
Robotics and Autonomous Systems 55 (2007) 561–571
www.elsevier.com/locate/robot
Real-time hierarchical POMDPs for autonomous robot navigation

Amalia Foka∗, Panos Trahanias

Institute of Computer Science, Foundation for Research and Technology – Hellas (FORTH), P.O. Box 1385, Heraklion, 711 10 Crete, Greece
Department of Computer Science, University of Crete, P.O. Box 1470, Heraklion, 714 09 Crete, Greece

Received 10 December 2004; received in revised form 8 January 2007; accepted 11 January 2007
Available online 15 February 2007

Abstract

This paper proposes a new hierarchical formulation of POMDPs for autonomous robot navigation that can be solved in real-time, and is
memory efficient. It will be referred to in this paper as the Robot Navigation–Hierarchical POMDP (RN-HPOMDP). The RN-HPOMDP is
utilized as a unified framework for autonomous robot navigation in dynamic environments. As such, it is used for localization, planning and local
obstacle avoidance. Hence, the RN-HPOMDP decides at each time step the actions the robot should execute, without the intervention of any other
external module for obstacle avoidance or localization. Our approach employs state space and action space hierarchy, and can effectively model
large environments at a fine resolution. Finally, the notion of the reference POMDP is introduced. The latter holds all the information regarding
motion and sensor uncertainty, which makes the proposed hierarchical structure memory efficient and enables fast learning. The RN-HPOMDP
has been experimentally validated in real dynamic environments.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Robot navigation; Partially observable Markov decision processes (POMDP); Hierarchical POMDP
1. Introduction

The autonomous robot navigation problem has been studied
thoroughly by the robotics research community over the
last years. Contemporary methods for robot navigation [10,
15,7,8] do not considerably take into account the robot
motion uncertainty, which may lead to the execution of false
actions by the robot. Probabilistic methods that integrate
uncertainty in motion planning have not been well studied
until now, in contrast to probabilistic methods for mapping and
localization. In this paper we introduce a Hierarchical POMDP
(HPOMDP) for probabilistic navigation. Our HPOMDP
formulation simultaneously addresses probabilistically all
aspects of navigation, that is motion planning, localization and
local obstacle avoidance.

Partially Observable Markov Decision Processes (POMDPs)
provide the mathematical framework for probabilistic planning.
∗ Corresponding address: Computational Vision and Robotics Laboratory,
Institute of Computer Science, Foundation for Research and Technology, P.O.
Box 1385, 711 10 Heraklion, Crete, Greece. Fax: +30 2810 391601.

E-mail addresses: foka@ics.forth.gr, foka@cs.uoi.gr (A. Foka),
trahania@ics.forth.gr (P. Trahanias).

0921-8890/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.01.004
POMDPs model the hidden state of the robot that is not
completely observable and maintain a belief distribution of the
robot’s state. Planning with POMDPs is performed according
to the belief distribution. Therefore, actions dictated by a
POMDP drive the robot to its goal but also implicitly reduce
the uncertainty of its belief.

Although POMDPs successfully meet their purpose of use,
they are intractable to solve with exact methods when applied
to real-world environments modelled at a fine resolution. Many
approximation methods for solving POMDPs are present in the
literature and have also been applied to robotics problems [1,
11,19,5,20,17,18,26,4,24]. Due to the involved computational
complexity, these approximation methods can only deal with
problems where the size of the state space is limited to at most
a few thousands states. As a result, approximation methods
cannot model large real world environments at a fine resolution
and hence POMDPs are mainly used as high level mission
planners.

In this paper, we propose a hierarchical representation of
POMDPs for autonomous robot navigation (RN-HPOMDP)
that can effectively model large real world environments at a
fine resolution. Moreover, the proposed RN-HPOMDP can be
solved in real time. It is utilized as a unified framework for

http://www.elsevier.com/locate/robot
mailto:foka@ics.forth.gr
mailto:foka@cs.uoi.gr
mailto:trahania@ics.forth.gr
http://dx.doi.org/10.1016/j.robot.2007.01.004

562 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571
autonomous robot navigation, implying that no other external
modules are used to drive the robot. RN-HPOMDP integrates
the modules for localization, planning and local obstacle
avoidance; it is solved online at each time step and decides the
actual actions the robot performs.

In Section 2, the necessary theoretical background for
POMDPs is given followed by the formulation of each element
of a POMDP for the autonomous robot navigation problem in
Section 3. In Section 4 the structure of the RN-HPOMDP is
presented. The methodology used for learning and planning
with the RN-HPOMDP is presented in Sections 5 and 6,
respectively.

Two other HPOMDP approaches are currently present in
the literature that are compared against the RN-HPOMDP in
Section 7.1. Experimental results are presented in Section 7 and
finally this paper’s conclusions and future work directions are
presented in Section 8.

2. Partially observable Markov decision processes
(POMDPs)

POMDPs are a model of an agent interacting synchronously
with its environment. The agent takes as input the state of the
environment and generates as output actions, which themselves
affect the state of the environment. In the POMDP framework,
a system acting in the world is not guaranteed at any time to
know the state of the world, i.e. which state of the environment
it occupies. Hence, states are partially observable.

Formally, a POMDP is a tuple M = 〈S,A, T ,R,Z,O〉,
where S, A and Z are finite sets of states, actions and
observations, respectively. T is the state transition function,
T (s, a, s′), giving the probability of ending in state s′, when
the agent starts in state s and takes action a. R is the reward
function,R(s, a), giving the expected immediate reward gained
by the agent for taking an action a when it is in state s. Finally,
O is the observation function,O(s′, a, z), giving the probability
of observing z, in state s′ after taking action a.

The belief state bt of an agent is a discrete probability
distribution over the set of environment states, S, representing
for each state the agent’s belief that is currently occupying that
state. The set of all possible belief states is B.

A POMDP agent is composed of two components [25]: the
state estimator component, that performs the belief update, and
the policy component, that solves the POMDP, as explained in
the following sections.

