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Abstract—The outsourcing of the design and manufacturing
of integrated circuits (IC) involves various untrusted entities,
which can pose many security threats such as overproduction
of ICs, sale of out-of-specification/rejected ICs, and piracy of
Intellectual Properties (IPs). As a result, various design-for-
trust techniques have been developed. Logic locking has recently
gained significant interest from the research community due
to its capability to provide defense against the threats from
untrusted manufacturing. In logic locking, the original circuit
is locked using a secret key to make it into a key-dependent
circuit. However, various attacks on the extraction of secret keys
associated with locking have undermined the security of logic
locking techniques. Even after a decade of research, the security
of logic locking is still under risk as none of the countermeasures
can simultaneously provide resiliency against different attacks,
such as tampering, probing, and oracle or oracle-less attacks.
This paper presents an overview of novel attacks on logic locking
apart from SAT-based analysis. We will present three different
techniques to break a secure lock, and they are hardware Trojan
based attacks, optical probing based attacks, and the ATPG
oriented attacks.

Index Terms—Logic Locking, Obfuscation, Hardware Trojan,
Optical Probing, ATPG

I. INTRODUCTION

In the current globalized and distributed semiconductor

manufacturing and test processes, various security threats

have emerged from untrusted manufacturing, such as In-

tellectual Property (IP) piracy/theft [1]–[4], sale of out-of-

specification/rejected integrated circuits (ICs) [5], [6] and

Overproduction [5], [7]–[10]. The challenges for protecting

a circuit against these security threats have been the driving

force for the development of different techniques to limit the

amount of circuit information that can be recovered by an

adversary. Logic locking emerged as a well-accepted hardware

obfuscation technique to protect a secure design from different

untrusted entities in the design and manufacturing process of

ICs. The underlying principle of logic locking is to incorporate

the additional key gates in the original netlist/design to obtain

a key-dependent netlist. This secret key is loaded into the on-

chip tamper-proof memory by the designer after fabrication

and test. Only upon the application of the correct key, the

circuit will show correct functionality, else, erroneous outputs

will be observed. With the advent of Boolean Satisfiability

(SAT) analysis proposed by Subramanyan et al. [11], almost

all the initial locking mechanisms were broken in real-time. In

recent times, researchers are focusing on achieving complete

security for the logic locking techniques along with SAT

resiliency. This is mainly done to explore the capabilities of

an adversary as it may have many efficient methods to attack

a locked design apart from performing SAT analysis.

An adversary such as an untrusted foundry who has ac-

cess to most advanced equipment, such as a micro-probing

station, scanning electron microscope (SEM) etc. is capable

of attacking any chip with physical attacks. Moreover, an

untrusted foundry can intentionally add malicious modifica-

tions to the original design without the knowledge of an SoC

designer or design-house to leak the secret key. Amongst

the many attacks in this direction, implanting hardware Tro-

jans attacks [12], probing based attacks [13]–[15], oracle

or oracle-less attacks (TGA [16], CLIC-A [17], [18]) can

be identified as prominent attack choices for an adversary.

Research groups have addressed these attacks with different

defense and detection approaches, which include restricting

the scan-access and preventing key leakage through scan-

chain [19], [20], nanopyramid and shielding architectures to

prevent probing attacks [21], [22] and optical probing based

reverse engineering to detect hardware Trojans [23]. Despite

many solutions to restrict these attacks, logic locking tech-

niques have not achieved complete security against physical

attacks than previously thought due to the possibility of the

key extraction. As a result, currently, none of the logic locking

techniques can be categorized to provide absolute defense

against IP piracy.

The rest of the paper is organized as follows. The attacks

based on hardware Trojan to implement the malicious design

modification for the extraction of the secret key from any

locked circuit are described in Section II. This section also

includes the model for combinational and sequential Trojan

design. In Section III, we present the vulnerability of logic

locking against the optical analysis. Section IV presents the

overview of CLIC-A attack on different logic locking tech-

niques along with a performance comparison to traditional

SAT attack. Finally, we conclude the paper in Section V.

II. TAMPERING ATTACK ON LOGIC LOCKING

The malicious modifications, described as hardware Trojans,

can pose a serious threat to the logic locked circuits. A circuit

can be tampered with implanting different types of hardware
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Trojans in any key-based logic locked design. An adversary,

who intends to obtain the correct functionality of the design

can extract the secret key by triggering a hardware Trojan

inserted by an untrusted foundry before fabrication. Note that

an untrusted foundry has the capability to extract the netlist

of a design from layout/mask information, making it feasible

to implement a hardware Trojan. Since, the production tests

are performed at the foundry, an adversary also has access

to all the manufacturing test (e.g., stuck-at-fault and delay

fault) patterns to be utilized for designing an efficient hardware

Trojan. Once the valid key information is extracted out from

an activated IC, an untrusted foundry can recover the original

netlist for IP piracy, unlock any number of chips, and sell

overproduced and defective chips in the market. As the attack

is applicable to any key-based locked circuits, an adversary

can undermine any secure solutions proposed so far to prevent

threats originated from untrusted manufacturing.

A. Approach

A locked circuit can be targeted with three types of tamper-

ing attacks that can be launched to extract the secret key using

hardware Trojans. A straightforward tampering attack directly

leaks the secret key to the primary output (PO) once the

Trojan is activated, whereas, the complexity of attack can be

increased with dependency on the activation and propagation

of the secret key to the primary output. The adversary has

the freedom of choosing one of these attacks implemented

using either a combinational or sequential hardware Trojan.

For simplicity, these attacks are explained using a Type-3

combinational Trojan, which consists of a 3-input AND gate

which serves as the trigger (T).

The simplest form of tampering attack can be launched

by an adversary who does not intend to gain knowledge

regarding the security measures implemented for the circuit.

Figure 1. (a) shows the proposed modifications represented

through the dashed lines for launching this attack. As shown,

one input of the multiplexer is the original output of the

locked netlist, whereas, the other input is tapped on the wire

connection between the key gate (K) and the tamper-proof

memory. Under normal operation for any activated chip, the

multiplexer propagates the correct circuit functionality at the

output. Once the Trojan gets activated, the output of AND

gate becomes 1 and the payload (P) is delivered to the primary

output of the circuit using a 2-input MUX, which leads to the

extraction of the secret key at the output. Note that the required

number of multiplexers to extract the complete secret key is

dependent on the key size.

