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ABSTRACT
Hardware implementations of cryptographic algorithms offer sig-

nificantly higher throughput on both encryption and decryption

than their software counterparts. Advanced Encryption Standard

(AES) is a widely used symmetric block cipher for data encryption.

The most commonly used architecture for AES hardware implemen-

tations is the multicycle design, where each round uses the same

hardware resource multiple times to increase area efficiency. In this

paper, we successfully decouple the interdependency of multiple

key bytes from the AES encryption. Thus, we solve each key byte

separately with an overall attack complexity in 𝑶 (28). Moreover,

we uniquely determine each key byte through a chosen set of three

plaintext-ciphertext pairs. We propose two novel chosen-plaintext

attacks on multicycle AES implementations. Both attacks can elim-

inate the key diffusion from the MixColumns and Key Schedule

modules. The first attack takes advantage of vulnerable AES im-

plementations where an adversary can observe the output of each

round. The second attack is based on fault injection, where a single

fault on the completion-indicator register is sufficient to launch

the attack. Because no faults are injected in the internal computa-

tions of AES, the current fault detection mechanisms are bypassed

as no intermediate result has been altered. Lastly, we explore the

theoretical aspect for the inherent property of our attacks.
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1 INTRODUCTION
Advanced Encryption Standard (AES) [32] is one of the most com-

mon encryption algorithms used in various applications and pro-

tocols, e.g., disk encryption, Internet Protocol Security, Transport

Layer Security, etc.. With the objective to speed up the execution
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of algorithms, there is an increasing demand for creating dedicated

hardware [13, 15] other than optimizing software. This holds for

cryptographic algorithms as well [9, 14], and their hardware imple-

mentations offer better performance on both encryption and decryp-

tion. For example, these low-cost hardware implementations of AES

can be well suited for different Internet of Things (IoT) and Cyber-

Physical Systems (CPS) for enabling data security, which is practi-

cally non-existent for low-cost IoT devices [36]. The hardware im-

plementation of AES is generally multicycle, where each round uses

the same hardware resource to provide better area efficiency. Due to

the extensive use of AES across diverse sectors, hardware designers

can reference the open-source HDL designs which are available

in OpenCores [28]. These implementations offer designers greater

flexibility by choosing the one that matches their design criteria.

Over the years, different researchers have proposed various types

of attacks on AES, and successful countermeasures have also been

proposed. AES attacks can be divided into three categories – alge-

braic attacks [3, 7, 10, 11], differential fault analysis [1, 5, 12, 17, 21],

and side-channel attacks [19, 34]. Dunkelman et al. [11] have the-

oretically explored the effect of excluding the MixColumns trans-

formation. For a reduced-round AES-128 with a single round, they

can eliminate the majority of keys by sequentially guessing four

bytes in the round key and discard those that failed consistency

checks. It needs 2
16

trial encryptions, and the search complexity

is 𝑶 (232). Bouillaguet et al. [7] require 𝑶 (240) simulations [6] with

one known-plaintext of a full round of encryption for key derivation.

They conjecture the time complexity under the same setup with one

more known-plaintext; however, the attack may not uniquely deter-

mine the AES key. Besides algebraic analysis, differential fault anal-

ysis becomes popular where errors or faults are introduced either in-

side the computation of a particular round or within the Key Sched-

ule algorithm. Blömer et al. [5] proposed an attack on AES by reset-

ting a bit after the XOR of input key and plaintext to zero. Observing

the difference in output ciphertext, it helps the attacker decipher

one key bit per fault. However, this attack needs to inject faults at

the metal wires with extreme timing precision [4]. Moradi et al. [21]

and Pogue et al. [29] perform differential fault analysis to extract the

secret key, where faults are assumed at the encryption rounds. Ali

et al. [1], Giraud et al. [12], and Kim [17] have successfully retrieved

the key with differential fault analysis when faults occur at the Key

Schedule. Multiple fault detection schemes [2, 16, 22] have been

proposed to identify faults through either error detection codes or

partial replication of the internal computation of AES. Several fault-

resilient AES implementations have also been proposed [18, 20, 33].

In this paper, we propose two attacks to break the multicycle

AES implementations. Both attacks take three plaintext-ciphertext

pairs to evaluate one key byte. The first attack is designed to break

a vulnerable AES implementation that leaks round operation to the
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output. An adversary can also access the internal scan chains and

observe the round register value. By varying one byte in plaintext,

we show that the effect of three other key bytes of the same Mix-

Columns operation, along with key addition, can be eliminated by

XORing the same output byte using only two plaintext-ciphertext

pairs. However, one more plaintext-ciphertext pair is necessary to

remove the redundant solution to uniquely determine the correct

key byte. The second attack focuses on breaking a multicycle AES

implementation where the content in ciphertext register is updated

once all the round computations are complete. The adversary can

launch the attack by injecting a fault in the flag register that sig-

nal the completion of all computations (e.g., done). Once a fault is

injected, the internal states of the round registers are dumped as

the ciphertext (see Figure 2). An adversary can perform the same

steps mentioned in the first attack to determine the key after ob-

serving the first round result from the ciphertext. This attack is

also applicable to the encryption round that skips MixColumns.

