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Abstract—The surge in counterfeit Integrated Circuits (ICs) in
the electronics supply chain, particularly those reclaimed from
recycled components of old and discarded electronics, poses a
significant threat to our critical infrastructures. Unfortunately,
this threat persists due to the absence of effective detection
techniques. In pursuing a reliable detection method, a previous
study introduced the idea of identifying recycled ICs using
SRAM power-up states, leveraging the inherent symmetry in
the logic states of 0s and 1s in newly manufactured SRAM cells.
However, in SRAMs produced with older technology nodes,
the reference parameter of 50% 1s is often less prominent
due to systematic design variation biasing all cells in a specific
direction. To address this challenge, this paper proposes a robust
self-referencing approach for detecting recycled ICs. The power-
up states of an IC under test are segmented into subregions for
similarity analysis of the percent of 1s within them. Our study
establishes that the percent of 1s in all subregions of a newly
manufactured IC is statistically more similar to each other than
that in a recycled IC. Our experimental results demonstrate a
substantial rise in the standard deviation of the percent of 1s
for subregions in the aged SRAM, occurring after just a few
days of aging. This approach aims to enhance the reliability
of counterfeit IC detection, particularly in the context of older
technology nodes where conventional methods may fall short.

Index Terms—Recycled IC, SRAM power-up state, process
variation, aging.

I. INTRODUCTION

The rising threat of counterfeit integrated circuits (ICs) and
system-on-chips (SoCs) obtained from discarded electronics
being recycled and sold as new continues to grow due to
the lack of effective detection techniques. The entry of such
knock-off ICs into key systems comprising the critical global
infrastructure can result in system and security failures with
potentially disastrous consequences for societal well-being.
IHS Inc. has reported that counterfeit ICs represent a potential
annual risk of $169 billion in the global supply chain [1].
These recycled ICs often exhibit poorer reliability, reduced
useful remaining lifetime, and degraded performance [2], [3].
The crude process of disassembly, cleaning, and restoration
often employed to a recycled part as new can also create
additional defects, resulting in electrostatic damage and other
anomalies that can cause system malfunction [2]–[5]. As most
Department of Defense (DoD) infrastructures are designed
well beyond their lifetime of electronics, they are critically
dependent on a continuing supply of legacy commercial
off-the-shelf (COTS) components for maintenance and repair
and often encounter recycled parts. It is thus essential to

detect counterfeits efficiently to prevent the widespread
infiltration of these parts in the semiconductor supply chain.

This paper aims to develop reliable electrical aging-based
counterfeit detection tests using self-referencing methods. As
the degradation of electrical parameters from aging is compa-
rable with manufacturing process variation, prior approaches
require storing device-specific parameters for all new ICs
for later use as the reference parameter, which is practically
infeasible considering all different part types. This paper’s
proposed robust self-referencing test methodologies address
the shortcomings of the prior approaches and have the follow-
ing properties for broad adoption. First, these tests will not
require the generation of databases of characterization tags for
every new IC. Second, no hardware modification to an existing
design is necessary to implement these tests to target various
chips, including older legacy COTS parts. Finally, the test lab-
oratories do not need to know the circuit details of a chip. Only
accessing memory is required to obtain the power-up states.

The test method developed by Guin et al. [6] detects
recycled ICs that use the 50 percent (%) 1s in the SRAM
power-up states as the time zero reference parameter. As all the
SRAM cells are designed to be completely symmetric in layout
to maximize noise margins, an unbiased SRAM cell powers
up a state equally likely to logic 0 and logic 1, resulting in
a close 50% of 1s (p1s) or 0s (p0s) in a newly manufactured
SRAM chip. This is because the statistically significant
number of cells in an SRAM array cancels the effect of
noise and random process variation, which is Gaussian. The
above approach for identifying recycled SRAMs has shown
potential in identifying recently manufactured chips where
random process variations dominated over design variations.
The systematic variation from the fabrication mask designs
can play an important role in the power-up state. Often, in
such legacy SRAMs, the combined effect of random process
variations and aging stress is too small to influence the
power-up state due to this stronger systematic design bias.
This changes the balance of the power-up statistics of 50 p1s.

