
Ensuring Proof-of-Authenticity
of IoT Edge Devices using Blockchain Technology

Ujjwal Guin∗, Pinchen Cui†, Anthony Skjellum⋄

∗Dept. of Electrical and Computer Engineering, Auburn University
†Dept. of Computer Science and Software Engineering, Auburn University

⋄SimCenter & Dept. of Computer Science and Engineering, University of Tennessee at Chattanooga

Abstract—Imposter devices pose serious threats. The majority
of low-cost edge devices can easily be counterfeited or cloned;
the supply chain is insufficiently secure. Reliability of deployed
devices can be called into question simply because they might be
counterfeit or cloned. It is a must to identify edge devices’ sourc-
ing uniquely and verify their validity periodically at runtime.

We integrate blockchain technology to authenticate resource-
constrained, low-cost edge devices. We use SRAM-based phys-
ically unclonable functions (PUFs) to generate unique “digital
fingerprints” (device IDs). Registered manufacturers upload a
cryptographic hash of each device ID to a “globally accessible”
blockchain instance (key-value store or smart contract). While
registering/designating a device locally, the end-user verifies
whether the hash is present in that blockchain. We utilize
a “locally permissioned” blockchain infrastructure (which is
still a globally managed blockchain or, in future, a sidechain)
to authenticate edge devices for a defense-in-depth approach.
Devices can authenticated periodically to prevent device cloning.
Target environments can be large and have varied trust among
users and lack a specific perimeter; this “local” blockchain
methodology is thus pertinent, especially since blockchains gain
security over time. Our approach reduces the potential for classes
of information leakage and types of sabotage in a critical infras-
tructure or large-scale deployment (such as a smart city) arising
from imposter devices. This methodology protects against such
imposters in mobile settings within an IoT infrastructure too.

Index Terms—Internet of Things (IoT), Cyber-Physical Sys-
tems (CPS), Physically Unclonable Functions (PUF), Edge Device,
Cloning, Blockchains, Lightweight Mining, Device Identity

I. INTRODUCTION

The Internet of Things (IoT) is the collection of billions

upon billions of devices (“things”) connected to the Internet and

purposed to enable direct interactions between the physical world

as well as computer-based systems. It is estimated that there

will between 20 and 50 billion such Internet-connected devices

by 2020 [1]–[3]. ‘Things” are a wide variety of electronic

and electromechanical devices including smart thermostats,

lights, watches, mobile phones, sensors, and actuators, as well

as microcontrollers, among others [1]. Ensuring security and

authenticity of these devices is challenging since they often

have resource constraints such as low power requirements, low

area budget, limited memory, and/or extremely low-cost. Some

lack MAC addresses in their wireless protocols as well. Trappe

et al. showed that the power constraint in IoT edge devices

limits encryption functionality of sensor nodes, which leads to

poorly encrypted communication or no encryption at all [4]. In

a different study, HP revealed that almost 70% of IoT devices

did not encrypt communications to the Internet or the local

network [5]. These deficits open vulnerabilities for adversaries.

Furthermore, encryption, if present, is no guarantee of identity.

ED

ED

ED

ED

ED

ED

Edge Device

Gateway

Gateway

Adversary

User

Cloned/

Tampered

Counterfeit/

Inferior Quality

Cloned/

Tampered

· Man-in-the-Middle Attack

(MITM)

· Eavesdropping

· Denial-of-Service (DoS and

DDoS)

· Data Spoofing

· Distribution of fake updates

· Unreliable

Threats

Figure 1: A standard IoT model with hardware vulnerabilities.

This paper focuses on ensuring the security of CPS/IoT sys-

tems through an information architecture that incorporates a glob-

ally managed blockchain dataset for integrity, availability, and

identity purposes. Most edge devices are manufactured in limited-

trust environments lacking relevant government regulations (e.g.,

to curtail counterfeiting and infiltration of threats at manufacture),

move through supply chains without strong controls, and then

are deployed in critical infrastructures worldwide. Thus, we need

to develop solutions for protecting both hardware and software

that take into account the manifold variety of attacks and threats

inherent in such commodity-off-the-shelf devices. Attacks can

originate from untrusted hardware of a CPS/IoT System and/or

from the Internet by way of exploiting existing communication

protocols and network traffic. Hardware attacks against a system

can occur with physical tampering of a device and/or by the

introduction of a cloned/counterfeit device [6]–[9] into the system.

Software attacks against the system can be performed through

network attacks such as Phishing, Denial of Service (DoS), and

data spoofing [10], [11]. Our approach disallows classes of imper-

sonation (cloning) and counterfeiting, which mitigate man-in-the-

middle attacks against secure connections through unique identity.

Figure 1 shows a CPS/IoT System with various attacks that

can originate from untrusted hardware. An adversary might

create a backdoor and easily bypass existing security measures

implemented in the software/firmware. An adversary could

launch a wide variety of attacks (e.g., Man-in-the-Middle Attack

(MITM), Eavesdropping, Denial-of-Service (DoS and DDoS),

Data Spoofing, Distribution of fake updates, etc.) from the

Internet or the internal network of an organization by exploiting

cloned, tampered, and/or compromised devices.
We propose to use Distributed Ledger Technology (blockchain

technology) to identify each edge device uniquely without the

need for end-users to contact the original device manufacturer

for provenance information (such as identity). Blockchains

are modern distributed data structures designed originally for

cryptocurrencies that achieve strong global consensus (via

mining). Notable are Bitcoin [12] and Ethereum [13], [14], though

there are many others. Key features include: block structure,

lack of centralized control, and a consensus (mining) algorithm.