2.1. Belief update

The state estimator component of a POMDP updates the
belief state of the agent every time it executes an action. Given
the belief state of the agent at time t , bt , we would like to
compute the belief state at time t + 1, bt+1, after a transition in
the process where the agent occupies state s, executes an action
a and perceives an observation z. The belief that the agent is in
the resulting state s′ is derived by:

bt+1(s
′) = P(s′

|z, a, bt) =

O(s′, a, z)
∑
s∈S
T (s, a, s′)bt (s)

P(z|a, bt)
.

The denominator P(z|a, bt), is a normalizing factor and is
equal to the total probability of perceiving the observation z
given the previous belief state of the agent and the action it
executed:

P(z|a, bt) =

∑
s′∈S

O(z, s′, a)T (s, a, s′)bt (s).

2.2. Solving POMDP’s

Solving a POMDP amounts to computing an optimal policy.
A policy is a mapping that specifies the action the agent
should execute for any possible state that it might occupy. In
a POMDP formulation, the true state the agent occupies is
never completely known since the agent maintains a belief over
all possible states. Therefore, the computed policy provides a
mapping of belief states to actions.

The optimal action to be executed when the agent occupies
a state st , is the one with the maximum expected accumulated
reward, E[

∑
t γ tR(st , at)], where γ is a discount factor that

determines how important are the future rewards the robot will
receive. If γ is zero, the robot will maximize the reward it will
receive for the next time step only. The expected accumulated
reward can be computed either for a specific number of steps,
the finite horizon case, or until the agent reaches the goal state,
the infinite horizon case.

The function that maps each state of the belief to the
corresponding expected accumulated reward is called a value
function. The t-step optimal value function [14] is constructed
iteratively by value iteration. In the case of Markov Decision
Processes (MDPs), where the agent’s state is fully observable,
the t-step optimal value function is formulated as:

V ∗
t (s) = max

a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)Vt−1(s
′)

]
.

However, in POMDPs where the agent’s state is partially
observable, the value function has to be defined over the whole
belief state instead of a single state as in MDPs. Hence, for
POMDPs the t-step optimal value function becomes:

V ∗
t (b) = max

a∈A

[
ρ(b, a) + γ

∑
b′∈B

τ(b, a, b′)Vt−1(b
′)

]
,

where B is the set of all possible belief states.
The transition and reward functions, τ(·) and ρ(·)

respectively, have to be defined over a belief state, b, instead of
a single state, since the true state of the agent is not completely
known. Hence, they are defined as: τ(b, a, b′) = P(b′

|a, b) and
ρ(b, a) =

∑
s∈S b(s)R(s, a).

The iterative construction of the optimal value function
over the set of all possible belief states B is computationally
an extremely expensive procedure. It has been shown that
finding an exact solution of a POMDP with infinite horizon
is intractable [12]. Therefore, a number of techniques have
been proposed for approximating the value function. Many
approximation methods are based on solving the underlying
fully observable MDP [23,1,11]. More recent approximation

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 563
methods are those based on state-space compression [19], belief
compression [22] and point-based value iteration where the
POMDP is solved for a sampled set of belief points [4,20,24,
5].

3. Formulation of POMDPs for the autonomous robot
navigation problem

In the following we present a formulation of POMDPs
for autonomous robot navigation in a unified framework. The
POMDP decides the actions the robot should perform to reach
its goal and also robustly tracks the robot’s location in a
probabilistic manner. In this paper, we are interested in dynamic
environments and hence the POMDP also performs obstacle
avoidance. All three functionalities are carried out without the
intervention of any other external module.

The elements of the POMDP, 〈S,A, T ,R,Z,O〉, are
instantiated as follows:

Set of states, S: Each state in S corresponds to a discrete entry
cell in the environment’s occupancy grid map (OGM)
and an orientation angle of the robot with respect to a
global reference system.

Set of actions, A: It consists of all possible rotation actions
from 0◦ to 360◦ termed as “action angles”. The
discretization of the robot orientation angles and
action angles depends on the number of levels of the
POMDP hierarchy (see later Section 4).

Set of observations, Z: The observation set is the element of
the POMDP that assists in the localization of the
robot, that is the belief update after an action has
been taken. The set of observations is instantiated
as the output of a scan matching algorithm [3,13],
i.e. the robot displacement, (dx, dy, dθ), between two
consecutive laser scans. Hence, observations are only
robot dependent instead of environment dependent as
commonly met in the literature.

Reward function,R: Since the proposed POMDP is used as
a unified framework for robot navigation that will
provide the actual actions the robot will perform and
also carry out local obstacle avoidance for moving
objects, the reward function is updated at each time
step. The reward function is built and updated at each
time step, according to two reward grid maps (RGMs):
a static and a dynamic [2], that determine for each state
whether it is occupied by an obstacle and how far it is
from the goal position.

Transition and observation functions, T and O: They are ini-
tially defined according to the motion model of the
robot and then they are learned as explained in Sec-
tion 5.

4. The robot navigation-hierarchical POMDP
(RN-HPOMDP)

POMDP solution methods suffer from the “curse of
dimensionality” [6] and also the “curse of history” [4].
Applying both state space and action space hierarchy, as in the
RN-HPOMDP, both curses can be harnessed. In the following
we present the structure of the RN-HPOMDP.

4.1. RN-HPOMDP structure

The RN-HPOMDP is built through an automated procedure
using as input the map of the environment and the desired
discretization of the state and action space. The map of the
environment can be either a probabilistic grid map obtained at
the desired discretization or a CAD map.

4.1.1. Determining the number of levels of hierarchy of the RN-
HPOMDP

The RN-HPOMDP structure is built by decomposing a
flat POMDP with large state and action space into multiple
POMDPs with significantly smaller state and action spaces.
Therefore, in levels other than the bottom level, POMDPs are
composed of states and actions that have a coarse discretization
and do not represent the actual state the robot occupies or the
actual action the robot will perform. Hence they are termed as
abstract states and abstract actions [25].

