
Lecture 5 - Modeling for Synthesis
Register Transfer Level (RTL) Design

1 10/25/2019

Register Transfer Language (RTL) Design
A system is viewed as a structure comprising

registers, functions and their control signals
Show dataflow

through the system
 Instructions, Data,

Addresses
Functions store and

manipulate data

No gates!!!

2 10/25/2019

RTL register model
-- Model register to hold one datum of some type
-- Individual bits are not manipulated
library ieee; use ieee.std_logic_1164.all;

entity Reg8 is
port (D: in std_logic_vector(7 downto 0);

Q: out std_logic_vector(7 downto 0);
LD: in std_logic);

end Reg8;

architecture behave of Reg8 is
begin

process(LD)
begin

if (LD’event and LD=‘1’) then
Q <= D; -- load data into the register

end if;
end process;

end;

Reg8

D(0 to 7)

Q(0 to 7)

LD

3 10/25/2019

Asynchronous control inputs
library ieee; use ieee.std_logic_1164.all;

entity Reg8 is
port (D: in std_logic_vector(7 downto 0);

CLK,PRE,CLR: in bit; --Async PRE/CLR
Q: out std_logic_vector(7 downto 0));

end Reg8;

architecture behave of Reg8 is
begin

process(clk,PRE,CLR)
begin

if (CLR=‘0’) then -- async CLR has precedence
Q <=“00000000”; -- force register to all 0s

elsif (PRE=‘0’) then -- async PRE has precedence if CLR=‘0’
Q <= (others => ‘1’); -- force register to all 1s

elsif rising_edge(clk) then -- sync operation only if CLR=PRE=‘1’
Q <= D; -- load D on clock transition

end if;
end process;

end;

CLR
D Q

CLK
PRE

4 10/25/2019

Synchronous reset/set
--Reset function triggered by clock edge
process (clk)
begin

if (clk’event and clk = ‘1’) then
if reset = ‘1’ then – reset has precedence over load

Q <= “00000000” ;
else

Q <= D ;
end if;

end if;
end process;

5 10/25/2019

Register with clock enable
-- “enable” effectively enables/disables clock
process (clk)
begin

if rising_edge(clk) then -- detect clock transition
if enable = ‘1’ then -- enable load on clock transition

Q <= D ;
end if;

end if;
end process;

6 10/25/2019

-- One model of a given function with variable data size
library ieee; use ieee.std_logic_1164.all;

entity REGN is
generic (N: integer := 8); -- N specified when REG used
port (CLK, RST, PRE, CEN: in std_logic;

DATAIN: in std_logic_vector (N-1 downto 0); -- N-bit data in
DOUT: out std_logic_vector (N-1 downto 0) -- N-bit data out
);

end entity REGN;

architecture RTL of REGN is
begin
process (CLK) begin

if (CLK'event and CLK = '1') then
if (RST = '1') then DOUT <= (others => '0'); --reset to all 0s
elsif (PRE = '1') then DOUT <= (others => '1'); --preset to all 1s
elsif (CEN = '1') then DOUT <= DATAIN; --load data
end if;

end if;
end process;
end architecture RTL;

Register with parameterized width

Vectors: “100” = (‘1’,’0’,’0’) = (‘1’, others => ‘0’)
Arbitrarily long: “00…0” = (others => ‘0’)

7 10/25/2019

library ieee; use ieee.std_logic_1164.all;
entity TOP is

port (CLK,X,Y,A,B,C: in std_logic;
DIN: in std_logic_vector(5 downto 0);
Q1: out std_logic_vector(5 downto 0);
Q2: out std_logic_vector(4 downto 0);
Q3: out std_logic_vector(3 downto 0)
);

end entity TOP;

architecture HIER of TOP is
component REGN is

generic (N: integer := 8);
port (CLK, RST, PRE, CEN: in std_logic;

DATAIN: in std_logic_vector (N-1 downto 0);
DOUT: out std_logic_vector (N-1 downto 0)
);

end component REGN;
begin
R1: REGN generic map (6) port map --6-bit register

(CLK, A, B, C, DIN, Q1);
R2: REGN generic map (5) port map --5-bit register (low 5 bits of DIN)

(CLK, Y, X, C, DIN(4 downto 0),Q2);
R3: REGN generic map (4) port map --4-bit register (low 4 bits of DIN)

(CLK=>CLK, RST=>A, PRE=>B, CEN=>C, DATAIN=>DIN(3 downto 0), DOUT=>Q3);
end architecture HIER;

Instantiating the parameterized register

8 10/25/2019

2-to-1 mux with parameterized data size
entity muxN is

generic (N: integer := 32); -- data size parameter
port (A,B: in std_logic_vector(N-1 downto 0);

Y: out std_logic_vector(N-1 downto 0);
Sel: in std_logic);

end muxN;
architecture rtl of muxN is
begin

Y <= A when Sel = ‘0’ else B; -- A,B,Y same type
end;
-- specify parameter N at instantiation time
M: muxN generic map (16)

port map(A=>In1, B=>In2, Y=>Out1);
9 10/25/2019

Other types of generic parameters
entity and02 is

generic (Tp : time := 5 ns); -- gate delay
parameter

port (A,B: in std_logic;
Y: out std_logic);

end and02;
architecture eqn of and02 is
begin

Y <= A and B after Tp; -- gate with delay Tp
end;
…..
A_tech1: and02 generic map (2 ns) port map (M,N,P);
A_tech2: and02 generic map (1 ns) port map (H,K,L);

Gates with
different delays.