As no faults are injected in the internal computations of AES, the

traditional fault detection schemes can not identify this attack. We

show both attacks on different AES implementations with 128-bit

key size (AES-128) from the OpenCores benchmark site with the

key search space complexity of 𝑶 (28). The same attacks can be

applied to other AES implementations with 192/256-bit keys.

The contributions of this paper are summarized as follows:

• Exhaustive key-byte search using three chosen plaintext-ciphertext
pairs: The exhaustive key search attack relies on the availability

of the internal round at the output of multicycle AES implemen-

tation. We show that an adversary only requires nine plaintext-

ciphertext pairs in total to decipher the entire 128-bit key.

• Fault injection attack: Fault injection is necessary when an adver-

sary cannot observe the internal state of the round register that

holds the output of each round. This fault injection attack focuses

on bypassing the entire computation of AES and dumps the inter-

nal state as ciphertext.We show that only one fault is necessary to

launch the attack. The fault is injected at the completion-indicator

register and does not affect the internal computations of AES,

which makes traditional error detection schemes ineffective.

The rest of the paper is organized as follows.We briefly introduce

the background for AES and describe the threat model in Section 2.

Our proposed attacks are presented in Section 3. A theoretical per-

spective for our proposed attacks is analyzed in Section 4. Finally,

we conclude the paper in Section 5.

2 BACKGROUND AND THREAT MODEL
2.1 AES Implementation
The hardware implementations of AES are often multicycle, where

area efficiency is assured since all the rounds use the same resources

at different clock cycles. Depending on the key size, the ciphertext

is produced after 10, 12, or 14 clock cycles. If each encryption takes

more than one clock cycle to finish, the ciphertext is generated after

an integer multiple of 10, 12, or 14 clock cycles for AES-128, AES-

192, and AES-256, respectively. Each encryption round contains

SubBytes (SB), ShiftRows (SR), MixColumns (MC), and AddRound-

Key (

⊕
) modules, while the last one skips MC, as shown inside

the dashed box of Figure 1.

Notations: We use the following notations to maintain uniformity

across the entire paper.

• We adopt the following notations, where the superscript index

(𝑖) in a variable indicates the current encryption round and the

subscript index ( 𝑗 ) are for the byte index, from 0 to 15. For exam-

ple, the 𝑗𝑡ℎ byte in 𝑖𝑡ℎ round key is 𝐾𝑖
𝑗
and 𝑅𝑖 is the result for 𝑖𝑡ℎ

encryption round. We use 𝐾 , without any superscript, to refer to

the input key, which can be either 16, 24, or 32-byte for AES-128,

AES-192, or AES-256. To facilitate the derivation in the subse-

quent sections, we abbreviate the round one result 𝑅1 to 𝑅. Aside

from the input key, the size for all other variables, e.g., plaintext

𝑃 , round register 𝑅𝑖 , round key 𝐾𝑖
, and ciphertext𝐶 , are 16 bytes.

Note that, in this paper, the ciphertext register𝐶 may not contain

the actual encrypted data. 𝐶 , as explained in Section 3, can store

the internal round result, before the complete encryption finishes.

We use ciphertext and round one result 𝑅 interchangeably.

• The S-box function is denoted as 𝑠 (·). Round constant is 𝑅𝐶 .

2.2 Threat Model
As the hardware implementations of different crypto primitives

become prevalent, an adversary can launch the attacks by physi-

cally accessing the device. This section describes the adversarial

capabilities that help to carry out the attacks. The threat model is

summarized as follows:

• The attacker possesses a fully functional chip where the secret

key has already been programmed. For example, an electronic

device that ensures secure communication can be obtained from

an IoT/CPS application. By having the device, an adversary can

apply a plaintext and observe its corresponding ciphertext.

• The adversary can obtain the gate-level netlist of the AES im-

plementation. It can be either acquired through IC reverse engi-

neering [30] or from the GDSII files [35]. As the majority of the

IC production is offshore, an untrusted foundry can also provide

the reverse-engineered netlist to the adversary.

• The adversary can have access to the design-for-testability (DFT)

or scan architecture to observe the internal state of the design

(e.g., round registers). He/she can launch our proposed first attack

to obtain the secret key. Note that the DFT architecture provides

the necessary support for manufacturing tests [8]. If not, the

attacker can use fault injection equipment to inject a fault in

the completion-indicator (CI) register to launch our proposed

second attack. Laser fault injection equipment can induce very

precise faults and target a single flip-flop [31]. As this equipment

is available at universities, we assume that an adversary also has

the means to acquire such equipment.