Instead of extracting the key directly to the primary output,

an adversary can also propagate it to the output. An adversary

can choose a net, whose logic value is impacted by the key

gate for the MUX input. For example, net n2 can be selected

as the MUX input for the circuit shown in Figure 1. (a). Upon

activation of Trojan, k or k can be observed at the primary

output (PO) by forcing net n1 as logic 0 or 1 respectively.

The notion of increasing the dependence of key extraction

with its propagation from internal nodes results in increased
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Figure 1. (a) Tampering attack, where a Type-3 combinational Trojan and
payload (MUX) is inserted for key extraction directly from the connection
between key gate and tamper-proof memory, (b) Tampering attack with a Type-

3 combinational Trojan with payload as OR gate located inside the locked
circuit

complexity from the simple form of tampering attack. A

similar case is explained through the Figure 1. (b), where a

secure logic locking technique is implemented to insert the key

gates in such a way that key propagation is not possible due

to the key inter-dependency using manufacturing tests [24].

For the locked netlist shown in Figure 1. (b), the propagation

of the key (K1) is prevented by inserting another key (K2).

The primary output cannot be uniquely determined unless

an adversary knows either k1 or k2. Thus, it is necessary

to help propagate one key and then determine the other. To

achieve this aim, the circuit is tampered with a combinational

Trojan consisting of a 3-input AND gate, which serves as the

trigger (T) and an OR gate (shown using dashed lines) to

deliver the payload at net n4. The value of k1 needs to obtained

first to determine the other key k2. The Trojan delivers the

payload of logic 1 at node n4, once it gets activated. This

helps to propagate the key k1 at the output (k1) with an input

pattern of [x1 x2 x3 x4] = [1 1 0 X]. Once the value of

k1 is known, an adversary can perform the signal propagation

analysis to find the value of k2.

As mentioned before, the attacks are explained using a

combinational Trojan for the simplicity of understanding.

These proposed attacks can also be implemented using any

Type-p sequential Trojan which delivers at its targeted payload

once the Trojan is activated R times, consecutively. The design

details for a combinational and sequential Trojan are discussed

in the following section.
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B. Design of Hardware Trojans

The primary purpose of a hardware Trojan is to modify

the original functionality of a circuit to leak the secret key

once activated without the knowledge of an SoC designer. It

is absolutely necessary that the Trojan must not get activated

during scan-based manufacturing tests. In other words, the

circuit should not come across any condition during tests

that activate the Trojan, which can lead to its detection. A

hardware Trojan can be inserted into a circuit during its

design or manufacturing stages. In relevance to logic locking,

a Trojan inserted by an untrusted foundry should be considered

to show the effectiveness of the attack as logic locking was

proposed to address the threat from an untrusted foundry. An

adversary can tamper the netlist with any category of Trojan

e.g. combinational, sequential or analog types. Any Trojans

can be activated through trigger inputs, which can be taken

from the primary inputs and/or internal nodes of a circuit

so that manufacturing test patterns cannot trigger a Trojan

and remains undetected. For a logic locked circuit, the trigger

inputs need to be selected from nodes that are not affected by

key gates. Otherwise, an adversary cannot activate a Trojan as

it does not know this secret key, and thus the internal signal

value for an activation pattern. The trigger can be implemented

as an AND gate (e.g. 3-input AND gate for Type-3 Trojan).

When a Trojan is activated, the output of this AND gate

becomes 1 and it delivers the payload (selection input of the

multiplexer or OR gate shown in Figure 1) to the circuit to

leak the secret key. The trigger can also be any logic function

that provides logic 1 when activated.

1) Design of a Combinational Hardware Trojan: A com-

binational hardware Trojan generally comprises of a trigger

and a payload, the detailed modeling can be found in [25].

Functionally, a combinational Trojan manifests its effects

instantly upon the availability of the trigger inputs and effects

the original netlist at the payload. A hardware Trojan can be

described based on its trigger inputs, and can be defined as

Type-p Trojan when it has p trigger inputs.

For an adversary, the number of Trojan choices to break the

security of logic locking is very large. In order to determine

all possible Trojan choices for any given netlist, p nodes as

trigger inputs from N nodes of the circuit needs to be selected.

The value of N can be determined as :

N = PI +G+ F −M (1)

where, PI represents the number of primary inputs, G denotes

the number of gates and F is the number of fanout branches

in the netlist. Note that the number of lines impacted by the

key gates (M) needs to excluded as their value is unknown to

the adversary and hence, cannot be selected as trigger inputs.

An upper bound of all possible Type-p Trojans (ATp) can

be given by:

ATp =

(

N

p

)

× 2p (2)
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Figure 2. (a) The netlist of a sequential Trojan with a R-bit counter, (b) The
finite state machine (FSM) of the counter used in a sequential Trojan.

The Equation 2 represents all possible combinations to

select p lines from N with each applied directly or inverted

to the trigger. The important aspect of the Trojan design is

its stealthiness. Generally, the manufacturing tests are per-

formed at the foundry. The SoC designer can generate test

patterns considering the key as input (the pattern generation

is described in detail in [6], [20]). To detect all the stuck-

at faults (SAFs), different test patterns (e.g., P = {P1, P2,

. . . , Pn}) are required and they are generated using Synopsys

TetraMax [26] ATPG tool. To avoid a Trojan being activated

by these manufacturing test patterns, the trigger of the Trojan

must remain quiet for all these input patterns. Once the

test patterns are provided to the foundry, a hardware Trojan

activation pattern is selected that does not belong to this

set of test patterns. Note that the actual number of Trojans

(denoted as V Tp) can be less than ATp as few of them can

be detected by the manufacturing test patterns (e.g., stuck-at

fault patterns), and few may not be triggered from the primary

inputs. However, for a reasonable size circuit, ATp and V Tp

are comparable. The detailed steps and algorithm to design a

combinational Trojan evading manufacturing test patterns can

be found in [12].