10 10/25/2019

IEEE Std. 1076.3 Synthesis Libraries
 Supports arithmetic models

• ieee.numeric_std (ieee library package)
defines UNSIGNED and SIGNED types as arrays of

std_logic
type SIGNED is array(NATURAL range <>) of STD_LOGIC;
type UNSIGNED is array(NATURAL range <>) of STD_LOGIC;

defines arithmetic/relational operators on these types
• Supports RTL models of functions

 Lesser-used packages:
• ieee.numeric_bit
 same as above except SIGNED/UNSIGNED are arrays of type bit

• ieee.std_logic_arith (from Synopsis)
Non-standard predecessor of numeric_std/numeric_bit

11 10/25/2019

NUMERIC_STD package contents
 Arithmetic functions: + - * / rem mod

• Combinations of operand types for which operators are defined:
 SIGNED + SIGNED return SIGNED
 SIGNED + INTEGER return SIGNED
 INTEGER + SIGNED return SIGNED
 SIGNED + STD_LOGIC return SIGNED

• PLUS: above combinations with UNSIGNED and NATURAL

 Other operators for SIGNED/UNSIGNED types:
• Relational: = /= < > <= >=
• Shift/rotate: sll, srl, sla, sra, rol, ror
• Maximum(a,b), Minimum(a,b)

 Convert between types:
• TO_INTEGER(SIGNED), TO_INTEGER(UNSIGNED)
• TO_SIGNED(INTEGER,#bits), TO_UNSIGNED(NATURAL,#bits)
• RESIZE(SIGNED or UNSIGNED,#bits) – changes # bits in the vector

12 10/25/2019

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity Adder4 is

port (in1, in2 : in UNSIGNED(3 downto 0) ;
mySum : out UNSIGNED(3 downto 0)) ;

end Adder4;

architecture Behave_B of Adder4 is
begin

mySum <= in1 + in2; -- overloaded '+‘ operator
end Behave_B;

Arithmetic with NUMERIC_STD package

UNSIGNED = UNSIGNED + UNSIGNED

13 10/25/2019

Conversion of “closely-related” types
 STD_LOGIC_VECTOR, SIGNED, UNSIGNED:

• All arrays of STD_LOGIC elements
• Example: How would one interpret “1001” ?
STD_LOGIC_VECTOR: simple pattern of four bits
SIGNED: 4-bit representation of number -7 (2’s complement #)
UNSIGNED: 4-bit representation of number 9 (unsigned #)

 Vectors of same element types can be “converted”
(re-typed/re-cast) from one type to another

signal A: std_logic_vector(3 downto 0) := “1001”;
signal B: signed(3 downto 0);
signal C: unsigned(3 downto 0);
B <= signed(A); -- interpret A value “1001” as number -7
C <= unsigned(A); -- interpret A value “1001” as number 9
A <= std_logic_vector(B); -- interpret B as bit pattern “1001”

14 10/25/2019

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity Adder4 is

port (in1, in2 : in STD_LOGIC_VECTOR(3 downto 0) ;
mySum : out STD_LOGIC_VECTOR(3 downto 0)) ;

end Adder4;

architecture Behave_B of Adder4 is
begin

mySum <=
STD_LOGIC_VECTOR(SIGNED(in1) + SIGNED(in2));

end Behave_B;

Conversion of “closely-related” types

Interpret STD_LOGIC_VECTOR as SIGNED
Function: SIGNED = SIGNED + SIGNED

Interpret SIGNED result as STD_LOGIC_VECTOR.

SIGNED result

For arrays of same dimension, having elements of same type

15 10/25/2019

Example – binary counter
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
ENTITY counter IS

port(Q: out std_logic_vector(3 downto 0);
….

END counter;

ARCHITECTURE behavior OF counter IS
signal Qinternal: unsigned(3 downto 0);

begin

Qinternal <= Qinternal + 1; -- UNSIGNED = UNSIGNED + NATURAL
Q <= std_logic_vector(Qinternal); -- re-type unsigned as std_logic_vector

From NUMERIC_STD package

16 10/25/2019

Using a “variable” to describe sequential
behavior within a process

-- Assume Din and Dout are std_logic_vector
-- and numeric_std package is included
cnt: process(clk)

variable count: integer; -- internal counter state
begin -- valid only within a process

if clk=‘1’ and clk’event then
if ld=‘1’ then

count := to_integer(unsigned(Din)); --update immediately
elsif cnt=‘1’ then

count := count + 1; --update immediately
end if;

end if;
Dout <= std_logic_vector(to_unsigned(count,32)); --schedule Dout

end process;