3 PROPOSED ATTACKS ON MULTICYCLE
AES IMPLEMENTATIONS

We present two attacks to efficiently break multicycle AES imple-

mentations. The first attack exploits the minor issues in the imple-

mentations [25–27], where the round registers and ciphertext are

updated simultaneously in every round. The second attack, however,

requires fault injection for breaking a correct multicycle AES imple-

mentation which assigns the round result to the ciphertext output

only when it is in the final round [24]. Both attacks work on all three

key sizes of AES. For simplicity of discussion, in this section, we will

first show all the attacks on AES-128. The same attack methodology

can be applied to AES-192 and AES-256 with constant overhead

in worst-case search complexity, which we briefly describe how to

extend both attacks to key sizes larger than 128-bit at the end.
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Figure 1: Hardware implementation of multicycle AES-
128 [25–27].
3.1 Proposed Exhaustive Key-Byte Search Attack
Our first attack is specific to the multicycle AES implementations,

where the output for each encryption round can be observed as

ciphertext𝐶 . Figure 1 shows an abstract view of the multicycle AES

implementation when a designer incorrectly implements AES or an

adversary has access to the internal scan chains. For example, one

implementation from OpenCores [27] assigns the 𝑖𝑡ℎ round result,

𝑀𝐶𝑖 ⊕ 𝐾𝑖
, straight to the ciphertext output, and other implemen-

tations [25, 26] connect the ciphertext to the round registers. Both

data-paths are highlighted in blue in Figure 1.

The traditional AES implementation mixes different key bytes in

such a way that an adversary cannot remove the interdependency

among the key bytes in the ciphertext. As a result, AES remains

secure no matter how many plaintext-ciphertext pairs one can ob-

serve. However, if an adversary can observe the round outputs

stored in the round registers of a multicycle AES implementation,

it is possible to remove the dependency across the key bytes. We

show that one key byte can be determined without knowing the

other key bytes in this attack. Thereby, we determine a key byte

through simulating all 2
8
key combinations and compare the result

with one byte round register value from the working chip under

attack to derive the correct key. In the following, we present the

detailed steps to obtain the first key byte, 𝐾0. Similar analysis can

be performed to reveal the other key bytes.

• Step-1: The adversary chooses two plaintexts, 𝑃 and 𝑃 ′, and ob-

serves the two corresponding round outputs 𝑅 and 𝑅′ after the
first clock cycle from the chip.

• Step-2: The first byte (𝑅0) of round output 𝑅 is computed using

the following equation:

𝑅0 = {𝑀𝐶 (𝑆𝑅(𝑆𝐵(𝑃 ⊕ 𝐾0))) ⊕ 𝐾1}0
= {𝑀𝐶 (𝑆𝑅(𝑆𝐵(𝑃 ⊕ 𝐾0)))}0 ⊕ 𝐾1

0

= [02 ⊗ 𝑠 (𝑃0 ⊕ 𝑲0) ⊕ 03 ⊗ 𝑠 (𝑃5 ⊕ 𝑲5) ⊕ (𝑃10 ⊕ 𝑲10) ⊕
𝑠 (𝑃15 ⊕ 𝑲15)] ⊕ [𝐾0 ⊕ 𝑠 (𝐾13) ⊕ 𝑅𝐶] . (1)

From Equation 1, we can observe that the value of 𝑅0 depends on

𝐾0, 𝐾5, 𝐾10, 𝐾13, and 𝐾15. Key bytes which can be derived from

the equation are highlighted as boldface letters. At this point, it

is sub-optimal to brute force all five key bytes as they cannot be

uniquely determined. Multiple collisions occur for the 2
40

key

combinations that lead to the same 8-bit 𝑅0 value. Therefore, we

choose another plaintext 𝑃 ′ with the following properties:

𝑃0 ≠ 𝑃
′
0
, and 𝑃𝑖 = 𝑃

′
𝑖 , 𝑖 = 5, 10, 15

The 𝑅′
0
can be computed using the following equation:

𝑅′
0

= {𝑀𝐶 (𝑆𝑅(𝑆𝐵(𝑃 ′ ⊕ 𝐾0))) ⊕ 𝐾1}0
= {𝑀𝐶 (𝑆𝑅(𝑆𝐵(𝑃 ′ ⊕ 𝐾0)))}0 ⊕ 𝐾1

0

= [02 ⊗ 𝑠 (𝑃 ′
0
⊕ 𝑲0) ⊕ 03 ⊗ 𝑠 (𝑃5 ⊕ 𝑲5) ⊕ (𝑃10 ⊕ 𝑲10) ⊕

𝑠 (𝑃15 ⊕ 𝑲15)] ⊕ [𝐾0 ⊕ 𝑠 (𝐾13) ⊕ 𝑅𝐶] . (2)

The computation details can be found in [32].

• Step-3: 𝑅0 and 𝑅
′
0
are XORed to remove the dependency for other

key bytes.

𝑅0 ⊕ 𝑅′0 = [02 ⊗ 𝑠 (𝑃0 ⊕ 𝑲0) ⊕ 03 ⊗ 𝑠 (𝑃5 ⊕ 𝑲5) ⊕ (𝑃10 ⊕ 𝑲10)
⊕ 𝑠 (𝑃15 ⊕ 𝑲15)] ⊕ [𝐾0 ⊕ 𝑠 (𝐾13) ⊕ 𝑅𝐶] ⊕ [02
⊗ 𝑠 (𝑃 ′

0
⊕ 𝑲0) ⊕ 03 ⊗ 𝑠 (𝑃5 ⊕ 𝑲5) ⊕ (𝑃10 ⊕ 𝑲10) ⊕

𝑠 (𝑃15 ⊕ 𝑲15)] ⊕ [𝐾0 ⊕ 𝑠 (𝐾13) ⊕ 𝑅𝐶]
= 02 ⊗ 𝑠 (𝑃0 ⊕ 𝑲0) ⊕ 02 ⊗ 𝑠 (𝑃 ′

0
⊕ 𝑲0) (3)

We can rewrite Equation 3 as:

𝑠 (𝑃0 ⊕ 𝑲0) ⊕ 𝑠 (𝑃 ′0 ⊕ 𝑲0) = 𝑀0 (4)

where,𝑀0 is a constant.

