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Abstract of the wall, and not only scaled distances] which makes 
it possible to make a more robust controller. 

The robot navigation task presented in this paper is to 
drive through the center a Corridor, based on  a se- 
quence of images from an  on-board camera. Our mea- 
surements of the system state, the distance to the wall 
and orientation of the wall, are derived from the optic 
pow. Whereas the structure Of the environment is 
ally computed from the spatial derivatives of the optic 
flow, we use the structure contained in the temporal 
derivatives of the optic $ow to compute the environ- 
ment structure and hence the system state. The al- 
gorithm is used to  control a 'remote brain' robot and 

k e  will start with a general framework of optic flow 
and review how ego motion, relative depth and orien- 
tation can be derived from the optic flow. 

2 Optic Flow 
First we describe the general framework of optic flow. 
The Coriolis equation of a moving (camera) coordi- 
nate system with translational velocity T' an$ rota- 
tional velocity w' results in motion of a point P in the 
environment with respect to this coordinate system: 

results on  the accuracy of the state estimates are pre- 
sented. 

with 
1 Introduction 

Autonomous mobile robots are being seen more often 
in various real-world applications, such as transporta- 
tion, cleaning or surveillance tasks. The navigation 
task contains two problems: the localization task and 
the obstacle avoidance task. For this last task often a 
sensor-based, reactive controller is designed. 

In this paper we present research on using vision for 

We use the pinhole model of the camera: the projec- 
tion of a point P in the environment onto, here in 
homogeneous coordinates, the point r' on the image 
plane 2 = 1. 

.+ 

reactive behavior: based on the optic flow field induced 
by its motion, our mobile robot has to drive through 
the middle of the corridor. In order to perform this 
task, the sensing system has to provide information 
about the ego-motion of the system and the structure 
of the environment. The optic flow field provides such 
information: the ego-motion and relative depths can 
be derived directly from the flow vectors [3, 71. To 
compute the spatial structure of the environment, such 
as surface normals, usually the spatial derivatives of 
the optic flow field are used. In this paper we show 
that the temporal derivative of the flow field can be 
used to provide a robust estimate of the environment 
structure. Our approach differs from other presented 
approaches on visual 'wall following' [5] in the sense 
that we are able to extract estimates of the orientation 

Projecting the motion of P' onto the image plane re- 
sults in the motion ?of the point ?on the image plane. 
This is known as the image motion or confusingly as 
the optic flow: 

. Ty - r y T z  r y  = + W,(I + r i )  - wy(r,rY)  - rzwz 
PZ 

The camera on the mobile robot is mounted such that 
it faces in the tangent of its path, i.e. facing forwards. 
This means that: 

T, = Ty = w, = W ,  = 0 "Dutch Foundation for Neural Networks 
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Figure 1: The camera coordinate system 

such that the image motion is given by 

r,TZ 
P, TY = -- +Q,  7 Q Y  = w y ( ? - x r y )  (2) 

Note that we cannot measure Pz because this parame- 
ter is always divided by the translational velocity, the 
velocity scaling property of the optic flow. We thus 
can only measure the relative depth P,/Tz. 

3 Ego-motion, depth and 
orientation from the flow 

Rotation 
To estimate the rotation we eliminate the depth Tz/Pz 
from the estimated image motion equations (1) and (2) 
and obtain [l]: 

ryTx - r x r y  - rywy = 0 

However, we must keep in mind that the optic flow 
vectors are estimated from an image sequence (see [2]), 
and that we only have noisy measurements f, and f,. 
In a region R of the image where there is sufficient 
confidence in the flow-vectors ([2]) the flow is used to  
make a robust estimate of the camera rotation. A least 
mean square fit is used, giving: 

Relative depth 
We can now easily estimate the relative depth from 
the image motion vectors by subtracting the rotational 
components (Q, and 2,) from the image motion. For 
each point ( r Z ,  vY) in the image plane (onto which the 
point P projects), equations 1 and 2 give estimates of 
the relative depth Pz/Tz (time to contact T )  of that 
point. For example, from the z-component of the flow: 

(4) 

It is clear that r can also be computed from the y- 
component. In section 6 we discuss when to use the 2 
arid when to use the y component. 