This paper presents a novel approach, using self-referencing,
to detect COTS SRAMs where the initial power-up statistics
of 1s and 0s are not symmetric to 50%. The self-referencing
approach relies on differential aging resulting from the
asymmetry of the 1s and 0s in the data stored on the SRAM
chip during normal operation. Previous studies, such as the
work by Guin et al. [6], have established that an SRAM cell979-8-3503-6378-4/24$31.00 ©2024 IEEE



is more likely to power up with a 1 if it has been aged with a
0. Consequently, the portion of the SRAM chip that initially
contains more 1s during the aging process is likely to power
up with more 0s and vice versa. This inherent differential
aging phenomenon manifests in the variance of the p1s (or
p0s) when the SRAM power-up state is divided into smaller
regions and p1s (p0s) is computed for each. Our experimental
findings reveal a significant increase in the standard deviation
(σ) in an aged SRAM when contrasted with the new SRAM
after merely a few days of aging. This increase in variance
demonstrates the efficacy of the self-referencing approach
in detecting deviations from symmetric power-up statistics,
providing a promising avenue for detecting recycled ICs.

The rest of the paper is organized as follows. Section II
covers prior works on the detection of recycled ICs. Section III
elaborates on the underlying principle of the self-referencing
test method introduced in this paper. We present and analyze
the experimental findings in Section IV. Finally, we conclude
the paper based on our findings in Section V.

II. PRIOR WORK

Extensive prior work has been performed on identifying
recycled ICs through different tests, including physical
inspection, electrical tests, aging data analysis, design-for-
anti-counterfeit, and image processing methods. Several
standards have been developed (e.g., AS6171 [7], CCAP-
101 [8], and IDEA-STD-1010 [9]), which recommend
physical inspection and electrical tests for counterfeit
detection. These tests primarily focus on detecting significant
defects and anomalies in the recycled parts. However, used
parts extracted from discarded electronics with minimal
physical damage can often escape detection.

While traditional physical and electrical tests aim to detect
physical damage to identify used and recycled parts, statistical
data analysis approaches attempt to target the circuit’s elec-
trical degradation (wear-out) from mechanisms such as NBTI
using statistical references from a large and diverse collection
of new parts [10]–[13]. In addition, Several Design-for-Anti-
Counterfeit measures have been proposed as an alternative to
the conventional test methods [14]–[23]. Unfortunately, all of
these solutions require on-chip hardware and cannot be applied
to older ICs already in use and circulating in the market.

Recycled IC detection using machine learning through im-
ages from optical and X-ray inspections can also be used [7],
[9], [24]–[27]. Training in the machine learning approaches
requires new chips, which may not be readily available for ob-
solete or legacy parts. As counterfeiting is an evolving threat,
re-training the machine learning model becomes necessary as
counterfeiters improve their process technologies over time.

Thus, identifying a chip as recycled based on either electri-
cal parameter shift or physical inspection over time critically
requires the initial parameter values for a new and unused part
against which any degradation can be evaluated. These prior
approaches suffered from the lack of an accurate reference
parameter due to the significant process variations experienced
in IC manufacturing. Such starting differences in circuit pa-
rameters among new parts can often exceed any changes from
aging in operation. This makes recycling detection virtually
impossible, except for improbable cases where the target
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Figure 1: Conceptual view of differential aging-based recycled
IC detection.

parameters for individual ICs were measured at manufacturing
and are still available when the part is to be evaluated many
years, even decades later. To address these shortcomings,
Guin et al. developed an effective approach that uses the
50% 1s in the SRAM power-up states as the golden reference
parameter [6]. Unfortunately, the legacy COTS SRAM chips,
manufactured with older technology nodes, do not have a
uniform distribution of 1s and 0s in the power-up state, and
50% of 1s can not be used as the reference parameter.