• Step-4: Brute-force attack is performed using Equation 4.

The only unknown in Equation 4 is 𝐾0, allowing the attacker

to enumerate all 256 combinations of 𝐾0 to find the one that

satisfies it. However, there exists more than one solution due to

the nonlinearity introduced by the S-box.

Claim-1. There exist two solutions for Equation 5.

𝑠 (𝑝 ⊕ 𝒌) ⊕ 𝑠 (𝑝 ′ ⊕ 𝒌) =𝑚 (5)

where, 𝑝 , 𝑝 ′, 𝑘 , and𝑚 are of one byte, and 𝑝 ≠ 𝑝 ′.

Observation. There are 128 unique values for byte𝑚 for all 256

combinations of 𝑘 under any fixed 𝑝 , 𝑝 ′ and 𝑝 ≠ 𝑝 ′. One can
verify the above observation using code available in GitHub [23].

We denote the 128 unique values of𝑚 as𝑚𝑖 , 𝑖 ∈ 0, 1, ..., 127 and

𝑚𝑖 ≠𝑚 𝑗 when 𝑖 ≠ 𝑗 .

Proof. For each valid𝑚𝑖 , there is at least one unique key 𝑘
𝐼
𝑖
,

𝑖 ∈ 0, 1, ..., 127, that satisfies:

𝑠 (𝑝 ⊕ 𝑘𝐼𝑖 ) ⊕ 𝑠 (𝑝
′ ⊕ 𝑘𝐼𝑖 ) =𝑚𝑖 (6)

Due to𝑚𝑖 ≠𝑚 𝑗 , when 𝑖 ≠ 𝑗 , and the bijective property of the S-

box, 𝑘𝐼
𝑖
≠ 𝑘𝐼

𝑗
, when 𝑖 ≠ 𝑗 , with fixed 𝑝 , 𝑝 ′, 𝑝 ≠ 𝑝 ′. We denote the

set of these 128 solutions as Group I. The proof for the existence of
another solution for each𝑚𝑖 is sufficient for validating the claim.

Let us consider another key byte 𝑘𝐼 𝐼
𝑖

with the form 𝑘𝐼 𝐼
𝑖

=

𝑘𝐼
𝑖
⊕ 𝑝 ⊕ 𝑝 ′. Clearly, 𝑘𝐼 𝐼

𝑖
≠ 𝑘𝐼

𝑖
since 𝑝 ≠ 𝑝 ′.

Applying the value of 𝑘𝐼 𝐼
𝑖

in Equation 6, we compute:

𝑠 (𝑝 ⊕ 𝑘𝐼 𝐼𝑖 ) ⊕ 𝑠 (𝑝 ′ ⊕ 𝑘𝐼 𝐼𝑖 )

= 𝑠 (𝑝 ⊕ 𝑘𝐼𝑖 ⊕ 𝑝 ⊕ 𝑝 ′) ⊕ 𝑠 (𝑝 ′ ⊕ 𝑘𝐼𝑖 ⊕ 𝑝 ⊕ 𝑝 ′)

= 𝑠 (𝑘𝐼𝑖 ⊕ 𝑝
′) ⊕ 𝑠 (𝑘𝐼𝑖 ⊕ 𝑝) =𝑚𝑖 (7)

Next, we show that all these 128 𝑘𝐼 𝐼
𝑖
’s are unique as well. Now

consider any two solutions 𝑘𝐼 𝐼
𝑖

and 𝑘𝐼 𝐼
𝑗
, ∀𝑖 ≠ 𝑗 . As 𝑘𝐼

𝑖
≠ 𝑘𝐼

𝑗
, then

(𝑘𝐼
𝑖
⊕ 𝑝 ⊕ 𝑝 ′) ≠ (𝑘𝐼

𝑗
⊕ 𝑝 ⊕ 𝑝 ′). This results 𝑘𝐼 𝐼

𝑖
≠ 𝑘𝐼 𝐼

𝑗
. This proves



that no two 𝑘𝐼 𝐼
𝑖
, 𝑘𝐼 𝐼

𝑗
, 𝑖 ≠ 𝑗 are the same, and we denote the set of

these 128 solutions as Group II.
Finally, the proof will be complete, if we show that there is

no overlap between the solutions in Group I (𝑘𝐼
𝑖
’s) and Group II

(𝑘𝐼 𝐼
𝑖
’s), where each group contains 128 unique key within. Let

us assume that 𝑘𝐼 𝐼
𝑖

belongs to Group I and denote with index 𝑗 ,

where 𝑖 ≠ 𝑗 , 𝑘𝐼 𝐼
𝑖

= 𝑘𝐼
𝑗
. Substitute 𝑘𝐼

𝑗
in Equation 6, and we get

𝑠 (𝑝 ⊕ 𝑘𝐼𝑗 ) ⊕ 𝑠 (𝑝
′ ⊕ 𝑘𝐼𝑗 ) =𝑚 𝑗 . (8)