The process of building the hierarchical structure is
performed in a top-down approach. The top-level of the RN-
HPOMDP has a discretization of angles of 90◦ and at each
subsequent level the discretization is doubled. Hence, the
number of levels of the hierarchical structure is given by the
log2 of the ratio of the top-level discretization and the desired
discretization, φ, plus one level that is the top level. Thus, the
number of levels of the RN-HPOMDP structure, L , will be
L = log2(90◦/φ) + 1.

4.1.2. Construction of the top-level of the RN-HPOMDP
The top level of the hierarchical structure is composed

of a single POMDP with very coarse resolution. Hence it
can represent the whole environment with a small number of
abstract states. The grid resolution of the top-level states is
equal to d × 2L−1, where d is the desired discretization of the
whole RN-HPOMDP structure and L is the number of levels of
the structure. The orientation angle of the robot and the action
angles are also discretized in a very coarse resolution of 90◦ and
thus represent the basic four directions [0◦, 90◦, 180◦, 270◦].

The total number of states of the top-level POMDP is
equal to |S0

|/22(L−1), where |S0
| is the number of states

of the corresponding flat POMDP. The number of states of
the top-level POMDP is reduced once by 2L−1 because of
the coarser grid resolution and again by 2L−1 because of the
coarser resolution of the orientation angle, as compared to the
corresponding flat POMDP.

To summarize, the top level is always composed of a single
POMDP with predefined discretization of the orientation and
action angles at 90◦. The state space size of the top-level
POMDP is variable and dependent to the discretization of
the corresponding flat POMDP and the number of levels of
the hierarchical structure. Hence, the number of levels of the
HPOMDP structure, L , should be such that it ensures that the
size of the top-level POMDP remains small.

564 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571
4.1.3. Construction of the intermediate levels of the RN-
HPOMDP

Subsequent levels of the HPOMDP are composed of
multiple POMDPs, each one representing a small area of the
environment and a specific range of orientation angles. The
actions of an intermediate level POMDP are a subset of the
actions of the corresponding flat POMDP.

In detail, each state of the top-level POMDP corresponds
to a POMDP at the immediate next level, as we go down the
hierarchical structure. A POMDP at an intermediate level l,
has states that represent grid locations of the environment at
a resolution of d × 2(L−l), where l is the current intermediate
level. Thus, by going down the hierarchical structure the grid
resolution of a level’s POMDP is twice the resolution of the
previous level.
Orientation angle decomposition

Going down the hierarchical structure, the resolution of
the orientation angle is also doubled. Since the resolution
of the orientation angle is increased as we go down the
hierarchical structure, the whole range of possible orientation
angles, [0◦, 360◦], cannot be represented in every intermediate
level POMDP. This would dramatically increase the size of the
state space and therefore we choose to have many POMDPs
that represent the same grid location but with a different
range of orientation angles. The range of orientation angles
that is represented within each intermediate level POMDP is
expressed in terms of the orientation angle, θp, of the previous
level state that is decomposed, and is equal to:[
θp −

90◦

2l−2 , θp +
90◦

2l−2

]
,

where l is the current intermediate level. By the above expres-
sion of the range of orientation angles, every intermediate level
POMDP will always have five distinct orientation angles. For
example, if the state of the top level POMDP, l = 1, has orien-
tation angle θp = 90◦, the range of orientation angles at the next
level, l = 2, will be equal to [0◦, 180◦]. As mentioned earlier
the angle resolution of the top level is always equal to 90◦ and
the next level will have double resolution, i.e. 45◦. Therefore,
the range of orientation angles [0◦, 180◦] will be represented by
five distinct orientation angles. As shown in Fig. 1, the grid lo-
cation represented by the top level state is decomposed into four
POMDPs, where each one represents a different range of possi-
ble orientation angles. Consequently, the size of the state space
for every intermediate level POMDP is constant and equal to
20, since it always has five possible orientation angles and it
represents a 2 × 2 area of grid locations.
Action angle decomposition

Action angles are decomposed from the top level POMDP
to the next intermediate level in the same manner as with the
orientation angles. The resolution of the action angles at each
level is the same as the resolution of the orientation angles.
Hence, it is equal to 90◦/2l−1. As a result, a top level state
is also decomposed into multiple POMDPs, each one with a
different range of orientation angles but also with a different
Fig. 1. State space hierarchy decomposition. The figure depicts the
decomposition of a top level state to lower level states. The top level state
corresponds to four POMDPs at level 2, each one decomposing the location
of the top level state into four locations, and its orientation in one of the ranges
denoted by the shaded region of the circles for each POMDP. This state of
decomposition continues at lower levels until the desired discretization of the
environment has been reached.

range of action angles. The range of an action set is equal to[
ap −

90◦

2l−2 , ap +
90◦

2l−2

]
,

where ap is the previous level action and l is the current
intermediate level. The action angles set is also always
composed by five distinct actions according to the above
expression.

4.1.4. Construction of the bottom level of the RN-HPOMDP
The procedure described in the previous section is used to

built all intermediate levels of the hierarchical structure until
the bottom level is reached. Bottom level POMDPs’ state and
action space is discretized at the desired resolution as a flat
POMDP would be discretized. The bottom level is composed
of multiple POMDPs having the same properties as all other
intermediate levels’ POMDPs, only that the grid location the
bottom level POMDPs represent is overlapping by a region r .
Overlapping regions are required to be able to solve the bottom
level POMDPs for border location states. Table 1 summarizes
the properties of the RN-HPOMDP structure.

4.2. The reference POMDP (rPOMDP)

The RN-HPOMDP described in the previous section can
cope with the computational time requirements but cannot
address the memory requirements. A flat POMDP would
require to hold a transition matrix of size (|S0

|
2

× |A0
|) and

an observation matrix of size (|S0
| × |A0

| × |Z|), where |S0
|

and |A0
| are the size of the state space and action space,

respectively, of the flat POMDP. The size of the observation
space, |Z|, is the same for the flat POMDP and the RN-
HPOMDP since there is no observation space hierarchy.