For cryptocurrencies, this is typically a hard task, Proof-of-Work

(PoW) or Proof-of-Stake (PoS) [15]. These computational proofs

force miners to perform a significant task; the one finalizing the

task first gets rewarded, and mines a new block. That block is then

shared throughout the ledgers (the copies of the blocks in each

miner’s server). Because of the sequential, cryptographic hashing

in a given block of the previous block, it is computationally

infeasible to rewrite history. Stability is maintained in case of

simultaneous mining; for instance, a longest-chain methodology

is used in Bitcoin if two miners should both produce a valid

block within a short time interval. Certain Blockchains support

smart contracts [13], [14]; a smart contract is a script run across

the Blockchain as a side-effect of mining that allows calculations

suitable for creating escrow-like operations, key-value data sets,

and many emerging and complex financial instruments. Some

systems allow Turing-complete scripts.
One of the authors of this paper and others have introduced

Scrybe [16], [17], a lightweight mining alternative to blockchains

used for cryptocurrencies. As described below, there is no

expensive computational task such as PoW/PoS in the Scrybe

blockchain; for secure provenance, it is unneeded and wasteful of

resources (we have no inflationary pressure in non-cryptocurrency

applications, which is a principle driver for PoW/PoS).
The authenticity of a low-cost edge device can be ensured

by verifying an unclonable device ID, which can be generated

from an on-board SRAM memory (SRAM PUF [18], [19]) to

avoid the cost of programmable non-volatile memory in low-

cost edge devices. Recently, physically unclonable functions

(PUFs) have received significant attention in the hardware security

community because they can generate unique, unclonable bits for

the identification and authentication of ICs. PUFs use inherently

uncontrollable and unpredictable variations from a manufacturing

process to produce random, unclonable bits. Several PUF

architectures have been proposed over the years that include

the arbiter PUF [20], ring oscillator PUF [21], and SRAM PUF

[18], [19], among others. Since IoT edge devices have SRAM-

based memory and embedded processors, SRAM PUFs offer a

better solution to produce device IDs with no additional cost or

complexity as compared to other options. In our identity approach,

registered manufacturers of a given class of edge devices upload

a cryptographic hash of the ID in the designated “globally

accessible” Blockchain infrastructure for such provenance

information. While registering a device in the IoT infrastructure,

the end-user in turn needs to verify whether the hash is present in

the “global infrastructure” Blockchain. We have also proposed to

implement a “locally permissioned” Blockchain infrastructure for

authenticating edge devices on a regular basis in their deployed

environments primarily to prevent the threat of replacing an edge

device with a cloned/tampered counterpart, or to allow duplicates

to appear in different sectors of a large, mobile environment.

In practice, only one Blockchain need hold both the “globally

accessible” information and “locally permissioned” data per site.

The contributions of this paper are as follows:

1) Architecture of Global Identity Blockchain Infrastructure

(BG): We create a Global Identity Blockchain infrastructure

in which manufacturers of edge devices register their devices.

Once a device is registered, anyone can access its identity from

anywhere (the Blockchain architecture supports both integrity

and availability). It is unnecessary to contact the original device

manufacturer for device authentication. Manufacturers must

upload a cryptographic hash of the ID to prevent it from

being cloned. During the registration of a device in the IoT

infrastructure, it is necessary to verify whether the hash of

device ID is present in the Global Identity Blockchain. This can

completely eliminate the need for tracking manufacturers.

2) Architecture of a Local Identity Blockchain Infrastructure

(BL): We also designate a Locally Permissioned Blockchain

infrastructure, which supports secure authentication for the local

IoT system. A local administrator can register an authentic

edge device into their data set stored in this Blockchain. Once

devices are registered, the local system can authenticate them

via this Local Identity Blockchain data set. However, before

the Local Registration, the key management of an edge device

should precede in which a secret key is generated and burned

into the on-chip, one-time programmable memory. Once the

key is programmed, direct access of device ID is prohibited to

protect it from being copied, as many of these edge devices

can be deployed in a hostile environment. Note that the local

administrator is responsible for uploading both the cryptographic

hash of the ID and the encrypted secret key into the Local

Identity Blockchain data set.

3) Secure Communication Protocol: We also propose a secure

communication protocol that can be invoked at a regular interval

to authenticate all the edge devices in a CPS/IoT system. Note

that the security of the architecture is ensured so long as the

secret key of the given IoT device is safe.

4) Scrybe – A Blockchain-Based Provenance Scheme: The

Scrybe blockchain can optionally be used to create the Global

and/or Local Identity Blockchain data sets. This saves effort,

power, and money at the global level by removing the need

to use relatively expensive blockchain store for the identity

information associated with new IoT devices. Proofs of resilience

to attacks are given below and elsewhere. For using of Scrybe

in the global data structure, a hypothetical trade association

(management group) that maintains the service can use Ethereum

smart contracts to front end this service specifically to manage

the financial stability of the service (that is, charge registered

vendors each time they wish to add new device identities).

(That would represent a third, economic blockchain use in the

architecture.)

For the local Blockchain data set, the same Scrybe blockchain

described above can also be used. Scrybe is an efficient

option because there is no need for a PoW/PoS blockchain to

maintain strong consensus over the local identities. Without

“hacking” a cryptocurrency blockchain (such as reducing its

PoW effort), Scrybe can be used reliably here to deliver the

2

required blockchain BL while maintaining security guarantee∗.

The remainder of this paper is organized as follows. Section II

describes our proposed authentication scheme, which can be

adapted into both the global supply chain and to the local IoT

infrastructure. We present the implementation of the proposed

scheme in Section III. We perform a security evaluation in

Section IV and we conclude the paper in Section V.

II. PROPOSED AUTHENTICATION

SCHEME USING BLOCKCHAIN TECHNOLOGY

Bitcoin [12], the first Blockchain-based decentralized system

proposed by Satoshi Nakamoto in 2008, was mainly used for

digital currency transaction instead of data storage. Although

users are able to use the OP_RETURN field to store up to 40

bytes of a chain within one transaction, the idea and performance

of storing data into the Bitcoin Blockchain is still unrealistic [22].

Now, 10 years after 2008, a number of Blockchain-based

platforms and services raised in this past decade and many

of them can provide better on-chain data storage, such as

Ethereum, Storj, Filecoin, Maidsafe, and DADI [23]–[27].

