
Lecture 4 – Finite State

Machines

1 9/26/2019

Modeling Finite State Machines (FSMs)

▪ “Manual” FSM design & synthesis process:
1. Design state diagram (behavior)

2. Derive state table

3. Reduce state table

4. Choose a state assignment

5. Derive output equations

6. Derive flip-flop excitation equations

▪ Steps 2-6 can be automated, given a state diagram
1. Model states as enumerated type

2. Model output function (Mealy or Moore model)

3. Model state transitions (functions of current state and inputs)

4. Consider how initial state will be forced

2 9/26/2019

FSM structure

Combinational

Circuit

Memory

Elements

Inputs

X
Outputs

Y

Next State

(NS)

Present State

(PS)

Clock

3 9/26/2019

Mealy Machine and Moore Machine

9/26/20194

Next State

Combinational

Logic

Inputs
State

Register
Outputs

Output

Combinational

Logic

clock

Moore Machine

Next State

Combinational

Logic

Inputs

State

Register

Outputs

Output

Combinational

Logic

clock

Mealy Machine

FSM example – Mealy model

B/0
C/1
A/1

0/0

1/1 1/0

1/1

0/0

0/0

X/Z
Present

state

Input x
0 1

Next state/output

A/0
A/0
C/0

A
B
C

A

BC

entity seqckt is

port (x: in std_logic; -- FSM input

z: out std_logic; -- FSM output

clk: in std_logic); -- clock

end seqckt;

5 9/26/2019

FSM example - behavioral model

architecture behave of seqckt is

type states is (A,B,C); -- symbolic state names
(enumerate)

signal state: states; --state variable

begin

-- Output function (combinational logic)

z <= ‘1’ when ((state = B) and (x = ‘1’)) --all conditions

or ((state = C) and (x = ‘1’)) --for which z=1.

else ‘0’; --otherwise z=0

-- State transitions on next slide

6 9/26/2019

FSM example – state transitions
process (clk) – trigger state change on clock transition

begin
if rising_edge(clk) then -- change state on rising clock edge

case state is -- change state according to x
when A => if (x = ‘0’) then

state <= A;
else -- if (x = ‘1’)

state <= B;
end if;

when B => if (x=‘0’) then
state <= A;

else -- if (x = ‘1’)
state <= C;

end if;
when C => if (x=‘0’) then

state <= C;
else -- if (x = ‘1’)

state <= A;
end if;

end case;
end if;

end process;

7 9/26/2019

FSM example – alternative model

architecture behave of seqckt is

type states is (A,B,C); -- symbolic state names
(enumerate)

signal pres_state, next_state: states;

begin

-- Model the memory elements of the FSM

process (clk)

begin

if (clk’event and clk=‘1’) then

pres_state <= next_state;

end if;

end process;

(continue on next slide)

8 9/26/2019

FSM example (alternate model, continued)

-- Model next-state and output functions of the FSM

-- as combinational logic

process (x, pres_state) -- function inputs

begin

case pres_state is -- describe each state

when A => if (x = ‘0’) then

z <= ‘0’;

next_state <= A;

else -- if (x = ‘1’)

z <= ‘0’;

next_state <= B;

end if;

(continue on next slide for pres_state = B and C)

9 9/26/2019

FSM example (alternate model, continued)

when B => if (x=‘0’) then

z <= ‘0’;

next_state <= A;

else

z <= ‘1’;

next_state <= C;

end if;

when C => if (x=‘0’) then

z <= ‘0’;

next_state <= C;

else

z <= ‘1’;

next_state <= A;

end if;

end case;

end process;

10 9/26/2019

Alternative form for output and next state

functions (combinational logic)

-- Next state function (combinational logic)

next_state <= A when ((curr_state = A) and (x = ‘0’))

or ((curr_state = B) and (x = ‘0’))

or ((curr_state = C) and (x = ‘1’)) else

B when ((curr_state = 1) and (x = ‘1’)) else

C;

-- Output function (combinational logic)

z <= ‘1’ when ((curr_state = B) and (x = ‘1’)) --all conditions

or ((curr_state = C) and (x = ‘1’)) --for which z=1.

else ‘0’; --otherwise z=0

11 9/26/2019

Moore model FSM

entity FSM is

port (CLK, EN, TDI: in bit;

RST, SHIFT: out

bit);

end entity FSM;
12 9/26/2019

Write a VHDL code using three process blocks!