III. PROPOSED SELF-REFERENCING APPROACH

The core principle of the self-referencing approach is
centered on the hypothesis of differential aging within SRAM
cells. It posits that, over time, these cells may undergo
distinctive aging degradation, thereby impacting their power-
up characteristics. This premise delves into the dynamic
nature of aging degradation, emphasizing the influence of
non-uniform data stored in the array, which contributes to non-
uniformity in the aging process. The initial power-up state of
a new device exhibits uniformity, determined almost entirely
by random manufacturing process variation. Previous research
has indicated that subjecting an SRAM cell containing a
particular logic value during the aging results in a gradual
reduction of the probability of the memory cell initializing to
the same logic value upon successive power-ups [6].

When this characteristic is extrapolated to the entire device,
it becomes evident that the power-up state exhibits a growing
inverse correlation with the loaded data over time. In other
words, if a device is aged with a deterministic dataset, its
power-up state begins to mirror determinism. Consequently, it
is no longer solely determined by incidental factors; instead,
the power-up state of an SRAM device invariably succumbs to
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Figure 2: An SRAM array with bitline twisting.

aging effects over time. As the uniformity of power-up values
deteriorates, certain sections or “blocks” of this power-up
state retain logic-1 or logic-0 values inconsistent with the
average incidence rate of these values across all memory
cells in the device.

Figure 1 shows the overall concept of recycled IC detection
using the self-referencing approach. In the power-up state of
a new SRAM device, logic 1s, and logic 0s are uniformly
distributed due to Gaussian manufacturing process variation, as
depicted in Figure 1(a). Consequently, blocks of varying sizes,
such as B01, B02, and smaller ones like b21, b56, will exhibit
similar statistics of logic 1s, denoted as p1s. Conventionally,
the data stored in SRAM during normal operation, such as
firmware for an IoT device, does not exhibit a uniform distribu-
tion of 1s or 0s. Instead, there are distinct regions with varying
concentrations of 1s and 0s, as illustrated in Figure 1(b). The
aging process of an SRAM, influenced by non-uniform data,
exerts a notable impact on the subsequent power-up states.
This imprinting effect is evident in Figure 1(c). Consequently,
regions like b21, which were initially uniform, undergo a shift
towards a higher presence of 0s when aged with predominantly
1s. Conversely, regions like b56 exhibit an increased presence
of 1s after being aged with predominantly 0s.

We exploit this phenomenon by examining the occurrence
of the percentage of 1 values (p1s) in memory cells on a block-
by-block basis and monitoring the standard deviation (σ) of
p1s. Aging effects lead to a deterioration in the uniformity
of the SRAM power-up state. Consequently, the discrepancy
between blocks intensifies, resulting in an elevated recorded σ
value, as illustrated in Figure 1(d). Finally, the shift in σ with
varying block sizes illustrates the distinction between a new
chip and an aged one, shown in Figure 1(e). This discrepancy
arises due to the nature of the clustering of 1s and 0s across
a power-up state. When considering the p1s of a larger block
like B01, it tends to be akin to that of B02 even after aging. In
such expansive regions, identifying non-uniformity becomes
challenging, as concentrations of 1s and 0s tend to balance
out overall. However, when focusing on smaller regions like
b21 or b56, these differences become more apparent, allowing
for a clearer observation of concentrated pockets of 1s and 0s.
Given the minimal non-uniformity in the power-up state of
a new device, p1s values remain consistently similar, leading
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Figure 3: Proposed approach for detecting COTS SRAM chips.

to a more stable σ with less variance across block sizes. By
contrasting σ with block size, a definitive distinction between
aged and new SRAM COTS becomes evident.

While the assumption that the power-up state of an SRAM
is uniform holds true for newer technologies, legacy SRAM
devices often feature bitline twisting, also known as bitline
interleaving. As shown in Figure 2, this process swaps the
positioning of BL and BL after a certain number of memory
cells. This process typically occurs two or more times within
one device, causing the bitmaps of these legacy chips to
consist of “bands” in accordance with the number of twists.
These bands are inherently biased to logic 1 or logic 0, causing
a bitmap to inherit dark or light regions upon power-up.
Though all SRAM cells are designed with perfect symmetry,
the cumulative effect of node capacitors can skew the overall
BL and BL capacitances [28], biasing portions of the power-
up state to 0 or 1. It is because of this factor that the power-up
state of a legacy SRAM device must be pre-processed.