17 10/25/2019

Counting to some max_value (not 2n)
-- full-sized comparator circuit generated to check count =

max
process begin

wait until clk’event and clk=’1’ ;
if (count = max_value) then

count <= 0 ; --roll over from max_value to 0
else

count <= count + 1 ; --otherwise increment
end if ;

end process ;

18 10/25/2019

Decrementer and comparator
process begin

wait until clk’event and clk=’1’ ;
if (count = 0) then

count <= max_value ; -- roll over from 0 to max_value
else

count <= count - 1 ; -- otherwise decrement
end if ;

end process ;

19 10/25/2019

Verilog Modeling Trap
 The order of execution of procedural statements in

a cyclic behavior may depend on the order in which
the statements are listed

 Procedural assignments are called “blocked”
assignments (or blocking assignments)

• Execute sequentially
• A procedural assignment must complete execution before

the next statement can be executed
• i.e. the statements that follow a procedural statement are

“blocked” till the current one completes execution
 Expression substitution is recognized by synthesis

tools

module shiftreg_PA_rev (E, A, B, C, D,
clk, rst);
output A;
input E;
input clk, rst;
reg A, B, C, D;

always @ (posedge clk or posedge rst)
begin

if (reset) begin
A = 0; B = 0; C = 0; D = 0; end

else begin
D = E;
C = D;
B = C;
A = B;

end
end

endmodule

Example:Modeling Trap of a Shift Register
E

rst

clk

C B A

R

QD

R

QD

R

QD

R

QD
D

E

rst

clk
R

QD
A

A=E

module shiftreg_PA (E, A, B, C, D, clk, rst);
output A;
input E;
input clk, rst;
reg A, B, C, D;

always @ (posedge clk or posedge rst)
begin

if (reset) begin
A = 0; B = 0; C = 0; D = 0; end

else begin
A = B;
B = C;
C = D;
D = E;

end
end

endmodule

Nonblocking Assignment (<=) in Cyclic Behavior
 Effectively execute concurrently rather than sequentially

by blocked assignments
• Independent of the order where they are listed
 Simulator must

• Sample all variables referenced by RHS with nonblocking
assignments

• Held them in memory
• Use them to update LHS variables concurrently
 Before the assignments are evaluated

• Nonblocking makes NO dependency between statements
 Avoid having multiple behaviors assigning values to be

the same variable
• Otherwise, software race condition makes outcome

indeterminate
• For example, multi-driver case

Blocked (=) v.s. Nonblocking (<=)
 If no data dependency, results of blocked and

nonblocking assignments are identical
 Strongly recommend

• Blocked assignment for combinational logic using level
sensitive behavior

• Nonblocking assignments for edge sensitive behavior

Shift Register Using Nonblocking Assignments
module shiftreg_nb (A, E, clk, rst);

output A;
input E;
input clk, rst;
reg A, B, C, D;

always @ (posedge clk or posedge rst)
begin

if (rst)
begin A <= 0; B <= 0; C <= 0; D <= 0;

end
else
begin

A <= B; // D <= E;
B <= C; // C <= D;
C <= D; // B <= C;
D <= E; // A <= B;

end
end

endmodule

Linear-Feedback Shift Register (Type II LFSR) Dataflow

+ ++

cN-1

Clock

Y[1] Y[N-2] Y[N-1] Y[N]

Reset

cN= 1 c2 c1

R

Clk

D Q
R

Clk

D Q
R

Clk

D Q
R

Clk

D Q

0 01 1 0 0 0 1 91H

c[8:1] = [1100_1111]

Y[8]Y[1]

c[7] c[1]

++ + + +

Y[1: 8]

t

0 01 0 0 1 1 1 87H++ + + +

0 01 0 1 1 0 0 8CH++ + + +

1 00 0 0 1 1 0 46H++ + + +

LFSR --- RTL Dataflow
module Auto_LFSR_RTL (Y, Clock, Reset);

parameter Length = 8;
parameter [1: Length] initial_state = 8'b1001_0001; // 91h
parameter [1: Length] Tap_Coefficient = 8'b1111_0011;

input Clock, Reset;
output [1: Length] Y;
reg [1: Length] Y;

always @ (posedge Clock)
if (!Reset) Y <= initial_state; // Active-low reset to initial state

else begin
Y[1] <= Y[8];
Y[2] <= Tap_Coefficient[7] ? Y[1] ^ Y[8] : Y[1];
Y[3] <= Tap_Coefficient[6] ? Y[2] ^ Y[8] : Y[2];
Y[4] <= Tap_Coefficient[5] ? Y[3] ^ Y[8] : Y[3];
Y[5] <= Tap_Coefficient[4] ? Y[4] ^ Y[8] : Y[4];
Y[6] <= Tap_Coefficient[3] ? Y[5] ^ Y[8] : Y[5];
Y[7] <= Tap_Coefficient[2] ? Y[6] ^ Y[8] : Y[6];
Y[8] <= Tap_Coefficient[1] ? Y[7] ^ Y[8] : Y[7];

