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Abstract. This paper describes a real-time stereo vision system that is required to support high-level object based
tasks in a tele-operated environment. Stereo vision is computationally expensive, due to having to find corresponding
pixels. Correlation is a fast, standard way to solve the correspondence problem. This paper analyses the behaviour
of correlation based stereo to find ways to improve its quality while maintaining its real-time suitability. Three
methods are suggested. Two of them aim to improve the disparity image especially at depth discontinuities, while
one targets the identification of possible errors in general. Results are given on real stereo images with ground truth.
A comparison with five standard correlation methods is provided. All proposed algorithms are described in detail
and performance issues and optimisation are discussed. Finally, performance results of individual parts of the stereo
algorithm are shown, including rectification, filtering and correlation using all proposed methods. The implemented
system shows that errors of simple stereo correlation, especially in object border regions, can be reduced in real-time
using non-specialised computer hardware.
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1. Introduction

1.1. Real Time Stereo Vision

Stereo vision systems determine depth (i.e. distance to
real world objects) from two or more images which
are taken at the same time from slightly different view-
points. The most important and time consuming task for
a stereo vision system is the registration of both images,
i.e. the identification of corresponding pixels. Two pix-
els are corresponding when they represent the same
point in the real world. Area-based stereo attempts to
determine the correspondence for every pixel, which
results in a dense depth map. Correlation is the basic
method used to find corresponding pixels. Several real
time systems have been developed using correlation-
based stereo (Konolige, 1997; Matthies et al., 1995;
Volpe et al., 1996). However, correlation assumes that
the depth is equal for all pixels of a correlation window.
This assumption is violated at depth discontinuities.

The result is that object borders are blurred and small
details or objects are removed, depending on the size of
the correlation window. Small correlation windows re-
duce the problem, but increases the influence of noise,
which leads to a decrease of correct matches (Kanade
and Okutomi, 1994).

1.2. Objectives and Constraints

This research is concerned with the development of a
real-time stereo vision system for a tele-operated mo-
bile robot. The system must be suitable for the de-
tection, recognition and tracking of objects and their
relative positions, to support high-level object based
tasks in the local environment of a tele-operated mo-
bile robot. Furthermore, non-specialised cameras and
computer hardware should be employed, because the
robot will be used in harsh environments and might be
damaged or even destroyed.
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Considering these requirements, it has been aimed
for a system that is fast (i.e. 5–10 frames/s) but also
accurate enough to discriminate objects in the local
working environment (i.e. up to several meters) so that
they can reliably be detected and recognised.

Correlation-based stereo vision fulfils all given re-
quirements. However, it has in general problems at
depth discontinuities. It is assumed that the location
of object borders (i.e. depth discontinuities) is impor-
tant to retrieve proper object shapes for segmentation
and recognition purposes. This paper is concerned with
the aspect of improving correlation-based stereo, by
reducing errors especially near object borders while
maintaining its real-time suitability.

As a general rule, it is assumed that it is better
to invalidate uncertain matches in order to reduce
errors as long as correct matches are not rejected
radically.

1.3. Existing Methods

The outcome of correlation is influenced by several pa-
rameters. Firstly, the correlation measure determines
how the similarity between two areas is determined.
Most common is the use of Cross Correlation or
the Sum of Absolute or Squared Differences. Zabih
and Woodfill introduced the non-parametric Rank
and Census measures (Zabih and Woodfill, 1994).
These measures rely on the numerical ordering of in-
tensities and not on their values. This makes them
less affected by noise and outliers. Results show
slight improvements over standard correlation meth-
ods. Section 4 uses these five methods as a base for
comparison.

Another correlation parameter is the shape of areas,
which are correlated. Usually, rectangular windows are
used for the sake of computational performance. The
size of the correlation window determines the amount
of pixels used for correlation. The effect of noise is re-
duced by increasing the number of pixels and thus the
size of the correlation window. However, bigger cor-
relation windows are more likely to cover areas where
depth varies. A change in depth results in a change of
disparity so that only parts of the windows correspond
to each other. This leads to errors at object bound-
aries. Kanade and Okutomi address this problem by
changing the size and shape of rectangular correlation
windows, according to local disparity characteristics
(Kanade and Okutomi, 1994). This adaptive correlation

window approach shows a decrease in errors at object
boundaries. However, the algorithm is too slow for real
time usage on non-specialised hardware according to
results reported by Boykov et al. (1998).

There are computationally efficient multiple window
methods, which can be seen as simplifications of the
adaptive window approach. A common configuration is
the use of 9 rectangular correlation windows that have
the same size, but different positions for the point of
interest (i.e. in every corner, in the middle of every side
and in the middle, as usual). Fusiello et al. and Little re-
port for example about this configuration (Little, 1992;
Fusiello et al., 1997). Correlation is done with all 9 win-
dows for every pixel and every disparity, but only the
result of the best window is used. This method offers
an improved behaviour at depth discontinuities com-
pared to standard correlation and is suitable for real
time (comparisons are shown in Section 4).

Boykov et al. (1998) presented a variable window
approach, which gives good results at depth disconti-
nuities. The method chooses an arbitrarily shaped win-
dow that varies for every pixel. The algorithm seems to
be suitable for a real time implementation. However,
the method suffers from a systematic error as identified
by its authors. It increases the size of objects in some
cases by including nearby low texture areas.

Energy optimisation methods like the Maximum
Likelihood stereo algorithm (MLMHV) from Cox
et al. (1996) perform generally much better (Szeliski
and Zabih, 1999). However, the method suffers con-
siderably from horizontal streaking, resulting from a
one dimensional optimisation individually along each
scan-line rather than a much more time consuming
two dimensional optimisation. Dynamic programming
has been used to improve the speed. Nevertheless,
the algorithm seems to be too slow for a real time
implementation.