Figure 3 shows the proposed flow of the self-referencing
approach to detect recycled COTS SRAM chips manufactured
with older technology nodes. The chip is first powered up
to obtain the initial power-up states. To address the bitline
flipping in legacy SRAMs, it becomes necessary to pre-process
the bitmap. This pre-processing operation involves inverting
the power-up states of the complementary bands. Through this
step, a relatively consistent power-up state is achieved, devoid
of any discernable bands. After pre-processing, the uniform
bitmap is split into blocks of size m×m. The percent of 1s,
p1s, in the memory cells of each block is then computed.
Following the computation of p1s, the standard deviation
(σ) of the p1s in each sub-block is calculated. This entire
sequence, spanning from the division of the bitmap into blocks
to the calculation of σ, is carried out for a range of n values.



Algorithm 1: Preprocessing of SRAM power-up states.
Input : SRAM power-up state (OPS), number

of chip sections (B), sections to flip (F )
Output: Bitline compensated power-up state (BCPS)

1 function setSectionLimits (OPS,B) is
2 BL← length(OPS)/B;
3 PSS[][]← ∅;
4 for i← 0 to B do
5 PSS[i][0 : (BL− 1)]←

OPS[i ∗BL : ((i+ 1) ∗BL− 1)];
6 end
7 return PSS;
8 end
9 function invertSection (PSS) is

10 NPS[][]← ∅;
11 foreach (i, j ∈ |PSS|) do
12 NPS[i][j]← PSS[i][j];
13 end
14 return NPS ;
15 end
16 function preProcessing (OPS,B, F ) is
17 BCPS[]← ∅;
18 PSS ← setSectionLimits(OPS,B);
19 for k ← 0 to B do
20 if (k == F ) then
21 BCPS[k]← invertSection(PSS[k]);
22 else
23 BCPS[k]← PSS[k];
24 end
25 return BCPS;
26 end

Subsequently, a comparative analysis is conducted between the
blocks of varying sizes. This can be achieved by assessing the
spread, σ, of p1s for each block size. A decision on whether
a chip is recycled can be made if the σs are well separated
across the blocks. This is due to differential aging that creates
an increased difference of p1s in the power-up state. On the
contrary, σs of the p1s of the new chips are expected to
display greater resemblance across various block sizes.

Algorithm 1 outlines the overall pre-processing approach to
compensate for the effect of bitline flipping for a legacy COTS
SRAM power-up state. It is required to invert the flipped
regions. We denote the original power-up state as OPS, the
total number of regions in the chip as B, and the particular
sections that need flipping as F . The setSectionLimits
function takes OPS and B as inputs. The band length BL
can be described as the total size of one region of OPS or
the total size of OPS divided by B, Line 2. To divide the
original power-up state into regions, the contents of each
section are stored in a 2D sectioned power-up state array
PSS, where each row has the contents of one region, Lines
4-6. The inversion of a region can be accomplished by the
invertSection function, Lines 9-14. It takes PSS as its
input, Line 9. A new power-up state array NPS is populated
with the inverse of all elements in the input array PSS,
Lines 10-12. The preProcessing function describes the

Algorithm 2: Computation of standard deviation (σ).
Input : n BCPSs
Output: σ of p1s for different block sizes.