Combining Equation 8 and Equation 7 for 𝑘𝐼
𝑖
, we have𝑚𝑖 =𝑚 𝑗 ,

which contradict the uniqueness of 128𝑚𝑖 ’s for 𝑖 ≠ 𝑗 . Thus, there

are no common solutions between Group I and Group II and
the 256 solutions from the joint groups make up all the possible

key-byte combinations. Therefore, we proved that there exist

only two solutions for each𝑚𝑖 that satisfies Equation 5. □

• Step-5: The double-solution is removed by selecting another plain-

text (𝑃 ′′) with 𝑃 ′′
0
differs from both 𝑃0 and 𝑃

′
0
(i.e., 𝑃 ′′

0
≠ 𝑃0 ≠ 𝑃

′
0
),

and keeping 𝑃 ′′
5
= 𝑃5, 𝑃

′′
10

= 𝑃10, and 𝑃
′′
15

= 𝑃15 unchanged. Using

Step-2 and Step-3, we obtain the following equation:

𝑠 (𝑃0 ⊕ 𝑲0) ⊕ 𝑠 (𝑃 ′′0 ⊕ 𝑲0) = 𝑁0, (9)

where, 𝑁0 is a constant. Equation 9 is applied on the two pre-

viously obtained solutions (i.e., 𝐾 𝐼
0
and 𝐾 𝐼 𝐼

0
) to determine the

correct key byte.

Claim-2. Both solutions, 𝐾 𝐼
0
and 𝐾 𝐼 𝐼

0
, cannot be valid under both

Equations 4 and 9.

Proof. Let us assume that both solutions, 𝐾 𝐼
0
and 𝐾 𝐼 𝐼

0
, are

valid and satisfy Equation 9. As a result, we can write,

𝑠 (𝑃0 ⊕ 𝐾 𝐼
0
) ⊕ 𝑠 (𝑃 ′′

0
⊕ 𝐾 𝐼

0
) = 𝑁0

and

𝑠 (𝑃0 ⊕ 𝐾 𝐼 𝐼
0
) ⊕ 𝑠 (𝑃 ′′

0
⊕ 𝐾 𝐼 𝐼

0
) = 𝑁0

Using Claim-1, we can write 𝑠 (𝑃0 ⊕ 𝐾 𝐼
0
) = 𝑠 (𝑃 ′′

0
⊕ 𝐾 𝐼 𝐼

0
). Also,

with Claim-1 and Equation 4, we can write 𝑠 (𝑃0 ⊕ 𝐾 𝐼
0
) = 𝑠 (𝑃 ′

0
⊕

𝐾 𝐼 𝐼
0
). This results, 𝑠 (𝑃 ′

0
⊕ 𝐾 𝐼 𝐼

0
) = 𝑠 (𝑃 ′′

0
⊕ 𝐾 𝐼 𝐼

0
). This can’t be true

as 𝑃 ′ ≠ 𝑃 ′′. □

In the same manner, key bytes 𝐾5, 𝐾10, and 𝐾15 are determined

through either of the first four-bytes from round output,𝑅0, 𝑅1, 𝑅2, 𝑅3,

by varying the corresponding plaintext byte, 𝑃5, 𝑃10, or 𝑃15 and con-

straining the other three plaintext bytes to remain unchanged.

To find the remaining key bytes, we need to consider three bytes

of the round register, one from 𝑅4−𝑅7, 𝑅8−𝑅11, and 𝑅12−𝑅15 each.
These three bytes are sufficient to find the remaining key bytes as

their MixColumns transformation incorporate all 12 key bytes. For

example, we consider 𝑅4, 𝑅8, and 𝑅12, as shown below:

𝑅4 = [02 ⊗ 𝑠 (𝑃4 ⊕ 𝑲4) ⊕ 03 ⊗ 𝑠 (𝑃9 ⊕ 𝑲9) ⊕ 𝑠 (𝑃14 ⊕ 𝑲14) ⊕
𝑠 (𝑃3 ⊕ 𝑲3)] ⊕ [𝐾4 ⊕ 𝐾0 ⊕ 𝑠 (𝐾13) ⊕ 𝑅𝐶] (10)

𝑅8 = [02 ⊗ 𝑠 (𝑃8 ⊕ 𝑲8) ⊕ 03 ⊗ 𝑠 (𝑃13 ⊕ 𝑲13) ⊕ 𝑠 (𝑃2 ⊕ 𝑲2) ⊕
𝑠 (𝑃7 ⊕ 𝑲7)] ⊕ [𝐾8 ⊕ 𝐾4 ⊕ 𝐾0 ⊕ 𝑠 (𝐾13) ⊕ 𝑅𝐶] (11)

𝑅12 = [02 ⊗ 𝑠 (𝑃12 ⊕ 𝑲12) ⊕ 03 ⊗ 𝑠 (𝑃1 ⊕ 𝑲1) ⊕ 𝑠 (𝑃6 ⊕ 𝑲6) ⊕
𝑠 (𝑃11 ⊕ 𝑲11)] ⊕ [𝐾12 ⊕ 𝐾8 ⊕ 𝐾4 ⊕ 𝐾0 ⊕ 𝑠 (𝐾13) ⊕ 𝑅𝐶] (12)