The cooperative stereo algorithm from Zitnick and
Kanade demonstrates that the amount of errors can be
reduced dramatically, if execution time is not crucial
(Zitnick and Kanade, 1999, 2000). The method results
in up to 98% correct matches on the stereo images
from the University of Tsukuba. However, the itera-
tive method is far too slow for any current real time
application.

This overview can only cover a few methods out of
a vast amount published in the stereo vision literature.
Nevertheless, several important methods were shown,
which address the weak behaviour of stereo correlation
at object borders by using different approaches.
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1.4. A New Proposal

Simple correlation exhibits a systematic error, i.e. blur-
ring of object borders. However, the assumed location
of a computed depth discontinuity is still near (i.e.
within the size of the correlation window) to the lo-
cation of the real depth discontinuity, as long as the
object is bigger than the size of the correlation win-
dow. Objects, which are in their width or height smaller
than the correlation window, might just vanish. Further-
more, correlation has proven to be fast enough for a real
time implementation and has a regular structure with
fixed execution time, which is independent of the scene
contents.

This paper proposes three novel improvements to
tackle specific problems of correlation.

1. A multiple window approach that decreases errors
at object borders.

2. A correlation function error filter that invalidates
uncertain matches and reduces general errors.

3. A border correction method that improves object
borders in a post-processing step further.

All these improvements are still suitable for real time
applications and can reduce errors by 50% on the used
test images.

Section 2 analyses the problems of correlation.
Sections 3.1, 3.2 and 3.3 show attempts to tackle typi-
cal correlation problems. Section 3.4 gives an overview
of the whole algorithm. All methods were analysed
for their quality and compared to standard correlation
methods, using real stereo images with ground truth
(Section 4). Finally, Section 5 discusses an optimised
implementation of the whole algorithm and gives de-
tailed results on its performance.

2. Problems of Stereo Correlation

2.1. General Behaviour

Correlation works by using a usually fixed, rectangular
window around the pixel of interest in the first im-
age. The window is correlated with a second window,
which is moved over all possible positions in the sec-
ond image. The possible positions are defined by the
minimal allowed distance between the camera and an
object, which gives the maximum disparity. The posi-
tion where correlation has the highest value determines
the pixel in the second image that corresponds to the

Figure 1. Correlation at object border.

pixel of interest. Bigger correlation windows increase
the reliability by averaging over a bigger area, thus re-
ducing the effect of noise.

However, if the correlation window overlaps a depth
discontinuity, then a part of the window will affect the
result arbitrarily. Figure 1 shows a situation where the
left part of the window contains the background, which
is different in both windows. Consequently, this part
of the window introduces an error in the calculation.
Furthermore, it should be noted that the left part of the
correlation window in the left image is at least partly
occluded in the right image. The size of the occluded
part depends on the disparity difference and the size of
the correlation window.

The use of a smaller correlation window reduces the
problem, because a smaller window does not overlap
the depth discontinuity to the same extent. Generally,
the choice of the correlation window size is a trade
off between increasing reliability in areas with con-
stant depth and decreasing errors in areas where depth
changes.

2.2. Behaviour at Depth Discontinuities

Whether the introduced error at a depth discontinuity
can be neglected or not depends on the similarity be-
tween the object and the occluded and visible part of
the background, which is covered by the correlation
window. Figure 2 shows a situation where the pixel of
interest is just outside the object.

The correct corresponding position for the correla-
tion window R would be L . It is necessary to split the
correlation window into two halves to understand why
sometimes the correlation of R with L̃ gives a higher
response than R with L . This results effectively in an
extension of the object at its left border. Let c(a, b)

be the correlation value of the area a and b, where a
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Figure 2. Typical decision conflict at object border.

low value corresponds to a high similarity. The values
c(R1, L1) and c(R2, L̃2) should be very low, because
the corresponding regions are correctly matched. The
choice between the position L and L̃ depends on the
amount of similarity of R2 and L2 and the similarity
of R1 and L̃1. The areas L2 and L̃1 are occluded in the
right image. If c(R2, L2) is higher than c(R1, L̃1), then
the wrong position L̃ will be chosen. The area R1 is
bigger in this example and has a higher effect in the
correlation process. However, a small amount of large
errors can have a higher effect than a large amount of
small errors, depending on the correlation measure. Im-
age noise will affect the choice, but it depends mostly
on the similarity between the occluded background,
visible background and object.

Usually, the background continues similarly and L1

would be similar to L̃1, and L2 dissimilar to L̃2. This
leads to the presumption that objects usually appear
bigger. However, shadows or changing texture near
object borders can inverse the situation, so that the
object would become smaller. The same scenario can
be drawn for right borders and leads to fuzzy, blurred
object borders.

The situation is slightly different for top or bottom
borders of objects, because there is no occluded area
in the standard case of rectified images. In this case,
epipolar lines correspond to image rows and the object
and background shift horizontally against each other.
Whether a match is correct depends on similarities be-
tween the horizontally shifted background areas and
horizontally shifted object areas as well as the influ-
ence of noise. The blurring effect is expected to be less
severe than at left and right object borders, because the
similarity between the background areas is usually high
as well as the similarity of object areas. Furthermore,
there is no occluded area as found at left or right object
borders. Consequently, there is no inherent asymme-
try as with vertical object borders. Thus, the matching
process is only influenced by image noise.

A single depth discontinuity that crosses the correla-
tion window is only a special case. Generally the depth
could change for every pixel in the window. However,
it is assumed that the depth varies usually smoothly at
most places within real images, except at object bor-
ders (Marr and Poggio, 1979). Thus, the case above is
an important special case. Slanted surfaces were not
especially considered here. However, the theory could
be adapted to incorporate several small depth disconti-
nuities within a correlation window as well.

