
Chapter 2
Governing Equations of Fluid Dynamics

J.D. Anderson, Jr.

2.1 Introduction

The cornerstone of computational fluid dynamics is the fundamental governing
equations of fluid dynamics—the continuity, momentum and energy equations.
These equations speak physics. They are the mathematical statements of three fun-
damental physical principles upon which all of fluid dynamics is based:

(1) mass is conserved;
(2) F = ma (Newton’s second law);
(3) energy is conserved.

The purpose of this chapter is to derive and discuss these equations.
The purpose of taking the time and space to derive the governing equations of

fluid dynamics in this course are three-fold:

(1) Because all of CFD is based on these equations, it is important for each student
to feel very comfortable with these equations before continuing further with his
or her studies, and certainly before embarking on any application of CFD to a
particular problem.

(2) This author assumes that the attendees of the present VKI short course come
from varied background and experience. Some of you may not be totally fa-
miliar with these equations, whereas others may use them every day. For the
former, this chapter will hopefully be some enlightenment; for the latter, hope-
fully this chapter will be an interesting review.

(3) The governing equations can be obtained in various different forms. For most
aerodynamic theory, the particular form of the equations makes little difference.
However, for CFD, the use of the equations in one form may lead to success,
whereas the use of an alternate form may result in oscillations (wiggles) in
the numerical results, or even instability. Therefore, in the world of CFD, the
various forms of the equations are of vital interest. In turn, it is important to
derive these equations in order to point out their differences and similarities,
and to reflect on possible implications in their application to CFD.
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2.2 Modelling of the Flow

In obtaining the basic equations of fluid motion, the following philosophy is always
followed:

(1) Choose the appropriate fundamental physical principles from the laws of
physics, such as

(a) Mass is conserved.
(b) F = ma (Newton’s 2nd Law).
(c) Energy is conserved.

(2) Apply these physical principles to a suitable model of the flow.
(3) From this application, extract the mathematical equations which embody such

physical principles.

This section deals with item (2) above, namely the definition of a suitable model of
the flow. This is not a trivial consideration. A solid body is rather easy to see and
define; on the other hand, a fluid is a ‘squishy’ substance that is hard to grab hold
of. If a solid body is in translational motion, the velocity of each part of the body is
the same; on the other hand, if a fluid is in motion the velocity may be different at
each location in the fluid. How then do we visualize a moving fluid so as to apply to
it the fundamental physical principles?

For a continuum fluid, the answer is to construct one of the two following models.

2.2.1 Finite Control Volume

Consider a general flow field as represented by the streamlines in Fig. 2.1(a). Let
us imagine a closed volume drawn within a finite region of the flow. This volume
defines a control volume, V, and a control surface, S, is defined as the closed surface
which bounds the volume. The control volume may be fixed in space with the fluid
moving through it, as shown at the left of Fig. 2.1(a). Alternatively, the control
volume may be moving with the fluid such that the same fluid particles are always
inside it, as shown at the right of Fig. 2.1(a). In either case, the control volume is a
reasonably large, finite region of the flow. The fundamental physical principles are
applied to the fluid inside the control volume, and to the fluid crossing the control
surface (if the control volume is fixed in space). Therefore, instead of looking at
the whole flow field at once, with the control volume model we limit our attention
to just the fluid in the finite region of the volume itself. The fluid flow equations
that we directly obtain by applying the fundamental physical principles to a finite
control volume are in integral form. These integral forms of the governing equations
can be manipulated to indirectly obtain partial differential equations. The equations
so obtained from the finite control volume fixed in space (left side of Fig. 2.1a), in
either integral or partial differential form, are called the conservation form of the
governing equations. The equations obtained from the finite control volume moving
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Fig. 2.1 (a) Finite control volume approach. (b) Infinitesimal fluid element approach

with the fluid (right side of Fig. 2.1a), in either integral or partial differential form,
are called the non-conservation form of the governing equations.