By using one of these public Blockchain platforms plus a

smart front-end to support the identity API, we can build and

maintain a consortium-enabled, fully decentralized Blockchain,

or directly use existing public chain as the infrastructure for the

Global Blockchain data set. The ownership of the information

relies on the owners of the smart contracts and private keys

if, for instance, Ethereum is used. Manufacturers do not control

the Blockchain; it lacks vulnerability to subversion from such

organizations so long as the service is implemented by a neutral

third party or group, whose smart contracts are audited. The

Blockchain itself makes permanent records of the data.

Note that storing large amounts of data into public

Blockchains is expensive and it also has a latency that depends

on the particular system and the amount of reward provided to

miners to add data. However, a consortium-enabled Blockchain

can cut down the storage cost. Regardless of the type of

Blockchain-based service used, the data stored in the Blockchain

is always transparent and accessible as well as immutable and not

susceptible to being forged or subverted. Though it has excellent

durability and availability, there is no data privacy at all, namely

the adversary is also able to read the data in the Blockchain.

And, our proposed novel registration and authentication scheme

can prevent sensitive identity data leaking from the chain.

A. Proposed Global Blockchain Infrastructure (BG) for

implementing Traceabilty of Edge Devices

The identification of a edge device for IoT applications is

absolutely necessary because there are billions of devices already

in the systems, and will continue to grow at an astonishing

rate. These devices are produced by hundreds of different

manufacturers, located across the globe. Traceabilty for an edge

device is the key for verifying authentic hardware. We propose to

implement a global Blockchain Infrastructure (BG) that contains

the necessary information to track the origin of an edge device.

Figure 2 shows our proposed Blockchain infrastructure to

provide traceability for edge devices. Every device fabricated

∗This is not a local blockchain copy; we use a real blockchain (in future,
a sidechain) to retain the core value of a decentralized digital ledger.

Ledger

Manufacturer
Of Device B

Manufacturer
Of Device C

Manufacturer
Of Device A

Manufacturer
Of Device N

A1

A2

B1

B2

C1 C2

N2

N1

Public ID
Hash of

Private ID

A1 HIDA1

B1 HIDB1

A2 HIDA2

C1 HIDC1

N1 HIDN1

... ...

B2 HIDB2

... ...

Authenticator

Market

B2

B2

HIDB2

HID*B2

Authentic

?

Non-
Authentic

Yes

No

Global

Blockchain

(BG)

=

Figure 2: Global Blockchain instance (smart contract or

key-value store) for verifying edge device identity.

by the authentic manufacturer will be equipped with a public

ID (serial number) and a private ID, which can be generated

from an SRAM PUF [18], [19]. Note that an edge device can

also have other types of PUFs (such as an arbiter PUF [20], a

ring oscillator PUF [21], or a butterfly PUF [28]) for generating

the ID. All authentic edge devices must be registered on the

global Blockchain BG before they are sent to the market. Since

the Blockchain ledger contains public entries, which can be

accessed by anyone, an adversary can read the private ID and

store this in a clone device. To prevent this, we propose to store a

cryptographically secure hash [29] of the private ID in BG, which

prevents an attacker from constructing this private ID. The ledger

for BG contains the public ID, hash value of the private ID, plus

relevant information (not shown in the figure) for identifying the

manufacturer. Note that the small circles in the figure represent

edge devices and we follow this notation throughout the paper.

The edge device registration process in BG is as follows:

1) A manufacturer (the producer of device A) provides a

challenge to the PUF of an edge device (e.g., A1) to obtain

its response. This response is the private ID (e.g., IDA1)

of that edge device. It then computes a cryptographically

secure hash (e.g., HIDA1).

2) The manufacturer uploads the entry {A1, HIDA1} into

(BG) for device A1, and finishes the registration for that

device (e.g., A1). Note that one can upload the challenge for

a PUF along with its response to the Blockchain. However,

this challenge can be stored internally, since only one

challenge is required to produced an unclonable ID.

3) Perform Steps 1 and 2 to register other devices (e.g., A2,

A3, ..., An).

A user or a distributor could use an Authenticator to access the

global Blockchain BG data set and thereby verify the authenticity

of an edge device. The Authenticator can be an API (smart

contract front end or blockchain accessor) or a complete program;

that is, what a user needs to run during verification. Note that

anyone can access an entry in the Global Blockchain dataset since

it is public. The verification process can be described as follows:

3

 IoT System

Authentication

Registration

BL Ledger
Public

ID

Hash of

Private ID

A2 HIDA2

B1 HIDB1

D3 HIDD3

... ...
B2 HIDB2

... ...

Encrypted

Key

EKA2

EKB1

EKD3

...
EKB2

...

A2

BG

D3

G3

Market

A2

A2
D3

HIDD3

EKD3

Local Admin

Generate Key

Program Key

KA2

KA2

G2

C1

B2

D2

{A2,

HIDA2,

EKA2}

SCP

HIDA2

A2

G1

E1 B1

KA2

EKA2

E2

New Device

TLS

Figure 3: Local Identity Blockchain infrastructure for registering a new edge device and for authenticating edge devices periodically.

1) The authenticator queries the global Blockchain BG data

set with the public device ID (e.g., B2 shown in Figure 2)

of an edge device, and retrieves the hash of the private ID

(e.g., HIDB2).

2) The authenticator provides a challenge to the PUF of the

edge device under authentication, and collects the response,

which is the secret private device ID (e.g., ID∗
B2).

3) The same secure hash is computed on the private ID (e.g.,

HID∗
B2).