1 function computePercentOnes (BCPS[]) is
2 block[][]← ∅, X[][]← ∅;
3 b[]← Block sizes;
4 foreach ( m = 1 : |b| ) do
5 foreach ( i = 1 : n) do
6 foreach (j = 1 : b[m]) do
7 block ←

extractSubBlock(BCPS[i], j) ;
8 X[m, i+ j]← calPercentOnes

(block) ;
9 end

10 end
11 end
12 return X ;
13 end
14 function computeSigma (BCPS[]) is
15 X ← computePercentOnes(BCPS[]) ;
16 foreach ( m = 1 : |b| ) do
17 σ[m]← standardDeviation (X[m, :]) ;
18 end
19 return σ ;
20 end

general functionality of the pre-processing method, Lines
15-25. It takes inputs OPS, B, and F . The power-up state
is broken into a sectioned power-up state array, Line 18. The
bitline compensated power-up state is produced by inverting
all sections indicated by input parameter F , Lines 19-25.

Algorithm 2 shows the computation of standard deviation,
σ, for different block sizes. As we measure the power-up state
multiple times, it takes n bitline compensated power-up states
(BCPS) as the inputs and results σs for different block sizes.
First, the computePercentOnes function computes p1s and is
described in Lines 1-14. These p1s values are used to calculate
the standard deviation (σ) for their corresponding number of
sub-blocks, Lines 15-21. The algorithm initiates with the input
of an array of bitline compensated values, denoted as BCPS[],
in the computePercentOnes function, Line 1. The initializa-
tion of the 2D arrays, block and X , that represent a part of
the power-up states and the percentage of logic 1s within these
states, respectively, are described in Line 2. Another array, b,
is initialized and denotes the number of blocks for which p1s
is to be computed and shown in Line 4. The function iterates
through all power-up states, sub-divides them into blocks using
the values in b, calculates the percentage of logic 1s, and stores
these values in the array X , Lines 5-14. Algorithm 2 invokes
computeSSigma function that takes n BCPS as inputs, calls
computePercentOnes iteratively to compute σ of p1s for
each block size across all power-up states, Lines 15-20.

IV. EXPERIMENTAL RESULTS

To validate the effectiveness of our proposed approach,
we performed experiments with six different commercial
off-the-shelf (COTS) 23A640-I/SN SPI Bus Low-Power Serial
SRAM memories [29]. Each SRAM chip had a total memory



Figure 4: Experimental setup of accelerated aging using
Thermospot system.

capacity of 64K bits. Figure 4 provides a detailed view of the
experimental setup. The accelerated aging of the chips was
performed using a Temptronic ThermoSpot DCP-201 system
at the constant temperature of 100◦C. All SRAMs were aged
with the same black-and-white binary image to reflect the
operational aging. One hundred power-up states of an SRAM
were recorded every 6 hours of aging. This power-up state data
was collected by the Raspberry Pi through the SPI interface.
During power-up state collection, the SRAM was powered by a
PWM signal from a function generator, generating a power-up
state every two seconds. Simultaneously, a custom C program
allowed the Raspberry Pi to read the complete power-up state
at the positive edge of this signal. The collected SRAM data
were then pre-processed using Algorithm 1 to compensate for
bitline flipping via in-house Python scripts. Following that,
the data was analyzed using Algorithm 2 in MATLAB.

Figure 5: Distribution of p1s of 64x64 blocksize of the
power-up states of an SRAM Chip.

To validate our hypothesis on differential aging, we con-
ducted experimental analyses of the distribution of 1s for var-
ious block sizes in both a new and an aged chip. As outlined in
Section III, we anticipate that an aged chip will demonstrate a
broader distribution of p1s compared to a new chip, especially
for a specified block size. Illustrated in Figure 5 is the p1s
distribution in the power-up states of a new and an aged SRAM
chip, focusing on a block size of 64×64. Notably, as the chip
ages, the p1s distribution displays a wider spread, coupled
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with a leftward shift of the mean. The mean of p1s values has
a left-bound tendency over time because more 1s are stored at
the SRAM array. This observation strongly aligns with our hy-
pothesis, indicating that aging introduces more dissimilarities
in the percent of 1s during the power-up state of the SRAM.
Further justification for selecting a 64×64 block size for this
investigation will be explained in the subsequent discussion.