Plaintext (P)

SB

SR

MC

Ciphertext (C)

Round Registers (Ri)

Key (K)

Key 
Expansion

128

Load

K0

128128

128128

round_cnt Reg ?= 11

done_d1 Reg ?= 1 

Ki

done_d2 Reg ?= 0

pr_data_0 <= r_00 when round_cnt=11 
else mixcol_0;

...

elsif rising_edge(clk) then
  if(start_d2 = '1' and start_d1 = '0') then
    done_d1 <= '0'; done_d2 <= '0';
  elsif(round_cnt = 10) then
    done_d1 <= '1';

if(done_d1 = '1' and done_d2 = '0') then
  data_out <= (next_round_data_0(0) 

 & next_round_data_0(1) ... 

Figure 2: Structure of multicycle AES-128, where round
result 𝑅𝑖 is sent to ciphertext 𝐶 only after the last round of
encryption [24], code segment from Lines 319-326, 399-428.

The remaining key bytes can be determined iteratively using

Equations 10-12 and Steps 1-5. Note that an adversary can also

choose 𝑅1, 𝑅5, 𝑅9 and 𝑅13 or a few other combinations to determine

all 16 key bytes as well.

3.2 Proposed Fault-Injection Attack
The first attack is efficient in determining the keywhen an adversary

can access the round registers that hold the output of each round.

An adversary can use the scan architecture or exploit a faulty imple-

mentation for such a purpose. However, one cannot always assume

access to registers. This motivates us to propose a fault injection at-

tack that allows us to observe the internal state and utilize the previ-

ously presented brute-force attack. Note that the fault injection has

become an effective means to launch an attack. It has been demon-

strated that laser fault injection can successfully target a single regis-

ter [31]. The same methodology and procedure in [31] is applicable

to launching our proposed fault injection attack on AES. This attack

leads to two possible scenarios, and both are elaborated below.

First, let us examine an example in OpenCores [24], which does

not have the weakness of other implementations described in Sec-

tion 3.1. Figure 2 shows this multicycle AES implementation where

the ciphertext register receives the round register value at the last

encryption round (e.g., when done_d1 == 1 and done_d2 == 0). We

also assume that an adversary does not have access to the internal

scan chains and only observes the ciphertexts. The round operations

are the same with Figure 1. We include the HDL code excerpt in Fig-

ure 2 which describes how the completion-indicator (CI) registers

(e.g., done_d1 and done_d2), and the ciphertext (i.e., data_out) are up-
dated. As the done_d2 register holds a logic 0 value during the round
operations, the round registers values (e.g., next_round_data_0), are
propagated to the ciphertext output (e.g., data_out) when done_d1=1.
It is thus sufficient to inject only one logic 1 fault to done_d1 register
to extract round register value. Once the internal value is observed,



an adversary can perform Steps 1-5 presented in Section 3.1 to

retrieve the secret key completely.

Second, a hardware implementation can have the same logical

condition applied to both skipping the MixColumns transformation

and assigning the round register result to the ciphertext 𝐶 , since

both should happen at the last encryption round. In this way, if

the attacker injects all the necessary fault to force the round result

observable, the MixColumns step is also affected and bypassed.

Alternatively, it may be possible for an adversary to inject faults on

both CI register and round counter (e.g., round_cnt) so that he/she

obtains the result from the first encryption round, but skips the

MixColumns module. We briefly describe how an attack can be

launched when bypassing the MixColumns operation.

• Brute-force attack without MixColumns Operation. Let us
consider the first byte of round register 𝑅 (i.e., 𝑅0) after applying

the first plaintext 𝑃 , which can be computed as:

𝑅0 = 𝑠 (𝑃0 ⊕ 𝑲0) ⊕ [𝐾0 ⊕ 𝑠 (𝐾13) ⊕ 𝑅𝐶] .
After applying the second plaintext 𝑃 ′ with 𝑃0 ≠ 𝑃 ′

0
, we can

write:

𝑅′
0
= 𝑠 (𝑃 ′

0
⊕ 𝑲0) ⊕ [𝐾0 ⊕ 𝑠 (𝐾13) ⊕ 𝑅𝐶] .

Finally, we obtain

𝑠 (𝑃0 ⊕ 𝑲0) ⊕ 𝑠 (𝑃 ′0 ⊕ 𝑲0) = 𝑀0

where,𝑀0 is a constant.

Then, we can follow the same procedure described in Steps 4-5

in Section 3.1 to recover key byte 𝐾0.