2) Sequential Trojan Design: The model for designing a

sequential hardware Trojan can be derived from the com-

binational Trojan model. A sequential Trojan modifies the

functionality of a circuit until the specified trigger appears R

times consecutively, where the value of R can be controlled
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by the adversary. A sequential Trojan also consists of a trigger

and payload similar to a combinational Trojan. Additionally,

the trigger part contains state elements that ascertain the

payload once triggered R times as shown in Figure 2.(a). The

dashed lines represent the added Trojan in order to tamper

the netlist to launch the tampering attack. Figure 2.(b) shows

the finite state machine (FSM) design of a R-bit counter used

to implement the state element of a sequential Trojan. This

counter is enabled (en) once the trigger condition is fulfilled,

i.e., the output of the p-input AND gate becomes 1. The

FSM goes to next states, when en = 1, otherwise, it returns

to the initial state, S0. The counter produces an output of

1, once en is hold to 1 consecutively R clock cycles, as it

takes (R − 1) cycles to reach SR−1. The Trojan delivers at

the payload (MUX) only after reaching the maximum count

value (R). Note that this sequential Trojan can be modeled

as R number of combinational Trojans. An adversary can also

design a different sequential Trojan, already in the literature, to

launch the Tampering attacks. The sequential Trojan increases

the complexity compared to a combinational Trojan as it

manifests its effect to the payload only after the sequence of

repeated application of trigger inputs. Only the adversary has

the knowledge regarding the maximum counter value making

it very difficult for detection.

C. Analysis

The number of combinational hardware Trojans applicable

for launching any type of tampering attack is obtained using

the Equations 1 and 2. Out of all possible Trojans, the valid

Trojans that will not be detected during manufacturing tests

are obtained after performing the analysis using all the stuck-

at fault patterns obtained from the TetraMax ATPG tool with

100% fault coverage. For a small benchmark circuit c432,

the total number of Type-2 Trojans is 1.08 × 105, whereas,

the number of valid Trojans is 1.0 × 105. It is essential to

be acquainted with a large number of valid Trojan choices

for an adversary. These numbers for valid Trojans increase

exponentially for the increase in Type-p of the Trojan and the

circuit size. Additionally, detecting all the valid Trojans is a

hard problem. Moreover, it is not necessary to impose the fault

pattern detection condition for designing sequential Trojans

as it is highly unlikely that a particular trigger condition will

arrive R times consecutively during the normal operation or

testing of a chip.

The area and power overhead for a hardware Trojan can

be varied based on the trigger inputs. A Type-p combinational

Trojan consists of an AND gate with p-trigger inputs and a

multiplexer or an OR gate as payload. For sequential Trojan,

it is necessary to add a R-bit counter along with a p-input

AND gate to implement the trigger. Note that both the area

and power overhead will decrease with the increase in the size

of the design. For a small circuit from ISCAS’85 benchmark

suite [27], c6288, the area and power overhead for the netlist

tampered with Type-4 combinational Trojan is around 0.01%

and 0.33%, respectively. It is safe to mention that these

overheads can practically be negligible for a modern industrial

design with millions of gates.

D. Existing Countermeasures and their Limitations

The security of a logic locking technique can be tied

together with the hardware Trojan detection problem. Re-

searchers have already proposed different techniques to detect

and prevent hardware Trojans. The detection methods can

be grouped into two different categories, such as logic test-

ing [28]–[30], and side-channel analysis [31]–[33]. Detection

through logic testing is extremely difficult as it is practically

impossible to detect all types of combinational Trojans. In

addition, it is not feasible to trigger a sequential Trojan, as

it requires the same trigger pattern at the input R times.

Side-channel analysis is largely affected by the process and

environmental variations which can mask the effect of Trojan.

Moreover, it is difficult to acquire a golden chip for such

an analysis. On the other hand, prevention methods can be

categorized as design-for-trust measures [34]–[37] and split

manufacturing [38]–[40]. However, different attacks on these

approaches have also been proposed [41], [42]. The best

solution so far requires reverse-engineering the entire SoC

through SEM images to detect any additional nets or com-

ponents, however, it is yet to be validated its effectiveness of

detection when a chip is fabricated using recent technology

nodes (10nm and beyond) [23]. Despite significant research

have been performed on detecting hardware Trojans, we still

lack efficient and accurate methods for modeling them and

generating tests for their detection. Once the detection of

hardware Trojans is ensured, an SoC designer can choose a

SAT-resistant logic locking to prevent IC overproduction and

IP piracy.

III. OPTICAL ATTACKS ON LOGIC LOCKING

A. Optical Attack Techniques

Failure analysis (FA) based on optical debugging tech-

niques, e.g., photon emission analysis, laser-voltage analysis,

optical beam induced resistance change (OBRICH), etc. were

developed to facilitate the yield analysis and fault localiza-

tion. Since silicon is transparent to the photons at near-

infrared (NIR) spectra, active and passive photon stimulation

facilitated in run-time monitoring of chip for fault localization.

However, the same optical inspection methods can also be used

for extracting the assets stored in modern ICs [13], [15], [43],

[44].

In the past decade, three major classes of optical attack

methods have been used for extracting the crypto-keys stored

in the SoCs. They are – a) photon emission (PE), b) electro-

optical (EO)/laser-voltage (LV) techniques, and c) laser stim-

ulation (LS).

1) Photon Emission Analysis (PEA): PEA is primarily de-

veloped for functional analysis and fault localization

on the silicon die without any external stimuli. During

the switching of logic gates, the charge carriers gain

kinetic energy as the MOSFET transistors pass through

saturation for a brief period. Then, the energy of the
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carriers is released in the form of emitted photons at the

drain edge of the transistor, i.e., the pinch-off region of

the transistor’s space-charge region. Photons are captured

with a Si-CCD or InGaAs detector, and the signal fed to

a computer to create a 2D image to map the location

of switching activity of the logic gates. In addition,

temporal information of the signal propagating through

the chip can be detected if PEA is incorporated with

picosecond image circuit analysis (PICA) [45], [46].

An adversary can threaten the confidentiality of the on-

chip asset by using the aforementioned data-dependency

of hot-carrier luminescence as a source of side-channel

information [43], [46].