Orientation 
Koeriderink has analyzed the spatial variation VT;  of 
the image motion, concluding that this matrix can be 
decomposed in terms of differential invariants of the 
vector field ;3]. Here we stndy the temporal variation 
of the image motion at a fixed location in the image: 

From 1 and 2 we find: 

The relative change of depth is a function of the ori- 
entation of the surface under consideration. Suppose 
that the surface is characterized by a surface normal 
$(t)  and a perpendicular distance to the center of the 
camera coordinate system d ( t ) .  Both are a function of 
time since the robot is moving. Since 

we can write 

The change in hr and d can be expressed in the motion 
parameters: d = N . T and N = -4 x N ,  resulting in 

+ - +  f .+ 

The relation between the temporal derivative and the 
orientation can now be written as: 
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Since X, +$, R,, - f / P z  are measurable, we can derive 
the surface normal. However, counting the unknowns 
reveals that the orientation of the viewed surface can 
only be determined in the direction of the tangent of 
the observer. We will show that for the restrictions 
in our application the orientation of the robot can be 
recovered. 

4 Wall following 

The camera is mounted rigidly on the vehicle, with 
the camera axis in the driving direction. A summary 
of the system variables, with reference to figure 2, is 
given below: 

d : distance of the wall to center of camera 
$ : orientation of camera w.r.t. the wall normal 
U ; translational velocity of the camera 
4 : rotational velocity of the camera 

Wall 

Figure 2: Top view of the sensor coordinate system 

The goal of the controller is to align the camera 
parallel to the wall and at a certain distance from the 
wall. However, as is well known when using optic flow, 
distances can only be measured scaled with the trans- 
lational velocity of the camera. This means that we 
have the following set-points (we denote set-points of 
the controller with a superscript ’): 

In this paper we only control the steering angle of the 
vehicle. The input to the system is 4. We use a simple 
proportional controller: 

In the case of a corridor follower, the constant (c) need 
not be specified beforehand but follows from the con- 
dition that the distance from the camera to the left 
wall and right wall should be equal. Let the distance 
to the left wall be dl and to the right wall be cl,. We 
then use the following controller: 

In order to control the vehicle, we need to estimate $ 
and d/v from the optic flow. In the following section 
we will show how that can be done and how $ and d / u  
relate to measurable quantities from the optic flow. 

5 Relating the state to the 
observable features from the 

flow 
In section 3 we described how to estimate the rotation 
wy of the camera, the relative depth r along a viewing 
direction and derived an expression relating the sur- 
face normal and temporal derivative of the optic flow. 
In this section we will describe how these observables 
from the flow relate to the state d / v  and of the mo- 
bile robot. Refer to  figure 2 

Because the camera is fixed to the car, we know that 
the translational velocity U is identical to T,. The walls 
are vertical, yielding N,  = -sin($),N, = O,N, = 
- cos($) In this notation it can be show that 

+ 
r‘. N = -T, sin($) - cos($) 

+$ - Rx 
= ( ry -oy )  

(T,-n,) cos($) + d ( ~ ,  cos(*) - sin($)) 

T, sin($) + cos($) 

From this we can solve 4: 

(8) 
Once we have the orientation of the vehicle, we can 
use this the relative distance to the wall: 

As we see, the state variables of the system, d / u  and 
4 ,  are completely observable from the image motion. 
However, the estimation of the image motion from a 
sequence of images is difficult, in the sense that the 
resulting time to  contact 7 is very noisy. A more robust 
state estimation is necessary. 
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6 Estimating the state 

From a parameter estimation point of view we wish 
to suppress the noise in the image motion as much as 
possible, such that the estimates of the state are less 
sensitive to  this noise. So at what location in the image 
should or can we measure the image motion such t,hat 
the states are more reliable? 

For example, a sensitivity analysis of the error in r 
towards noise in the image motion shows that: 

It should be directly clear the r ,  should be large io 
damp the noise if we measure the T from +, (and sim- 
ilar for ry). The relation of the sensitivity of the noise 
in the r and the noise in the image motion is given by 
a parabola function of the location in the image plane. 
This off course means that corners in the image are 
the best locations to measure the T ,  second best are 
the borders of the image plane. 