The RN-HPOMDP structure requires to hold the transition
and observation matrices for all the POMDPs at all levels.
As can be seen in Table 1, the number of POMDPs at each

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 565
Table 1
Properties of the RN-HPOMDP structure with L levels

Top level Intermediate level l Bottom level

No of POMDPs 1 |Al−1
| × |Sl−1

| |AL−1
| × |SL−1

|

Size of S |S0
|/22(L−1) 20 5 × (2 + r)2

Range of orientation angles [0◦, 360◦] [θp −
90◦

2l−1 , θp +
90◦

2l−1] [θp −
90◦

2L−1 , θp +
90◦

2L−1]

Resolution of orientation angles 90◦ 90◦/2l−1 90◦/2L−1

Size of A 4 5 5

Range of action angles [0◦, 360◦] [ap −
90◦

2l−2 , ap +
90◦

2l−2] [ap −
90◦

2L−2 , ap +
90◦

2L−2]

Resolution of action angles 90◦ 90◦/2l−1 90◦/2L−1
level is large and dependent on the size of action space
and state space. Consequently, even though each POMDP’s
observation and translation matrix is small, the total memory
requirements would be extremely large. The RN-HPOMDP has
larger memory requirements than the flat POMDP, although the
flat POMDP memory requirements are already very hard to
manage for large environments. For this reason, the notion of
the reference POMDP (rPOMDP) is introduced.

The transition and observation matrices hold probabilities
that carry information regarding the motion and sensor
uncertainty. In the formulation of the autonomous robot
navigation problem with POMDPs, as described in Section 3,
transition and observation probabilities for a given action,
a, and an observation, z, depend actually only on the
relative position and orientation of the robot, since states
and observations are robot dependent and not environment
dependent.

The transition probability of a robot from a state s to a new
state s′, when it has performed an action a, is only dependent on
the action a. Therefore when the robot is executing an action a,
the transition probability will be the same for any state s when
the resulting state s′ is defined relatively to the initial state s.

The probability that the robot observes a feature z, when it
is in a state s and performs an action a, can also be defined
in the same manner as with the transition probabilities, since
the set of features Z are not environment dependent. Therefore,
perceived features are dependent only on the motion of the
robot, i.e. the action a it performed.

The rPOMDP is built by defining a very small state space,
defined as an R × R square grid (in our implementation
R = 7) representing possible locations of the robot and all the
orientation angles of the robot that would be assigned in the
flat POMDP. The centre location of the state space represents
the invariant state sr of the robot. The action and observation
spaces are defined in the same manner they would be defined for
the corresponding flat POMDP. This rPOMDP requires to hold
transition and observation matrices of size ((R ×22+L)2

×|A|)

and ((R × 22+L)2
× |A| × |Z|), respectively. The size of the

matrices is only dependent on the size of the set of actions and
observations and the number of levels of hierarchy, L , since
the number of levels defines the discretization of the robot’s
orientation angle. By the above, it is obvious that no matter
Fig. 2. Translation and rotation of the reference POMDP transition
probabilities matrix.

how big is the environment that is to be modelled with the RN-
HPOMDP the use of the rPOMDP allows to have reasonably
sized matrices, depending on the choice made for R, that are
easy to maintain and learn.

Given the rPOMDP, transition and observation probabilities
for each POMDP in the RN-HPOMDP hierarchical structure
are obtained by translating and rotating the reference transition
and observation probability distributions over the current
POMDP state space, as shown in Fig. 2. The transfer of
probabilities is performed on-line while a POMDP is solved
or the robot’s belief is updated.

The transition probability for any POMDP of the
hierarchical structure, T (s, s′, a), is equivalent to the transition
probability of the rPOMDP, Tr (sr , s′

r , ar). The reference result
state, s′

r , is determined by the following equation:x ′
r

y′
r

f ′
r

 =

xr
yr
fr

+

 x ′
− x

y′
− y

f ′
− f

 ,

where, the states s, s′, sr and s′
r are decomposed to the location

and orientation triplets (x, y, f), (x ′, y′, f ′), (xr , yr , fr) and
(x ′

r , y′
r , f ′

r), respectively. The reference action is determined by
ar = a + f − fr .

In the same manner, the observation probability for any
POMDP of the hierarchical structure, O(s, z, a), is equivalent
to the observation probability of the rPOMDP, Or (sr , zr , ar).

566 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571
Fig. 3. Evaluation of the learned RN-HPOMDP model.
The reference observation, z′
r , is now determined as:dxr

dyr
d fr

 =

d cos(fr + ar)

d sin(fr + ar)

d f

 ,

where the observations z and zr are decomposed into
(dx, dy, d f) and (dxr , dyr , d fr), respectively, since observa-
tions are defined as the position and angle difference between
laser scans, and d is the distance d =

√
dx2 + dy2.

5. RN-HPOMDP learning

In our proposed HPOMDP structure, learning is performed
only for the reference POMDP, since the latter transfers
its learned parameters to the whole hierarchical structure.
Consequently, learning is performed very fast since the
rPOMDP has a very small state space. Learning the rPOMDP
parameters is performed by initializing the probability matrices
and adjusting their parameters iteratively according to an
execution trace, that is composed of action and observation
pairs, to maximize the likelihood that the execution trace was
obtained by the model. The Baum-Welch [9] algorithm is
utilized for this purpose.

5.1. Evaluation of the learned model

In order to test the validity of the learning procedure, we
have set up an experiment aiming at a quantitative evaluation
of the model that results from a learning session in specific
environments. Two learning sessions have been performed; a
learning session in a simulated environment where the ground
truth is available and also one in a real environment. The
environment chosen for both experiments is the FORTH main
entrance hall, as shown in Fig. 4.