2) Electro-optical/ Laser-voltage Techniques: Electro-optical

techniques are an active approach for optically prob-

ing the transistor state through two well-known ap-

proaches – electro-optical probing (EOP) and electro-

optical frequency mapping (EOFM) [15], [47]. A laser

stimulus is focused on a transistor. Since the absorption

coefficient and refractive index of silicon are dependent

on the space-charge densities caused by the time-varying

electric field, the amplitude and phase of the incident

laser beam are modulated by the electrical parameters

of the transistor. EOP analysis can probe the transistor’s

electrical parameter based on the modulated reflected

laser beam.

Unlike EOP, in EOFM, the laser scans the region of

interest (RoI) on the device under test (DUT) and the

reflected light is evaluated by a spectrum analyzer, which

acts as a narrowband frequency filter [48]. The frequency-

filtered values are then sampled for every scanned pixel

and used to construct a 2D image using a grayscale or

false-color representation [15]. Nodes operating at the

frequency of interest will modulate the laser with the

same frequency and appear as a bright spot in the 2D

image. Other approaches for optical probing are laser

voltage probing (LVP) and laser voltage imaging (LVI).

The LVP/LVI methods are equivalent to EOP/EOFM,

respectively, except the light source used for the later

ones is incoherent.

3) Laser Stimulation (LS): IR laser is applied from chip

backside in the LS method to induce perturbation in the

circuitry. Depending on the wavelength of the injected

photons and silicon bandgap energy, laser stimulation

introduces photoelectric and/or thermal effects in the

device. This perturbation in the device can expose the

device parameters like the logical state of gates, registers,

or memory.

• Laser Fault Injection (LFI): Lasers with photon energy

greater than or equal to the silicon band-gap energy,

1.1 eV, generate electron-hole pairs in the silicon. This

effect is commonly referred to as photoelectric laser

stimulation (PLS) [44], [45]. Lasers with a wavelength

less than 1100nm can introduce PLS in the device. The

logic state of a CMOS circuit can be flipped if the PLS

is focused on a transistor drain or source terminal [44],

[49], thus injecting a fault into the circuitry. The success

of laser fault injection depends on several factors such as

the wavelength, power, and exposure time of the incident

photons [50].

• Thermal Laser Stimulation (TLS): Due to the lower

photon energy of the 1.1 µm laser, the radiation will

majorly induce thermal stimuli in the device. The local

heating caused by TLS induce resistance variation and

generates an electromotive force due to the Seebeck

effect. The effects mentioned above induce variation in

device parameters like voltage, and current. During TLS,

a device is biased at supply voltage, and the current is

monitored between the supply pins via the current pre-

amplifier (see Fig. 3.(c)). A PC simultaneously samples

the current pre-amplifier output, and a 2D map of devices

response is generated to localize the current variations in

the circuit [45], [51].

4) Necessary Equipment for Optical Attacks: A success-

ful optical attack requires a laser source with variable

wavelengths for laser stimulation and an InGaAs detector

for photon emission analysis. Recent advancements in

FA instruments have increased the availability of various

microscopes to aid optical analysis techniques. Laser

scanning microscope (LSM) and photon emission micro-

scope (PEM) are used for laser stimulation analysis and

PEA. In addition, several FA instruments have incorpo-

rated the LSM and PEM to provide a single solution for

all optical debugging techniques. These microscopes are

available in different industrial/academic labs and widely

used for FA analysis.

B. Security Threats of Optical Probing

The confidentiality and integrity of the Sensitive information

protected by the SoC security architecture are considered

violated if the assets are proven to be vulnerable against optical

attacks. Therefore, ignoring the threat from optical attacks,

leave a wide attack surface for an adversary to reveal the

assets stored in the SoC. In SoC, security mesh is placed

in the device. Moreover, a large number of interconnecting

metal layers at frontside makes tracking the transistor activity

impractical. The backside, which lacks such metal layers, is

extremely vulnerable to optical attacks on the die or exposed

silicon chip.

In recent years different security-sensitive components in

SoC showed their susceptibility against optical attacks. Logic

locking, a promising protection barrier against IP piracy, can

not be considered secure against optical attacks. Secrecy of the

locking key protects the IP design from an untrusted entity in

the supply chain. In logic locking, it is assumed that the key

is configured in a read and tamper-proof memory. However,

optical attacks, e.g., PEA, LFI, and TLS, have exposed cryp-

tographic cipher keys such as AES, RSA, etc.. stored in Flash

and EEPROM by attacking the control circuitry or memory

cells [44], [51]. Flash and EEPROM are widely used as on-

chip memory to store other types of sensitive information

as well such as soft IP, algorithms, and authentication keys.
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(b) (c)(a)

Figure 3. (a) Detector captures the photons emitted during switching of N-type MOSFET and generates a 2D mapping of activity, (b) optically probing a
transistor operating at Tactive frequency using EFOM/EOP, (c) Device parameters are observed during laser stimulation technique. Depending on the application
laser directed for a specific transistor (for LFI) or a region of interest.

Therefore, the common assumption about the existence of

tamper and read-proof NVM is no longer valid.

Secured key storage, e.g., OTP memory (for example, efuse,

antifuse) and battery-backed RAM (BBRAM), can also be read

using active and passive photon stimulation. For example, an

adversary can de-process the IC with FA tools and localize the

efuse on the die, followed by OBIRCH analysis for reading the

efuse value [52]. Physical unclonable function (PUF) generates

keys from the intrinsic properties of the device [49]. PUF has

demonstrated vulnerabilities against several non- and semi-

invasive attacks, like photonic emission analysis and laser fault

injection. Besides, TLS can read the output of SRAM PUF

once the clock of the circuit is turned off [53]. Besides, PUF

is not an option for the logic locking key.

Recent studies have shown that electro-optical analysis can

be used to localize and probe the logic gates and flip-flops

implemented in a design [13], [15]. Therefore, an adversary

can always use advanced reverse engineering tools to extract

the gate-level netlist of the locked IP and localize the key-

gates, flip-flops connected to the key-gates (generally termed

as key registers [13], [14]) and interconnects carrying the

locking key of the IP. Thereafter, a malicious entity can use

EOFM/EOP to extract the key bits. Hence, simply protecting

the locked IP against Oracle-guided (e.g., SAT attack) and

Oracleless (e.g., SAIL attack) does not prevent IP piracy.