2.3. Experimental Confirmation

The predicted behaviour of correlation at object borders
can be verified using the stereo image set with ground
truth from the University of Tsukuba (see Fig. 3). The
disparity image has been calculated by filtering both
source images with the Laplacian of Gaussian (LoG)
with a standard deviation of 1.0. The Sum of Absolute
Differences (SAD) with a window size of 9 × 9 pixels
has been used for correlation. The left/right consistency
check (Fua, 1993) identified inconsistencies and inval-
idated the corresponding disparity values. Only valid
values have been compared to the ground truth and only
values whose disparity differed by more than one have
been considered as errors (Szeliski and Zabih, 1999).
Each error that appears near a depth discontinuity in
the ground truth (i.e. within the size of a correlation
window) is considered as a border error. Table 1 shows
a summary of results.

Border errors are further categorised according to
the kind of border (i.e. left, right, top or bottom) and
if the error identified the background wrongly as ob-
ject (i.e. increased the size of the object) or identified
the object wrongly as background. Table 2 shows the
categorised border errors. The third column describes
the maximum percentage of error that would be possi-
ble in one category on the Tsukuba images (i.e. in the
worst possible case in which all disparities are wrong).
This provides the base to compare different categories
with each other as it measures the amount of borders
of a certain kind in the images. The last column gives
the fraction of the error (i.e. the sum of the first two
columns) and the maximal possible error in the con-
sidered category.

The fraction shows that the amount of errors at the
left and right object borders is indeed higher than the
amount of errors at top and bottom borders. Further-
more, most errors identify the background near objects
wrongly as object so that objects appear horizontally
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Figure 3. The left image and the ground truth from the University of Tsukuba.

extended. This confirms the prediction of the theoreti-
cal analysis. However, this test has only been performed
on one stereo image pair. More data would be needed
to establish statistically valid results.

The third biggest category are errors which identify
the right part of an object wrongly as background. Cer-
tain places in the Tsukuba images can be identified,
which are prone to this kind of error, like the right side
of the upper tin. The background at the right side of
the upper tin is a white poster in the left image, while
the right image shows a gap between the tin and the
poster, which is filled by darker background. The oc-
cluded background intensity level is more similar to
the tin than to the visible background (i.e. the white

Table 1. Results of SAD correlation
on Tsukuba images.

Correct values 82.97%

Invalid values 11.03%

Errors at borders 4.53%

Other errors 1.47%

Table 2. Errors at borders, using SAD on Tsukuba images.

Wrong Wrong Maximum Fraction
Border object (%) background (%) error (%) (see text)

Left 1.67 0.19 8.35 0.22

Right 1.73 0.40 8.51 0.25

Top 0.14 0.04 3.61 0.05

Bottom 0.19 0.17 3.31 0.11

poster). According to the theory, this should lead to an
object border, which is moved inside the object (i.e.
to the left). Figure 10 in Section 4 confirms that the
right side of the tin appears to be wrongly shifted to
the left.

3. Proposals of Improvements

3.1. Multiple Supporting Windows

Correlation windows that overlap a depth discontinu-
ity introduce an error into the correlation calculation.
The error can be reduced by only taking those parts
of a correlation window into consideration that do not
introduce errors. However, this has to be done system-
atically and comparably, as described below.

Figure 4(b) shows a configuration with one small
window in the middle (C0), surrounded by four partly
overlapping windows (C1i ). The correlation value C
can be computed by adding the values of the two best
surrounding correlation windows C1i1 and C1i2 to the
middle one. This approach can also be seen as using a
small window C0 and supporting the correlation deci-
sion by four nearby windows.

C = C0 + C1i1 + C1i2 (1)

Another configuration using 9 supporting windows
is shown in Fig. 4(c). The correlation value in this case
is calculated by adding the four best surrounding cor-
relation values to the middle one.

C = C0 + C1i1 + C1i2 + C1i3 + C1i4 (2)
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Figure 4. Configurations with multiple windows.

The approach can be extended by adding another
ring of surrounding windows as shown in Fig. 4(d).
The correlation value for the 25 supporting windows
configuration is calculated by using the four best values
of the middle surrounding ring and the eight best values
of the outer ring.

C = C0 + C1i1 + · · · + C1i4 + C2k1 + · · · + C2k8 (3)

It can be seen that it is possible for these correlation
windows to adapt to the local environment by assem-
bling a big correlation window out of smaller ones.
The blurring effect should be reduced as only the small
middle window C0 is always used and may overlap the
depth discontinuity. All other parts can adapt to avoid
an overlap with the depth discontinuity. Nevertheless, a
good correlation behaviour is still maintained because
of the big area that is covered using the best neighbour-
ing windows.

The measure for calculating the correlation value of
the individual windows can be selected as needed. The
Sum of Absolute Differences (SAD) is very fast to cal-
culate as it does not require multiplications compared
to Sum of Squared Differences (SSD) or Normalised
Cross Correlation. Furthermore, it gives good results
and was therefore chosen for other real time stereo sys-
tems (Konolige, 1997; Matthies et al., 1995).

The calculation of C seems to be computationally
costly as it needs to be done for all image pixels at all
possible disparities. However, an implementation can
make use of the same optimisations proposed for stan-
dard correlation (Faugeras et al., 1993) to compute the

individual windows, which are all the same size. The
correlation step alone involves to calculate for every
pixel at every disparity 2 absolute differences for the
SAD measure and additionally 4 additions and subtrac-
tions to calculate the final correlation value. Operations
for loading data from memory and storing results back
are not considered, as well as the overhead of the loop.