In both experiments, execution traces have been collected
where the robot goes from a start state to a goal state. The start
and goal states were different for each execution trace. The
RN-HPOMDP for both experiments was built by discretizing
the environment into 5 cm2 cells with five levels of hierarchy,
that results to a discretization step of the orientation and
action angles of 5.625◦. The model “appropriateness” has been
evaluated using the fitness and entropy measures defined in [9]
as:

fitness = 1/T × ln p(o1...T |a1...T)

entropy = 1/(T ln |S|) ×

∑
t=1...T

∑
s∈S

[αt (s) ln(αt (s))].

Fitness and entropy are indicative measures of how well the
model explains an execution trace and how certain the robot
is about its position. The Baum-Welch algorithm is repeated
for a number of epochs until it converges. The fitness and
entropy measures are graphically shown in Fig. 3 for each
training epoch. Ideally, fitness and entropy should converge to
zero after a sufficiently large number of training epochs. As
expected, convergence to zero is not achieved, as its the case
with all learning procedures. Still, after a rather small number of
epochs, fitness and entropy converge to low values, indicating
the validity of the learned model.

In order to provide additional quantitative results on the
model accuracy, the position and orientation accuracy in
maintaining the robot’s state was measured and is shown in
Table 2. The peak of the POMDP’s belief distribution was used
as the model’s estimate of the robot’s current state. As can be
observed, the figures indicate increased accuracy of the learned
model.

In the simulated environment experiments, where the ground
truth is available, the position and orientation errors were
measured at each time step during execution between start and
goal points.

In the real environment experiments, two distinct robot
locations were manually marked on the floor of the FORTH
main entrance hall, as shown in Fig. 4. The robot was driven
manually, as accurately as possible, to one of the marked
locations and the other marked location was set as the goal
position the robot had to reach. The error in the x, y location
and orientation between the robot’s position after executing the
trace obtained by the POMDP model and the marked location it
had to reach, was measured manually as accurately as possible.

The mean position and orientation error for both experi-
ments is very close to the discretization of the POMDP, as indi-
cated by the entropy and fitness measures of the learned models.
Both experiments, validated that the learned POMDP models

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 567
Fig. 4. The marked locations in the environment where the experimental evaluation of the RN-HPOMDP model was performed.
Table 2
Position and orientation accuracy of the learned model

Mean error Real environment Simulated environment

x (m) 0.053 0.023
y (m) 0.061 0.041
f (deg) 5.525 5.041

were consistent during execution in terms of maintaining the
robot’s belief and also in reaching the goal position.

6. RN-HPOMDP planning

Solving the RN-HPOMDP to obtain the action the robot
should perform, involves solving a POMDP at each level. The
intuition of the RN-HPOMDP solution is to obtain at first a
coarse path that the robot should follow to reach a goal position,
and then refine this path at each subsequent level in the area
that the robot’s current position lies, as shown in Fig. 5. The
algorithm that implements the above is presented in Table 3 and
its details are explained in the following.

During the RN-HPOMDP planning procedure the belief
distribution of the corresponding flat POMDP is maintained
at all times. This distribution will be denoted as the full
belief. Before solving any POMDP at any level, the full
belief is compressed, by the functions compressTopBelief()
and compressBelief(), to obtain the belief distribution of
the POMDP to be solved. Belief compression is performed
according to the state abstraction present at each level of
the RN-HPOMDP structure, i.e. the discretization reduction
of each level as compared to the discretization of the
corresponding flat POMDP. Therefore, the belief assigned to
an abstract state, a state with coarse discretization at any level
of the hierarchical structure other than the bottom level, will
correspond to the average belief of all the corresponding flat
POMDP states that the named abstract state has integrated.
The belief distribution obtained for any POMDP is normalized
before solving it.

The top level POMDP is solved, by the function
solveTopLevel(), at an infinite horizon, until the goal state
is reached. The top level POMDP produces abstract actions,
i.e. actions at a coarse resolution that infer only the general
direction the robot should follow and not the actual action it
will perform. The abstract action to be executed, ap, as dictated
by the top level POMDP solution, determines which POMDP
at the immediate next level of the hierarchical structure will be
solved to obtain a new refined abstract action, that has a finer
Table 3
RN-HPOMDP planning

while not reached the goal state
compressTopBelief(top level)
ap = solveTopLevel(top level)
for l = 2 to L

whichPOMDP = selectPOMDP(l, ap)
compressBelief(l, whichPOMDP)
ap = solveLevel(l, whichPOMDP)

end
executeAction(ap)
z = getObservation()
belief L = updateBelief(whichPOMDP, ap, z)
full belief = updateFullBelief(belief L , whichPOMDP)

end

discretization but still it is not the actual action the robot will
perform.

The POMDP to be solved at the next level is determined by
the function selectPOMDP(). This function searches a level l
for the POMDP among all POMDPs in that level that satisfies
the following two criteria:

• The zero moment of the full belief distribution over the area
that is defined by the candidate POMDP states is maximum.

• The set of actions of the candidate POMDP contains an
action that has minimum distance from the previous level
solution’s action, ap.

The structure of the RN-HPOMDP, as described in
Section 4, ensures that when solving an intermediate level
POMDP the action obtained from the previous level will be
refined to a new action since the action subset range is equal
to[

ap −
90◦

2l−2 , ap +
90◦

2l−2

]
.

Therefore the solution of an intermediate level POMDP is
bounded according to the previous level solution.

The described procedure continues until the bottom level is
reached where an abstract action will be refined to an actual
action, that is the action the robot will perform.

When the robot executes the action obtained by the bottom
level POMDP solution, an observation, z, is obtained and the
belief distribution of this bottom level POMDP is updated
by updateBelief(). Bottom level POMDPs are composed
of actual states and actions, i.e. subsets of states and actions
that compose the corresponding flat POMDP. Hence, updating
the belief of a bottom level POMDP, belief L , amounts to
updating a specific region of the full belief. Therefore, the

568 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571
Fig. 5. Planning with the RN-HPOMDP.
belief distribution of the bottom level POMDP that was
solved is transferred to the full belief by the function
updateFullBelief().