C. Existing Countermeasure and their Limitation

Security against optical analysis can be addressed in two

ways – detection and prevention of laser stimulation. The

possible countermeasure for the backside of a chip can be,

further, divided into three levels – material, device and circuit

level.

One material level solution for preventing optical attack

can be adding an active opaque layer at the backside of the

chip. However, an adversary like an untrusted foundry can

identify such a countermeasure and remove the opaque layer

by polishing. Active monitoring of bulk silicon thickness,

device capacitance, or adding fragile structure to prevent

polishing the backside of the chip can be promising for opaque

layer protection.

Integrating nanopyramid [22] structure between the device

layer can scatter the incident/reflected laser beam in the device.

Besides, implementing circuitry operating at an inverted signal

can also be used to prevent laser modulation.

Traditionally, light sensors are used for identifying the laser

stimulation on the chip as a circuit based laser stimulation

detection mechanism. The light sensors can only detect laser

with higher energy than silicon bandgap energy, hence, only

applicable against LFI detection. However, TLS introduces

temperature and current variations in the circuit, which can

influence the RC delay in the circuits and can be used in

sensors for detecting TLS [14]. Analog shields and sensors can

be alternative approaches for detecting TLS. Analog shields

and sensors utilize analog features, e.g. capacitance or RC

delay, at specific chip locations to detect the attack, which

can be used for detecting both LFI and TLS. However, the

applicability of these analog shields remained untested.

IV. CLIC-A METHODS

CLIC-A uses methods oriented around commercial ATPG

to uncover key-input values in locked combinational and

sequential circuits. There are four methods currently included

in CLIC-A. The first three are applicable to combinational

locking and are described in greater detail in [17]. The fourth

is applicable to sequential locking and is described in [18]. The

first method is key-input sensitization, the second is constraint-

based ATPG, the third is targeting key-dependent faults, and

the forth is sequential key extraction. The first two methods

require the use of an oracle and a netlist of the locked circuit.

The third and fourth methods are oracle-free, meaning they

only require the netlist. More details and pseudo-code for all

three combinational methods can be found in [17] and more

information on the sequential method can be found in [18].

1) Key-Input Sensitization: CLIC-A includes the key-input

sensitization method described in [54]. In this approach, ATPG

is applied to the locked netlist to generate tests that sensitize

individual key inputs to one or more primary outputs. By

sensitization, we refer to the automatic test pattern generation

of a test input pattern that propagates the targeted key-input
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value to one or more primary outputs. In this method, a stuck-

at fault is considered at each key input, one at a time, while

constraining all the other key inputs to a do-not-care (X)

value. Constraining the other key inputs to X, mutes their

effects on circuit functionality. If a test is found under these

circumstances, it is then applied to the oracle circuit. Based

on which fault is used, and whether the response between the

oracle and locked netlist match or mismatch, the key-input

value is easily deduced. For example, when a test is generated

for a single stuck-at zero fault, if the outputs of the oracle and

the netlist match for that test, the key-input value is one. If

there is a mismatch, the key-input value is zero.

The purpose of sensitization is to find individual key-input

values that have at least one direct path to an output without

the interference of other key inputs. Having key inputs that

can be sensitized is most common for locked circuits using

the random [55] or fault-based [56] locking techniques.

2) Constraint-based ATPG: CLIC-A also includes a novel

ATPG constraint-based characterization method. This method

utilizes the constraint functions built into commercial ATPG.

An ATPG constraint is a logic function applied to an ATPG

run where the signal-line values included in the constraint must

satisfy that function for any test generated. If a test cannot be

generated that satisfies the constraints, ATPG reports a failure.

For example, if the constraint is (s1 + s2 + s3) then every test

generated adhering to that constraint must have s1 = 1, s2 = 0,

or s3 = 0.

Constraint-based ATPG begins by performing ATPG on

each key input, one at a time. ATPG targets a fault at each

key input to generate a test which is then applied to the

oracle. Based on whether the outputs match or mismatch,

a constraint is constructed and applied to subsequent ATPG

runs. If the outputs between the simulated netlist and oracle

do not match, this means that the generated key-input values

are incorrect. This results in a constraint function where all

the key-input values are inverted and disjunctively combined.

However, if instead the outputs between the simulated netlist

and oracle match, it does not ensure that the key-input values

generated are correct. Therefore, a constraint is added where

all key-input values, except the targeted key input, are inverted

and disjunctively combined. This new constraint ensures that

ATPG can regenerate the same set of key-input values again if

it is correct, while able to generate other key-input values as

well. Additionally, a logic minimization tool is employed to

keep the number of constraints at a minimum. The constraints

are used to guide ATPG to the correct key value and solve

key inputs that are clustered together. This method is most

effective against strong locking [54].

3) Targeting Key-Dependent Faults: The third method in-

cluded in CLIC-A targets faults that require a majority of key

inputs for sensitization which is common in the SAT resistant

methods. The SAT-resistant locking methods typically have a

similar structure in that there exists at least one signal line

in which all or a majority of the key inputs converge upon.

Such a signal line has a corresponding fault that requires all

or a majority of the key inputs for detection. Analysis of the

generated test vectors locates these signal lines and extracts

the correct key. This is possible because the correct key value

is typically hard-coded into the circuit.

For example, in Figure 4, targeting a fault that sets the signal

line restore to a zero would reveal the hard-coded key value

in the test vectors.

Figure 4. SARLock logic locking.

To first find the key-dependent faults, ATPG is run on the

netlist with all unsolved key inputs constrained to do-not-care

values (X). Faults that require the key inputs for detection will

be reported as an ATPG failure. Each fault in this set of key-

dependent faults is targeted using a second round of ATPG.

If a test is found, the generated test is stored, along with the

fault to be further analyzed for the key value. The test analysis

method used for the generated tests differs depending on the

lock type. More information on the key extraction is provided

in [17].