A crucial consideration in the data analysis for our
proposed approach involves the judicious selection of an
optimal block size. To ensure a comprehensive examination of
the percentage of 1s across diverse regions within the power-
up state, we vary the block size, encompassing a range from
smaller dimensions, such as 12×12, to larger configurations,
extending up to 128×128. This systematic exploration allows
us to scrutinize the impact of varying block sizes on the
distribution of 1s in the power-up state, providing us insights
to choose the most suitable block dimension for our study.

Figure 6 shows the variation in σ of p1s across different
block sizes for both new and aged chips. The chips are denoted
as C1, C2, and so forth. We observe the inverse relationship
between σ values and block size, with this effect more
pronounced in aged chips. For block sizes smaller than 32×32,
a sharp reduction trend was noted across all chips, regardless
of their age, attributed to the limited impact of the averaging
effect on p1s values within smaller blocks. The graph for a
block size of 32×32 exhibited a slight increase, explained by
the clustering nature of 1s and 0s in the aging data’s power-
up state for this specific block size. Notably, a significant
difference in σ values was observed between aged chips (top
curves) and new chips (bottom curves) for larger block sizes.
For instance, at a block size of 42×42, the σ of new chips
ranged from approximately 1.3 to 1.9, while for old chips, it
ranged from about 3.0 to 3.8. In subsequent block sizes, the
spread for new chips remained relatively stable, around or be-
low 1.0, whereas σ values for old chips remained significantly
larger and varied widely across different block sizes. However,
for very large block sizes, such as 128×128, the averaging
effect of p1s within the blocks balances out concentrations
of 1s and 0s on the power-up states, lowering the standard
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distribution and rendering it unsuitable for our study. Based
on the above analysis, it is evident that in new chips, there is a
consistent and uniform behavior across all blocks. However, in
the case of old chips, a distinctive pattern emerges, indicating
a gradual decrease in σ as the block size increases. This
insightful observation forms the crux of our proposed self-
referencing-based recycled IC detection approach. The system-
atic reduction in σ with larger block sizes in old chips serves as
a unique signature, offering a robust foundation for developing
a reliable method to detect recycled integrated circuits.

TABLE I: ∆ FOR DIFFERENT CHIPS.

Chips C1 C2 C3 C4 C5 C6
New ∆ 0.63 0.64 1.00 0.42 0.97 0.81

7 days aged ∆ 2.92 2.79 2.57 2.72 3.25 2.44

Table I presents the similarity results for new and aged
chips. Due to the pronounced change in slope observed up
to the block sizes of 42× 42, we recommend utilizing the
∆ calculated from block sizes ranging between 51 × 51 to
128×128 for the purpose of recycled IC detection. We define
the similarity index as the slope of these curves, expressed
by the following equation.

∆ = σ51×51 − σ128×128 (1)

The columns specify the chips (C1 to C6), and rows indicate
the ∆ values for the new and 7-day aged chips. The values
within the table cells represent the calculated the differential
σ for each respective chip under the specified conditions. We
note a consistent ∆ pattern with values consistently below 1.00
for new chips. In contrast, aged chips exhibit ∆ values exceed-
ing 2.40, resulting in a distinct separation. This observed dis-
tinction forms the foundational basis for recycled IC detection.

We performed two additional experiments to demonstrate
that more aging increases the spread of p1s. To demonstrate
the effect of aging on the standard deviation of p1s, we
carried out the same accelerated aging on an SRAM chip
for 12 days. The obtained values of σ were plotted for five
different block sizes, as depicted in Figure 7. Before starting
the aging process, a hundred power-up states were recorded in
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Figure 8: The change of σ for six SRAM chips over a period
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the initial state, yielding σ values in the range of 0.8 to 2.2 for
different block sizes. As the chip undergoes 6 hours of daily
aging, the σ for all the blocks exhibited an upward trend. This
experiment provides insight into the nature of the relationship
between σ and aging duration: as the chip undergoes aging,
the rise of σ shows the well-known logarithmic rise.

