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Abstract—Electronic devices are connected now more than
ever with the prevalence of the Internet of Things. The
ever-increasing communication between these lightweight
devices presses for the need to embed a cryptographic
mechanism to ensure the confidentiality and authentication of
data. Lightweight cryptography nicely supports the need for
encryption mechanisms on IoT devices with limited memory,
storage, and computing capability. This paper focuses on
breaking the hardware implementation of GIFT-COFB, one
of NIST’s Lightweight Cryptography finalists. The 2-round
partial unrolled design of GIFT-COFB is shown to be the most
energy-efficient among all other r-round partial unrolling and
fully unrolled settings [1]. In this paper, we propose a chosen-
plaintext attack to retrieve the master key K effectively and
demonstrate the feasibility of our proposed attack on the
2-round partial unrolled GIFT-COFB. Our efficient attack
can derive the secret key by exploiting the nonlinearity of
the Sboxes with a worst-case complexity of O(24).

Index Terms—GIFT-COFB, Sbox, partial unrolling

I. INTRODUCTION

The recent advancement of the Internet of Things (IoT)
results in more connected electronic devices than ever. Vast
chunks of data are being transferred over the unsecured
channel for increasingly ubiquitous computing. This may
give rise to the potential breach of confidentiality, integrity,
and authentication if, somehow, the devices transmit
information without the proper protection mechanism.
As IoT devices are resource-constrained and low-cost,
have limited area, and less computation power, the
previously standardized Advanced Encryption Standard
(AES) block cipher is not suited for these devices. Thus,
NIST instantiated the process to standardize lightweight
cryptographic algorithm, stressing its importance on
RFID tags, sensor nodes, industrial controllers, and smart
cards [2]. Among all the candidates submitted to NIST,
ten were selected as the finalists [3]. All finalists ensured
tight security bounds and ensured efficient implementation
in both hardware and software. One of the ten finalists
is GIFT-COFB [4], which integrates combined-feedback
mode (COFB) with GIFT-128 cipher [5] to offer
authenticated encryption with associated data.

GIFT belongs to the Substitution-Permutation Networks
(SPNs), which utilizes 4-bit Sbox and bit permutation
PermBits as the underlying SPN. Compared to the
lightweight block cipher PRESENT [6], GIFT provides
better efficiency in both area and performance as well
as mitigates the vulnerability to the linear hull attack [7]
against PRESENT. Although there have been a few
attacks against GIFT cipher, such as cache attack [8],
side-channel attack [9], and fault-injection attack [10],
GIFT-COFB has shown to be secure against large
encryption queries [11]–[13]. Various forgery attacks
described in [11]–[13] requires the attacker to perform
either O(264) encryption or decryption blocks to break
GIFT-COFB’s authentication. As lightweight cryptography
is implemented on IoT devices, it is equally important
to examine the security bound for the same authenticated
encryption in its hardware implementation.

In this paper, we propose a chosen-plaintext attack on the
most-energy-efficient hardware implementation of GIFT-
COFB [1]. As an attacker can have access to the IoT device,
he/she can apply a nonce to the GIFT-COFB encryption ora-
cle and observe the 2-round update from the 128-bit output
tag. Multiple nonce-tag pairs can be captured through reset-
ting the oracle and assigning new values to the input nonce.
With several nonce-tag pairs, the adversary can recover both
round keys of round 1 and 2, and use them to derive the
128-bit secret key, K, through the reverse of key schedule.
The contributions of this paper are summarized as follows:
• We propose an efficient chosen-plaintext attack on the
2-round partial unrolled hardware implementations of
GIFT-COFB. The overall complexity of this attack is
on the order of O(24). This attack can be extended to
other partial unrolled variants of GIFT-COFB.

• We perform quantitative analysis on GIFT’s SBox. The
construction of the underlying 4-bit Sbox is crucial for
breaking GIFT-COFB and yielding the optimal three
nonce-tag pairs used for the recovery of key K.
The rest of the paper is organized as follows. We briefly

introduce the background for hardware implementations
of GIFT-COFB and describe the threat model in Section
II. Our proposed attack is presented in Section III. The
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Figure 1: Hardware implementation of 2-round partial
unrolled GIFT-COFB [1], [14].

result for the proposed attack is described in Section IV.
Finally, we conclude the paper in Section V.

