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Abstract

Camera motion estimation is useful for a range of applica-
tions. Usually, feature tracking is performed through the
sequence of images to determine correspondences. Fur-
thermore, robust statistical techniques are normally used to
handle large number of outliers in correspondences. This
paper proposes a new method that avoids both. Motion is
calculated between two consecutive stereo images without
any pre-knowledge or prediction about feature location or
the possibly large camera movement. This permits a lower
frame rate and almost arbitrary movements. Euclidean con-
straints are used to incrementally select inliers from a set
of initial correspondences, instead of using robust statistics
that has to handle all inliers and outliers together. These
constraints are so strong that the set of initial correspon-
dences can contain several times more outliers than inliers.
Experiments on a worst-case stereo sequence show that the
method is robust, accurate and can be used in real-time.

1 Introduction
1.1 Camera Motion Estimation
This paper describes a novel method that estimates motion
of a calibrated stereo camera, which moves unconstraint in
a static scene. The long-term goal is to use motion estima-
tion to integrate stereo data incrementally in real-time into
a global model of a scene as the camera moves through it.

The stereo camera will be mounted on a tele-operated
mobile robot for the current application. However, the
method does not use any sensory information from the
robot itself as an initial estimate of camera motion. It relies
only on the dense output of a real-time correlation-based
stereo vision system, which has been described earlier [1].

The computer hardware on-board the robot is expected
to be limited. Thus, the method has to be fast so that it
works additionally to the stereo system in real-time. Addi-
tionally, the method must robustly handle large changes in
images, due to low frame rates.

1.2 Review of Existing Methods
Camera motion estimation is essential for many applica-
tions, e.g. structure from motion (SFM). General SFM
techniques can reconstruct a scene, which is captured from
different viewpoints using a single, possibly un-calibrated
camera [2]. Techniques for calibrated stereo cameras

can take advantage of 3-D measurements at every view-
point to increase reliability and avoid degenerative cases
[3, 4, 5, 6, 7].

Calculating motion can be done from seven correspon-
dences in the image planes by recovering the fundamental
matrix [8]. However, certain point configurations can de-
grade the accuracy or lead to a complete failure, e.g. if all
points are co-planar in the scene. On the other hand, three
3-D point correspondences, which are not co-linear permit
the calculation of rigid motion.

Another important issue is whether the method pro-
cesses all images off-line together or incrementally, as the
camera moves through the real world. The later ones are
suitable for a real-time use on mobile robots [9, 3, 4, 5].

The techniques are usually based on features, whose
correspondences are determined in images that are taken
from different viewpoints. Most commonly, point fea-
tures are used, because they are accurately to localise
[2, 10, 9, 3, 4, 5]. Other methods use 3-D lines or planes,
which are available through feature based stereo [7, 6].

Correspondences can for features be determined by cor-
relation of the area around the feature [3, 4, 5, 2]. How-
ever, changes in projection, rotation and scale need to be
accounted for. Certain invariants can help to select ap-
propriate point features as well as to find correspondences
[10]. Additionally, tracking of features through the image
sequence allows to predict their location and thus to limit
possible correspondences [3, 4, 5]. Features with richer de-
scriptions may be matched directly by matching their pa-
rameters, possibly with taking even error characteristics of
the capturing device into account [6, 7].

However, there is usually a substantial amount of out-
liers in correspondences, which can drive the result far
away from the solution. This problem is normally tack-
led with a robust statistical technique, like weighted least
squares [11], a random sampling approach (e.g. RANSAC)
[3] or some other process that suppresses the effect of out-
liers iteratively [6, 4, 2, 5].

1.3 Proposed Constraint Satisfaction Method

The basic motivation of the new method is to exploit the
increased information that a stereo camera offers over a
single camera. The 3-D position of point features is de-
termined through stereo vision. Distances between the 3-D
positions of features remain obviously the same, regardless
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of the position and orientation of the camera. Thus, an ini-
tial guess on the correspondence of two features can easily
be validated by comparing their distance in both camera
coordinate systems. If the distances differ, then at least one
of the correspondences is definitely wrong.