4) Sequential Key Derivation: The last method included

in CLIC-A solves a key sequence from a sequentially locked

circuit. This method is specifically effective at solving a key

from a circuit locked with an entrance FSM, such as the

method proposed in [57]. With an entrance FSM lock, there

is functionality that is only accessible when the key sequence

is entered. Associated with this functionality are faults that

can only be detected with a test vector containing the key

sequence. As a result, to derive the key sequence from these

circuits, we first apply sequential ATPG to the netlist, then

search the generated tests for a repeatedly appearing pattern.

To perform sequential ATPG, the iterative logic array, ILA,

model is used. An ILA model mimics N clock cycles of

the behavior of a sequential circuit by making N copies of

the combinational logic, and replacing memory elements with

equivalent combinational circuits (e.g., D-type flip flops are

replaced with a single buffer and inverter). Moreover, the

inputs to the flip-flops are added as secondary outputs to the

circuit, and the outputs of the flip-flops are added as secondary

inputs to the circuit. The secondary outputs of frame i (which

corresponds to clock cycle i) are connected to the secondary

inputs of frame i + 1. The secondary inputs for the first frame

are held at the reset state, which must exist otherwise upon

power-up, the circuit could easily be operating within the

protected FSM. Figure 5 illustrates an ILA model consisting

of N frames.

Combinational ATPG is then run on each time frame of

the ILA model and the test vectors are stored. The test
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Figure 5. An ILA model of a sequential circuit consisting of N frames where the first set of secondary inputs are tied to the reset state.

vectors generated from each time frame are then searched

for a repeatedly appearing sequence required to detect faults.

When the same sequence appears for multiple time frames,

that sequence is concluded to be the key sequence. More

information on this method can be found in [18].

A. Experiments

This section presents the results of experiments that demon-

strate the effectiveness of CLIC-A compared to the effective-

ness of the SAT attack. In this section, key-input sensitization

is referred to as method one, constraint-based ATPG is referred

to as method two, targeting key-dependent faults is referred

to as method three, and sequential key derivation is referred

to as method four. With the exception of two benchmarks,

the experiments in this section are performed on locked

benchmarks created by others.

The experiments are performed using a machine with 64

CPU cores running at 2.20 GHz with 1,009GB of RAM.

CLIC-A uses an off-the-shelf commercial ATPG tool and the

results for the SAT attack stem from the publicly-available

binaries reported in [11].

The results in Table I demonstrate the results of CLIC-A

and SAT on the location-based locking methods. In partic-

ular, the experiments on randomly locked circuits show the

results on a multiplier circuit, c6288, and a portion of the

OpenSparc processor [63]. Both experiments demonstrate that

for large/complex circuits, CLIC-A outperforms SAT. In the

case of the processor, the SAT attack exits without solving

a key. The rest of the rows in the table demonstrate that

for smaller benchmark circuits, the performance of SAT and

CLIC-A is comparable.

Table II demonstrate the results of running CLIC-A and

SAT on the SAT-resistant locking methods. The experiments

performed on circuits locked with cyclic, Anti-SAT, SARLock,

and TTLock demonstrate that CLIC-A solves key values

from circuits that SAT cannot. Additionally, the experiments

performed on SFLL-HD circuits demonstrate that for smaller

key sizes, the SAT attack and CLIC-A both solve a correct

key. However, for larger key sizes, the results demonstrate

that CLIC-A is more effective.

The results in Table III demonstrate that the application of

CLIC-A method four to entrance FSM circuits results in the

correct key sequence being derived. The use of the ILA method

causes circuit size to increase each iteration, which in turn

causes a runtime increase. The increase in runtime is an issue

for larger circuits. However, experiments demonstrate that the

increased runtime does not prevent CLIC-A from generating

test sequences that reach the protected FSM.

B. Strengthening Combinational Locking

The introduction of the hard-coded “correct key” or hard-

coded “protected pattern”, as used in SARLock, TTLock,

and SFLL-HD provides a particular point of attack that is

exploited in CLIC-A. Because the key value is implemented

as part of the design, when targeting faults that require those

particular signal lines, the correct key/protected pattern has a

high likelihood of appearing in test patterns. These methods

could be considered more vulnerable than traditional locking

methods because the key can be extracted without an oracle.

Additionally, strengthening the location-based locking

methods (i.e., random, fault-based, and strong), requires mit-

igating the effectiveness of method two in CLIC-A. The

time required to solve key-input values using constraint-based

ATPG is dependent on the number of key inputs in a logic

cone. As the number of key inputs in a cone grows, so does the

time it takes to identify key-input values. Therefore increasing

the number of key inputs in a cone effectively mitigates this

attack. However, increasing the number of key inputs in each

cone does come at the expense of increasing design overhead.

V. CONCLUSION

In this paper, we presented the security vulnerability of

the various techniques of logic locking that can be exploited

to extract the secret key. Specifically, the exposure of logic

locking to attacks independent of its SAT resiliency. This

includes the non-traditional physical attacks using optical

probing (EOFM/EOP) to extract the key bits even after the

chip is being manufactured incorporating the known state-of-

art defenses. Additionally, tampering the locked circuit with

hardware Trojans that remains undetected during manufac-

turing tests pose a strong security threat to any key-based

locking technique. Only the attacker has the knowledge about

the specific input pattern that can lead to key extraction,

increasing the difficulty to identify the Tampering Attack. We
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Table I
CLIC-A AND SAT COMPARISONS FOR LOCATION-BASED LOCKING METHODS.

Circuit SAT CLIC-A CLIC-A Methods

(gates, keys) Source Lock Type (keys solved, runtime) (keys solved, runtime) Applied

c6288 (2406, 128) Trust-Hub [58] Random 128, 2.3 days 128, 18 hours 1, 2

OpenSparc T2-NCU
(84189, 5507) Self-locked Random 0, exits 4160, 27 hours 1, 2

c1355 (546, 29) SAT attack [59] Fault-based 29, 0.06 seconds 29, 6.7 seconds 1, 2

c1908 (971, 91) SAT attack [59] Fault-based 91, 0.08 seconds 91, 6.6 minutes 1, 2

c432 (168, 8) SAT attack [59] Strong 8, 0.06 seconds 8, 3.2 minutes 1, 2

c499 (212, 10) SAT attack [59] Strong 10, 0.1 seconds 10, 13.0 minutes 1, 2

Table II
CLIC-A AND SAT COMPARISONS FOR SAT RESISTANT LOCKING METHODS.