13 9/26/2019

How Verilog Explicit FSM Works

▪ The nonblocking and blocked assignments are scheduled

in the same time step of the simulation in a particular order

1. The nonblocking assignments in the edge-sensitive behavior are

sampled first at the beginning of the time step (i.e. before any

assignments are made)

2. The blocked assignments in level-sensitive behavior are then

executed (with the previous register value because there is no

assignment done in Step 1)

3. After Step 2, the nonblocking assignments are completed by

assigning LHS variables with the values that were sampled at Step 1

Verilog Explicit FSM Design and Synthesis Tips

▪ Use 2 cyclic behaviors for an explicit state machine
• One level-sensitive behavior for combinational logic to describe the

next state and output logic

• One edge-sensitive behavior for state flip-flops to synchronize state
transition

▪ In the level-sensitive behavior for N/S and O/P
• Use blocked assignments/procedural assignments “=“

• Completely specify all outputs

➢Can be achieved by initializing all outputs in the beginning

▪ In the edge-sensitive behavior for state transition
• Use nonblocking assignments “<=“

➢ For state transition

➢ For register transfer of a data path

▪ Always decode all possible states in the level sensitive
behavior

• To avoid unnecessary latches

Decode All Possible States!

▪ Matching simulation results between behavioral model and a

synthesized circuit does NOT guarantee that an implementation is

correct !

• Unless exercising all possible input sequences

➢ Which is almost impossible to do

• Because, if the testbench exercises the circuit only allowable input

sequences, then it is not sufficient to verify the circuit’s behaviors that are

not covered by the exercise of the testbench

Verilog: Mealy Machine

9/26/201917

Verilog: Mealy Machine– Cont.

9/26/201918

always @(state or x)

begin

parity = 1'b0;

case(state)

S0: if(x)

begin

parity = 1; nextstate = S1;

end

else

nextstate = S0;

S1: if(x)

nextstate = S0;

else

begin

parity = 1; nextstate = S1;

end

default:

nextstate = S0;

endcase

end

endmodule

module mealy_2processes(input clk,

input reset, input x, output reg

parity);

reg state, nextstate;

parameter S0=0, S1=1;

always @(posedge clk or posedge

reset)

if (reset)

state <= S0;

else

state <= nextstate;

*Xilinx Documentation

Verilog: Mealy Machine– Cont.

9/26/201919

*Xilinx Documentation

module mealy_3processes(input clk, input

reset, input x, output reg parity);

reg state, nextstate;

parameter S0=0, S1=1;

always @(posedge clk or posedge reset)

if (reset)

state <= S0;

else state <= nextstate;

always @(state or x) //Output Logic

begin

parity = 1'b0;

case(state)

S0: if(x)

parity = 1;

S1: if(!x)

parity = 1;

endcase

end

always @(state or x) // Nextstate Logic

begin

nextstate = S0;

case(state)

S0: if(x) nextstate = S1;

S1: if(!x) nextstate = S1;

endcase

end

endmodule

Verilog: Moore Machine

9/26/201920

*Xilinx Documentation

module mealy_3processes(input clk, input

reset, input x, output reg parity);

reg state, nextstate;

parameter S0=0, S1=1;

always @(posedge clk or posedge reset)

if (reset)

state <= S0;

else state <= nextstate;

always @(state) // Output Logic

begin

case(state)

S0: parity = 0;

S1: parity = 1;

endcase

end

always @(state or x) // Nextstate Logic

begin

nextstate = S0;

case(state)

S0: if(x) nextstate = S1;

S1: if(!x) nextstate = S1;

endcase

end

endmodule

FSM Example: BCD-to-Excess-3 Code Converter (Mealy)

▪ BCD-to-Excess-3 Code Converter for manual design

• A serially-transmitted BCD (8421 code) word is to be converted into an

Excess-3 code

➢ Bin transmitted in sequence, LSB first

• An Excess-3 code word is obtained by adding 3 to the decimal value

and taking the binary equivalent.