4) The verification passes if the received hash from BG, and

computed hash of PUF response matches for an edge device i.

ver(HIDi, HID∗
i) =

{

pass if HIDi = HID∗
i

fail otherwise;

As mentioned above, economic viability of the global

Blockchain infrastructure is important. If BG is implemented

using Ethereum, for instance, then smart contracts can be used

to manage the key-value store added by manufacturers for

each new device. A trade association (consortium, etc) registers

vendors, and lets registered vendors add new device types. Then,

vendors can use Ethereum smart contracts managed by the trade

association to accomplish data registration for the BG blockchain.

The trade association makes the system viable by building

payments into the Smart contracts to cover the overheads of

data addition to the blockchain, as well as maintenance of

the smart contracts and governance structure thereof. Unless a

future technology such as sidechains becomes standard [30], the

cost-per registration of this approach may be high, irrespective

of fees that the trade association may level. Of course, the

economics may become more favorable as data use cases grow.

For a global Blockchain BG data set implemented via

Scrybe, the Scrybe instance must be maintained across a set

of permissioned miners. This set of miners could be distributed

across several cloud infrastructures, and include trade association

members as “miners” as well as arms-length third parties.

Scrybe does not build in a payment system since it focuses

on secure provenance. It always distributes the mining to active

miners randomly and uniformly. Therefore, the proper economic

model is simply a fee-for-service per miner running the service

for the trade association. Since Scrybe uses lightweight mining,

there is no arduous overhead for providing a miner. Ethereum

smart contracts could be used as a the nominal payment method

for such miners, as a function of their uptime (which can be

measured by the percentage of blocks they mine).

B. Local Edge Device Registration and Authentication

Along with the threat from untrusted manufacturing, threats

can also originate within the IoT/CPS infrastructures. Even

though we screen all the new devices before adding them to

the network, an authentic device can be compromised during

its lifetime. For example, a rogue employee of an organization

can replace an authentic device with its cloned counterpart. It is

thus necessary to authenticate all edge devices in order to verify

their authenticity on a regular basis. A local identity Blockchain

data set, we denote as BL, to hold all the public records of all

the edge device connected to the CPS/IoT system, is necessary

for such a purpose.

Figure 3 shows our proposed scheme that consists of two parts

- (i) registration to add an new edge device into the IoT/CPS

systems, and (ii) authentication to verify the identity of an

existing device. Generally, trusted local administrator manage

the IoT system and have the privilege to add an edge device

into the network. In addition, a local administrator can hold

one or multiple trusted devices, and only these devices are

able to register an authentic edge device into the local identity

Blockchain data set, BL. We suggest that all trusted administra-

tive devices remain offline after the local registration phase until

a new edge device goes through the registration. This prevents

a compromised device to register nonauthentic devices into BL.

1) Registration of an Edge Device to the IoT/CPS

infrastructure: Once the identity of a new edge device is

verified (see Section II-A), the local admin performs the

registration. The steps for the registration are as follows:

• The local admin first verifies whether the device is already

registered in the local identity Blockchain data set BL. No

two devices have the same private ID.

4

• A random secret key is generated (e.g., KA2 for new edge

device A2 shown in Figure 3). The local admin programs that

key into a one-time programmable (OTP) memory [31] of that

edge device. Once the key is programmed into an edge device,

direct access of the ID is blocked. One can only access the

encrypted (see the communication protocol in Section II-C),

which is required to prevent an adversary from copying this ID

and launching an attack during authentication. Note that OTPs

are resistant to tampering, and the contents remain unchanged

once programmed. A one-time programming capability is pro-

vided primarily to prevent an attack arising when an adversary

may gain direct access to an edge device (device capture).

• The secret device ID can be obtained from the SRAM-based

PUF, and then the hash of that ID is computed.

• This new device is now added to the IoT system and directly

communicates with a gateway (G1 shown in Figure 3).

• The local admin communicates with G1 using a secure

communication protocol (e.g., TLS [32]). It sends the key KA2

to the gateway G1. The gateway returns the encrypted key.

EKA2 = eKG1
(KA2)

where e() represents encryption process (e.g., AES [33]) and

KG1 is the secret key of the gateway.

• The admin uploads the public ID, the hash of the secret ID

and the encrypted key (e.g., {A2, HIDA2, EKA2}) into the

BL data set.

Once an edge device is registered into BL, one gateway will

be responsible to authenticate that device∗. Note that we can do

“damage control” if a gateway should be compromised. All edge

device connected to it will be compromised, not all edge devices

in the IoT environment. An adversary can access BL through

a compromised gateway. However, he/she can only read the

hash of the private ID (e.g., HIDB1) and encrypted secret key

(e.g., EKB1). The identity of an edge device will be protected

unless the secret key of the gateway (e.g., KG1) is compromised.

However, the access to these keys are often restricted from the

software/firmware. It is thus safe to say that an adversary can im-

personate a cloned device by compromising a gateway; however,

the gateway will detect it once it returns to its normal state.

2) Authentication of an Edge Device in the IoT/CPS in-

frastructure: The objective is to perform authentication on a

registered device. This is to verify its recent identity as it can be

replaced or tampered while in operation. We plan to authenticate

every edge device at a regular interval primarily in order to

verify their actual identity. Note that the whole IoT/CPS system

automatically initiates the authentication depending on the type

of application and its criticality. Figure 3 shows the overview of

this authentication process, which can be described as follows:

• The gateway queries the local Blockchain data set BL with

the public ID of an edge device (e.g., D3 shown in Figure

3). BL returns the hash of the private ID (e.g., HIDD3) and

encrypted key (e.g., EKD3).

• Gateway recovers the secret key (e.g., KD3) by using the

following equation:

KD3 = e−1
KG3

(EKD3)

where, e−1() is the decryption function and KG3 is the

secret key of the gateway G3.

∗We will loosen this restriction in future.

• The gateway uses a secure communication protocol, SCP (see

the following Section II-C), to authenticate an edge device.

C. SCP: Secure Communication Protocol for Edge Device

Authentication

We use a secure communication protocol [34] to transfer the

secret ID of the edge device to the gateway for authentication.