3.3 Extending the Proposed Attacks to AES-192
and AES-256

The attacks presented in Sections 3.1-3.2 can retrieve the entire 16

bytes of the secret key for AES-128. It can also recover the first 16

bytes from AES-192 and AES-256, although the exact expression

for round key in Key Expansion is different. However, it is neces-

sary to extract the remaining 8 and 16 bytes for 192- and 256-bit

keys, respectively. These key bytes belong to the second round key

𝐾1
, where they influence the result of the first encryption round

through AddRoundKey (

⊕
). As a result, the adversary can deci-

pher these key bytes from any one of the plaintext-ciphertext pairs

obtained in Section 3.1 or 3.2, without the need to give additional

plaintexts to the oracle or perform extra fault injections. For AES-

192, the first eight bytes of the round key 𝐾1
, 𝐾1

0
, ..., 𝐾1

7
, are the last

8 bytes of the input key K, 𝐾16, ..., 𝐾23, respectively [32]. Likewise,

the entire round key 𝐾1
is nothing but the last 16 bytes of input key

𝐾 for AES-256,𝐾1 = {𝐾16, ..., 𝐾31} [32]. We show how to determine

key byte 𝐾16 of AES-192 from the observed 𝑅 in the following:

𝑅0 = {𝑀𝐶 (𝑆𝑅(𝑆𝐵(𝑃 ⊕ 𝐾0))) ⊕ 𝐾1}0
= {𝑀𝐶 (𝑆𝑅(𝑆𝐵(𝑃 ⊕ 𝐾0)))}0 ⊕ 𝐾1

0

= [02 ⊗ 𝑠 (𝑃0 ⊕ 𝐾0) ⊕ 03 ⊗ 𝑠 (𝑃5 ⊕ 𝐾5) ⊕ (𝑃10 ⊕ 𝐾10) ⊕
𝑠 (𝑃15 ⊕ 𝐾15)] ⊕ [𝑲16]

= 𝑲16 ⊕ 𝑄1, (13)

where 𝑄1 = 02 ⊗ 𝑠 (𝑃0 ⊕ 𝐾0) ⊕ 03 ⊗ 𝑠 (𝑃5 ⊕ 𝐾5) ⊕ (𝑃10 ⊕ 𝐾10) ⊕
𝑠 (𝑃15 ⊕ 𝐾15) is a constant as 𝐾0 − 𝐾15 are known. One can directly

compute 𝐾16 by XORing 𝑅0 and 𝑄1.

It is also possible to determine 𝐾16 directly, if adversary chooses

to bypass the MixColumns operation. We can also write:

𝑅0 = 𝑠 (𝑃0 ⊕ 𝐾0) ⊕ [𝑲16], (14)

where 𝑠 (𝑃0 ⊕𝐾0) is a constant as 𝐾0 −𝐾15 are known. The key byte
𝐾16 can be computed by XORing 𝑅0 and 𝑠 (𝑃0 ⊕ 𝐾0) like before.

The other key bytes (i.e., 𝐾17 − 𝐾23) can be obtained similarly

from 𝑅1 − 𝑅7. One can perform similar analysis to obtain the re-

maining 𝐾16 − 𝐾31 key bytes from 𝑅0 − 𝑅15 for AES-256.
3.4 Number of Plaintext Requirement
In Section 3.1, three plaintexts are sufficient to derive one key byte.

Note, in these three plaintexts, we only vary one byte of the same

index and constrain the bytes at the three other indices to remain

unchanged. Because we do not have constraints on all 15 remaining

plaintext bytes, we are allowed with more flexibility on other plain-

text bytes that do not belong to the same MixColumns computation

as the key byte of interest. Instead of the apparent 3 ∗ 16 = 48

plaintexts to recover all 16-byte key, we can reduce this number by

having four plaintext bytes, where no two bytes resides in the same

MixColumns operation, vary concurrently in one plaintext, e.g.,

𝑃0, 𝑃4, 𝑃8, 𝑃12. Hence, the minimum number of plaintexts needed

for this attack is 1+2×4 = 9, where the minimal three plaintexts are

satisfied by having one reference plaintext and its corresponding

two variants. Once all nine ciphertexts are obtained, all sixteen

key bytes can be determined in parallel, making the worst-case

complexity of 𝑶 (28). Suppose the round result skips MixColumns

transformation, as of the second possible scenario in Section 3.2,

each key byte is still recovered with three plaintext-ciphertext pairs.

However, since we do not have the restriction on the other three

plaintext bytes as for Section 3.1, it does not matter if other bytes

stay the same or not. Hence, we can reduce the required number of

plaintexts to break the entire key from 9, as for the attack in Section

3.1, down to 3, as long as the byte at the same index (e.g., index 𝑗 )

is different in all three plaintexts, 𝑃 𝑗 ≠ 𝑃 ′
𝑗
≠ 𝑃 ′′

𝑗
. The worst-case

complexity of this attack is still 2
8 = 𝑶 (28), since all sixteen key

bytes,𝐾𝑗 ’s, can be recovered concurrently, without the need to wait

for any other bytes to be resolved first.

4 THEORETICAL JUSTIFICATION
OF DOUBLE-SOLUTION FOR EQUATION 5

Aside from the exhaustive simulation we performed in Section 3.1,

we present another perspective on the dual solutions, 𝑘𝐼 and 𝑘𝐼 𝐼 , for

Equation 5. Instead of the common approach [10] to expand the S-

box to a system of equations in a bit-by-bit manner, we consider the

polynomial in 𝑮𝑭 (28) as the fundamental unit. To differentiate ma-

trix multiplication from polynomial multiplication under 𝑮𝑭 (28)
with irreducible polynomial 𝐼𝑃 = [1 0 0 0 1 1 0 1 1], we use · for
matrix multiplication. S-box 𝑠 (𝑥) = 𝑦 contains two operations [32].