Circuit SAT CLIC-A CLIC-A Methods

(gates, keys) Source Lock Type (keys solved, runtime) (keys solved, runtime) Applied

c7552 (1428, 26) Trust-Hub [58] Cyclic 0, inf. loop 26, 8.85 minutes 1, 2

c7552 (1494, 50) Trust-Hub [58] Cyclic 0, inf. loop 50, 8.42 minutes 1, 2

c6288(2577, 128) Trust-Hub [58] Anti-SAT + Random 0, 3.0 days 128, 12.7 minutes 1, 2, 3

c7552 (4337, 685) Trust-Hub [58] Anti-SAT + Random 0, 3.0 days 685, 13.5 minutes 1, 2, 3

i7 (1736, 275) Double Dip Attack [60] SARLock + Random 0, 3.0 days 275, 8.0 minutes 1, 2, 3

k2 (2048, 139) Double Dip Attack [60] SARLock + Random 0, 3.0 days 139, 2.81 minutes 1, 2, 3

c7552 (1451, 32) TTLock authors [61] TTLock 0, 5.0 days 32, 1.4 minutes 3

b18 (57362, 64) TTLock authors [61] TTLock 64, 1.1 hours 64, 26.5 minutes 3

c1355 (621, 32) Self-locked SFLL-HD 32, 7.16 seconds 32, 4.1 minutes 3

dfx (42404, 256) SFLL-HD authors [62] SFLL-HD 0, 6.0 days 256, 3.0 days 3

Table III
CLIC-A RESULTS ON SEQUENTIAL LOCKING METHODS.

Circuit Key Length CLIC-A CLIC-A Methods

(gates, flip-flops) (cycles) Source Lock Type (keys solved, runtime) Applied

s9234 (733, 166) 31 HARPOON authors [57] HARPOON 31 cycles, 48.4 minutes 4

s13207 (964, 358) 31 HARPOON authors [57] HARPOON 31 cycles, 3.8 hours 4

s38584 (5987, 1273) 31 HARPOON authors [57] HARPOON 31 cycles, 41.0 hours 4

also discuss CLIC-A attack methods oriented around ATPG to

demonstrate the vulnerability of traditional locking methods

and SAT-resistant methods that contain a “hard-coded” key.

The result shows CLIC-A methods outperform the SAT attack.

As a whole, we can conclude that the security of logic locking

cannot be justified until resiliency against all forms of attacks

is provided.

REFERENCES

[1] E. Castillo, U. Meyer-Baese, A. Garcı́a, L. Parrilla, and A. Lloris, “IPP@
HDL: efficient intellectual property protection scheme for IP cores,”
IEEE Tran. on Very Large Scale Integration (VLSI) Systems, pp. 578–
591, 2007.

[2] M. Tehranipoor and C. Wang, Introduction to hardware security and

trust. Springer Science & Business Media, 2011.

[3] M. M. Tehranipoor, U. Guin, and D. Forte, “Counterfeit integrated
circuits,” in Counterfeit Integrated Circuits. Springer, 2015, pp. 15–36.

[4] S. Bhunia and M. Tehranipoor, Hardware Security: A Hands-on Learn-

ing Approach. Morgan Kaufmann, 2018.

[5] U. Guin, Q. Shi, D. Forte, and M. M. Tehranipoor, “FORTIS: a
comprehensive solution for establishing forward trust for protecting
IPs and ICs,” ACM Transactions on Design Automation of Electronic

Systems (TODAES), p. 63, 2016.

[6] U. Guin, Z. Zhou, and A. Singh, “A novel design-for-security (DFS)
architecture to prevent unauthorized IC overproduction,” in Proc. of the

IEEE VLSI Test Symposium (VTS), 2017, pp. 1–6.

[7] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of
integrated circuits,” in Proc. of the conf. on Design, automation and test

in Europe, 2008, pp. 1069–1074.

[8] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intellec-
tual Property Protection and Security.” in USENIX security symposium,
2007, pp. 291–306.

[9] R. S. Chakraborty and S. Bhunia, “Hardware protection and authentica-
tion through netlist level obfuscation,” in Proc. of IEEE/ACM Interna-

tional Conference on Computer-Aided Design, 2008, pp. 674–677.

[10] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of
ICs for piracy prevention and digital right management,” in Proc. of

IEEE/ACM int. conf. on Computer-aided design, 2007, pp. 674–677.

[11] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Int. Sym. on Hardware Oriented Security and

Trust (HOST), 2015, pp. 137–143.

[12] A. Jain, Z. Zhou, and U. Guin, “TAAL: Tampering Attack on Any Key-
based Logic Locked Circuits,” arXiv preprint arXiv:1909.07426, 2019.

[13] M. Rahman, S. Tajik, M. Rahman, M. Tehranipoor, and N. Asadizanjani,
“The key is left under the mat: On the inappropriate security assumption
of logic locking schemes,” Cryptology ePrint Archive, Report 2019/719,
2019, https://eprint. iacr. org . . . , Tech. Rep., 2019.

[14] M. T. Rahman, M. S. Rahman, H. Wang, S. Tajik, W. Khalil, F. Farah-
mandi, D. Forte, N. Asadizanjani, and M. Tehranipoor, “Defense-in-
depth: A recipe for logic locking to prevail,” Integration, 2020.

[15] S. Tajik, H. Lohrke, J.-P. Seifert, and C. Boit, “On the power of
optical contactless probing: Attacking bitstream encryption of fpgas,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 2017, pp. 1661–1674.

[16] Y. Zhang, P. Cui, Z. Zhou, and U. Guin, “TGA: An Oracle-less and
Topology-Guided Attack on Logic Locking,” in Proc. of the Workshop

on Attacks and Solutions in Hardware Security Workshop (ASHES),
2019, pp. 75–83.

[17] D. Duvalsaint, X. Jin, B. Niewenhuis, and R. D. Blanton, “Characteri-
zation of Locked Combinational Circuits via ATPG,” International Test

Conference, 2019.