It turns out that this constraint is so strong that it can
detect almost all outliers, even if the amount of outliers is
several times higher than the amount of inliers. Further-
more, all remaining outliers that pass the test by accident
do not introduce high errors in the result, because they are
enforced to be close to their correct position.

Section 2.1 provides an overview over the whole method
and describes how the techniques are combined with ex-
isting ones. Section 2.2 and 2.3 discuss the novel ideas
about establishing initial correspondences and the fast de-
tection of outliers in detail. Results from experiments are
discussed in section 3. Section 4 concludes the paper.

2 The Constraint Satisfaction Method
2.1 Overview
An overview over the whole method is shown in figure 1.
The rectified left and right images are used to calculate a
dense disparity image, using an earlier developed real-time
stereo system [1]. Additionally, the left camera image is
used to detect corners with the Harris corner detector [12].
This produces typically several hundred points. The Har-
ris corner detector is known for its reliability to detect the
same features again (i.e. no flickering of corners in consec-
utive images), which is important for this application.

Set of 2D/3D points

Dense disparity
image

corresponding 3D points

Corner detection

Left image

Stereo system

Set of 2D points

Initial correspondences

Outlier detection

Calculation of 3D positionfrom previous image
Set of 2D/3D points

Set of corresponding
3D points

Subset of consistent,

Rigid camera motion

Right image

Calculation of transformation

Figure 1: Overview, grey boxes represent novel parts.

Next, the 3-D position of each point is calculated, using
the disparity image. The disparity image usually contains
areas for which the disparity can not be determined (e.g.
texture-less areas). Points that fall in or are very close to
such an area are discarded. Furthermore, all points which
are further away than a certain maximum distance (e.g.

10m) are not considered, due to an increased uncertainty
in their position (see section 2.3.2).

The next step determines correspondences of points
from the previous and current image. This is explained in
detail in section 2.2. The result is expected to contain a high
amount of outliers. The detection of outliers is described in
detail in section 2.3. The result of outlier detection is a set
of corresponding points, whose relative distances between
each other are all maintained. If there are outliers left, then
their influence is expected to be low.

Therefore, a direct least squares solution is sufficient to
calculate the transformation between the sets of points [11].
The accuracy of the transformation is further increases by
an iterative optimisation that is based on the true recon-
struction characteristic of stereo vision [13].

This paper focuses on the determination of correspon-
dences and outlier detection, since the remaining steps are
straight forward once outliers are removed.

2.2 Initial Point Correspondences
2.2.1 General Considerations

Two points in two different images correspond if they rep-
resent the same object in the real world. The correspon-
dence between relevant points from consecutive left cam-
era images is required. It is assumed that there will be a
high amount of points, for which no correspondence exists,
because some points are outside the field of view of one of
the cameras. Furthermore, points can be occluded by ob-
jects. Finally, corner detection can fail to detect a corner
in one image, but detects it in the other. It is not important
to find all correspondences. Theoretically, three none co-
linear points are sufficient to calculate motion. However, a
higher amount is useful to increase accuracy, because the
effect of noise can be reduced.

Many techniques perform a kind of tracking of feature
points to predict their location in a new image. The pro-
posed method is designed for a system with a low frame
rate in respect to the anticipated motion. This results in
highly differing images. Thus, motion might be too un-
predictable to perform tracking. Therefore, no information
about earlier images is used.

The easiest way to determine correspondences is by cor-
relating the image area around a feature point with all pos-
sible places in the second image and choosing the place
that matches best. However, large changes of the view-
point projects the same area differently on the image plane.
Furthermore, illumination might vary significantly. All of
this results in high amounts of outliers in corresponding
pixels within the compared area, which decreases the per-
formance of correlation. A simple correlation, like the sum
of absolute differences (SAD), will in many cases fail.

2.2.2 Non-Parametric Correlation with Consistency
Check

Experiments with stereo correlation methods showed sev-
eral measures that can deal with outliers in the correlation
calculation [1]. The non-parametric Rank and Census cor-
relation can handle outliers well and they are insensitive in
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changes of illumination [14], because they are based on the
local ordering of intensities rather than the intensity values
themselves.