2.2.2 Infinitesimal Fluid Element

Consider a general flow field as represented by the streamlines in Fig. 2.1b. Let us
imagine an infinitesimally small fluid element in the flow, with a differential vol-
ume, dV . The fluid element is infinitesimal in the same sense as differential calcu-
lus; however, it is large enough to contain a huge number of molecules so that it
can be viewed as a continuous medium. The fluid element may be fixed in space
with the fluid moving through it, as shown at the left of Fig. 2.1(b). Alternatively,
it may be moving along a streamline with a vector velocity V equal to the flow ve-
locity at each point. Again, instead of looking at the whole flow field at once, the
fundamental physical principles are applied to just the fluid element itself. This ap-
plication leads directly to the fundamental equations in partial differential equation
form. Moreover, the particular partial differential equations obtained directly from
the fluid element fixed in space (left side of Fig. 2.1b) are again the conservation
form of the equations. The partial differential equations obtained directly from the
moving fluid element (right side of Fig. 2.1b) are again called the non-conservation
form of the equations.
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In general aerodynamic theory, whether we deal with the conservation or noncon-
servation forms of the equations is irrelevant. Indeed, through simple manipulation,
one form can be obtained from the other. However, there are cases in CFD where it
is important which form we use. In fact, the nomenclature which is used to distin-
guish these two forms (conservation versus nonconservation) has arisen primarily
in the CFD literature.

The comments made in this section become more clear after we have actually
derived the governing equations. Therefore, when you finish this chapter, it would
be worthwhile to re-read this section.

As a final comment, in actuality, the motion of a fluid is a ramification of the mean
motion of its atoms and molecules. Therefore, a third model of the flow can be a
microscopic approach wherein the fundamental laws of nature are applied directly to
the atoms and molecules, using suitable statistical averaging to define the resulting
fluid properties. This approach is in the purview of kinetic theory, which is a very
elegant method with many advantages in the long run. However, it is beyond the
scope of the present notes.

2.3 The Substantial Derivative

Before deriving the governing equations, we need to establish a notation which is
common in aerodynamics—that of the substantial derivative. In addition, the sub-
stantial derivative has an important physical meaning which is sometimes not fully
appreciated by students of aerodynamics. A major purpose of this section is to em-
phasize this physical meaning.

As the model of the flow, we will adopt the picture shown at the right of
Fig. 2.1(b), namely that of an infinitesimally small fluid element moving with the
flow. The motion of this fluid element is shown in more detail in Fig. 2.2. Here, the
fluid element is moving through cartesian space. The unit vectors along the x, y, and
z axes are�i,�j, and �k respectively. The vector velocity field in this cartesian space is
given by

�V = u�i + v�j + w�k

where the x, y, and z components of velocity are given respectively by

u = u(x, y, z, t)

v = v(x, y, z, t)

w = w(x, y, z, t)

Note that we are considering in general an unsteady flow, where u, v, and w are
functions of both space and time, t. In addition, the scalar density field is given by

ρ = ρ(x, y, z, t)
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Fig. 2.2 Fluid element
moving in the flow
field—illustration for the
substantial derivative

At time t1, the fluid element is located at point 1 in Fig. 2.2. At this point and
time, the density of the fluid element is

ρ1 = ρ(x1, y1, z1, t1)

At a later time, t2, the same fluid element has moved to point 2 in Fig. 2.2. Hence,
at time t2, the density of this same fluid element is

ρ2 = ρ(x2, y2, z2, t2)

Since ρ = ρ(x,y,z, t), we can expand this function in a Taylor’s series about point
1 as follows:

ρ2 = ρ1 +

(
∂ρ

∂x

)
1

(x2− x1) +

(
∂ρ

∂y

)
1

(y2− y1) +

(
∂ρ

∂z

)
1

(z2− z1)

+

(
∂ρ

∂t

)
1

(t2− t1) + (higher order terms)