It first find the inverse polynomial, 𝑥−1 of its input byte 𝑥 under

𝑮𝑭 (28) and 𝐼𝑃 . Then, it applies the affine transformation on 𝑥−1

with a reversible matrix 𝐻 of size 8 × 8 bits and an 8-bit column

vector 𝑐 = [1 1 0 0 0 1 1 0]𝑇 to get output byte 𝑦 = 𝐻 · 𝑥−1 ⊕ 𝑐 [32].
For our analysis, we can expand Equation 5 with the details of

the internal construction of S-box as:(
𝐻 · (𝑝 ⊕ 𝒌)−1 ⊕ 𝑐

)
⊕
(
𝐻 · (𝑝 ′ ⊕ 𝒌)−1 ⊕ 𝑐

)
=𝑚.

Note that (𝑝 ⊕ 𝒌)−1 and (𝑝 ′ ⊕ 𝒌)−1 are the inverse of (𝑝 ⊕ 𝒌) and
(𝑝 ′ ⊕ 𝒌), respectively. After rearranging terms, we get

𝐻 ·
(
(𝑝 ⊕ 𝒌)−1 ⊕ (𝑝 ′ ⊕ 𝒌)−1

)
=𝑚.

Since 8-by-8 bit matrix 𝐻 has inverse, denoted as 𝐻−1
, we obtain

(𝑝 ⊕ 𝒌)−1 ⊕ (𝑝 ′ ⊕ 𝒌)−1 = 𝐻−1 ·𝑚.



Now, both sides of the equation are polynomials in 𝑮𝑭 (28). We use

constant 𝑑 to represent 𝐻−1 ·𝑚, 𝑑 = 𝐻−1 ·𝑚, for clarity.

If we multiply both side with polynomial (𝑝 ⊕ 𝒌) and (𝑝 ′ ⊕ 𝒌),
we get (𝑝 ′ ⊕ 𝒌) ⊕ (𝑝 ⊕ 𝒌) = 𝑑 ⊗ (𝑝 ⊕ 𝒌) ⊗ (𝑝 ′ ⊕ 𝒌) .
We can further simplify it as

𝑝 ⊕ 𝑝 ′ = 𝑑 ⊗
[
(𝒌 ⊗ 𝒌) ⊕ (𝑝 ⊕ 𝑝 ′) ⊗ 𝒌 ⊕ (𝑝 ⊗ 𝑝 ′)

]
.

Since 𝑑 is a polynomial under 𝑮𝑭 (28) and it is not the zero polyno-

mial, the inverse of 𝑑 exists and we denote it as 𝑑−1. Multiply both

side with 𝑑−1 and abbreviate 𝑘 ⊗ 𝑘 as 𝑘2 under 𝑮𝑭 (28), we have
𝒌2 ⊕ (𝑝 ⊕ 𝑝 ′) ⊗ 𝒌 ⊕ (𝑝 ⊗ 𝑝 ′) ⊕ 𝑑−1 ⊗ (𝑝 ⊕ 𝑝 ′) = 0.

Thus, we complete the derivation and it is clear that Equation 5 is

a quadratic equation with respect to the unknown variable 𝒌 .
Under any quadratic equation 𝑥2 +𝑎𝑥 +𝑏 = 0 in R, the two roots

𝑥1, 𝑥2 satisfy 𝑥1 + 𝑥2 = −𝑏, 𝑥1 × 𝑥2 = 𝑐 . We made an interesting

observation that these properties also hold true for Equation 4. The

two solution for Equation 5, 𝑘𝐼 , 𝑘𝐼 𝐼 uphold both

𝑘𝐼 + 𝑘𝐼 𝐼 = 𝑝 ⊕ 𝑝 ′, and
𝑘𝐼 ⊗ 𝑘𝐼 𝐼 = (𝑘𝐼 𝐼 ⊕ 𝑝 ⊕ 𝑝 ′) ⊗ 𝑘𝐼 𝐼

= (𝑘𝐼 𝐼 )2 ⊕ (𝑝 ⊕ 𝑝 ′) ⊗ 𝑘𝐼 𝐼

= (𝑝 ⊗ 𝑝 ′) ⊕ 𝑑−1 ⊗ (𝑝 ⊕ 𝑝 ′).

5 CONCLUSION
In this paper, we presented two novel attacks targeting the hard-

ware implementations of multicycle AES. In both attacks, each key

byte requires only three plaintext-ciphertext pairs to retrieve its

value. The entire secret key is recovered by solving all key bytes in

parallel, resulting in a 𝑂 (28) worst-case complexity. If the internal

round result is not observable in the output, we propose to in-

ject fault on the completion-indicator register to reveal the internal

state. Any traditional method can be applied to inject faults, and the

protection against the fault injection attacks can be bypassed since

no intermediate result is affected. We also showed the algebraic

perspective on the dual solutions of Equation 5. Finally, we provide

the theoretical extension of the properties of a regular quadratic

equation to the finite field 𝑮𝑭 (28), which support Claim-1.
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