end
endmodule

LFSR --- RTL Repetitive Algorithm
module Auto_LFSR_ALGO (Y, Clock, Reset);

parameter Length = 8;
parameter [1: Length] initial_state = 8'b1001_0001;
parameter [1: Length] Tap_Coefficient = 8'b1111_0011;
input Clock, Reset;
output [1: Length] Y;
integer Cell_ptr;
reg Y;

always @ (posedge Clock)
begin

if (Reset == 0) Y <= initial_state; // Arbitrary initial state, 91h
else

begin
for (Cell_ptr = 2; Cell_ptr <= Length; Cell_ptr = Cell_ptr +1)

if (Tap_Coefficient [Length - Cell_ptr + 1] == 1)
Y[Cell_ptr] <= Y[Cell_ptr -1]^ Y [Length]; // ^ is xor

else
Y[Cell_ptr] <= Y[Cell_ptr -1];

Y[1] <= Y[Length];
end

end
endmodule

Verilog Repetitive Statements
 for, repeat, while, forever

• All activities of all iterations are done in one time step
• “disable” to terminate a named block
• Some logic synthesis tools can only synthesize “for” loop
 i.e., repeat, while, forever are not synthesizable in these tools

Verilog Statement
 Statement can be

• a single statement or
• a block statement (i.e. begin ... end)
 A named block statement

• i.e. begin: <block_name> ... end

Ones Counter
 Verilog bitwise right-shift operator (>>),filling with ‘0’

• Arithmetic right-shift (>>>)
 Compare the following two designs

// count_of_1s declares a named block of statements
// Original design
begin: count_of_1s

reg [7: 0] temp_reg;

count = 0;
temp_reg = reg_a; // load a data word
while (temp_reg)

begin
if (temp_reg[0])

count = count + 1;
temp_reg = temp_reg >> 1;

end
end

// Alternative
begin: count_of_1s

reg [7: 0] temp_reg;

count = 0;
temp_reg = reg_a; // load a data word
while (temp_reg)

begin
count = count + temp_reg[0];
temp_reg = temp_reg >> 1;

end
end

Find_First_One
 Find the location of the first 1 in a 16-bit word

• The word is assumed to contain at least one 1

module find_first_one (index_value, A_word, trigger);
output [3: 0] index_value;
input [15: 0] A_word;
input trigger;
reg [3: 0] index_value;

always @ (trigger)
begin: search_for_1

index_value = 0;
for (index_value = 0; index_value <= 15; index_value = index_value + 1)

if (A_word[index_value] == 1)
disable search_for_1;

end
endmodule

Multicycle Operations -- 4-cycle Adder
 Some digital machines have repetitive operations

distributed over multiple clock cycles
• Can be modeled in Verilog by a synchronous cyclic

behavior that has as many nested edge-sensitive event
control expressions as needed to complete the operations

• May not be synthesizable
 Example: 4-cycle adder

• To form the sum of four successive samples of a datapath
Store the samples in registers then use multiple adders
Or, one adder to accumulate the sum sequentially
 One FSM to control the 4-cycle operation and only one adder

 The resulting synthesized implementation

• To ensure proper re-initialization, “disable” is in each clock
cycle
Regardless when the “reset” is asserted

4-cycle Adder
module add_4cycle (sum, data, clk, reset);

output [5: 0] sum;
input [3: 0] data;
input clk, reset;
reg sum;

always @ (posedge clk) begin: add_loop
if (reset) disable add_loop; else sum <= data;

@ (posedge clk) if (reset) disable add_loop; else sum <= sum + data;
@ (posedge clk) if (reset) disable add_loop; else sum <= sum + data;

@ (posedge clk) if (reset) disable add_loop; else sum <= sum + data;
end

endmodule

dffrgpqb_a

sum[5:0]

+

esdpupd

esdpupd

esdpupd

mux_2a

mux_2a

mux_2a

mux_2a

dffspqb_a

dffrgpqb_a

dffrgpqb_a

dffrgpqb_a

dffrgpqb_a

dffrgpqb_a

dffspqb_a

reset

data[3:0]

esdpupd

esdpupd

esdpupd

esdpupd

esdpupd

One adder

Flip-Flops to
store SUM

Flip-Flops in
FSM, 4 states

Class Test 1

10/25/201934

Algorithmic State Machine (ASM) Charts
 State Transition Graphs (STGs)

• Indicate the transitions that result from inputs applied to the state machine
in a particular state

• Do not directly display the evolution of states under the application of
input data

 ASM Charts
• Abstraction of functionality of a sequential machine
 Reveal the sequential steps of a machine's activity

• Focus on activities rather than content of storage elements
 Example: the counter to be introduced shortly

 Three states: idle, incrementing and decrementing
 Independent of counter word width

• ASM chart elements
 state box
 decision box
 conditional box

• Clock governs transitions between states
• Linked ASM charts describe complex machines
 ASM charts represent both Mealy and Moore machines

ASM Chart Elements
 State box

• Each state box represents the state of the machine between
synchronizing clock events