In the current implementation, all POMDPs at all levels
are solved using the voting heuristic [11]. However, this is
not an inherent feature of the RN-HPOMDP structure, as any
other POMDP solution method can be used. Furthermore, the
POMDP solution method used can also be different for each
level of the hierarchical structure.

6.1. Complexity analysis

The time complexity of solving the RN-HPOMDP is
obtained by determining the time complexity required to solve
each POMDP at each level of the hierarchical structure.

The solution of all intermediate levels and bottom level
POMDPs requires constant time, since the size of the state
space and action space is always constant and predefined
(cf. Table 1). Therefore, the total computational complexity
required to solve the RN-HPOMDP is actually the complexity
of the top level POMDP.

When approximate methods are used, such as the MLS or
voting heuristic, the complexity of solving a POMDP for a
single time step is O(|S|

2
|A|). Hence, the corresponding time

complexity of solving the RN-HPOMDP for a problem of the
same size is

O

((
|S|

22(L−1)

)2
)

.

The top-level POMDP state and action space size can remain
small regardless of the size of the whole environment by
increasing the number of levels, L , of the hierarchical structure.

When solving a flat POMDP exactly for a single step in time
t , the time complexity is O(|S|

2
|A||Vt−1|

|Z|), where |Vt−1| is
the number of linear components required to represent the value
function at time t −1. The size of the value function at any time
t is equal to |Vt | = |A||Vt−1|

|Z|.
In contrast, the time complexity and size of the RN-

HPOMDP when solved exactly for the same problem size is

O

((
|S|

22(L−1)

)2

|Vt−1|
|Z|

)
and |Vt | = |Vt−1|

|Z|, respectively.
Apart from the notable reduction in computation time due to

the reduced size of the state and action space, it should be noted
that the above mentioned times are for a single time step. The
infinite horizon solution of a flat POMDP would require these
computations to be repeated for a number N of time steps until
the goal point is reached, that is dependent on the number of
states of the flat POMDP, |S|. In the RN-HPOMDP case, only
the top level POMDP is solved at an infinite horizon, and the
number of time steps N ′ until the goal point is reached, is now
dependent on the number of states of the top level POMDP,
(|S|/22(L−1)).

From the above complexity analysis, we may conclude
that the proposed approach takes care of the “curse of
dimensionality” [6] and also the “curse of history” [4].

7. Experimental results

The RN-HPOMDP has been evaluated on its applicability
as a unified model for localization, planning and obstacle
avoidance in real world environments.

In terms of the performance of the RN-HPOMDP in
localization, the results have been already been presented
in Section 5.1, where learning of the RN-HPOMDP and its
experimental validation is presented. We have presented both
simulation and real-world experimental results and have shown
that the RN-HPOMDP is capable of keeping track of the robot’s
true position through its state estimator component.

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 569
In terms of the performance of the RN-HPOMDP in
planning we present in the following a comparison with the
other two hierarchical POMDP representations present in the
literature. In this comparison we focus on the ability of
each hierarchical representation to be applied to the problem
studied in this paper, i.e. as a unified probabilistic navigation
model. Furthermore, we provide a similar comparison with
approximation methods for solving flat POMDPs.

7.1. Comparative results

7.1.1. Comparison with other HPOMDPs
The Theocharous HPOMDP [25] has been used as a high-

level planner where the POMDP is solved once to obtain
the shortest path to the goal position. In this approach the
MLS heuristic is used and the time complexity for solving

this HPOMDP is between O(|S|
2
d N |A|) and O(|S|

2
|A|). In

result, in the worst case the complexity is equal to that of
solving a flat POMDP. The parameters d and N determine
the complexity reduction achieved. However, these parameters
depend on how well the HPOMDP was constructed and as a
result this approach does not provide a guaranteed reduction.

The other HPOMDP approach present in the literature,
proposed by Pineau [16], also does not have a guaranteed
reduction of the action space and state space. This HPOMDP is
built by grouping actions into abstract actions called subtasks.
Subtasks are defined manually and according to them state
abstraction is performed automatically. Therefore, this method
cannot offer any bounds on the complexity times required for
solving it.

The Theocharous HPOMDP has been used as high level
planner using topological maps and the Pineau HPOMDP for
high level robot control and dialogue management.

The state and action space reduction achieved by the above
two approaches prohibits their application to the problem
studied in this paper that is the unified probabilistic navigation
problem using POMDPs without external modules.

7.1.2. Computational time comparison
Further to the theoretical comparison presented in the

previous section, for indicative comparison purposes we
provide the CPU times required to solve the RN-HPOMDP
and also the Theocharous and Pineau HPOMDP approaches in
Tables 4–6. It should be stressed out, that the times referring to
the Pineau approach are the ones from their initial version of
HPOMDP [21] where there was only action space hierarchy.
It should be also noted that the CPU times mentioned are
the ones the authors state and have not been obtained using
computers of the same power. Another point is that the
Theocharous approach is solved using the MLS heuristic and
in our approach the POMDPs are solved using the voting
heuristic that has the same computational complexity with the
MLS heuristic. However, the Pineau HPOMDP is solved using
exact methods. Regardless of the mentioned differences, the
superior computational performance of our approach can be
easily extracted from the tabulated results since the size of the
problem is many orders of magnitude larger.
Table 4
Computation time required to solve a HPOMDP with the compared approaches

POMDP size CPU time (s)

Theocharous [25] |S| = 575 |A| = 4 2.11–5.7
|S| = 1385 |A| = 4 5.05–26.12

Pineau et al. [21] |S| = 11 |A| = 6 2.84
|S| = 20 |A| = 30 77.99

Table 5
Computation time required to solve the RN-HPOMDP with varying grid size
and five levels

Grid size POMDP size CPU time (s)