The SAD5 measure that has been proposed in the study
about stereo correlation [1] performs better than Rank and
Census in case of stereo vision, but it is expected to perform
worse for the current problem. Outliers in stereo vision ap-
pear usually at places where a correlation window overlaps
a depth discontinuity. Hence, outliers are clustered together
in a part of the window. SAD5 works by rejecting the part
of the correlation window that is supposed to have a high
amount of outliers. Rank and Census allow outliers to ap-
pear everywhere, which is expected to be the case when de-
formated areas are correlated as in the current application.
However, the matching capability of Rank and Census is
weaker than that of SAD.

Establishing initial correspondences is implemented by
correlating all feature areas of one image against all fea-
ture areas of the other image, using Rank or Census with a
big correlation window (e.g. 19x19 pixel). A consistency
check then performs correlation in the other way around,
by searching correspondences from the second to the first
image. Only correspondences, which are found in both di-
rections are retained.

The consistency check makes it likely that the corre-
spondences are correct. However, outliers are still expected
to occur and their influence can be very high, since there
has been no restriction imposed on the parts of the image
in which correspondences are sought (i.e. no tracking).

2.3 Detection of Outliers
2.3.1 Formal Basis of the Method

The initial correspondence step provides a set of corre-
sponding points, whose 3-D position is known in respect to
their camera coordinate system. The motion between two
camera coordinate systems is described by a rotation R and
a translation t. The relation between the points of the pre-
vious and current viewpoint (Pi and Ci, with corresponding
points having the same index i) can be written as,

Ci
� RPi

�
t with i � 1 ����� n. (1)

A property of rigid transformations in Euclidean space
is that the relative distances between transformed points are
maintained. Thus,

�
Pi � Pk

� � �
Ci � Ck

�
with i, k � 1 ����� n. (2)

Another constraint can be derived if the rotation R is
restricted. Every rotation in 3-D can be represented by a
rotation axis r and a rotation angle φ. If the vector Pi � Pk

is orthogonal to r, then the angle between Pi � Pk and Ci �
Ck is exactly φ. If Pi � Pk is parallel to r, then the angle
between Pi � Pk and Ci � Ck is always zero. In all other
cases, the angle is in between 0 and φ.

The rotation axis r is unknown as well as the angle φ.
However, imposing the restriction φ � θ results in the in-
equality,

�
Pi � Pk 	 � Ci � Ck 	�
 cosθ with i, k � 1 ����� n. (3)

For this study, θ was set to π
4 , which is a very low restric-

tion on camera movement, since the camera may rotate by
up to 45 degrees between two consecutive images. Still,
this additional constraint is useful to identify outliers.

Basically, if the constraints (2) and (3) hold for two cor-
respondences i and k, then both correspondences may be
correct. However, if one of the constraints does not hold
then at least one of the correspondences is definitely wrong.

A consistent subset of initial corresponding points can
be constructed by selecting the largest number of points for
which (2) and (3) holds for all combinations of i and k. The
larger this subset is the more likely it is that it represents
only inliers. Though, outlier can still exist. Certain point
configurations can for example be constructed artificially,
which are ambiguous, e.g. constraint (2) alone is ambigu-
ous if four points are arranged in a square. However, such
configurations are very rare in natural scenes, especially
when the number of inliers is high enough.

There are two problems left. Firstly, constraint (2) is al-
most always wrong, for noisy values. The consistency of
the distance needs to be determined by using the special er-
ror characteristics of stereo vision (see section 2.3.2). Sec-
ondly, naive implementations of above constraints could
result in trying to solve a NP problem. Section 2.3.3 de-
scribes an algorithm that creates a consistent subset.

2.3.2 Error Characteristics of Stereo Vision

Stereo vision systems have the characteristic that errors
propagate non-linear from the image plane into the 3-D po-
sition of a point, as shown in this section. This special
characteristic needs to be taken into account for comparing
distances properly.

Equation (4) describes the calculation of the 3-D coor-
dinates X , Y and Z from two corresponding points in the
left and right image plane xl , yl and xr, yr

1 for the general
case that yl is not equal to yr due to errors. The parameter
f is the focal length and t the baseline of the stereo system.