 Decision box
 Conditional box

State Box
Decision Box

Conditional Output or
Register Operation Box

ASM Block

Asyn/Synchronous Reset in ASM

 Asynchronous reset: a RESET input to the reset
state box

 Synchronous reset: one decision box of RESET
input

S_running

count <= count + 1

0,3 1

2

count <= count - 1

reset_ count <= 0

up_dwn

S_running

reset_

count <= count + 1

0,3 1

2

count <= count - 1

count <= 0

up_dwn

1

ASM Chart (cont.)
 Only paths leading to a change in states are shown

in ASM
• If a variable not appear in a decision box on a path

leaving a state, then the path is independent of the value
of the variable

ASM Chart Example: Tail Light Controller
A Mealy Machine with Synchronous Reset

S_stop

rst

1
brake

S_slow

accel

1
brake

accel

S_med

1
brake

S_high

accel

1
brake

1

1

1

Tail_Lite

Tail_Lite

1

Tail_Lite

Tail_Lite

ASM and Datapath (ASMD) Charts
 To form an ASMD: modify ASM (i.e. controller) by annotating each

of its paths to indicate the concurrent register operations (i.e.
datapath operations) when the controller makes a transition along
the path

• Not in conditional boxes
• Not in state boxes
• Because the datapath registers are not part of the controller
 Fact: output generated by the controller controls the datapath register

 Clarify a design of a sequential machine by separating the design
of its datapath from the design of the controller

 ASMD chart maintains a clear relationship between a datapath and
its controller

• Outputs generated by the controller control the datapath register
• Outputs generated by datapath report the status of datapath back to the

controller

2:1 Decimator Using 2-stage Pipeline
 Used to move data from a high clock rate datapath to a

lower data rate datapath
• Can also used to convert data from a parallel format to a serial

format
 ASMD of the 2:1 decimator

• A Mealy machine with synchronous reset to S_idle
• An incomplete ASMD
Because no conditional outputs
 i.e the output of the controller to control how datapath works

 Such as adding an output for load-register

• E.g. “Ld” state represents load to R0 since R0<={P1,P0} on the
path leaving the state when Ld=1

• Note that datapath register operations made with a nonblocking
assignment are concurrent
Hence no race between R0<={P1,P0} and {P1,P0}<={0,0}

2:1 Decimator Using 2-stage Pipeline (cont.)

P1 <= Data
P0 <= P1

Ld

Ld 1

R0 <= {P1, P0}

S_1

En

S_full

P1 <= Data
P0 <= P1

S_wait

1

1

1rst

S_idle
{P1, P0} <= {0, 0}

En

1

{P1, P0} <= {0, 0}

P1 <= Data
P0 <= P1

8 8 8

Data

R0[15: 0]P1[7: 0] P0[7: 0]

P1[7: 0] P0[7: 0]

Synthesis of Sequence Recognizer
 Example: detect 3 consecutive 1s

• Assert D_out when a given pattern of consecutive bits
has been received in its serial input stream, D_in

• Apply data on the rising edge of the clock if the state
transitions are to occur on the falling edge of the clock,
and visa-versa
Recall the general rule for exercising FSM

Sequence
Recognizer

clk

D_in
D_out

clk
reset

En

clk

Conventions to Describe Sequence Recognizers

 The output of a Mealy machine is valid immediately
before the active edge of the clock controlling the
machine

• Data must be stable prior to active edge for at least the
setup time

 Successive values inputs are received in
successive clock cycles.

 A non-resetting machine continues to assert its
output if the input bit pattern is overlapping

 A resetting machine asserts for one cycle after
detecting the input sequence, and then de-asserts
for one cycle before detecting the next sequence of
bits

S_idle

reset
1

En

1

D_in

S_1

S_0 D_in

1 1

D_in

S_2

D_in

1

1

D_out

Mealy
Machine

S_idle

reset
1

En

1

D_in

S_1

S_0 D_in

1 1

D_in

S_2

D_in

S_3
/ D_out

1

D_in

1

1

Moore
Machine

Mealy and Moore ASMs (3 Consecutive 1s)

Mealy and Moore for 3 Consecutive 1s (cont.)

 Both are non-resetting
• How to modify them into resetting sequence recognizers?
 Moore has one more state than Mealy
 The Mealy machine anticipates D_in and asserts

D_out before the third clock
 The Moore machine does not anticipate D_in

• That is, the Moore machine asserts D_out in the state
reached after the third active edge of the clock

Sequence Recognizer for 3 Consecutive 1s (cont.)
module Seq_Rec_3_1s_Mealy

(D_out, D_in, En, clk, reset);
output D_out;
input D_in, En;
input clk, reset;
// Binary coding for states
parameter S_idle = 0;
parameter S_0 = 1;
parameter S_1 = 2;
parameter S_2 = 3;
reg[1: 0] state, next_state;

always @ (negedge clk)
if (reset == 1) state <= S_idle; else state <= next_state;

always @ (state or D_in) begin
case (state) // Partially decoded
S_idle: if ((En == 1) && (D_in == 1)) next_state = S_1;

else if ((En == 1) && (D_in == 0)) next_state = S_0;
else next_state = S_idle;