Figure 4 shows the secure communication protocol. Note that

the gateway must be equipped with a cryptographically secure

random number generator (CSPRNG) [35], [36] for generating

random nonces (n). While implementing the protocol, it is nec-

essary to use lightweight encryption for transferring the ID. The

gateway and the edge device use a one-time-pad (OTP) [37], [38]

for such purposes. Note that we need to provide the cryptographic

hash computation support at the software level at the edge device.

Edge Device (EDi)

4) Receive mi

5) Recover n, mi ! Ki
 = Ki ! n ! Ki = n
6) Compute H, H = hash(n)
7) IDi PUF Response
8) Compute ri

 ri = H ! IDi

9) Send ri

Gateway

10) Receive ri

11) Compute H, H = hash(n)
12) Reconstruct secret device ID
 IDr = ri !!H
 = IDi !!H !!H
 = IDi

13) Compare the hashes of
reconstructed ID (HIDr) and stored ID
(HIDi)

mi

ri

1) Generate n , n {0,1}N

2) Compute mi, mi = Ki !!n
3) Send mi

Figure 4: SCP: Secure communication protocol for edge device

authentication [34].

The communication protocol for authenticating an edge

device is described as follows:

• At the gateway, an on-chip CSPRNG generates a unique

nonce (n). The gateway stores this in an on-chip memory

for decrypting the secret device ID. A one-time pad (OTP)

now encrypts this nonce with the key (Ki). The gateway then

sends this encrypted nonce (n ⊕ Ki) (depicted as (mi) in

the figure) to the ith edge device, EDi, to request for its

identification (Steps 1-3).

• The unique nonce (n) is recovered at the edge device

by XORing the mi with the shared secret key (Ki). A

cryptographically secure hash (e.g., SHA-2 or SHA-3 [29])

is computed on this nonce (n) to produce a 256/512 bits

hash output (H). We recommend using the existing hardware

resources (embedded processor and memory [39], [40]) of

the edge devices to compute the hash (Steps 4-6).

• The edge device first reconstructs its secret ID by querying

the PUF, and then encrypts this ID, IDi using the hash, H
(Steps 7-8).

ri = IDi ⊕H

The encrypted edge device ID, ri, is sent to the gateway

for authentication (Step 9).

• After receiving ri, the gateway computes the same hash

(SHA-2 or SHA-3) using the stored random nonce, n. The

gateway now reconstructs the secret device ID (Steps 10-12).

ri ⊕H = IDi ⊕H ⊕H = IDi

• Finally, the gateway computes the hash of IDi and compares

it with the hash received from the local Blockchain data set

5

BL. The verification passes if these two hashes match. Upon

failure, the gateway evicts this edge device from the network.

III. SCRYBE: A BLOCKCHAIN-BASED PROVENANCE SYSTEM

This section overviews Scrybe, the Clemson-UTC-Auburn

secure provenance system [16], [17], [41]. Subsequently,

Section IV-E provides an overview and further references about

how Scrybe supports non-repudiation and is also robust against

distributed denial of service (DDoS) attacks.

There are two main components of Scrybe: blocks and trans-

actions [17]. A blockchain is simply a sequence of linked blocks,

where the current block contains the hash of the previous block.

a) Blocks: Each block contains the hash of the previous

block, which makes the blockchain immutable. Blocks are added

to the blockchain by miners, entities responsible for maintaining

the integrity of the blockchain. Scrybe only allows authorized

entities to mine blocks through the secure LWM algorithm

(comprising the Scrybe “consortium”), which will be discussed

further in Section IV-E. Miners are responsible for aggregating a

list of transactions and calculating the Merkle root. The Merkle

root allows other miners quickly to verify that every transaction is

actually included in the block. When a miner is selected to add a

block to the blockchain, the block is broadcast to all the other min-

ers, and the data are verified (previous hash, Merkle root, and the

miner’s signature). At this stage, other miners will be able to de-

tect if a transaction is omitted from the block, if an unauthorized

miner broadcasts a block, and if the miner’s signature is invalid.

b) Transactions: Transactions are the backbone of

provenance [17]. Transactions can reference previous

transactions, providing a chain of custody, or they can be genesis

events, which register the acquisition of new data. References

to other transactions use the input fields, while genesis events

use output fields. The output fields contain persistent URLs

(PURLs) that point to the data, along with the SHA-3 hash

of the data, ensuring its validity. Additionally, the output fields

contain PURLs that point to XML provenance of the data along

with the SHA-3 hash of the XML provenance. Note that all

transactions have an output while genesis events only have an

output, with no input; normal transactions have both.

By storing the SHA-3 hash of the transaction instead of the

original transaction, one can drastically reduces the size of the

blockchain, and there will be no penalty for an extensive number

of inputs and outputs in any given transaction. The original

transaction will be stored on a transaction server, which will be

locally maintained, along with the data server and the metadata

server. In the current Scrybe implementation, the transactions

and metadata coreside in the Blocks; for future Scrybe releases,

a fully realized version that segregates the metadata server and

transaction server is planned. However, our present application

described here actually prefers the “lumped model.”

c) Lightweight Mining: Scrybe introduces a novel way to

mine new blocks in the blockchain [17], which is not a difficult

proof-of-work (PoW) required in cryptocurrency applications.

The lightweight mining algorithm (LWM) introduced in Scrybe

is presented in Algorithm 1.

The purpose of LWM is to provide randomization in miner

selection. In a Denial of Service (DoS) attack against Scrybe,

we assume that a malicious miner targets a particular user by

excluding the victim’s transactions from the block he or she

Algorithm 1: Lightweight Mining Algorithm (LWM)

Input : The number of miners N
1 for each miner mi, 0 ≤ i < N , do
2 mi generates a random number ri ;
3 mi broadcasts the SHA-3 hash of the ri, denoted by H(ri) ;
4 Once mi

has collected all N hashes {H(r0), H(r1), · · · , H(rN−1)},
mi broadcasts the random number ri ;

5 Once mi has collected all N random numbers
{r0, r1, · · · , rN−1}, mi calculates l =

∑
j rj mod N ;

6 ml is the selected miner to create the next block from the collected
transactions. (Without loss of generality, we map mi = i, 0 ≤
i < N as a simple rank ordering for the registered miners.) ;

7 end

creates. The randomization offered by LWM guarantees that the

victim’s transactions will always be integrated sooner or later,

as long as there is at least one honest miner. Formal proofs of

this property will be published separately by the Scrybe authors.