The multiple window approach requires additionally
to select the best surrounding correlation windows and
to calculate a sum. The selection of the best windows
is costly, as it requires a sorting algorithm. However,
an implementation can take advantage of the fact that
the best values do not need to be sorted themselves.
Selecting the two best values out of four as required by
the configuration with 5 windows can be implemented
with 4 comparisons and 2 additions. The configuration
using 9 windows would require 16 comparisons and 4
additions and with 25 windows, 80 comparisons and
12 additions (i.e. see Appendix A.1).

The configuration using 5 windows seems to require
the same amount of time as the correlation phase, ac-
cording to this theoretical consideration. The config-
uration using 9 or 25 windows would require several
times more processing time. Consequently, the con-
figuration using 5 windows is suitable for a real time
implementation.

Appendix A.1 shows the algorithm in detail and ex-
plains parallel implementations on modern processor
architectures.

3.2. Filtering of General Errors

The determination of a disparity value involves cor-
relating the window in the first image with windows
at all disparities d in the second image. The result-
ing correlation values C form a correlation function as
shown in Fig. 5. The disparity at which the correlation
function is lowest corresponds with the place of high-
est similarity.1 The left/right consistency check (Fua,
1993) uses the place of highest similarity in the second
image and then moves the correlation window of the
first image over all possible disparities, which gives an-
other correlation function. The disparity is considered
to be valid if the minimum of the second correlation
function corresponds to the same disparity as the mini-
mum of the first correlation function.

The left/right consistency check is a very effective
mean to identify places where correlation is contra-
dictory and thus uncertain. This is usually the case at
occlusions (Fusiello et al., 1997). An analysis of the
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Figure 5. A typical correlation function. The minima C1 is the place
of highest similarity.

correlation function can further help to identify uncer-
tainties. A nearly flat correlation function corresponds
to areas with low texture. A function with several min-
ima indicates several good places which can be caused
by repetitive texture. In these cases image noise can
easily lead to wrong decisions. Let C1 be the minimum
correlation value and C2 the second lowest correla-
tion value. C2 should not be a direct neighbour of C1,
because the best place for correlation usually lies be-
tween pixels. If C1 and C2 are direct neighbours, then
they would represent neighbouring pixel positions of
the same minimum and not the position of the lowest
and second lowest minimum. The relative difference
Cd can be calculated as:

Cd = C2 − C1

C1
(4)

A low Cd indicates possible problems. It is assumed
that many errors will be caught by invalidating all val-
ues whose Cd is below a certain threshold for the cor-
relation function. However, the threshold needs to be
set empirically, depending on the constraints of the ap-
plication.

Moravec’s ‘Interest Operator’ offers a way of in-
validating low texture areas before correlation is per-
formed (Moravec, 1977). However, the method de-
scribed above considers the image directly through
the correlation function, which should be more accu-
rate. Secondly, problems with repetitive like texture are
treated at the same time.

An implementation of the error filter needs to select
the second best correlation value, to calculate the rela-
tive difference between the best and second best value
and to use the threshold to reject uncertain values. The
selection of the second best correlation value is as ex-
pensive as the search of the best correlation value that

has always to be done. The operation can be well imple-
mented in parallel on modern processor architectures.

3.3. Border Correction Filter

The behaviour of stereo correlation at object borders
depends on local similarities. In Section 2.2 was shown
that most errors appear at left and right object borders
and extend the size of objects. This is a systematic error
that is typical for correlation. A correction of this error
would improve the shapes of objects significantly.

After the disparity image is calculated, vertical dis-
parity gradients can be discovered by comparing hori-
zontally neighbouring disparity values. A positive dis-
parity step represents a calculated left object border,
while a negative step represents a calculated right ob-
ject border. The real position of the object border is
usually within the distance of half the size of a corre-
lation window, according to the theory in Section 2.2.
However, usually some filters are used. For example the
left/right consistency check, which invalidates many
occluded disparity values near left object borders (Fua,
1993). For the purpose of identifying disparity steps,
the lowest neighbouring value of an invalidated area
is propagated through the invalid area (Fusiello et al.,
1997).

Figure 6 shows a situation of a positive disparity step.
The dotted line marks the position of the calculated left
object border. The calculated object border is assumed
to go always vertical through the correlation window,
for simplicity of calculation. The pixel of interest in
the middle of the correlation window corresponds to
the higher disparity of the object, while all pixels to its
left have the lower disparity of the background. If the
calculated border is correct, then only the correlation
c(R2, L̃2) is correct for a correlation of R with L̃ . The
correct partner for R1 would be L1, which is shifted to

Figure 6. Situation where L̃ has been chosen. This is correct, if the
real border is at B1, but wrong if it is at B2.
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the left by a distance that corresponds to the disparity
difference between the object and the background. All
pixels between the right border of L1 and the left border
of L̃2 would be occluded.

However, the real object border is usually a few pix-
els further left or right and in general not vertical. The
direction in which the real object border is, can be iden-
tified by comparing c(R1,L1) and c(R2,L̃2). Correla-
tion windows commonly have an odd size so that they
are symmetric around its point of interest. To compare
both values properly, the size of both halves of the cor-
relation window is made equal by increasing the width
of the left half window by one pixel. If the real border
corresponds to position B1, then the value c(R2,L̃2)

should be low because it is completely correct, while
c(R1,L1) should be high because only a part of R1 does
really correspond to L1. The situation is vice versa if
the real position of the border corresponds with B2.
Finally, if the position of the real border goes through
the middle of the correlation window, both correlation
values are equally low apart from image noise.

Consequently, the values c(R1,L1) and c(R2,L̃2) are
calculated, while moving the windows in both images
simultaneously to the left and right. The position where
c(R1,L1) has the same amount as c(R2,L̃2) is searched.
However, this position is in general between pixel coor-
dinates. As an approximation, the pixel position where
the difference between c(R1,L1) and c(R2,L̃2) is low-
est is used as the position of the correct object border.
The disparity values need to be corrected accordingly.