S_0: if (D_in == 0) next_state = S_0;
else if (D_in == 1) next_state = S_1;
else next_state = S_idle;

S_1: if (D_in == 0) next_state = S_0;
else if (D_in == 1) next_state = S_2;
else next_state = S_idle;

S_2: if (D_in == 0) next_state = S_0;
else if (D_in == 1) next_state = S_2;
else next_state = S_idle;

default: next_state = S_idle;
endcase

end
assign D_out = ((state == S_2) && (D_in == 1)); // Mealy output

endmodule

S_idle

reset 1

En

1

D_in

S_1

S_0 D_in
1 1

D_in

S_2

D_in

1

1
D_out

Mealy
Machine

Sequence Recognizer for 3 Consecutive 1s (cont.)
module Seq_Rec_3_1s_Moore

(D_out, D_in, En, clk, reset);
output D_out;
input D_in, En;
input clk, reset;
// Binary coding for states
parameter S_idle = 0;
parameter S_0 = 1;
parameter S_1 = 2;
parameter S_2 = 3;
parameter S_3 = 4;
reg[2: 0] state, next_state;

always @ (negedge clk)
if (reset == 1) state <= S_idle; else state <= next_state;

always @ (state or D_in) begin
case (state)
S_idle: if ((En == 1) && (D_in == 1)) next_state = S_1; else

if ((En == 1) && (D_in == 0)) next_state = S_0;
else next_state = S_idle;

S_0: if (D_in == 0) next_state = S_0; else
if (D_in == 1) next_state = S_1;
else next_state = S_idle;

S_1: if (D_in == 0) next_state = S_0; else
if (D_in == 1) next_state = S_2;
else next_state = S_idle;

S_2, S_3:if (D_in == 0) next_state = S_0; else
if (D_in == 1) next_state = S_3;
else next_state = S_idle;

default: next_state = S_idle;
endcase

end
assign D_out = (state == S_3); // Moore output

endmodule

S_idle

reset 1

En
1

D_in

S_1

S_0 D_in
1 1

D_in

S_2

D_in

S_3
/ D_out

1

D_in

1

1

Moore
Machine

Alternative Design for Sequence Recognizer
 Alternative approach: Shift input bits through a

register and detect contents
• Consider sequence recognizer as a datapath unit
• Such as a shift register
• Then compare the content of shift register with the

expected pattern
 Note: an explicit state machine implementation of

the alternative design for a sequence recognizer is
not necessarily the most efficient implementation

Alternative Design for Sequence Recognizer (cont.)

 The Mealy/Moore machines below are gated the
datapath with En

• What happens if En=0?
Register content will be lost

 Mealy has one less FF than Moore

D_out

QD

clk

QD

clk

clk

D_in
En

Mealy
QD

clk

D_in

D_out

QD

clk

QD

clk

clk

reset

En

Moore

Alternative Design for Sequence Recognizer (cont.)

module Seq_Rec_3_1s_Mealy_Shft_Reg (D_out, D_in, En, clk, reset);
output D_out;
input D_in, En;
input clk, reset;
parameter Empty = 2'b00;
reg [1: 0] Data;
always @ (negedge clk)

if (reset == 1) Data <= Empty; else if (En == 1) Data <= {D_in, Data[1]};
assign D_out = ((Data == 2'b11) && (D_in == 1)); // Mealy output depends on primary input

endmodule

module Seq_Rec_3_1s_Moore_Shft_Reg (D_out, D_in, En, clk, reset);
output D_out;
input D_in, En;
input clk, reset;
parameter Empty = 3’b000;
reg [2: 0] Data;
always @ (negedge clk)

if (reset == 1) Data <= Empty; else if (En == 1) Data <= {D_in, Data[2:1]};
assign D_out = (Data == 3'b111); // Moore output depends on state only

endmodule

Design of a Datapath Controller
1. Understand the problem

• Especially the register operations that must execute on a given datapath architecture
2. Define ASM

• A state machine controlled by primary inputs and status of datapath register (i.e. the
feedback linkage from datapath to controller)

3. Create ASMD
• Annotating ASM with datapath operations associated with state transitions (i.e. path) of

the controller
• Register operation of ASMD written in register transfer notations with NONBLOCKING

assignments
 since they are executed concurrently in the datapath

4. Controller outputs to datapath
• For Moore machines: Annotate state of the controller with unconditional output signals

(i.e. outputs of a state)
• For Mealy machines: Include conditional boxes for controller output signals to control

datapath
5. Feedback linkage from datapath to controller

• If there are signals reports status of datapath back to the controller, then use decision
box

6. Integration
• Integrate the verified datapath module and the verified controller module with one

parent module to verify the overall functionality

Counters and Registers
 Storage elements of counters and registers usually

have the same synchronizing and control signals
• One exception: ripple counter
Connects the output of a stage to the clock input of an adjacent

stage

 Counters with asynchronous reset
 Ring counter
 Up/down/load counter
 Shift register
 Parallel load register
 Universal shift register
 Register file

Counters
 The ASM/ASMD have no indication of the bit-width of

the counter
 Three states: S_idle, S_incr and S_decr

• May be further simplified to a single state, S_running
 2-bit input up_down to count up(1), count down(2) and

hold the count (0 and 3)
 Active low asynchronous reset

Counters(3 states) with Async Reset_

S_idle

S_incrup_dwn up_dwn

1

2

up_dwn

2

S_decr
12

0,31

0,30,3

reset_

Counters (cont.)