The core idea of LWM is “sharing-hash-first” [16]. If every

miner only sends out the random number without sharing

the hashes first, a miner can hold his/her own number until

he or she has received everyone else’s random number. This

allows a malicious miner to manipulate the miner-selection

by choosing a number that produces a ml that is in favor of

a particular miner or deliberately excludes a particular miner.

“Sharing-hash-first” ensures that every miner has to share his/her

own number (in the form of hash) with others before they see

others’ choices. Since hash values are considered impossible

to invert in practice, a miner cannot change the random number

after the fact. Thus, LWM can tolerate up to N − 1 malicious

miners who collude. As long as there is one miner generating

a random number, the modulo operation is randomized.
d) Servers : Locally maintained servers hold the raw data

comprising the ledgers (the blockchains are held in the ledgers)

[17]. The integrity of the transaction server can be verified by

generating a list of all the transactions on the blockchain and

comparing that to all the transactions on the transaction server.

If there is any discrepancy, then the transaction server is deemed

disreputable. The integrity of the data and metadata can be

verified by comparing the SHA-3 hash of the data to the SHA-3

hash stored in the transaction—if these hashes differ, the relevant

server is considered disreputable. The method for storing data on

these servers is configurable, and left to the end-user’s discretion.

IV. THREAT ANALYSIS

We analyze various attacks and solutions to prevent them.

A. Illegitimate Registration

Although we assume that any trusted manufacturer can register

any device in the global Blockchain data set BG in the description

of our proposed scheme, we need to provide authorization unless

there may be a potential risk of illegitimate registration on the BG.

Suppose, manufacturer A produces devices {A1, A2, ..., Ai},

are only allowed to add these device, similarly another

manufacture B can only add devices {B1, B2, ..., Bi} into

data set BG. We need to provide restrictions for manufacturer

A to add devices Bis, and vice versa.

– Prevention of Illegitimate Registration: In order to prevent A
from adding device Bis into data set BG, apparently we should

hold another list that stores the devices that each manufacture

6

can add into the Blockchain. Before adding a device into BG,

permissions will be first checked by querying the list. Compared

to the device adding stream on the BG, this permission list is

only a tiny piece of data that needs less frequently update, and

it is necessary to make it visible, accessible, and secure. Thus,

storing this list in another Blockchain, or storing it as a part of

the Ledger in the data set BG could be taken into consideration.

– Detection of Illegitimate Devices: Suppose A has a piece of

cloned B2, we name it B∗
2 , and then A registers B∗

2 into data set

BG as A2. This registration does not violate the permission list,

however, the fake device has been registered into the BG and

cannot be detected by the Authenticator. Instead of changing the

data set BG’s configuration, we suggest that the Authenticator

should not only return whether a device is authentic but also

return detailed registration info of a device. For instance, when

the end user verifies this B∗
2 , the Authenticator should return:

“This device is an authentic device registered as A2”. So the

user should know that he/she is holding a B2 but registered as

A2. Also, all the registration on the data set BG is traceable, the

record of who added a device via illegitimate registration can be

found in the transaction history. The objective of the above dis-

cussion aims to provide a baseline for prevention and detection.

B. Replay Attack on SCP

The objective of an attacker is to pass the authentication

based on prior communication. In this attack, we assume that an

adversary does not have access to the secret key (Ki), which is

programmed in a tamper-proof memory in an edge device. Let

us assume that an adversary observes two prior communications.

First, he/she observes n1⊕Ki from the gateway and Hn1
⊕IDi

from the edge device. From this observation, the attacker can

compute Ki ⊕ IDi ⊕ n1 ⊕Hn1
, which is shown below:

(n1 ⊕Ki)⊕ (Hn1
⊕ IDi) (1)

From the second communication, the attacker observes

n2(6= n1) ⊕ Ki from the gateway and Hn2
⊕ IDi from the

edge device, and can compute Ki ⊕ IDi ⊕ n2 ⊕Hn2
.

Now the attacker can perform the following operations:

(n1 ⊕Ki)⊕ (n2 ⊕Ki) = n1 ⊕ n2 (2)

(Hn1
⊕ IDi)⊕ (Hn2

⊕ IDi) = Hn1
⊕Hn2

(3)

From Equation 3, it is evident that an adversary successfully

replays a prior communication if it becomes zero, when

Hn1
= Hn2

. This contradicts the collision property of a

secure hash [29]. Note that n1 6= n2. Thus, the communication

protocol becomes resistant to replay attack, when a system

designer implements a secure hash function (SHA-2 or SHA-3).

C. Denial of Service (DoS) Attack

In this scenario, an attacker intentionally makes a genuine

device fail during its authentication. For example, an attacker

disables a security camera in a particular area by invalidating its

registration. An attacker can eavesdrop on the communication

between an edge device and the gateway. It seems possible to

use IP spoofing to send incorrect responses to the gateway to

disrupt authentication. During authentication, a gateway (G)

generates a random number n1, then send m1 = K ⊕ n1 to

an edge device (E). The attacker intercepts r1 = H(n1) ⊕ ID
transmitted by the edge device E, and returns r∗1(6= r1) to the

gateway G. As a result, the gateway will fail to reconstruct the

edge device ID, and the authentication will fail. Fortunately,

this can be prevented by a minor modification in the secure

communication protocol, SCP described in Section II-C.