Dividing by (t2− t1), and ignoring higher order terms, we obtain

ρ2−ρ1

t2− t1
=

(
∂ρ

∂x

)
1

(
x2− x1

t2− t1

)
+

(
∂ρ

∂y

)
1

(
y2− y1

t2− t1

)

+

(
∂ρ

∂z

)
1

(
z2− z1

t2− t1

)
+

(
∂ρ

∂t

)
1

(2.1)

Examine the left side of Eq. (2.1). This is physically the average time-rate-of-
change in density of the fluid element as it moves from point 1 to point 2. In the
limit, as t2 approaches t1, this term becomes

lim
t2→t1

(
ρ2−ρ1

t2− t1

)
≡ Dρ

Dt
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Here, Dρ/Dt is a symbol for the instantaneous time rate of change of density of
the fluid element as it moves through point 1. By definition, this symbol is called the
substantial derivative, D/Dt. Note that Dρ/Dt is the time rate of change of density
of the given fluid element as it moves through space. Here, our eyes are locked on the
fluid element as it is moving, and we are watching the density of the element change
as it moves through point 1. This is different from (∂ρ/∂t)1, which is physically the
time rate of change of density at the fixed point 1. For (∂ρ/∂t)1, we fix our eyes
on the stationary point 1, and watch the density change due to transient fluctuations
in the flow field. Thus, Dρ/Dt and ∂ρ/ρt are physically and numerically different
quantities.

Returning to Eq. (2.1), note that

lim
t2→t1

(
x2− x1

t2− t1

)
≡ u

lim
t2→t1

(
y2− y1

t2− t1

)
≡ v

lim
t2→t1

(
z2− z1

t2− t1

)
≡ w

Thus, taking the limit of Eq. (2.1) as t2→ t1, we obtain

Dρ
Dt

= u
∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+
∂ρ

∂t
(2.2)

Examine Eq. (2.2) closely. From it, we can obtain an expression for the substan-
tial derivative in cartesian coordinates:

D
Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(2.3)

Furthermore, in cartesian coordinates, the vector operator

Δ

is defined as

Δ

≡�i ∂
∂x

+�j
∂

∂y
+�k

∂

∂z
(2.4)

Hence, Eq. (2.3) can be written as

D
Dt
≡ ∂

∂t
+
(
�V ·

Δ)
(2.5)

Equation (2.5) represents a definition of the substantial derivative operator in
vector notation; thus, it is valid for any coordinate system.

Focusing on Eq. (2.5), we once again emphasize that D/Dt is the substantial
derivative, which is physically the time rate of change following a moving fluid
element; ∂/∂t is called the local derivative, which is physically the time rate of
change at a fixed point; �V ·

Δ

is called the convective derivative, which is physi-
cally the time rate of change due to the movement of the fluid element from one
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location to another in the flow field where the flow properties are spatially dif-
ferent. The substantial derivative applies to any flow-field variable, for example,
Dp/Dt, DT/Dt, Du/Dt, etc., where p and T are the static pressure and temperature
respectively. For example:

DT
Dt
≡ ∂T

∂t︷�����︸︸�����︷
local

derivative

+ (�V ·

Δ

)︷������︸︸������︷
convective
derivative

T ≡ ∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

(2.6)

Again, Eq. (2.6) states physically that the temperature of the fluid element is
changing as the element sweeps past a point in the flow because at that point the
flow field temperature itself may be fluctuating with time (the local derivative) and
because the fluid element is simply on its way to another point in the flow field
where the temperature is different (the convective derivative).

Consider an example which will help to reinforce the physical meaning of the
substantial derivative. Imagine that you are hiking in the mountains, and you are
about to enter a cave. The temperature inside the cave is cooler than outside. Thus,
as you walk through the mouth of the cave, you feel a temperature decrease—this
is analagous to the convective derivative in Eq. (2.6). However, imagine that, at
the same time, a friend throws a snowball at you such that the snowball hits you
just at the same instant you pass through the mouth of the cave. You will feel an
additional, but momentary, temperature drop when the snowball hits you—this is
analagous to the local derivative in Eq. (2.6). The net temperature drop you feel as
you walk through the mouth of the cave is therefore a combination of both the act
of moving into the cave, where it is cooler, and being struck by the snowball at the
same instant—this net temperature drop is analagous to the substantial derivative in
Eq. (2.6).