In practise the situation can be much more complex.
The depth might vary not only once, but several times
within a small area, due to slanted objects. This might
confuse the correction algorithm as the assumption of
constant depth within half of a correlation window is
again violated. However, the case above is assumed to
occur often and thus justifies this special treatment.

The computational expense is quite low compared to
the correlation stage, because only places where object
borders are assumed need to be inspected. Typically,
processing the Tsukuba stereo image pair results in less
than 5% of the pixels, which are assumed to be object
borders. Some of these are actual border pixels and the
rest are errors. In contrast, correlation is performed at
every pixel and for all possible disparities.

The structure of the border correction algorithm is
outlined in Appendix A.2 in pseudo code. The calcu-
lated disparity image as well as both rectified source
images and the size of the used correlation window
serve as input to the algorithm.

Figure 7. Overview of a standard correlation algorithm with new
methods shown in grey (see text for description).

3.4. Summary of the Whole Algorithm

The improvements, which have been suggested in the
last sections can be included into the framework of a
standard correlation algorithm as shown in Fig. 7. The
source images are first rectified and aligned, so that
the epipolar lines correspond to image rows and the
image rows with the same number correspond to each
other. Next, the Laplacian of Gaussian is used as a
pre-filter.

Correlation can be done by using optimisation tech-
niques as suggested by Faugeras et al. (1993). The
correlation values are calculated row by row for all
disparities at all pixels and stored temporarily for the
combination step. In the combination step, the corre-
lation values of the neighbouring 5, 9 or 25 windows
are used to calculate the combined correlation value as
proposed in Section 3.1. The results are stored in two
dimensional arrays for every image row. Each array
contains the combined correlation value for all pixels
and all disparities.

The disparity of a pixel is selected by searching the
lowest correlation value for one pixel. The error filter
that was proposed in Section 3.2 additionally searches
for the second lowest value and calculates the relative
difference as a measure of uncertainty. Disparity values
whose difference are below a threshold are rejected as
uncertain.
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The left/right consistency check that was introduced
by Fua matches pixels from the right image back to the
left image and identifies many errors, which are caused
by occluded pixels near left object borders (Fua, 1993).
Sub-pixel interpolation is done to increase the depth
resolution, by using the three correlation values around
the position of the calculated disparity and fitting a
quadratic curve through them. The minimum of the
curve corresponds to the sub-pixel disparity.

Finally, the border correction method modifies the
disparity image by horizontally shifting assumed object
borders. This was proposed in Section 3.3.

The overview above shows all functions as separate
steps. However, for memory efficiency, it is useful to
interleave the steps from correlation until sub-pixel in-
terpolation, so that one image row is processed by all
steps before the next image row is considered.

4. Qualitative Assessment

4.1. Experimental Setup and Analysis

A stereo image pair from the University of Tsukuba
(Fig. 3 in Section 2.3) and an image of a slanted ob-
ject (Fig. 8) from Szeliski and Zabih (1999) have been
used for evaluation. Both are provided on Szeliski’s
web-page.2 The image of the slanted object is very
simple. However, it is expected to compensate for the
lack of slanted objects in the Tsukuba images.

All given disparity images are enhanced for visual
analysis by using the full intensity range for showing
the used disparities range (i.e. 32 disparities). Light

Figure 8. The left image and the ground truth of a slanted object from Szeliski and Zabih.

grey is used for high disparities (i.e. close objects),
whereas darker grey corresponds to smaller disparities.
Black is used in the disparity images for values that are
rejected by the algorithm as being invalid.

All disparities that are marked as invalid have been
ignored for comparison with the ground truth. Dispar-
ities that differ by only one from the ground truth are
considered to be still correct (Szeliski and Zabih, 1999).
The amount of errors at object borders is calculated as
explained in Section 2.3 and shown separately.

The difference images, which are provided next to
the disparity images show the difference of calculated
disparity and ground truth. Correct matches appear in
white as well as invalid matches, which are ignored for
comparison. All errors (i.e. disparity values that differ
by more than one from the ground truth) are shown in
black.

The range of possible disparities has been set to
32 in all cases. For every method, all combinations
of meaningful parameters were computed to find the
best possible combination for the Tsukuba images. The
horizontal and vertical window size was usually varied
between 1 and 19. The standard deviation of the LOG
filter was varied in steps of 0.4 between 0.6 and 2.6.
All together almost 20000 combinations were com-
puted for the Tsukuba image set, which took several
days using mainly non-optimised code.

4.2. Results of Standard Correlation Methods

The results of the best parameter combination (i.e.
which gives the lowest error) for some standard
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Table 3. Results of standard methods (first part), proposed methods (second part) and combinations of proposed methods (third part)
on Tsukuba images.

Correct All Border Invalid
Method Window Rank/Census LOG (σ ) (%) errors (%) errors (%) (%)