Counters (3 states) with Async Reset_ (cont.)

module Up_Down_Implicit1 (count, up_dwn, clock, reset_);
output [2: 0] count;
input [1: 0] up_dwn;
input clock, reset_;

reg [2: 0] count;

always @ (negedge clock or negedge reset_)
if (reset_ == 0) count <= 3'b0; else

if (up_dwn == 2'b00 || up_dwn == 2'b11) count <= count; else
if (up_dwn == 2'b01) count <= count + 1; else

if (up_dwn == 2'b10) count <= count –1;

endmodule

• It is an implicit state machine
– No explicit states (S_idle, S_incr, S_decr) used in the design
– Implemented using if-then-else within edge-sensitive

behavior

Simplified Counter ASMDs with Async/Sync Reset_

S_running

count <= count + 1

0,3 1

2

count <= count - 1

reset_ count <= 0

up_dwn

S_running

reset_

count <= count + 1

0,3 1

2

count <= count - 1

count <= 0

up_dwn

1

Ring Counter
 Ring counter asserts a single bit that circulates

through the counter in a synchronous manner

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1

0 00 0 0 0 1

0 0 00 0 0 1

0 0 0 00 0 1

0 0 0 0 00 1

0 0 0 0 0 01

0

0

0

0

0

0

0

count [7:0]

t

0 0 0 0 0 0 0 1

Ring Counter (cont.)
 Activity of the machine is the same in every clock

cycle
 This implementation is an implicit state machine

module ring_counter (count, enable, clock, reset);
output [7: 0] count;
input enable, reset, clock;
reg [7: 0] count;

always @ (posedge reset or posedge clock)
if (reset == 1'b1) count <= 8'b0000_0001; else

if (enable == 1'b1) count <= {count[6: 0], count[7]}; // Concatenation operator
endmodule

VHDL:: count <= count[6: 0] & count[7];

Up/Down/Load Counter

module up_down_counter (Count, Data_in, load, count_up, counter_on, clk, reset);
output [2: 0] Count;
input load, count_up, counter_on, clk, reset,;
input [2: 0] Data_in;
reg [2: 0] Count;

always @ (posedge reset or posedge clk)
if (reset == 1'b1) Count <= 3'b0; else

if (load == 1'b1) Count <= Data_in; else
if (counter_on == 1'b1) begin

if (count_up == 1'b1) Count <= Count +1;
else Count <= Count –1;

end
endmodule

D_inu/d

ld

rst

cnt

clk count

3

3

count_up

load

reset

counter_on

clk

Data_in

Count

Shift Register
 Remember the “model trap”

• Must use nonblocking assignments in this design
module Shift_reg4 (Data_out, Data_in, clock, reset);

output Data_out;
input Data_in, clock, reset;
reg [3: 0] Data_reg;

assign Data_out = Data_reg[0];

always @ (negedge reset or posedge clock)
begin

if (reset == 1'b0) Data_reg <= 4'b0;
else Data_reg <= {Data_in, Data_reg[3:1]}; //shift right

end
endmodule

clock

Data_in

R

QD

R

QD

R

QD

R

QD

reset

Data_out

Parallel Load Register
 MUX is synthesized from “else if (load==1’b1)”

• How about “else” i.e. (load==1’b0)?
 If not specified, retain the previous value

module Par_load_reg4 (Data_out, Data_in, load, clock, reset);
input [3: 0] Data_in;
input load, clock, reset;
output [3: 0] Data_out; // Port size
reg Data_out; // Data type
always @ (posedge reset or posedge clock)

begin
if (reset == 1'b1)

Data_out <= 4'b0;
else if (load == 1'b1)

Data_out <= Data_in;
end

endmodule

clock

Data_in[3]

R

QD

R

QD

R

QD

R

QD

Data_in[2] Data_in[1] Data_in[0]

reset

Data_out[3] Data_out[2] Data_out[1] Data_out[0]

muxmuxmuxmux

load

Shift Registers
 Shift register with parallel load

• later
 Arithmetic shift register

• For signed number operation
MSB is preserved

• Shift-left: multiply by 2
• Shift-right: divide by 2

Universal Shift Register
module Universal_Shift_Reg

(Data_Out, MSB_Out, LSB_Out, Data_In, MSB_In, LSB_In, s1, s0, clk, rst);
output [3: 0] Data_Out;
output MSB_Out, LSB_Out;
input [3: 0] Data_In;
input MSB_In, LSB_In;
input s1, s0, clk, rst;
reg Data_Out;

assign MSB_Out = Data_Out[3];
assign LSB_Out = Data_Out[0];

always @ (posedge clk) begin
if (rst) Data_Out <= 0;
else case ({s1, s0})