The above derivation of the substantial derivative is essentially taken from this
author’s basic aerodynamics text book given as Ref. [1]. It is used there to introduce
new aerodynamics students to the full physical meaning of the substantial derivative.
The description is repeated here for the same reason—to give you a physical feel for
the substantial derivative. We could have circumvented most of the above discussion
by recognizing that the substantial derivative is essentially the same as the total
differential from calculus. That is, if

ρ = ρ(x,y,z, t)

then the chain rule from differential calculus gives

dρ =
∂ρ

∂x
dx +

∂ρ

∂y
dy +

∂ρ

∂z
dz +

∂ρ

∂t
dt (2.7)

From Eq. (2.7), we have

dρ
dt

=
∂ρ

∂t
+
∂ρ

∂x
dx
dt

+
∂ρ

∂y
dy
dt

+
∂ρ

∂z
dz
dt

(2.8)
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Since
dx
dt

= u,
dy
dt

= v, and
dz
dt

= w, Eq. (2.8) becomes

dρ
dt

=
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
(2.9)

Comparing Eqs. (2.2) and (2.9), we see that dρ/dt and Dρ/Dt are one-in-the-
same.

Therefore, the substantial derivative is nothing more than a total derivative with
respect to time. However, the derivation of Eq. (2.2) highlights more of the physical
significance of the substantial derivative, whereas the derivation of Eq. (2.9) is more
formal mathematically.

2.4 Physical Meaning of

ΔΔΔ· �V

As one last item before deriving the governing equations, let us consider the diver-
gence of the velocity,

Δ

· �V . This term appears frequently in the equations of fluid
dynamics, and it is well to consider its physical meaning.

Consider a control volume moving with the fluid as sketched on the right of
Fig. 2.1(a). This control volume is always made up of the same fluid particles as it
moves with the flow; hence, its mass is fixed, invariant with time. However, its vol-
ume V and control surface S are changing with time as it moves to different regions
of the flow where different values of ρ exist. That is, this moving control volume
of fixed mass is constantly increasing or decreasing its volume and is changing its
shape, depending on the characteristics of the flow. This control volume is shown
in Fig. 2.3 at some instant in time. Consider an infinitesimal element of the surface
dS moving at the local velocity �V , as shown in Fig. 2.3. The change in the volume
of the control volume ΔV , due to just the movement of dS over a time increment
Δt, is, from Fig. 2.3, equal to the volume of the long, thin cylinder with base area
dS and altitude (�VΔt) ·�n, where �n is a unit vector perpendicular to the surface at dS .
That is,

ΔV =
[
(�VΔt) ·�n

]
dS = (�VΔt) ·�dS (2.10)

where the vector d�S is defined simply as d�S ≡ �n dS . Over the time increment Δt,
the total change in volume of the whole control volume is equal to the summation
of Eq. (2.10) over the total control surface. In the limit as dS → 0, the sum becomes
the surface integral

Fig. 2.3 Moving control
volume used for the physical
interpretation of the
divergence of velocity
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�

S
(�VΔt) ·dS

If this integral is divided by Δt, the result is physically the time rate of change of
the control volume, denoted by DV/Dt, i.e.