5 cm × 5 cm |S| = 18,411,520 |A| = 64 18.520
10 cm × 10 cm |S| = 4,602,880 |A| = 64 0.911
15 cm × 15 cm |S| = 2,038,080 |A| = 64 0.426
20 cm × 20 cm |S| = 1,150,720 |A| = 64 0.257
25 cm × 25 cm |S| = 734,976 |A| = 64 0.262
30 cm × 30 cm |S| = 503,808 |A| = 64 0.251

Table 6
Computation time required to solve the RN-HPOMDP with varying number of
levels and grid size of 10 cm × 10 cm

No. of levels POMDP size CPU time (s)

3 |S| = 1,150,720 |A| = 16 201.210
4 |S| = 2,301,440 |A| = 32 16.986
5 |S| = 4,602,880 |A| = 64 0.911
6 |S| = 9,205,760 |A| = 128 0.460
7 |S| = 18,411,520 |A| = 256 0.411

Fig. 6. The FORTH main entrance hall.

7.1.3. Comparison with approximation methods for solving flat
POMDPs

In [5] a review of approximation methods for solving
POMDPs is presented. Furthermore, one of the most recent
methods for approximation is the Point Based Value Iteration
(PBVI) [4] method. The time complexity of PBVI is
O(|S||A||Vt−1||Z||B|), where |B| is the size of the finite set
of belief points and |V | remains constant throughout iterations.
The time complexity of approximation methods present so far
is in the best case polynomial to the size of the POMDP.

Approximation methods have been applied to problems
where the POMDP comprised a few thousand states, that is as
high level planners. The problem we consider consists of many
orders of magnitude larger state space. As a result, the reduction
of the state space that the RN-HPOMDP offers and also the
reduction of the action space is crucial to its performance.
Furthermore, since the proposed hierarchical structure is not
restricted to a specific method for solving the underlying
POMDPs, a combination of an approximation method with the

570 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571
Fig. 7. Two snapshots (a)–(b) of a navigation session for avoiding a human to reach the goal position. The robot track is marked with the black squares (�) and the
human track is marked with the grey dots ().
proposed hierarchical structure can dramatically improve its
performance.

7.2. Obstacle avoidance results

The RN-HPOMDP has been tested extensively in a real
world environment. The robot was set to operate for more than
70 h in the FORTH main entrance hall shown in Fig. 6 in normal
working hours where people were continuously present and
involved with the tasks the robot was set to perform. Hence,
the robot had to perform obstacle avoidance. The environment
was modelled with a RN-HPOMDP of size |S| = 18,411,520,
|A| = 256 and |Z | = 24. The RN-HPOMDP was built with
seven levels. It has to be noted that the RN-HPOMDP was able
to be solved in real-time with this problem size, in contrast
to other hierarchical POMDPs or approximation methods that
cannot accommodate large problem sizes.

In all cases the proposed navigation model has shown
a robust behavior in reaching the assigned goal points and
avoiding humans or other objects. Hence, the RN-HPOMDP
advantages of solving globally the problems of planning and
obstacle avoidance and also in a probabilistic manner can be
further exploited. Since the scope of this paper is to present
the RN-HPOMDP model structure how it can be solved in
real time, the performance of the RN-HPOMDP as an obstacle
avoider is further detailed in [2,3]. A sample path the robot
followed to reach its goal and also performed local obstacle
avoidance to avoid a human is shown in Fig. 7.

8. Conclusions and future work

In this work we introduced a new approach to hierarchical
POMDPs (HPOMDPs). The proposed approach is designed
specifically for the autonomous robot navigation problem,
hence termed as Robot Navigation-HPOMDP (RN-HPOMDP).
The RN-HPOMDP is utilized as a unified model that caters
for planning, localization and local obstacle avoidance. Hence,
it is formulated in such a manner that it does not depend on
any other external modules for localization and local obstacle
avoidance. To the best of our knowledge, it is the first time
a POMDP has been used to provide the actual actions the
robot executes and not as a high level mission planner. The
RN-HPOMDP offers significant state space and action space
reduction compared to other hierarchical approaches present
in the literature. Furthermore, the state space and action space
reduction is guaranteed and not dependent on the environment
where the robot operates. Additionally, the RN-HPOMDP can
be used in conjunction with any approximation method for
solving flat POMDPs, to further improve its performance. A
novel approach has been also proposed for storing the model
parameters with the reference POMDP (rPOMDP). The RN-
HPOMDP has been experimentally validated in a real world
environment.

Future work involves integrating into the RN-HPOMDP
prediction about the motion of humans and other obstacles
to perform efficient and effective obstacle avoidance in a
predictive manner [2,3]. Furthermore, the application of the
RN-HPOMDP to multi-robot navigation and cooperation will
be examined.

References

[1] A.R. Cassandra, L.P. Kaelbling, J.A. Kurien, Acting under uncertainty:
Discrete bayesian models for mobile-robot navigation, in: Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems,
1996.

[2] A. Foka, P. Trahanias, Predictive autonomous robot navigation, in:
Proceedings IEEE/RSJ International Conference Intelligent Robots and
Systems, IROS, 2002.

[3] A. Foka, P. Trahanias, Predictive control of robot velocity to
avoid obstacles in dynamic environments, in: Proceedings IEEE/RSJ
International Conference Intelligent Robots and Systems, IROS, 2003.

[4] G. Gordon, J. Pineau, S. Thrun, Point-based value iteration: An
anytime algorithm for pomdps, in: Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI, 2003.

[5] M. Hauskrecht, Value function approximations for partially observable
Markov decision processes, Journal of Artificial Intelligence Research 13
(2000) 33–95.

[6] L.P. Kaebling, M.L. Littman, A.R. Cassandra, Planning and acting in
partially observable stochastic domains, Artificial Intelligence 101 (1–2)
(1998) 99–134.

[7] A.A. Kassim, B.V.K. Vijaya Kumar, Path planners based on the wave
expansion neural network, Robotics and Autonomous Systems 26 (1)
(1999) 1–22.