It must be noted that this model is a simplification, be-
cause planar rectification does not restrict the focal length
of both cameras in the direction of the base line, which
is usually horizontal. Only the vertical focal length must
be the same. However, the horizontal focal lengths have
usually very similar values. In fact, they have to be very
similar, so that correlation based stereo vision can work.
Otherwise, two windows could not be correlated without
taking different scale factors into account.

X � xlt
xl � xr

Y � t
�
yl
�

yr 	
2
�
xl � xr 	 Z � f t

xl � xr
(4)

If the error ∆e in the pixel positions in the image planes
is modelled by independent Gaussian noise, then it results
in the errors ∆X , ∆Y and ∆Z according to the rules of error
propagation, i.e.

1Using pixel coordinates, which are centred in the principal point.
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∆X � ∆e
Z
f t

� �
t � X 	 2 � X2, (5)

∆Y � ∆e
Z
f t


2Y 2 � 1

2
t2, (6)

∆Z � ∆e
Z2

f t � 2. (7)

Molton and Brady derived the same results from differ-
ent considerations [3]. The distance L between two 3-D
points is calculated by,

L � � �
X1 � X2 	 2 � �

Y1 � Y2 	 2 � �
Z1 � Z2 	 2. (8)

It’s propagated error ∆L is calculated from the error in
the image plane ∆e by,

∆L � ∆e
L f t

�
Z2

1

�
A
�

B
�

C 	 � Z2
2

�
D
�

E
�

F 	 (9)

A � ���
X1 � X2 	 � t � X1 	�� �

Y1 � Y2 	 Y1 � �
Z1 � Z2 	 Z1 	 2

B � ���
X1 � X2 	 X1

� �
Y1 � Y2 	 Y1

� �
Z1 � Z2 	 Z1 	 2

C � 1
2

�
t
�
Y1 � Y2 	�	 2

D � ���
X1 � X2 	 � t � X2 	�� �

Y1 � Y2 	 Y2 � �
Z1 � Z2 	 Z2 	 2

E � ���
X1 � X2 	 X2

� �
Y1 � Y2 	 Y2

� �
Z1 � Z2 	 Z2 	 2

F � 1
2

�
t
�
Y1 � Y2 	�	 2.

Hence, the error ∆L depends very much on the position
of both 3-D points and their distance from the camera and
must be calculated for every pair of points individually.

Finally, equation (10) can be used to check if two dis-
tances L1 and L2 with their errors ∆L1 and ∆L2 are consis-
tent, i.e. if they are likely to represent the same distance.
This replaces equation (2). The error ∆e can be set to a
small value, i.e. 0.2 pixels has been used for this paper.

�
L1 � L2

���
3
�

∆L2
1
� ∆L2

2 (10)

2.3.3 Handling Complexity

Determination of a large consistent subset of a set of n cor-
responding points is performed by using a n � n matrix m
as shown in figure 2. The elements of m denote if the cor-
responding points Pi, Ci and Pk, Ck passed the test (10) and
(3) with 1 or not, with 0. The goal is to find the largest
number of points, so that mik

� 1 (i.e. mik
� mki) for all

combinations of points i, k in the set.
It seems that finding the largest number of points would

involve to test all combinations of n points, which would
require O

�
2n 	 steps (i.e. it seems to be a NP problem).

However, a good approximation is to find not the largest,
but a large number of consistent points. This can be done

by first selecting the point i with the largest number of con-
sistencies (i.e. the column i with the largest number of 1-
elements). Further points k are incrementally added, so that
mik

� 1 for all previous points i and as much as possible
further consistencies are maintained. This is repeated until
there are no further points to add.

P , C11 P , C2 2

P , C11

P , C2 2

nP , Cn

nP , Cn

1
1

1

0
0

0
0

0 1

1

... ...

...

...
Inconsistent

Consistent

Figure 2: Matrix m of point consistencies.