DV

Dt
=

1
Δt

�

S
(�V ·Δt) ·d�S =

�

S

�V ·d�S (2.11)

Note that we have written the left side of Eq. (2.11) as the substantial derivative
of V , because we are dealing with the time rate of change of the control volume
as the volume moves with the flow (we are using the picture shown at the right of
Fig. 2.1a), and this is physically what is meant by the substantial derivative. Ap-
plying the divergence theorem from vector calculus to the right side of Eq. (2.11),
we obtain

DV

Dt
=

�

V
(

Δ

· �V)dV (2.12)

Now, let us image that the moving control volume in Fig. 2.3 is shrunk to a very
small volume, δV , essentially becoming an infinitesimal moving fluid element as
sketched on the right of Fig. 2.1(a). Then Eq. (2.12) can be written as

D(δV )
Dt

=

�

δV
(

Δ

· �V)dV (2.13)

Assume that δV is small enough such that
Δ

· �V is essentially the same value
throughout δV . Then the integral in Eq. (2.13) can be approximated as (

Δ

· �V)δV .
From Eq. (2.13), we have

D(δV )
Dt

= (

Δ

· �V)δV

or

Δ

· �V =
1
δV

D(δV )
Dt

(2.14)

Examine Eq. (2.14) closely. On the left side we have the divergence of the veloc-
ity; on the right side we have its physical meaning. That is,

Δ

· �V is physically the time rate of change of the volume of a moving fluid element, per unit
volume.

2.5 The Continuity Equation

Let us now apply the philosophy discussed in Sect. 2.2; that is, (a) write down a
fundamental physical principle, (b) apply it to a suitable model of the flow, and
(c) obtain an equation which represents the fundamental physical principle. In this
section we will treat the following case:
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2.5.1 Physical Principle: Mass is Conserved

We will carry out the application of this principle to both the finite control volume
and infinitesimal fluid element models of the flow. This is done here specifically to
illustrate the physical nature of both models. Moreover, we will choose the finite
control volume to be fixed in space (left side of Fig. 2.1a), whereas the infinites-
imal fluid element will be moving with the flow (right side of Fig. 2.1b). In this
way we will be able to contrast the differences between the conservation and non-
conservation forms of the equations, as described in Sect. 2.2.

First, consider the model of a moving fluid element. The mass of this element
is fixed, and is given by δm. Denote the volume of this element by δV , as in
Sect. 2.4. Then

δm = ρδV (2.15)

Since mass is conserved, we can state that the time-rate-of-change of the mass
of the fluid element is zero as the element moves along with the flow. Invoking the
physical meaning of the substantial derivative discussed in Sect. 2.3, we have

D(δm)
Dt

= 0 (2.16)

Combining Eqs. (2.15) and (2.16), we have

D(ρδV )
Dt

= δV
Dρ
Dt

+ρ
D(δV )

Dt
= 0

or,

Dρ
Dt

+ρ

[
1
δV

D(δV )
Dt

]
= 0 (2.17)

We recognize the term in brackets in Eq. (2.17) as the physical meaning of

Δ

· �V ,
discussed in Sect. 2.4. Hence, combining Eqs. (2.14) and (2.17), we obtain

Dρ
Dt

+ρ

Δ

.�V = 0 (2.18)

Equation (2.18) is the continuity equation in non-conservation form. In light of our
philosophical discussion in Sect. 2.2, note that:

(1) By applying the model of an infinitesimal fluid element, we have obtained
Eq. (2.18) directly in partial differential form.

(2) By choosing the model to be moving with the flow, we have obtained the non-
conservation form of the continuity equation, namely Eq. (2.18).

Now, consider the model of a finite control volume fixed in space, as sketched
in Fig. 2.4. At a point on the control surface, the flow velocity is �V and the vector
elemental surface area (as defined in Sect. 2.4) is d�S . Also let dV be an elemental
volume inside the finite control volume. Applied to this control volume, our funda-
mental physical principle that mass is conserved means
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Fig. 2.4 Finite control
volume fixed in space