Normalised cross correlation (NCC) 9 × 19 – 0.0 82.37 8.15 7.05 9.49

Sum of absolute differences (SAD) 9 × 9 – 1.0 82.97 6.00 4.39 11.03

Sum of squared differences (SSD) 9 × 9 – 1.0 81.42 6.55 4.88 12.03

Non-parametric Rank 11 × 11 9 × 7 – 85.68 4.58 3.96 9.74

Non-parametric Census 9 × 11 9 × 7 – 84.86 4.65 3.87 10.49

SAD with mult. windows (MW-SAD) 11 × 9 – 0.0 80.88 4.91 2.92 14.21

SAD with 5 windows config. (SAD5) 7 × 9 – 0.0 85.12 4.56 3.36 10.32

SAD with 9 windows configuration 5 × 5 – 0.0 83.65 4.39 2.89 11.96

SAD with 25 windows configuration 3 × 5 – 1.0 83.36 4.89 3.36 14.67

SAD with 10% error filtering 9 × 9 – 1.0 78.96 4.14 3.61 16.89

SAD with border correction 9 × 9 – 1.0 85.63 6.10 4.04 8.26

SAD5 with 10% error filtering 7 × 9 – 0.0 80.70 3.02 2.59 16.28

SAD5 with 10% error filt. and border corr. 7 × 9 – 0.0 82.24 3.26 2.45 14.50

correlation methods can be found in the first part of
Table 3. The MW-SAD approach performs correla-
tion at every disparity with 9 windows with asym-
metrically shifted points of interest and uses the
best resulting value. Algorithms which are based
on this configuration have been proposed in the lit-
erature for improving object borders (Little, 1992;
Fusiello et al., 1997). Results are discussed in
Section 4.3.

The best parameter combinations of the Tsukuba
images have been used on the slanted object images
as well. Almost all errors occur near object borders on

Figure 9. Errors of all methods on the images from University of Tsukuba (left) and the slanted object (right). The slanted object shows only
errors at object borders due to its evenly strong texture. BC is border correction and EF is error filtering.

this simple image set. This is probably due to the evenly
strong texture and the lack of any reflections, etc. It is
interesting that the slanted nature of the object, which
appears as several small depth changes, is generally
well handled. However, the weak slant is not really a
challenge for correlation.

Figure 9 shows the errors of all methods on the
Tsukuba (left) and slanted object images (right) as a
graph. It can be seen that the amount of errors is dif-
ferent for each method for both image sets. However,
the graphs show almost the same tendency by compar-
ing the methods with each other (i.e. NCC is worse
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Figure 10. Result from SAD correlation.

Figure 11. Result from Rank correlation.

than SSD and SAD is slightly better than SSD for both
image sets).

The SAD correlation (Fig. 10) was chosen as the ba-
sis for an evaluation of the proposed improvements. It
is the fastest in computation and shows advantages over
NCC and SSD. The non-parametric Rank and Census
transform (Figs. 11 and 12) give better results because
they are more tolerant against outliers (Boykov et al.,
1998). However, Census is expensive to compute due
to the calculation of the Hamming distance and Rank
is rather seen as a filter, like LOG, that transforms the
source images before a SAD correlation is performed.

4.3. Results of Proposed Methods

All suggested improvements have been evaluated us-
ing SAD correlation. The results of the best parameter

combinations are shown in the second part of Table 3.
The error filter and the border correction was only ap-
plied to the best parameter combination of SAD. The
same parameter combinations on the slanted object im-
ages show again very similar results. This can easily be
seen in Fig. 9.

The multiple correlation window configuration
showed improvements in the number of correct
matches as well as errors compared to SAD. The per-
formance seems to be especially good at object bor-
ders. Figure 13 shows the results from the 5 win-
dows configuration. The rings of errors around ob-
jects look smaller compared to Fig. 10. This means
that there are less errors in border areas. Additionally,
the rings of errors appear more even, which means that
although the object appears wrongly bigger, its shape
is much less fuzzy. This can also be seen by comparing
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Figure 12. Result from Census correlation.

Figure 13. Result from the 5 window configuration.

the disparity images (i.e. left images) in Fig. 13 with
10.

Rank and Census (Figs. 11 and 12) produce similar
improved numerical results. However, a visual compar-
ison again unveils a slightly more fuzzy object border,
compared to the 5 windows configuration in Fig. 13.
This can be best seen by comparing the shape of the
lamp or the pile of tins.

A comparison with the MW-SAD shows that MW-
SAD performs better in the synthetic case of horizontal
or vertical object borders, but performs worse at gen-
eral border shapes (i.e. introduces steps). This can be
seen in Fig. 14. Additionally, MW-SAD is less stable
in general, which increases general errors as well as
invalid matches. It is assumed that the middle window,
which is always used in the suggested 5 window config-
uration, serves as a stabilising factor in the calculation.

The error filter that was tested for different thresholds
on the best parameter configuration of SAD exhibits
an expected characteristic. The graph in Fig. 15 shows
that many errors can be caught at the risk of filtering
correct matches out as well. However, the amount of
filtered errors compared to filtered correct matches is
quite high when the ratio between errors and correct
matches is considered. A threshold of 10% filters for
example almost 2% errors out, at the expense of loos-
ing 4% correct matches. Furthermore, filtered correct
matches are distributed all over the image, so that their
disappearance can be compensated by interpolation. In
the end the amount of lost correct matches that is ac-
ceptable depends on the application.

The threshold for error filtering is difficult to choose.
One strategy in practice without having a ground truth
could be to set the threshold so that the number of
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Figure 14. Result from MW-SAD correlation.

Figure 15. Filtered correct matches and errors at certain thresholds,
using SAD on the Tsukuba images.

invalid matches is increased by a fixed amount. Another
strategy would involve to point the cameras to a large
texture-less area and to set the threshold high enough
so that the whole texture-less area is just invalidated.

Figure 16. Result from SAD correlation with border correction.

Thus, the threshold would be just high enough so that
arbitrary matches due to image noise from the cameras,
frame grabbers, etc. are prevented.

Finally, an evaluation of the border correction shows
only a slight decrease in errors at object borders and
an unexpected increase of errors at other places. Nev-
ertheless, the number of correct matches is in this ex-
ample increased by 2.66% compared to SAD without
border correction. The situation can be explained us-
ing Fig. 16. The borders of objects are in fact improved
compared to Fig. 10 (i.e. rings of errors around objects
appear much smaller), which results in the decrease of
border errors. The increase in correct matches results
from changing many invalid values near object borders
into valid, correct values.