In order to prevent a DoS attack, SCP does not directly

reject a device upon a failed authentication. The gateway needs

to authenticate one more time for confirmation. Upon failed

authentication, the gateway G will request the edge device E
for another authentication and will verify the ID received from

previous communication. The two stage verification process

can be described as follows: 1) First Authentication:

• The gateway G generates a random number n1, then sends

m1 = K ⊕ n1 to the edge device E.

• E returns r1 = H(n1)⊕ ID to G. Attackers intercepts r1,

and replaces it with r∗1(6= r1).
• G recovers the edge device ID, ID(1) by computing ID(1)

= r∗1 ⊕H(n1).
• Authentication fails as ID 6= ID(1) due to r∗1(6= r1).

2) Second Authentication:

• G generates a random number n2(6= n1), then sends m2 =

K ⊕ n1 to the edge device E.

• E returns r2 = H(n2)⊕ID to G. Attackers intercepts r2, and

need to replace it with r∗2(6= r2) to lunch the DoS attack again.

• G recovers the edge device ID, ID(2) by computing ID(2)

= r∗2 ⊕H(n2).
• Authentication fails as ID 6= ID(2) due to r∗2(6= r2).
• Gateway now verifies ID(1) and ID(2).

For an attacker, the probability of matching these IDs from

two communications lies on the security strength of the hash

function. Finding a collision for a secure hash (SHA-2 or

SHA-3) is a hard problem. As a result, the attacker will have

out of luck to find a r∗2 that maps ID(1).

D. Physical Attacks

The security of our proposed scheme depends largely on the

shared secret key between the gateway and the edge devices that

should be stored in tamper-proof memory and the SRAM PUF

based device IDs for edge devices. These information can be

stolen through sophisticated physical attacks or reverse engineer-

ing. Today’s optical microscopes can produce 3D images of a mi-

crochip with superfine resolution. Scanning Electron Microscopes

(SEM) and Transmission Electron Microscopes (TEM) can gen-

erate images of different inner layers of a microchip. Chipworks

(now TechInsights) has successfully performed such experiments

legitimately for the purpose of competitive analysis and patent re-

search. The physical layout of a chip can be reconstructed through

destructive physical attacks as well. Data stored in a non-volatile

memory (NVM) can be reconstructed through infrared backside

imaging, which can be used to directly look at the memory

contents. All these physical attacks can definitely be used to find

the secret key or the device ID. However, an adversary can imper-

sonate only one device through such physical attacks, which does

not make any financial motivation for performing such attacks.

E. Scrybe Security Verification

Since Scrybe replaces the resource-intensive Proof of Work

(PoW) mining with LWM, a comprehensive security analysis

must be conducted. The analysis shows that Scrybe provides

data integrity, non-repudiation, and, more importantly, strong

7

resistance to Distributed Denial of Service (DoS) attacks

resulting from insider threats. A formal verification of the LWM

is given in [42]. A Petri Net [43] is used to model the DoS

attack, which is then transformed into a Markov chain [44].

Further explanation of Scrybe security and robustness is given

in a forthcoming publication as well that builds on [17], [42].

V. CONCLUSION

We presented a blockchain-based architecture for unique

identification of edge devices through registration of hashed PUF

attributes of a given device at manufacture. By accessing our

Global Blockchain data set, a registered device can be verified by

anyone anywhere without tracking the specific manufacturer. The

Local Identity Blockchain data set (scoped to each site, however

large) allows the local IoT/CPS to authenticate all edge devices

robustly; this local approach supports a defense-in-depth architec-

ture. This dual-use blockchain approach counters the counterfeit

and clone problems, enhances the reliability and usability of the

supply chain, and ensures the authenticity of edge devices. We

introduced a novel, low-cost secure communication protocol for

local device authentication. Optionally, we chose to utilize Scrybe,

a new blockchain architecture, with a unique lightweight mining

algorithm, which makes the whole scheme more efficient. Overall,

blockchains gain security with the addition of data blocks, unlike

databases, ensuring that greater security with greater utilization.

As immediate future work, we will provide the means for N
gateways to register access to a given device when locally provi-

sioned. This justifies the use of the local blockchain data set since

such a generalization can expand to large-scale deployments.

ACKNOWLEDGEMENT

The authors wish to acknowlege Drs. Richard R. Brooks and

Yu Lu of Clemson University, and Mr. Carl Worley of Auburn

University for their helpful advice and recommendations.

This material is based upon work supported by the National

Science Foundation under Grants Nos. 1755733, 1547164,

1547245, and 1821926. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] Gartner Research, “Gartner says 6.4 billion connected “things” will be
in use in 2016, up 30 percent from 2015,” 2015.

[2] S. Smith, “Internet of Things connected devices to triple by 2021, reaching
over 46 billion units,” in Juniper Research, 2016.

[3] D. Evans, “The Internet of Things: How the Next Evolution of the Internet
Is Changing Everything,” 2011.

[4] W. Trappe, R. Howard, and R. S. Moore, “Low-energy security: Limits
and opportunities in the Internet of things,” IEEE Security & Privacy,
vol. 13, no. 1, pp. 14–21, 2015.

[5] K. Rawlinson. Hp study reveals 70 percent of internet of things devices
vulnerable to attack. [Online]. Available: http://www8.hp.com/us/en/
hp-news/press-release.html?id=1744676#.WUrrwWgrKM8

[6] M. M. Tehranipoor, U. Guin, and S. Bhunia, “Invasion of the hardware
snatchers,” IEEE Spectrum, vol. 54, no. 5, pp. 36–41, 2017.

[7] M. M. Tehranipoor, U. Guin, and D. Forte, Counterfeit Integrated Circuits:
Detection and Avoidance. Springer, 2015.

[8] U. Guin, K. Huang, D. DiMase, J. Carulli, M. Tehranipoor, and Y. Makris,
“Counterfeit integrated circuits: A rising threat in the global semiconductor
supply chain,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1207–1228,
Aug 2014.