➢ Excess-3 code is self-complementing

Decimal 8-4-2-1 Excess-3

Digit Code Code

(BCD)

0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100

9’s complement

can be obtained by

inverting

BCD-to-Excess-3 Code Converter (cont.)

Excess-3

Code

Converter

clk

B
out

 = 8
Excess-3

1 0 0 0
+

1 1 10

B
in

= 8
 bcd

B
out

0 0 1 1

1 0 1 1

LSBMSB

0 0 0 1

t

LSB MSB

t

MSB

B
in

S_5

S_0

input / output

1/00/1

0/1

0/0, 1/1

1/0

0/1
1/0

0/10/0, 1/1

0/0, 1/1

S_1 S_2

S_4S_3

S_6

reset

Bin(0)

Bin(1)

Bin(2)

Bin(3)

BCD-to-Excess-3 Code Converter (cont.)

module BCD_to_Excess_3b (B_out, B_in, clk, reset_b);

output B_out;

input B_in, clk, reset_b;

parameter S_0 = 3'b000, // State assignment, which may be omitted

S_1 = 3'b001, // If omitted, allow synthesis tool to assign

S_2 = 3'b101,

S_3 = 3'b111,

S_4 = 3'b011,

S_5 = 3'b110,

S_6 = 3'b010,

dont_care_state = 3'bx,

dont_care_out = 1'bx;

reg[2: 0] state, next_state;

reg B_out;

BCD-to-Excess-3 Code Converter (cont.)

always @ (posedge clk or negedge reset_b) // edge-sensitive behavior with NBAs

if (reset_b == 0) state <= S_0; else state <= next_state;

always @ (state or B_in) begin // level-sensitive behavior with blocked assignments

B_out = 0; // initialize all outputs here

case (state) // explicit states

S_0: if (B_in == 0) begin next_state = S_1; B_out = 1; end

else if (B_in == 1) begin next_state = S_2; end // Mealy machine

S_1: if (B_in == 0) begin next_state = S_3; B_out = 1; end

else if (B_in == 1) begin next_state = S_4; end

S_2: begin next_state = S_4; B_out = B_in; end

S_3: begin next_state = S_5; B_out = B_in; end

S_4: if (B_in == 0) begin next_state = S_5; B_out = 1; end

else if (B_in == 1) begin next_state = S_6; end

S_5: begin next_state = S_0; B_out = B_in; end

S_6: begin next_state = S_0; B_out = 1; end

/* default: begin next_state = dont_care_state;

B_out = dont_care_out; end */

endcase

end

endmodule

Zero Detector

▪ Asserting its output when a 0 is detected in a

stream of 1s.

9/26/201925

Zero Detector: Mealy Machine

9/26/201926

Zero Detector: Mealy Machine

9/26/201927

//Verilog 2001, 2005 syntax

module Mealy_Zero_Detector (

output reg y_out,

input x_in, clock, reset

);

reg [1: 0] state, next_state;

parameter S0 = 2'b00, S1 = 2'b01,

S2 = 2'b10, S3 = 2'b11;

always @ (posedge clock, negedge reset)

if (reset == 0) state <= S0;

else state <= next_state;

always @ (state, x_in) // Next state

case (state)

S0: if (x_in) next_state = S1; else next_state = S0;

S1: if (x_in) next_state = S3; else next_state = S0;

S2: if (~x_in) next_state = S0; else next_state = S2;

S3: if (x_in) next_state = S2; else next_state = S0;

endcase

always @ (state, x_in) // Mealy output

case (state)

S0: y_out = 0;

S1, S2, S3: y_out = ~x_in;

endcase

endmodule

Binary Counter: Moore Machine

9/26/201928

Binary Counter: Moore Machine

▪ Write a Verilog code for Binary Counter (Moore

Machine).

9/26/201929