The time for creating matrix m is O
�
n2 	 , while the time

to create a consistent subset of correspondences is O
�
ncn2 	 ,

with nc as the number of resulting consistent, correspond-
ing points. It should be noted that n is usually a small num-
ber (e.g. 50) and that the operations after creating matrix m
are very simple.

3 Results
An example sequence that consists out of 18 stereo im-
ages has been captured with the real-time stereo system.
The camera has basically been moved in a 360 degree cir-
cle. Additionally, forward, backward and sidewards move-
ments have been introduced as well. A rotation around
the optical axis has been avoided, since it is not normal
for robotics applications. Typically, only half of an im-
age overlaps with the previous one. Only a low resolution
(i.e. 320 � 240 pixel) is used and the lighting differs signif-
icantly. Thus, the sequence is considered to be a worst-case
scenario. The images number 13 and 14, shown in figure 3
are a good example. The black lines represent correspond-
ing points, found by the algorithm. All 17 correspondences
were manually confirmed to be correct.

The last image overlaps with the first one of the se-
quence, which makes it possible to determine the overall
error of motion estimation. Figure 4 shows images 18 and
1. The motion between both images contains a slight rota-
tion around the optical axis as well. Nevertheless, there is
only 1 outlier among 31 correspondences and this outlier is
only a few pixels away from its correct position.

Images 7 and 8 are among the most problematic ones in
the sequence. Some corresponding features were found on
the structures of the wood or floor. It has been a problem
to determine the correctness of the algorithmic choices as
a human. 3 outliers have been found among only 8 corre-
spondences. Nevertheless, the outliers are still near their
correct position, so that the resulting motion is supposed to
be still usable as a rough estimate.

Generally, around 300 corners are determined in each
image. Around 140 of them are usable (e.g. their disparity
is valid). The number of initial correspondences is lower
due to the consistency check in correlation. The left dia-
gram in figure 6 gives detailed results of the sequence using

7th International Conference on Control, Automation, Robotics and Vision, 2-5 December 2002, Singapore.



Figure 3: Images 13 and 14 of the sequence (i.e. consecutive left stereo images). Black lines show consistent correspondences.

Figure 4: Images 18 and 1 of the sequence, i.e. last and first image. The white line shows a remaining outlier.

Figure 5: Images 7 and 8 of the sequence. There are three remaining outliers shown in white.

Figure 6: The number of initial correspondences, consistent correspondences and remaining outliers between image i and
i+1. The normal small initial correspondence set is used for the graph on the left. The right graph shows results with a large
correspondence set that contains much more outliers. Nevertheless, outliers are still detected robustly.
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Census as a correlation measure. The consistent correspon-
dences after outlier detection contain sometimes manually
found outliers. However, all of them are near their correct
position.

The amount of consistent correspondences in images 7,
8 and 9 is low and there is a substantial amount of out-
liers left. Results from motion calculation show a several
times higher error (i.e. mean distance between correspond-
ing points after transformation) than for all other images.

In spite of these problems, the orientation of the camera
after closing the 360 degree cycle is only by 9 degrees verti-
cally, 7 degrees horizontally and 2 degrees around the opti-
cal axis incorrect. The position of the camera after the cycle
is obviously very sensitive to rotational errors. The camera
travelled a distance of 3.69m and is in the end 0.01m away
from its initial position. It is assumed, that images 7, 8
and 9 are mainly responsible for these errors, as explained
above.

Finally, the diagram on the right of figure 6 demon-
strates the power of the method to discriminate between in-
liers and outliers in a set that contains much more outliers.
The consistency check has been removed. Instead all corre-
spondences found by searching corresponding points from
the first to the second and from the second to the first image
are returned together. Thus, the set is around 4 times bigger
with a much higher number of outliers. Nevertheless, the
resulting sets of consistent correspondences are almost the
same. This demonstrates the discriminative power of the
method impressively.

The method has been implemented in C and some parts
in MMX Assembler. The speed on the discussed sequence
has been measured on an Athlon with 1.2GHz under Linux.
Corner detection takes typically around 17ms per image.
Initial correspondences are established in another 17ms us-
ing Rank as correlation measure, while outlier detection
takes only around 1ms. The transformation is calculated
in 3ms, with a least squares calculation followed by an it-
erative optimisation [11, 13].