[9] U. Guin, D. DiMase, and M. Tehranipoor, “Counterfeit integrated circuits:
Detection, avoidance, and the challenges ahead,” Journal of Electronic
Testing, vol. 30, no. 1, pp. 9–23, 2014.

[10] T. Borgohain, U. Kumar, and S. Sanyal, “Survey of security and privacy
issues of Internet of things,” arXiv preprint arXiv:1501.02211, 2015.

[11] H. He, C. Maple, T. Watson, A. Tiwari, J. Mehnen, Y. Jin, and B. Gabrys,
“The security challenges in the IoT enabled cyber-physical systems
and opportunities for evolutionary computing & other computational
intelligence,” in Evolutionary Computation (CEC), 2016 IEEE Congress
on. IEEE, 2016, pp. 1015–1021.

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
https://bitcoin.org/bitcoin.pdf.

[13] Anonymous. White paper: Next-generation smart contract and
decentralized application platform. Last accessed: March 17, 2018.
[Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper

[14] G. Wood. Yellow paper: Ethereum: A secure decentralised generalised
transaction ledger. Last accessed: March 17, 2018. [Online]. Available:
https://github.com/ethereum/yellowpaper

[15] U. Mukhopadhyay, A. Skjellum, O. Hambolu, J. Oakley, L. Yu, and
R. Brooks, “A brief survey of cryptocurrency systems,” in Annual
Conference on Privacy, Security and Trust (PST), 2016.

[16] Richard Brooks and Anthony Skjellum, “Using the blockchain to secure
provenance meta-data (a CCoE webinar presentation),” June 2017,
technical presentation. NCCoE seminar.

[17] C. Worley, L. Yu, R. R. Brooks, J. Oakley, O. Hambolu, A. Skjellum,
A. Altarawneh, J. S. Obeid, L. Lenert, K. Wang, and U. Mukhopadhyay,
“Scrybe: A 2nd-generation Blockchain technology with Lightweight
Mining for secure provenance and related applications,” April 2018.

[18] W. Wang, A. Singh, U. Guin, and A. Chatterjee, “Exploiting power
supply ramp rate for calibrating cell strength in SRAM PUFs,” in IEEE
Latin-American Test Symposium, 2018.

[19] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Fpga intrinsic pufs
and their use for ip protection,” in International workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2007, pp. 63–80.

[20] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the ACM Conference on Computer
and Communications Security (CCS). ACM, 2002, pp. 148–160.

[21] G. Suh and S. Devadas, “Physical Unclonable Functions for device
authentication and secret key generation,” in Proc. of ACM/IEEE on
Design Automation Conference, 2007, pp. 9–14.

[22] bitcoin.org, “Bitcoin core version 0.9.0 released,” 2014, https:
//bitcoin.org/en/release/v0.9.0#opreturn-and-data-in-the-block-chain.

[23] “Ethereum - a decentralized platform that runs smart contracts,”
https://www.ethereum.org/.

[24] “Storj - decentralized cloud storage,” https://storj.io/.
[25] “Filecoin - a decentralized storage network,” https://filecoin.io/.
[26] “Maidsafe - the new decentralized internet,” https://maidsafe.net/.
[27] “Dadi - decentralized web services,” https://dadi.cloud/en.
[28] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “The

butterfly PUF protecting IP on every FPGA,” in IEEE International
Workshop on Hardware-Oriented Security and Trust., 2008, pp. 67–70.

[29] NIST, “FIPS PUB 180-4: Secure Hash Standard (SHS),” August 2015.
[30] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,

A. Poelstra, J. Timn, and P. Wuille. Enabling blockchain innovations with
pegged sidechains. Last accessed: March 17, 2018. [Online]. Available:
https://blockstream.com/sidechains.pdf

[31] B. Stamme, “Anti-fuse memory provides robust, secure NVM option,”
EE Times, July 2012.

[32] T. Dierks, “The transport layer security (TLS) protocol version 1.2,” 2008.
[33] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced

encryption standard. Springer Science & Business Media, 2013.
[34] U. Guin, A. Singh, M. Alam, J. Canedo, and A. Skjellum, “A Secure

Low-Cost Edge Device Authentication Scheme for the Internet of Things,”
in International Conference on VLSI Design, 2018.

[35] D. E. Holcomb, W. P. Burleson, and K. Fu, “Initial SRAM state as a
fingerprint and source of true random numbers for RFID tags,” in In
Proceedings of the Conference on RFID Security, 2007.

[36] B. Sunar, W. Martin, and D. Stinson, “A provably secure true random
number generator with built-in tolerance to active attacks,” Computers,
IEEE Transactions on, vol. 56, no. 1, pp. 109–119, Jan 2007.

[37] G. S. Vernam, “Secret signaling system,” 1919, US Patent 1,310,719.
[38] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press,

2014.
[39] T. Eisenbarth, S. Heyse, I. von Maurich, T. Poeppelmann, J. Rave,

C. Reuber, and A. Wild, “Evaluation of sha-3 candidates for 8-bit
embedded processors,” in The Second SHA-3 Candidate Conference, 2010.

[40] “Atmel AVR232: Authentication Using SHA-256,” Tech. Rep. [Online].
Available: http://www.atmel.com/Images/doc8184.pdf

[41] R. R. Brooks, K. Wang, L. Yu, J. Oakley, A. Skjellum, J. S. Obeid, L. Lenert,
and C. Worley. (2018) Scrybe: A Blockchain ledger for clinical trials.
IEEE Blockchain in Clinical Trials Forum: Whiteboard challenge winner.

[42] O. Hambolu, “Maintaining anonymity and trust,” Ph.D. dissertation,
Clemson University, 2018.

[43] R. David and H. Alla, “Petri nets and grafcet: tools for modelling discrete
event systems,” 1992.

[44] L. Yu, J. M. Schwier, R. M. Craven, R. R. Brooks, and C. Griffin, “Inferring
statistically significant hidden markov models,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 7, pp. 1548–1558, 2013.

8