[8] O. Khatib, S. Quinlan, D. Williams, Robot planning and control, Robotics
and Autonomous Systems 21 (3) (1997) 249–261.

[9] S. Koenig, R.G. Simmons, Unsupervised learning of probabilistic models
for robot navigation, in: Proceedings of the International Conference on
Robotics and Automation, 1996, pp. 2301–2308.

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 571
[10] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers,
1991.

[11] M. Littman, A. Cassandra, L. Kaebling, Learning policies for partially
observable environments: Scaling up, in: Proceeding of the 12th
International Conference on Machine Learning, 1995, pp. 362–370.

[12] M.L. Littman, J. Goldsmith, M. Mundhenk, The computational
complexity of probabilistic planning, Journal of Artificial Intelligence
Research 9 (1998) 1–36.

[13] F. Lu, E. Milios, Robot pose estimation in unknown environments by
matching 2d range scans, Journal of Intelligent and Robotic Systems 18
(1998) 249–275.

[14] G.E. Monahan, A survey of partially observable markov decision
processes: Theory, models, and algorithms, Management Science 28
(1982) 1–16.

[15] U. Nehmzow, C. Owen, Robot navigation in the real world: Experiments
with Manchester’s FortyTwo in unmodified, large environments, Robotics
and Autonomous Systems 33 (4) (2000) 223–242.

[16] J. Pineau, S. Thrun, An integrated approach to hierarchy and abstraction
for POMDPs, Technical Report (CMU-RI-TR-02-21), Carnegie Mellon
University, 2002.

[17] J. Pineau, G. Gordon, S. Thrun, Applying metric-trees to belief-point
POMDPs, Neural Information Processing Systems (NIPS) (2003).

[18] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, S. Thrun, Towards
robotic assistants in nursing homes: Challenges and results, Robotics and
Autonomous Systems 42 (3–4) (2003) 271–281.

[19] P. Poupart, C. Boutilier, Value-directed compression of POMDPs, Neural
Information Systems (NIPS) (2003).

[20] K.-M. Poon, A fast heuristic algorithm for decision-theoretic planning,
Master’s Thesis, The Hong-Kong University of Science and Technology,
2001.

[21] N. Roy, J. Pineau, S. Thrun, A hierarchical approach to pomdp planning
and execution, in: Workshop on Hierarchy and Memory in Reinforcement
Learning, ICML, 2001.

[22] N. Roy, G. Gordon, Exponential family PCA for belief compression in
POMDPs, Neural Information Systems (NIPS) (2003).

[23] R. Simmons, S. Koenig, Probabilistic robot navigation in partially
observable environments, in: Proceedings of the International Joint
Conference on Artificial Intelligence, 1995, pp. 1080–1087.

[24] M.T.J. Spaan, N. Vlassis, A point-based POMDP algorithm for robot
planning, in: Proceedings of 2004 IEEE International Conference on
Robotics and Automation, ICRA, 2004.
[25] G. Theocharous, Hierarchical learning and planning in partially
observable Markov decision processes, Ph.D. Thesis, Michigan State
University, 2002.

[26] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F.
Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N Roy, J. Schulte, D.
Schulz, Probabilistic algorithms and the interactive musuem tour-guide
robot minerva, International Journal of Robotics Research 19 (11) (2000)
972–999.

Amalia Foka was born in Patras, Greece in 1976.
She received the B.Eng. degree in Computer Systems
Engineering and the M.Sc. degree in Advanced
Control from UMIST, UK in 1998 and 1999
respectively. She received the Ph.D. degree in 2005
from the Department of Computer Science, University
of Crete, Greece. She currently is a visiting lecturer
at the Department of Computer Science, University
of Ioannina, Greece. Her research interests include

robotics and artificial intelligence.

Professor Panos Trahanias received his Ph.D.
in Computer Science from the National Technical
University of Athens, Greece. Currently he is a
professor with the University of Crete, Greece and
the Foundation for Research and Technology - Hellas
(FORTH). From 1991 to 1993 he was with the
Department of Electrical and Computer Engineering,
University of Toronto, Canada, as a research associate.
He has participated in many RTD programs in image

analysis at the University of Toronto and has been a consultant to SPAR
Aerospace Ltd., Toronto. Since 1993 he has been with the University of Crete
and FORTH; currently, he is the Director of Graduate Studies, Department of
Computer Science, University of Crete, and the Head of the Computational
Vision and Robotics Laboratory at FORTH, where he is engaged in research
and RTD projects in autonomous mobile platforms, sensory technologies,
computational vision, mixed realities and human-robot interaction. Professor
Trahanias has extensive experience in the execution and co-ordination of
large research projects. Moreover, his work has been published extensively
in scientific journals and conferences. He has participated in the programme
committees of numerous international conferences; he has been the General
Chair of Computer Graphics International 2004, and will be General Co-Chair
of Eurographics 2008 and the European Conference on Computer Vision 2010.

	Real-time hierarchical POMDPs for autonomous robot navigation
	Introduction
	Partially observable Markov decision processes (POMDPs)
	Belief update
	Solving POMDP's

	Formulation of POMDPs for the autonomous robot navigation problem
	The robot navigation-hierarchical POMDP (RN-HPOMDP)
	RN-HPOMDP structure
	Determining the number of levels of hierarchy of the RN-HPOMDP
	Construction of the top-level of the RN-HPOMDP
	Construction of the intermediate levels of the RN-HPOMDP
	Construction of the bottom level of the RN-HPOMDP

	The reference POMDP (rPOMDP)

	RN-HPOMDP learning
	Evaluation of the learned model

	RN-HPOMDP planning
	Complexity analysis

	Experimental results
	Comparative results
	Comparison with other HPOMDPs
	Computational time comparison
	Comparison with approximation methods for solving flat POMDPs

	Obstacle avoidance results

	Conclusions and future work
	References