4 Conclusion
A novel camera motion estimation method has been pre-
sented, which does not make use of feature tracking and
robust statistics as most other methods. It has been shown
that the method works with differences in lighting and
large, almost arbitrary movements of the camera, result-
ing in an overlap of only half of an image. The method
shows robustness and is fast. Its power to detect almost all
outliers in a set containing several times more outliers than
inliers has been demonstrated. Remaining outliers are en-
forced to be close to their correct position so that they do
not affect motion estimation very much. Thus, motion cal-
culation delivers even with very much differing images a
good estimate.

Future plans include to improve accuracy by trying to
find more correspondences after motion calculation and
calculating motion again with a bigger set, thus reducing
the effect of errors further. Furthermore, it is planned to in-
tegrate the stereo data into a global model using the camera

motion information. Not only mobile robot applications
can finally benefit from this automatically generated global
3-D model.

Acknowledgements
We would like to thank QinetiQ for their financial support.

References
[1] H. Hirschmüller, P. R. Innocent, and J. M. Garibaldi, “Real-

time correlation-based stereo vision with reduced border er-
rors,” International Journal of Computer Vision, vol. 47,
pp. 229–246, April-June 2002.

[2] M. Pollefeys, R. Koch, M. Vergauwen, and L. V. Gool,
“Flexible 3d acquisition with a monocular camera,” in Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, Vol. 4, pp. 2771–2776, IEEE, May 1998.

[3] N. Molton and M. Brady, “Practical structure and motion
from stereo when motion is unconstrained,” International
Journal of Computer Vision, vol. 39, pp. 5–23, August 2000.

[4] A. Mallat, S. Lacroix, and L. Gallo, “Position estimation
in outdoor environments using pixel tracking and stereo vi-
sion,” in Proceedings of the IEEE International Conference
on Robotics and Automation, Vol. 4, pp. 3519–3524, IEEE,
April 2000.

[5] P. Saeedi, P. Lawrence, and D. Lowe, “3d motion tracking
of a mobile robot in a natural environment,” in Proceedings
of the IEEE International Conference on Robotics and Au-
tomation, Vol. 2, pp. 1682–1687, IEEE, April 2000.

[6] N. Ayache and O. Faugeras, “Maintaining representations of
the environment of a mobile robot,” IEEE Transactions on
Robotics and Automation, vol. 5, pp. 804–819, December
1989.

[7] Z. Zhang and O. Faugeras, “A 3d world model builder with a
mobile robot,” International Journal of Robotics Research,
vol. 11, pp. 269–285, August 1992.

[8] O. Faugeras and Q.-T. Luong, The Geometry of Multiple Im-
ages. MIT Press, 2001.

[9] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, “3-d motion from
2-d motion causally integrated over time,” in Proceedings of
the 6th European Conference on Computer Vision, (Dublin),
pp. 734–750, 2000.

[10] M. Knapek, R. S. Oropeza, and D. J. Kriegman, “Select-
ing promising landmarks,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, Vol. 4,
pp. 3771–3777, IEEE, April 2000.

[11] R. Haralick, H. Joo, C.-N. Lee, X. Zhuang, V. G. Vaidya,
and M. B. Kim, “Pose estimation from corresponding point
data,” IEEE Transactions on Systems, Man, and Cybernet-
ics, vol. 19, pp. 1426–1446, November, December 1989.

[12] C. Harris and M. Stephens, “A combined corner and edge
detector,” in Proceedings of the 4th Alvey Vision Conference,
pp. 147–151, 1988.

[13] L. Matthies and S. A. Shafer, “Error modeling in stereo nav-
igation,” IEEE Journal on Robotics and Automation, vol. 3,
pp. 239–248, June 1987.

[14] R. Zabih and J. Woodfill, “Non-parametric local transforms
for computing visual correspondance,” in Proceedings of the
European Conference of Computer Vision 94, pp. 151–158,
1994.

7th International Conference on Control, Automation, Robotics and Vision, 2-5 December 2002, Singapore.