The increase in errors at other places is due to the fact
that the algorithm tried to correct object borders that
resulted from previous errors, leading to a randomly
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stretching or shifting of error patches. It is unfortu-
nately not possible for the border correction algorithm
to differentiate between correct but shifted and com-
pletely incorrect object borders. A reduction of general
errors would be advantageous to prevent this behaviour.
The error filter would be appropriate for this pur-
pose. A combination of these methods is discussed in
Section 4.4.

Although borders are improved, small details which
were lost during the correlation phase, like the cable
of the lamp, cannot be recovered using this method.
Finally, it can be concluded that the effect of noise gets
stronger, the further the border is moved towards the
real object border, due to the design of the calculation.
The method leads to reduced border errors, but usually
not to a complete removal. A remedy could be a more
accurate consideration of the distribution of neighbour-
ing disparities within the window.

4.4. Results of Combinations of Proposed Methods

The third part of Table 3 shows results of combi-
nations of several methods. The best parameter com-
binations established previously have been used. The
result is also shown in Fig. 17. Comparing these results
visually and in their numbers against any of the stan-
dard correlation methods clearly shows an improve-
ment for certain applications.

Not only general errors were reduced, but especially
errors in border areas of objects. However, invalid val-
ues are increased due to the error filter. Nevertheless,
it is acceptable for some applications to increase the
amount invalid values slightly in order to reduce errors.

Figure 17. Result from 5 windows configuration, 10% error filtering and border correction.

A comparison between the SAD correlation that was
chosen as a base and the combination of all proposed
methods shows on the example images that errors were
reduced by almost 50% and the number of correct
matches was maintained.

Finally, the results of the same combinations of
methods and parameters on the slanted object images
show almost no improvement. A look at the dispar-
ity difference image reveals that the border error be-
fore was almost only one pixel, which is already very
low. Other errors have not been detected. There is not
very much room for further improvements. The border
correction algorithm corrected the depth discontinuity
slightly to much, which results in an object that appears
slightly smaller than it really is.

5. Performance of the Real-Time System

5.1. Experimental Setup

All the methods described have been implemented in
optimised C and contain optional inline assembler sec-
tions to make use of MMX commands. MMX is the
Multi-Media Extension that was introduced by Intel in
the Pentium processors. It allows parallel processing
of logical and arithmetical integer operations, which
can increase the performance several times. However,
only the critical loops in the whole process were opti-
mised to save development effort. All performance tests
were accomplished on a Pentium II, 450 MHz using the
Linux (Kernel 2.4) operating system. Two BT878 based
frame grabbers were used to capture stereo images from
a self-made medium resolution stereo camera.3
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All measurements were done by grabbing, correla-
ting and painting the disparity image 600 times. The
results represent the average time.

5.2. Performance Results

The size of the source images and the disparity range
are the main factors that influence the speed of execu-
tion. However, the execution time of the border cor-
rection filter depends partly on the amount of detected
gradients in the disparity image. All gradients need to
be analysed and corrected. Table 4 lists the parameters
and shows the effective frame rate that was measured
including sub-pixel interpolation and painting the dis-
parity image on the screen.

Finally, Table 5 shows how much of the execution
time was spent in individual parts of the process and
the language that was used for implementation.

The suggested improvements, which are shown in
italic, require of course some additional computation
time and slow down the frame rate. If only the stan-
dard algorithm without all suggested improvements is

Table 4. Parameters and frame rate using all methods.

Used hardware P II, 450 MHz

Overall speed (C and MMX) 4.7 frames/s

Overall speed (optimised C) 1.6 frames/s

Size of images 320 × 240 pixel

Size of correlation window 7 × 7 pixel

Disparity range 32 pixel

Sub-pixel interpolation 1/8 pixel

Laplacian of Gaussian 1.0

Table 5. Time spend in individual parts.

Function Language Time (ms)

Rectification C, MMX 11

Laplacian of Gaussian C, MMX 25

SAD correlation C, MMX 53

Combination of 5 windows C, MMX 30

Determine disparity C, MMX 17

Error filtering C, MMX 14

Left/Right consistency check C, MMX 20

Sub-pixel interpolation C 6

Border correction C 18

Painting disparity image C, Java 11

used, then the frame rate increases from 4.7 frames/s
to 7 frames/s, by loosing a major reduction in errors,
especially at object borders.

Nevertheless, the results show clearly that all pro-
posed methods are suitable for real time usage.

6. Conclusion

It has been shown that it is possible to improve simple
correlation by understanding the source of its weak-
ness. Three methods have been proposed, which tackle
specific problems of correlation. A novel multiple win-
dow approach decreases errors at object borders and in-
creases correct matches. A general error filter uses the
correlation function to invalidate uncertain matches.
Finally, a border correction method improves object
borders further in a post-processing step. It was shown
that all improvements are suitable for real-time applica-
tions. All methods were explained in detail, including
their integration into a standard correlation algorithm.
Optimisation issues and parallel implementation was
discussed as well.

Every method shows clear improvements, but also
weaknesses. The main weakness of the multiple corre-
lation window configuration is its computational cost.
However, an optimised implementation of the config-
uration using 5 windows is possible and very effective.
The error filtering requires a threshold, which is diffi-
cult to choose in practise and reduces the number of
correct matches as well. Finally, the border correction
improves object borders, although previous general er-
rors can be slightly increased.

Nevertheless, the combination of suggested meth-
ods improves the quality of real-time correlation based
stereo significantly. In the example images the errors
have been reduced to 50%, while the number of correct
matches has been maintained. Further research in this
area could bring even better results.