II. BACKGROUND

As IoT devices are resource-constrained, having
multicycle hardware implementations of lightweight
ciphers on these embedded systems offer better area,
power, and performance efficiency. It offsets the inherent
limitations of these devices. Each clock cycle finishes
one round of encryption, storing the intermediate result
to the round registers. However, the major weakness in
multicycle hardware implementation of crypto primitives
is that the output for each encryption round is directly
assigned to the ciphertext variable [15]. Consequently, by
saving the result straight to the ciphertext, the adversary
is granted access to the internal rounds, where the
intermediate round result is updated at every clock cycle.

A. Threat Model
The threat model is given to defining the capabilities and

intentions of an adversary, and is summarized as follows:
• An adversary has access to a fully functional IoT device

where the secret key K is stored in the non-volatile
memory (NVM). The possession of this device allows
the adversary to perform the chosen-plaintext attack
and observe the corresponding ciphertext.

• The adversary can also acquire the gate-level netlist
of the corresponding cipher implemented in the IoT
device. It can be extracted either through IC reverse
engineering [16] or from GDSII files [17]. An untrusted
foundry or a rouge employee of an SoC design house
can pirate the GDSII file to an adversary.

B. Lightweight Hardware Implementation of GIFT-COFB
Under the requirement of authenticated encryption [2],

GIFT-COFB supports the encryption of a fixed-length
nonce, followed by variable-length associated data and
variable-length plaintexts. GIFT-128 [5] block cipher, which
consists of 40 encryption rounds is used in GIFT-COFB [1],
[14]. Although the typical architecture for the multicycle
implementation of block ciphers is to compute every round
per clock cycle, it would be sub-optimal for GIFT-COFB.
The computation of ciphertext could incur undesired latency
for GIFT-COFB in authenticated encryption compared to
other finalists whose underlying block ciphers are of a
smaller round size [1]. It is possible to incorporate multiple
rounds into one clock cycle at the cost of increased area uti-
lization in replicating the round function. Caforio et al. [1]
examined different partial r-round unrolling scenarios and
the fully unrolled setting of GIFT-COFB and found that the
minimum energy consumption of 0.251 nJ/128-bits is ob-
served when two encryption rounds finish at each clock cy-
cle (r = 2) along with clock gating and register borrowing.

We focus on this hardware implementation of GIFT-
COFB. The datapath of interest is shown in Figure 1.
Inputs, outputs, and wire names are presented in blue and
the module instantiation names are in green. At the start of
the authenticated encryption, GIFT-COFB loads a 128-bit
nonce into the 128-bit register state reg with selection bit
core load at logic 1 for the first clock cycle. The output
from state reg is XORed with the 128-bit input data (either
the associated data or plaintext) to generate the ciphertext.
After the nonce is passed to the state reg, the control signal
core load is changed to 0. The default value for control
signal core done is logic 0, which allows the output from
state reg to pass through the multiplexer and it updates
to logic 1 when the encryption reaches the 40th round.
Two GIFT round functions, rf1 and rounds[1], are serially
connected. Each round function has two other inputs, the
6-bit round constants and the 128-bit round key, whose
connections are not shown in Figure 1. The 128-bit tag
receives the output from round function rounds[1]. These
details can be found in aead.vhd and controller.vhd [14].

GIFT-COFB begins authenticated encryption by loading
nonce and encrypting it with GIFT cipher and the master
key K at the speed of 2 encryption rounds per clock cycle.
Hence, the attacker could observe the second round result
of GIFT’s encryption of nonce or any consecutive 2-round
(before the reach of 40th round) through output variable tag.
The remaining question for the adversary is to recover the
secret key K under the 2-round encryption of GIFT. With-
out the loss of generality, we analyze the first two rounds
of nonce encryption to explain our attack methodology.
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III. CHOSEN-PLAINTEXT ATTACK ON GIFT-COFB
Lightweight crypto modules (e.g., GIFT-COFB) are

designed to support authenticated encryption for low-cost
IoT devices, which can be deployed in diverse locations.
These devices can easily be accessed by an adversary,
who can launch an attack to extract the secret key. This
section presents a novel chosen-plaintext attack that
breaks GIFT-COFB on the order of O(24). Our attack
can recover 4-bit key group in parallel even with the
nonlinearity in Sboxes. Let us begin by analyzing the
round function to launch the attack.