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Net mass flow out

of control volume

through surface S

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
time rate of decrease

of mass inside control

volume

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.19a)

or,
B = C (2.19b)

where B and C are just convenient symbols for the left and right sides, respectively,
of Eq. (2.19a). First, let us obtain an expression for B in terms of the quantities
shown in Fig. 2.4. The mass flow of a moving fluid across any fixed surface (say, in
kg/s, or slug/s) is equal to the product of (density) × (area of surface) × (component
of velocity perpendicular to the surface). Hence the elemental mass flow across the
area dS is

ρVndS = ρ�V ·�dS (2.20)

Examining Fig. 2.4, note that by convention, �dS always points in a direction out
of the control volume. Hence, when �V also points out of the control volume (as
shown in Fig. 2.4), the product ρ�V ·d�S is positive. Moreover, when �V points out of
the control volume, the mass flow is physically leaving the control volume, i.e. it is
an outflow. Hence, a positive ρ�V ·�dS denotes an outflow. In turn, when �V points into
the control volume, ρ�V ·�dS is negative. Moreover, when �V points inward, the mass
flow is physically entering the control volume, i.e. it is an inflow. Hence, a negative
ρ�V ·�dS denotes an inflow. The net mass flow out of the entire control volume through
the control surface S is the summation over S of the elemental mass flows shown in
Eq. (2.20). In the limit, this becomes a surface integral, which is physically the left
side of Eqs. (2.19a and b), i.e.

B =

�

S
ρ�V ·�dS (2.21)

Now consider the right side of Eqs. (2.19a and b). The mass contained within the
elemental volume dV is ρ dV . The total mass inside the control volume is therefore

�

V
ρ dV



26 J.D. Anderson, Jr.

The time rate of increase of mass inside V is then

− ∂
∂t

�

V
ρ dV

In turn, the time rate of decrease of mass inside V is the negative of the
above, i.e.

− ∂
∂t

�

V
ρ dV = C (2.22)

Thus, substituting Eqs. (2.21) and (2.22) into (2.19b), we have
�

S
ρ�V ·�dS = − ∂

∂t

�

V
ρ dV

or,

∂

∂t

�

V
ρ dV +

�

S
ρ�V ·�dS = 0 (2.23)

Equation (2.23) is the integral form of the continuity equation; it is also in con-
servation form.

Let us cast Eq. (2.23) in the form of a differential equation. Since the control
volume in Fig. 2.4 is fixed in space, the limits of integration for the integrals in
Eq. (2.23) are constant, and hence the time derivative ∂/∂t can be placed inside the
integral.

�

V

∂ρ

∂t
dV +

�

S
ρ�V ·�dS = 0 (2.24)

Applying the divergence theorem from vector calculus, the surface integral in
Eq. (2.24) can be expressed as a volume integral

�

S
(ρ�V) ·�dS =

�

V

Δ

· (ρ�V)dV (2.25)

Substituting Eq. (2.25) into Eq. (2.24), we have
�

V

∂ρ

∂t
dV +

�

V

Δ

· (ρ�V)dV = 0

or

�

V

[
∂ρ

∂t
+

Δ

· (ρ�V)

]
dV = 0 (2.26)

Since the finite control volume is arbitrarily drawn in space, the only way for
the integral in Eq. (2.26) to equal zero is for the integrand to be zero at every point
within the control volume. Hence, from Eq. (2.26)

∂ρ

∂t
+

Δ

· (ρ�V) = 0 (2.27)
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Equation (2.27) is the continuity equation in conservation form.
Examining the above derivation in light of our discussion in Sect. 2.2, we

note that:

(1) By applying the model of a finite control volume, we have obtained Eq. (2.23)
directly in integral form.

(2) Only after some manipulation of the integral form did we indirectly obtain a
partial differential equation, Eq. (2.27).

(3) By choosing the model to be fixed in space, we have obtained the conservation
form of the continuity equation, Eqs. (2.23) and (2.27).