The whole stereo algorithm has been implemented
and optimised, including all the proposed methods. A
detailed performance evaluation shows that all the pro-
posed methods require one third of the whole process-
ing time. The system grabs stereo images, rectifies,
filters and correlates them almost 5 times a second on
a Pentium II with 450 MHz. Current hardware can in-
crease the speed to processing at frame rate. Some fur-
ther optimisation is possible as only the critical loops
were optimised.

Furthermore, the proposed methods can be used in-
dividually or in combination. This allows a suitable
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quality and speed selection for an application. The cur-
rent system is the base for further research on a tele-
operated robot. It will be used for processing the local
working environment of the robot on a higher, object
based level.

Appendix: Algorithms in Pseudo Code

A.1. Multiple Supporting Windows Algorithm

The multiple supporting correlation window algorithm
(Section 3.1) is an additional step between the calcu-
lation of the correlation values and the selection of the
disparity value for every pixel.

The combination of five correlation values is shown
below in pseudo code. The algorithm produces the
combined correlation value for all pixels of row k at all
disparities. It expects that the correlation values have
been calculated for all pixels for the three image rows
k −wy , k and k +wy , were 2wy +1 is the height of the
correlation window. cin(i, k, d) refers to the correlation
value in the image column i , image row k and disparity
d. The results will be stored in cout(i, k, d), which uses
the same syntax.

The algorithm can make use of the fact that the or-
der of the lowest m out of n values is not important.
This results in m(n − m) comparisons between values.
Only 4 comparisons are required for the five supporting
windows configuration.

Furthermore, the SIMD architecture4 of modern
processors can be used to process data in parallel. Com-
parison and selection can make use of saturated arith-
metic to avoid jumps. The code below can be encoded
in 20 Pentium II assembler instructions (i.e. including
the transfer from memory into registers and the trans-
fer back to memory, but excluding loop overhead) and
processes 4 values in parallel. This results in only 5 as-
sembler instructions for every pixel at every disparity.

for all pixels i in row k do
for all disparities d do

c = cin(i, k, d);

c1 = cin(i − wx , k − wy, d);
c2 = cin(i + wx , k − wy, d);
c3 = cin(i − wx , k + wy, d);
c4 = cin(i + wx , k + wy, d);

cl1 = lowest value of c1, c2, c3, c4;
cl2 = second lowest value of c1, c2, c3, c4;

cout = c + cl1 + cl2

end
end

A.2. Border Correction Algorithm

Section 3.3 explained the theory behind object border
correction and gave an overview of the algorithm. This
section shows the algorithm in pseudo code.

Firstly, some definitions are required. Figure 18
shows a correlation window of the size 2wx + 2,
2wy + 1 (i.e. the width of the window is increased
by 1 as explained in Section 3.3). The area that is
covered by the left half of the the window at the po-
sition i , k in the image X is defined as A1(X, i, k)

and the right half as A2(X, i, k). L and R refer to
the left and right rectified image. D(i, k) is the cal-
culated disparity at i , k. If i is the position of a
positive disparity step, then db = D(i − 1, k) is the
disparity of the background and do = D(i, k) is the
disparity of the object. The correlation windows that
were shown in Fig. 6 in Section 3.3 can now formally be
defined.

Lj = Lj(i, k) = Aj(L , i − do + db, k) (5)

L̃ j = L̃ j(i, k) = Aj(L , i, k) (6)

Rj = Rj(i, k) = Aj(R, i − do, k) (7)

R̃j = R̃j(i, k) = Aj(R, i − db, k) (8)

The following pseudo code contains only the short
forms on at the left side of these definitions (e.g. L̃1),
because they are always used at the position i , k. The
algorithm that corrects all left object borders can now
be written as:

Figure 18. Definition of the areas A1 and A2 of a correlation
window.
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for k = 1 to number of rows do

i = 0;
while i <= number of columns do

if D(i, k) is invalid then
use lowest valid disparity, either to the
left or right of the invalid disparity area
as D(i, k)

end

// search positive disparity step

if D(i − 1, k) < D(i, k) then

// identify disparity of background and object

db = D(i − 1, k);
do = D(i, k);
v1 = c(R1, L1) − c(R2, L̃2);

if v1 < 0 then

// shift left border to the right until
// the correct position is found

j = i + 1;
n = i + wx ;

while j <= n and v1 < 0 do

v2 = c(R1, L1) − c(R2, L̃2);

if v2 < 0 or −v1 > v2 then
D(i, k) = db;
i = i + 1;

end

v1 = v2;
j = j + 1;

end
else

// shift left border to the left until
// the correct position is found

j = i − 1;
n = i − wx ;

while j >= n and v1 > 0 do

v2 = c(R1, L1) − c(R2, L̃2);

if v2 > 0 or v1 > −v2 then
D( j, k) = do;

end

v1 = v2;
j = j − 1;

end
end

end

i = i + 1;
end

end

The correction of all right object borders requires a
second pass over the whole disparity image. The algo-
rithm is the same apart from some minor differences
and is therefor not explicitely given here. The first dif-
ference is that a negative disparity step is searched
(i.e. D(i − 1, k) > D(i, k)) instead of a positive step.
Next, the disparity of the object do is D(i − 1, k)

and the disparity of the background db is D(i, k).
Finally, the calculation of the difference between both
halves of the correlation window is done by using
c(R̃1, L̃1)−c(R2, L̃2) instead of c(R1, L1)−c(R2, L̃2).

Correction of the left and right object border could be
done within one pass over the image. However, special
care is required to adjust the loop counter i and the
values that depend on it (i.e. R1, L1, etc.), because the
i is increased in some inner loops too.
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Notes

1. The SAD correlation has low values if the similarity is high.
2. http://www.research.microsoft.com/∼szeliski/stereo/.
3. http://www.cse.dmu.ac.uk/∼hhm/research.html.
4. Single Instruction Multiple Data.
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