9



[18] D. Duvalsaint, Z. Liu, A. Ravikumar, and R. D. Blanton, “Character-
ization of Locked Sequential Circuits via ATPG,” International Test

Conference Asia, 2019.
[19] Rahman, M Sazadur and Nahiyan, Adib and Amir, Sarah and Rahman,

Fahim and Farahmandi, Farimah and Forte, Domenic and Tehranipoor,
Mark, “Dynamically Obfuscated Scan Chain To Resist Oracle-Guided
Attacks On Logic Locked Design,” 2019.

[20] U. Guin, Z. Zhou, and A. Singh, “Robust design-for-security architecture
for enabling trust in IC manufacturing and test,” Trans. on Very Large

Scale Integration (VLSI) Systems, pp. 818–830, 2018.
[21] H. Wang, Q. Shi, D. Forte, and M. M. Tehranipoor, “Probing Assessment

Framework and Evaluation of Antiprobing Solutions,” Transactions on

Very Large Scale Integration (VLSI) Systems, pp. 1239–1252, 2019.
[22] H. Shen, N. Asadizanjani, M. Tehranipoor, and D. Forte, “Nanopyramid:

An Optical Scrambler Against Backside Probing Attacks,” in Proc. Int.

Symposium for Testing and Failure Analysis(ISTFA), 2018, p. 280.
[23] N. Vashistha, H. Lu, Q. Shi, M. T. Rahman, H. Shen, D. L. Woodard,

N. Asadizanjani, and M. Tehranipoor, “Trojan Scanner: Detecting Hard-
ware Trojans with Rapid SEM Imaging combined with Image Processing
and Machine Learning,” in Proc. Int. Symposium for Testing and Failure

Analysis, 2018, p. 256.
[24] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of

logic obfuscation,” in Proc. of Annual Design Automation Conference,
2012, pp. 83–89.

[25] Z. Zhou, U. Guin, and V. D. Agrawal, “Modeling and test generation
for combinational hardware Trojans,” in VLSI Test Symposium (VTS),
2018, pp. 1–6.

[26] Synopsys Inc., Mountain View, CA, USA, “TetraMAX ATPG: Auto-
matic Test Pattern Generation,” 2017.

[27] D. Bryan, “The ISCAS’85 benchmark circuits and netlist format,” North

Carolina State University, vol. 25, 1985.
[28] N. Lesperance, S. Kulkarni, and K.-T. Cheng, “Hardware Trojan Detec-

tion Using Exhaustive Testing of k-bit Subspaces,” in Proc. of Asia and

South Pacific Design Automation Conf. (ASP-DAC), 2015, pp. 755–760.
[29] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification

of Stealthy Malicious Logic Using Boolean Functional Analysis,” in
Proc. ACM SIGSAC Conf. on Computer & Communications Security,
2013, pp. 697–708.

[30] S. K. Haider, C. Jin, M. Ahmad, D. Shila, O. Khan, and M. van Dijk,
“Advancing the State-of-the-Art in Hardware Trojans Detection,” IEEE

Transactions on Dependable and Secure Computing, 2017.
[31] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan

Detection Using IC Fingerprinting,” in Proc. IEEE Symp. Security and

Privacy (SP), 2007, pp. 296–310.
[32] R. Rad, J. Plusquellic, and M. Tehranipoor, “Sensitivity Analysis to

Hardware Trojans Using Power Supply Transient Signals,” in Proc. IEEE

Int. Workshop on Hardware-Oriented Security and Trust, 2008, pp. 3–7.
[33] Y. Liu, K. Huang, and Y. Makris, “Hardware Trojan Detection Through

Golden Chip-Free Statistical Side-Channel Fingerprinting,” in Proc. of

Design Automation Conference, 2014.
[34] R. S. Chakraborty and S. Bhunia, “Security Against Hardware Trojan

Through a Novel Application of Design Obfuscation,” in Proc. Int. Conf.

Computer-Aided Design, 2009, pp. 113–116.
[35] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A Novel Technique for

Improving Hardware Trojan Detection and Reducing Trojan Activation
Time,” IEEE Trans. of VLSI Systems, pp. 112–125, 2012.

[36] K. Xiao and M. Tehranipoor, “BISA: Built-In Self-Authentication
for Preventing Hardware Trojan Insertion,” in Proc. IEEE Int. Symp.

Hardware-Oriented Security and Trust, 2013, pp. 45–50.
[37] X. T. Ngo, S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm, “Linear

Complementary Dual Code Improvement to Strengthen Encoded Circuit
Against Hardware Trojan Horses,” in Proc. IEEE Int. Symp. Hardware

Oriented Security and Trust, 2015, pp. 82–87.
[38] K. Vaidyanathan, B. P. Das, and L. Pileggi, “Detecting Reliability

Attacks During Split Fabrication Using Test-Only BEOL Stack,” in Proc.

of Design Automation Conf., 2014, pp. 1–6.
[39] J. J. V. Rajendran, O. Sinanoglu, and R. Karri, “Is Split Manufacturing

Secure?” in Proc. Conf. Design, Automation and Test in Europe (DATE),
2013, pp. 1259–1264.

[41] J. Magaña, D. Shi, J. Melchert, and A. Davoodi, “Are proximity attacks
a threat to the security of split manufacturing of integrated circuits?”
Trans. on Very Large Scale Integration Systems, pp. 3406–3419, 2017.

[40] Y. Wang, P. Chen, J. Hu, and J. J. Rajendran, “The Cat and Mouse in
Split Manufacturing,” in Proc. of DAC., 2016, pp. 1–6.

[42] W. Xu, L. Feng, J. J. Rajendran, and J. Hu, “Layout recognition attacks
on split manufacturing,” in Proc. of Asia and South Pacific Design

Automation Conference, 2019, pp. 45–50.

[43] S. Tajik, D. Nedospasov, C. Helfmeier, J.-P. Seifert, and C. Boit, “Emis-
sion analysis of hardware implementations,” in Euromicro Conference

on Digital System Design, 2014, pp. 528–534.

[44] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
in International workshop on cryptographic hardware and embedded

systems. Springer, 2002, pp. 2–12.

[45] C. Boit, C. Helfmeier, and U. Kerst, “Security risks posed by modern
IC debug and diagnosis tools,” in Workshop on Fault Diagnosis and

Tolerance in Cryptography, 2013, pp. 3–11.
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