In order to obtain a robust estimate of the states 
we take the average at  some locations in the image. 
As pointed out above, these regions should be in the 
corners or at  the borders of the image. Y om; Q-C’ use 
some prior knowledge in the sense thdt the walls in the 
corridor are vertical: we take two thin vertical patches, 
left and right, as shown in figure 3. 

We now determine q!~ and ($) from the equations 8 
and 9, using the the average +,and 3c, in the windows. 

These measurements are the input to the P con- 

- 

troller. 

7 Experiments 

Figure 3: Upper figure: the camera image and the 
regions in which the optic flow is used. Middle: the 
optic flow field. Note that in some area’s many er- 
roneous estimates are made. Lower: the confidence 
measure. Darker regions correspond to lower variance 
in the image motion estimates. In the calculation of 2 
the T’S in the regions L and fi are weighed with this 
confidence value. 

Figure 4: The robot vehicle 

The robot vehicle is a customized small radiographic 
controlled cart (Figure 4), of which we removed the re- 
ceiver. A simple 8 bit pprocessor on the cart takes care 
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Frame hrabber RS 2$2 

Figure 5: The set-up of the system 

of the servo motors for propulsion and steering, and 
takes care of the emergency stops and watchdog. The 
processor communicates via a wireless RS232 connec- 
tion with a host computer, which is a Pentium-based 
PC. A process running on the PC sends the desired 
speed and curvature to  the vehicle. 

A small CCD camera is mounted on top of the 
vehicle. The video-signal is sent via a UHF-link to 
a receiver, which is connected to the frame-grabber 
mounted in the PC system. A block diagram is given 
in Figure 5. Images can be grabbed and stored in 
memory continuously. From a sequence of images the 
motion field is computed with the method reported in 

A description of the dynamical behavior of the sys- 
tem, the controller and some experiments in simulation 
are described in [4]. 

Here we present experimental results on the accu- 
racy of the estimation of the state of the system. In 
order to have a calibrated image sequence, in which 
the path of the camera was known, we used a robot 
arm with a camera mounted in the end effector. This 
sequence is made up of a circular trajectory towards a 
wall. The camera is mounted such that only one joint 
is used to generate the trajectory. At each frame of 
the sequence we know the position and velocity of the 
camera and wall from the sensor which measures the 
state of the robot, and hence are able to compute the 
variables d( t ) /v ,  4( t )  and 4. 

Using the described method we will now give some 
preliminary results. In figure 6 we have plotted the 
real values of T ( t ) ,  d / v ( t )  and 4(t)  as computed from 
our calibrated motion of the robot. The results of the 
measurements T ( t ) ,  f l ( t ) /v  and - $( t )  are shown in figure 

PI - 

7. It can directly be seen that there is a systematic 
error in the measurements. This is due to the fact that 
the camera is poorly calibrated. The camera param- 
eters may be as far of as 20% from the real values. 
The noise in the estimation of the 7 propagates to the 
estimate of the i. This directly influences the state 
variables, but we expect that the low pass structure of 
the mobile robot system will damp this noise. 

8 Conclusions 
We presented a control system for a vision guided 

mobile vehicle, which has as task to drive through the 
middle of a corridor with constant speed and parallel 
to the walls. Our approach is different from other ap- 
proaches in visual robot guidance in that it does not 
use the spatial derivatives of the optic flow field to 
estimate surface slants, but uses the temporal deriva- 
tive of the optic flow field. We implemented the al- 
gorithms on a standard PC without any special hard- 
ware, and achieved real-time performance. Robot nav- 
igation based on optic flow is now possible using stan- 
dard components. Experiments with a calibrated cam- 
era motion showed the accuracy of the methods. 
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Figure 6: The 'real' values, against the time in seconds 
on the horizontal axis, of (from top to bottom): r(t)  
in seconds, d( t ) / v  in seconds and 4(t)  in rad. 

Figure 7: The estimated values, against the time in 
seconds on the horizontal axis, of (from top to bot- 
tom): ~ ( t )  in seconds, &)/v in seconds and - +(t) in 
rad. 
- 