0: Data_Out <= Data_Out; // Hold
1: Data_Out <= {MSB_In, Data_Out[3:1]}; // Serial shift from MSB
2: Data_Out <= {Data_Out[2: 0], LSB_In}; // Serial shift from LSB
3: Data_Out <= Data_In; // Parallel Load

endcase
end

endmodule

Universal_Shift_Reg

MSB_In

MSB_Out

LSB_In

LSB_Out

Data_In

Data_Out

clk
rst

s0

s1

Register File
Read_Addr_1

Read_Addr_2
Data_Out_1

Data_Out_2

Write_Addr

Data_In

5

5

5

32

32
32

Register File

Write_Enable
Clock

Alu_Zero
Data_out

opcode

module Register_File (Data_Out_1,Data_Out_2,Data_in,
Read_Addr_1,Read_Addr_2,Write_Addr,Write_Enable,Clock);

output [31: 0] Data_Out_1, Data_Out_2;
input [31: 0] Data_in;
input [4: 0] Read_Addr_1, Read_Addr_2, Write_Addr;
input Write_Enable, Clock;
reg [31: 0] Reg_File [31: 0]; // 32bit x32 word memory declaration

assign Data_Out_1 = Reg_File[Read_Addr_1];
assign Data_Out_2 = Reg_File[Read_Addr_2];
always @ (posedge Clock) begin

if (Write_Enable) Reg_File [Write_Addr] <= Data_in;
end

endmodule

“Concept of Memory” in Verilog
 Memory

• Declaration an array of words
• E.g. reg [31:0] data_out; // one 32-bit word

reg [31:0] Reg_file [31:0]; // 32x32 bit word memory
 Verilog does not support 2-dimensional array

• However, a word in a Verilog memory can be addressed directly
 E.g., Reg_file [12]

• A cell bit in a word can also be addressed indirectly by first loading
the word into a buffer register then addressing the bit of the word
 E.g. Data_out = Reg_file [12];

Data_out [1:0]
 Decoder are synthesized automatically by synthesis tool

in Reg_file[] to decode the address which locates a
specific register

	Lecture 5 - Modeling for Synthesis�Register Transfer Level (RTL) Design�
	Register Transfer Language (RTL) Design
	RTL register model
	Asynchronous control inputs
	Synchronous reset/set
	Register with clock enable
	Register with parameterized width
	Instantiating the parameterized register
	2-to-1 mux with parameterized data size
	Other types of generic parameters
	IEEE Std. 1076.3 Synthesis Libraries
	NUMERIC_STD package contents
	Arithmetic with NUMERIC_STD package
	Conversion of “closely-related” types
	Conversion of “closely-related” types
	Example – binary counter
	Using a “variable” to describe sequential behavior within a process
	Counting to some max_value (not 2n)
	Decrementer and comparator
	Verilog Modeling Trap
	Example:Modeling Trap of a Shift Register
	Nonblocking Assignment (<=) in Cyclic Behavior
	Blocked (=) v.s. Nonblocking (<=)
	Shift Register Using Nonblocking Assignments
	Linear-Feedback Shift Register (Type II LFSR) Dataflow
	LFSR --- RTL Dataflow
	LFSR --- RTL Repetitive Algorithm
	Verilog Repetitive Statements
	Verilog Statement
	Ones Counter
	Find_First_One
	Multicycle Operations -- 4-cycle Adder
	4-cycle Adder
	Class Test 1
	Algorithmic State Machine (ASM) Charts
	ASM Chart Elements
	Asyn/Synchronous Reset in ASM
	ASM Chart (cont.)
	ASM Chart Example: Tail Light Controller�A Mealy Machine with Synchronous Reset
	ASM and Datapath (ASMD) Charts
	2:1 Decimator Using 2-stage Pipeline
	2:1 Decimator Using 2-stage Pipeline (cont.)
	Synthesis of Sequence Recognizer
	Conventions to Describe Sequence Recognizers
	Mealy and Moore ASMs (3 Consecutive 1s)
	Mealy and Moore for 3 Consecutive 1s (cont.)
	Sequence Recognizer for 3 Consecutive 1s (cont.)
	Sequence Recognizer for 3 Consecutive 1s (cont.)
	Alternative Design for Sequence Recognizer
	Alternative Design for Sequence Recognizer (cont.)
	Alternative Design for Sequence Recognizer (cont.)
	Design of a Datapath Controller
	Counters and Registers
	Counters
	Counters(3 states) with Async Reset_
	Counters (cont.)
	Counters (3 states) with Async Reset_ (cont.)
	Simplified Counter ASMDs with Async/Sync Reset_
	Ring Counter
	Ring Counter (cont.)
	Up/Down/Load Counter
	Shift Register
	Parallel Load Register
	Shift Registers
	Universal Shift Register
	Register File
	“Concept of Memory” in Verilog