In conclusion, our findings reveal consistent behavior across
all chips studied. The selection of a 64×64 block size was
based on the distinct differentiation observed in the corre-
sponding σ data between new and aged chips, as detailed
earlier. To validate the effectiveness, we subjected six chips
to a seven-day aging process. Figure 8 illustrates the variation
in the standard deviation of the p1s of the chips throughout the
aging process. Notably, a decrease in σ was observed on Day 4
for C1 and C2 as they underwent a reverse aging process. Sim-
ilarly, C3 and C4 experienced reverse aging on Day 5 and Day
6, leading to a corresponding decrease in σ. In contrast, C5
and C6 underwent continuous aging throughout the week. The
observed σ values followed the anticipated pattern of increase
and decrease, aligning with our aging and reverse-aging proce-
dures. While reverse aging effectively diminishes the variation,
it never fully restores the value back to its original new state.

V. CONCLUSION

Developing robust testing methods to detect counterfeit or
recycled integrated circuits is paramount for safeguarding the
integrity of our critical infrastructures. The self-referencing
approach outlined in this paper presents an efficient means
of identifying counterfeit ICs without imposing significant
expenses or necessitating the storage of intricate device
parameters. This method only requires a straightforward and
affordable test setup for reading the SRAM power-up state,
utilizing a low-cost Raspberry Pi. The statistical comparison
study conducted between the power-up states of old and new
chips demonstrates clarity and simplicity. A recycled chip
can be reliably distinguished from a new one by observing
the comparative standard deviation of the percent of 1s
across various block sizes. The efficacy of the proposed self-
referencing test has been successfully validated across six ICs.



ACKNOWLEDGMENT

This material is based upon work supported by the Air
Force Office of Scientific Research under award number
FA9550-23-1-0312. Any opinions, findings, and conclusions,
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
United States Air Force.

REFERENCES

[1] IHS iSuppli, “Top 5 Most Counterfeited Parts Represent a $169 Billion
Potential Challenge for Global Semiconductor Market,” 2011.

[2] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit Integrated Circuits: A Rising Threat in the
Global Semiconductor Supply Chain,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1207–1228, 2014.

[3] M. Tehranipoor, U. Guin, and D. Forte, Counterfeit Integrated Circuits:
Detection and Avoidance. Springer International Publishing, 2015.

[4] U. Guin, D. DiMase, and M. Tehranipoor, “Counterfeit Integrated
Circuits: Detection, Avoidance, and the Challenges Ahead,” Journal of
Electronic Testing, vol. 30, no. 1, pp. 9–23, 2014.

[5] U. Guin, D. DiMase, and M. Tehranipoor, “A Comprehensive
Framework for Counterfeit Defect Coverage Analysis and Detection As-
sessment,” Journal of Electronic Testing, vol. 30, no. 1, pp. 25–40, 2014.

[6] U. Guin, W. Wang, C. Harper, and A. D. Singh, “Detecting Recycled
SOCs by Exploiting Aging Induced Biases in Memory Cells,” in IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 72–80, 2019.

[7] SAE G-19A Test Laboratory Standards Development Committee,
“Test methods standard; general requirements, suspect/counterfeit,
electrical, electronic, and electromechanical parts,” 2016,
https://www.sae.org/standards/content/as6171.

[8] CTI, “Certification for Counterfeit Components Avoidance Program,”
2011, http://www.cti-us.com/pdf/CCAP101Certification.pdf.

[9] IDEA, “Acceptability of Electronic Components Distributed in the Open
Market,” 2017, http://www.idofea.org/products/118-idea-std-1010b.

[10] Y. Zheng, A. Basak, and S. Bhunia, “CACI: Dynamic current analysis
towards robust recycled chip identification,” in Design Automation
Conference (DAC), pp. 1–6, June 2014.

[11] H. Dogan, D. Forte, and M. Tehranipoor, “Aging analysis for recycled
FPGA detection,” in IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct 2014.

[12] Y. Zheng, X. Wang, and S. Bhunia, “SACCI: Scan-based characterization
through clock phase sweep for counterfeit chip detection,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 5, pp. 831–841, 2015.

