 11 10

00
01

1

1

1)

1

1

11

|-

0

0

1)
0

10

X

X

X

X

Kx=R"+Y’Z’

V. P. Nelson

YZ

Rx N\ 00 01 11 10
00
01
11 1
101 @)l

Dy = RYZ’ + RX’Z

Further reductions:

Rz =
Sz=R(X®Y)

= (R +X®Y)’

= RZ7’

ELEC 4200

RX

00 01 11 10

00

01

11

X

10

1

X

Sz=RXY + RX’Y’
YZ

RX
00

01
11
10

00

01

11

10,

1

(1

1

1

iy

(<1

1)
=

T

X

Rz=R’ + XY’ + XY

12

3-bit Gray Code Counter (cont)

 Logic diagram

Y’ JX
» Then design ij) Kx
verification via Bk Clk_{,
logic simulation Y—
— Debug as needed ‘T D
to obtain |
working circuit X Clk

— Update logic £

diagram, logic R [>O [>0%
equations, etc. to x.: r

reflect fixes Y| — Clie 1,

TN. ‘N T*ﬂ ‘-< T>< ‘><

V. P. Nelson ELEC 4200

Sequential Logic Models

. ' Primary Primar
OHfuttI/rga%n rgé)_del CoNsIsts ey [Comb Output>s/
YPESs. 3 Logic
— Mealy model (aka Mealy
machine) Current | Flip- |_Next
« Outputs are function inputs State | Flips | State
and current state onlv for
— Outputs can change when y |
inputs change or when Srimar Mealy
current state changes Inputsy +> Output Primary
— Moore model (aka Moore Logic Outputs

machine)

— Outputs can change only
when current state current

>
 Qutputs are function of
current state only

changes State

V. P. Nelson ELEC 4200

Flip-
Flips

Next

State

14

Mealy & Moore State Diagrams

* Mealy model

— Outputs associated
with state transition

— Output values shown
with inputs

model

— Outputs associated
with states only

— Output values shown
with states

V. P. Nelson

Input

Output

ELEC 4200

State
order
XY

1/1

States

Output

15

Mealy & Moore State Tables

X Y| X" Y" | Dy Dy |Opeay | Omoore
O 00O 1,0 1 1 1
0O 1;/1 01 O 0 0)
1 0|0 OO0 O 1 0)
O 0j1 O1 O 1 1
O 1{0 O, 0 O 1 0)
1 00 1|0 1 0 0)
1 1| X X | X X X X

10/0)—2—(01/0 -
. Note: next state (next state logic) is same for
both Mealy & Moore — only output is different

V. P. Nelson ELEC 4200 16

Mealy & Moore Design Examples

In this example the Dx and Dy circuits are the same for both Mealy and Moore
But the outputs circuits are different with the Moore being a function of X and Y only

XY
00 01 11 10

|nX YOO 01 11 10

ojo0||L]X]loO
1| o|x]o0
Dy=In"Y + InX’Y’

XY
I OO 01 11 10

ol(| o | x|o0
1| o] o [(x] 1

Dy =InX+In’X’Y’

V. P. Nelson

In

0

]

0

X

al

1
O

In

[

Mealy — 1Y "+ InX’

X

0

XY
00O 01 11 10

1

0

X

0

ELEC 4200

1

N—

0

X

0

17

Mealy & Moore Design Examples
Dy=In"Y + [InX’Y’

Oppeay = IN*Y” + InX’
vealy =T TR Dy = InX + XY

In D In D

Y— X Y— X

® X_ _ 1 4 Y— —
v— +~ pX v— 4+ pX
X— Y X— Y
X— Y X— Y
Y cik TE__ P~ Y cik T
Y_

Note: Oyeqy IS @ function of In but Oy, IS NOt a function of In
V. P. Nelson ELEC 4200 18

Flip-Flop Initialization

Preset (aka Set) => Q+ =1 Typical logic symbol

with active high preset

Clear (akareset) => Q* =0 and active low clear
Some ﬂlp-ﬂOpS have: Cannot determine sync o

or async from symbol P
— Both preset and clear (set and reset) ‘

— A preset or a clear
— Neither (JK & SR flops have set/reset functions)

Preset and/or clear can be

— Active high or active low

— Synchronous => with respect to active edge of clock
— Asynchronous => independent of clock edges Clr

Initialization important for:

— logic simulation to remove undefined logic values
2,3, U, etc.
— system operation to put system in a known state

= P
V
ot o

V. P. Nelson ELEC 4200 19

Synchronous vs. Asynchronous

Pre

« Synchronous =>
states of memory
elements change
only with respect to
active edge of clock

* Asynchronous =>
states of memory
elements can
change without an
active edge of clock

— Asynchronous
designs often have
timing problems

V. P. Nelson

Example: assume
active high sync
preset

and active low
async clear

D

<

- > Q

ELEC 4200

20

System-Level Timing

System set-up time: Py, + Py + g, - P cik(min)
» Pyeii + Pous t tay

System hold time: t, + Py - Pyeliminy = Pbufimin)
» 1+ Pok

System clock-to-output: t., + Pyoo + Phuo T Pei

Minimum times are difficult to guarantee
— Typically assume O

Data

Clock

V. P. Nelson ELEC 4200

21

System-Level Timing

System set-up time: Py + tsygatch) = Peikinputmin
System hold time: t,,acn) + Peikginput) = Pbufimin)
System clock-to-output: t., + Pyye + Peoutput

Improvement techniques:

— Re-clock signals onto/off subcircuit, chip, PCB, or system
— Fanout clock into input, main, and output clocks

— 0-hold-time latches on input signals

Data

Clock

D Output

V. P. Nelson

[ELEC 4200 22