GIFT round function consists of three steps, SubCells
(SC), PermBits (PB), and AddRoundKey (AK), as shown
in the dashed boxes in Figure 1. SubCells comprises 32
Sboxes, where each 4-bit input cell is transformed by
one 4-bit Sbox (s(·)), a non-linear and bijective mapping
in GF (24). PermBits performs bit-level permutation, and
AddRoundKey is the modulo-2 addition of the 128-bit from
PermBits with a 64-bit round key at bit location [95...32].
A 6-bit constant is XORed with bit locations 23, 19, 15, 11,
7, and 3, and constant 1 is XORed with bit location 127. We
denote the 128-bit input nonce as N and the 128-bit output
after 2 rounds as T , the 64-bit round key associated with
the round functions as K̂1 and K̂2, and the corresponding
round constants as r̂1 and r̂2. In uniformity with the 128-
bit vector expressions below, we extend the 64-bit round
keys, K̂1, K̂2, to 128-bit K1 and K2 by zero-padding into
the remaining bit locations. Similarly, we expanded r̂1 and
r̂2 to the zero-padded 128-bit r1 and r2. In the following,
we present the detailed steps to obtain the secret key K.
• Step 1 – Sample collection: Two tags corresponding to

two nonces are collected. The adversary first chooses
a nonce, N , passes it to the oracle, and captures the
corresponding output tag, T , after the first clock cycle of
authenticated encryption. As two encryption rounds are
performed in one clock cycle, we can compute the tag as:

T =

2nd round︷ ︸︸ ︷
PB(SC(PB(SC(N))⊕K1 ⊕ r1︸ ︷︷ ︸

1st round

))⊕K2 ⊕ r2 (1)

Since SubCells and PermBits are deterministic, the
adversary can calculate PB(SC(N)) directly. We de-
note the XOR of r1 and PB(SC(N)) as Q, where
Q = PB(SC(N))⊕r1. We can then rewrite Equation 1 as:

T = PB(SC(Q⊕K1))⊕K2 ⊕ r2 (2)

Under a different input nonce N ′, N ′ ̸= N , the
adversary can obtains the 2-round output T ′ and derive
the corresponding Q′ = PB(SC(N ′))⊕r1 as seen earlier:

T ′ = PB(SC(Q′ ⊕K1))⊕K2 ⊕ r2 (3)

For the adversary, this can be achieved by resetting
the GIFT-COFB crypto-system and then providing a
difference nonce, N ′.

• Step 2 – Dependency Removal of round key K2: The
adversary removes the dependency of the second round
key K2 by XORing Equation 2 and 3,

T ⊕ T ′ = PB(SC(Q⊕K1))⊕ PB(SC(Q′ ⊕K1)) (4)

The linearity of PermBits with its additive property
allows us to rewrite Equation 4 as,

T ⊕ T ′ = PB(SC(Q⊕K1)⊕ SC(Q′ ⊕K1)). (5)

Since bit permutation in PermBits is reversible, it is
straightforward for an adversary to derive back to the
output from SubCells (SC),

PB−1(T ⊕ T ′) = SC(Q⊕K1)⊕ SC(Q′ ⊕K1) (6)

where PB−1 is the inverse bitwise permutation of PB.
Since PB−1(T ⊕ T ′) is a constant, we denote it as
L = PB−1(T ⊕ T ′).