[13] Z. Guo, M. T. Rahman, M. M. Tehranipoor, and D. Forte, “A zero-cost
approach to detect recycled soc chips using embedded sram,” in IEEE
Int. Symp. on Hardware Oriented Security and Trust, 2016.

[14] T.-H. Kim, R. Persaud, and C. Kim, “Silicon odometer: An on-chip reli-
ability monitor for measuring frequency degradation of digital circuits,”
Solid-State Circuits, IEEE Journal of, vol. 43, pp. 874–880, April 2008.

[15] X. Zhang, N. Tuzzio, and M. Tehranipoor, “Identification of recovered
ICs using fingerprints from a light-weight on-chip sensor,” in Proc.
IEEE-ACM Design Automation Conference, June 2012.

[16] X. Zhang and M. Tehranipoor, “Design of on-chip lightweight sensors
for effective detection of recycled ICs,” IEEE Transactions on Very
Large Scale Integration Systems, pp. 1016–1029, 2014.

[17] U. Guin, X. Zhang, D. Forte, and M. Tehranipoor, “Low-Cost On-Chip
Structures for Combating Die and IC Recycling,” in ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6, 2014.

[18] U. Guin, D. Forte, and M. Tehranipoor, “Design of Accurate Low-
Cost On-Chip Structures for Protecting Integrated Circuits Against
Recycling,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, no. 4, pp. 1233–1246, 2015.

[19] K. He, X. Huang, and S. X. D. Tan, “EM-based on-chip aging
sensor for detection and prevention of counterfeit and recycled ICs,”
in IEEE/ACM International Conference on Computer-Aided Design,
pp. 146–151, Nov. 2015.

[20] M. Alam, S. Chowdhury, M. M. Tehranipoor, and U. Guin, “Robust,
Low-Cost, and Accurate Detection of Recycled ICs using Digital
Signatures,” in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 209–214, 2018.

[21] Z. Xu, A. Cui, and G. Qu, “A new aging sensor for the detection of
recycled ics,” in Proceedings of the 2020 on Great Lakes Symposium
on VLSI, pp. 223–228, 2020.

[22] T. Alnuayri, S. Khursheed, A. L. H. Martinez, and D. Rossi, “Differential
aging sensor to detect recycled ics using sub-threshold leakage current,”
in 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1500–1503, IEEE, 2021.

[23] M. Liu and C. H. Kim, “A powerless and non-volatile counterfeit
ic detection sensor in a standard logic process based on an exposed
floating-gate array,” in 2017 Symposium on VLSI Technology, pp. T102–
T103, IEEE, 2017.

[24] P. Ghosh and R. S. Chakraborty, “Counterfeit ic detection by image
texture analysis,” in 2017 Euromicro Conference on Digital System
Design (DSD), pp. 283–286, IEEE, 2017.

[25] N. Asadizanjani, M. Tehranipoor, and D. Forte, “Counterfeit electronics
detection using image processing and machine learning,” vol. 787,
no. 1, p. 012023, 2017.

[26] P. Ghosh and R. S. Chakraborty, “Recycled and remarked counterfeit
integrated circuit detection by image processing based package texture
and indent analysis,” IEEE Transactions on Industrial Informatics, 2018.

[27] N. Asadizanjani, N. Dunn, S. Gattigowda, M. Tehranipoor, and D. Forte,
“A database for counterfeit electronics and automatic defect detection
based on image processing and machine learning,” in Proceedings of
the 42nd International Symposium for Testing and Failure Analysis.
Texas, USA, pp. 1–8, 2016.

[28] B. S. Amrutur and M. A. Horowitz, “A replica technique for wordline
and sense control in low-power sram’s,” IEEE Journal of solid-state
circuits, vol. 33, no. 8, pp. 1208–1219, 1998.

[29] Microchip 23A640/23K640: 64K SPI Bus Low-Power Serial SRAM,
http://ww1.microchip.com/downloads/en/DeviceDoc/22126E.pdf.