• Step 3 – Decomposition of K1 to 16 key cells: Equation
6 can be further split into 32 4-bit cells. The middle
sixteen cells can be represented as

Lj = s(Qj ⊕K1
j )⊕ s(Q′

j ⊕K1
j ) (7)

where cell index j satisfies j ∈ {23, 22, ..., 16} since the
64-bit round key is only effective at bit indices [95...32].
However, it is not possible to uniquely determine each
key cell K1

j with Qj and Q′
j , where Qj ̸= Q′

j , derived
from two noncea N and N ′, where N ̸= N ′ and
Equation 7 alone, where different values for a key cell
K1

j could lead to the same Lj (see details in Section IV).

• Step 4 – Recovery of each key cell in K1: The adversary
can now restart the GIFT-COFB with a third nonce, N ′′,
and acquire its tag T ′′. Repeating Steps 1-3, the attacker
obtains Q′′ = PB(SC(N ′′))⊕ r1, L′ = PB−1(T ⊕ T ′′),
and

L′
j = s(Qj ⊕K1

j )⊕ s(Q′′
j ⊕K1

j ). (8)

With carefully chosen nonces {N,N ′, N ′′}, each key
cell K1

j can be uniquely recovered with Equation 7 and 8
by exhaustive search on all 16 combinations of 4-bit key,
as shown in Section IV. The attacker can compute all six-
teen key cells in K1 in parallel, since each 4-bit key has
its own Equation 7 and 8 independent of other key bits.

• Step 5 – Recovery of K2 and the secret key K: After
deriving the entire round key K1, the second round key
K2 can be simply obtained through

K2 = T ⊕ PB(SC(PB(SC(N))⊕K1))⊕ r2, (9)
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where T , PB(SC(PB(SC(N)), and K1 are all known to
the attacker. Then, the master key K is recovered through
the reversing of key schedule [5] with round keys K1

and K2, K = {K2
[95..64]||K

1
[95..64]||K

2
[63..32]||K

1
[63..32]},

where || denotes the concatenation of bit vectors. The
complexity of this attack lies in the recovery of K1, not
K2. Thus, the attack fully deciphers the secret key K.

IV. RESULT

In this section, we quantitatively analyze the number
of different nonces required for the attacker to derive the
secret key K based on the construction of GIFT’s Sbox.
The computation complexity arises primarily from the com-
putation of round key K1, since K2 is computed through
Equation 9 with O(1). First, we show that having two
nonce-tag pairs is insufficient to derive the value for any key
cells. When we obtain two different nonce-tag pairs, we can
perform Steps 1-3 and proceed to Equation 7 of Section III,
where each key cell can be solved independently. To cover
all the possibilities of Qj and Q′

j , we exhaustively search
all 16 combinations of K1

j under every possible pair of
{Qj , Q

′
j} with Qj ̸= Q′

j . From our simulation [18], under
any fixed {Qj .Q

′
j}, where Qj ̸= Q′

j , at least two solutions
exist for a key cell K1

j giving the same value of Lj .
On the other hand, if the attacker applies three nonce

N,N ′, and N ′′ and obtains the corresponding tag output,
he/she subsequently gets Equation 7-8 for each key cell
from Steps 1-4. Out of all possible,

(
16
3

)
= 560, pairs of

{Qj , Q
′
j , Q

′′
j }, where Qj ̸= Q′

j ̸= Q′′
j , there are 416 pairs

that give different {Lj , L
′
j} for all 16 possible key cells,

allowing the adversary to uniquely determine each 4-bit
key [18]. This enables the recovery of one key cell through
the exhaustive search of 24 = 16 possible combinations
to find the correct solution satisfying Equation 7 and 8.
All sixteen key cells in K1 can be solved separately and
in parallel, resulting in the time complexity of O(24) on
searching the correct key value. The construction of nonce
can be easily derived under the desired values for Q’s
with N = SC−1(PB−1(Q⊕ r1)).

V. CONCLUSION

This paper presents a novel chosen-plaintext attack on the
energy-efficient hardware implementation of GIFT-COFB,
one of the finalists for NIST’s Lightweight Cryptography.
The proposed attack exploits the 2-round instantiation of
GIFT block cipher inside the partial unrolled structure of
GIFT-COFB. The entire secret key can be solved with a
minimum of three nonce-tag pairs. The key cells can be re-
covered in parallel by solving the corresponding constraint
equations, resulting in a O(24) worst-case complexity.
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