Emphasis is made that Eqs. (2.18) and (2.27) are both statements of the conser-
vation of mass expressed in the form of partial differential equations. Eq. (2.18) is
in non-conservation form, and Eq. (2.27) is in conservation form; both forms are
equally valid. Indeed, one can easily be obtained from the other, as follows. Con-
sider the vector identity involving the divergence of the product of a scalar times a
vector, such as

Δ

· (ρ�V) ≡ ρ

Δ

· �V + �V ·

Δ

ρ (2.28)

Substitute Eq. (2.28) in the conservation form, Eq. (2.27):

∂ρ

∂t
+ �V ·

Δ

ρ+ρ

Δ

· �V = 0 (2.29)

The first two terms on the left side of Eq. (2.29) are simply the substantial deriva-
tive of density. Hence, Eq. (2.29) becomes

Dρ
Dt

+ρ

Δ

· �V = 0

which is the non-conservation form given by Eq. (2.18).
Once again we note that the use of conservation or non-conservation forms of

the governing equations makes little difference in most of theoretical aerodynamics.
In contrast, which form is used can make a difference in some CFD applications,
and this is why we are making a distinction between these two different forms in the
present notes.

2.6 The Momentum Equation

In this section, we apply another fundamental physical principle to a model of the
flow, namely:

Physical Principle : �F = m�a (Newton’s 2nd law)

We choose for our flow model the moving fluid element as shown at the right of
Fig. 2.1(b). This model is sketched in more detail in Fig. 2.5.

Newton’s 2nd law, expressed above, when applied to the moving fluid element
in Fig. 2.5, says that the net force on the fluid element equals its mass times the
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Fig. 2.5 Infinitesimally small, moving fluid element. Only the forces in the x direction are shown

acceleration of the element. This is a vector relation, and hence can be split into three
scalar relations along the x, y, and z-axes. Let us consider only the x-component of
Newton’s 2nd law,

Fx = max (2.30)

where Fx and ax are the scalar x-components of the force and acceleration
respectively.

First, consider the left side of Eq. (2.30). We say that the moving fluid element
experiences a force in the x-direction. What is the source of this force? There are
two sources:

(1) Body forces, which act directly on the volumetric mass of the fluid element.
These forces ‘act at a distance’; examples are gravitational, electric and mag-
netic forces.

(2) Surface forces, which act directly on the surface of the fluid element. They are
due to only two sources: (a) the pressure distribution acting on the surface, im-
posed by the outside fluid surrounding the fluid element, and (b) the shear and
normal stress distributions acting on the surface, also imposed by the outside
fluid ‘tugging’ or ‘pushing’ on the surface by means of friction.

Let us denote the body force per unit mass acting on the fluid element by �f , with
fx as its x-component. The volume of the fluid element is (dx dy dz); hence,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Body force on the

fluid element acting

in the x-direction

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = ρ fx(dx dy dz) (2.31)
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Fig. 2.6 Illustration of shear and normal stresses

The shear and normal stresses in a fluid are related to the time-rate-of-change of
the deformation of the fluid element, as sketched in Fig. 2.6 for just the xy plane.
The shear stress, denoted by τxy in this figure, is related to the time rate-of-change of
the shearing deformation of the fluid element, whereas the normal stress, denoted by
τxx in Fig. 2.6, is related to the time-rate-of-change of volume of the fluid element.
As a result, both shear and normal stresses depend on velocity gradients in the flow,
to be designated later. In most viscous flows, normal stresses (such as τxx) are much
smaller than shear stresses, and many times are neglected. Normal stresses (say
τxx in the x-direction) become important when the normal velocity gradients (say
∂u/∂x) are very large, such as inside a shock wave.

The surface forces in the x-direction exerted on the fluid element are sketched
in Fig. 2.5. The convention will be used here that τij denotes a stress in the
j-direction exerted on a plane perpendicular to the i-axis. On face abcd, the only
force in the x-direction is that due to shear stress, τyx dx dz. Face efgh is a dis-
tance dy above face abcd; hence the shear force in the x-direction on face efgh is
[τyx + (∂τyx/∂y) dy] dx dz. Note the directions of the shear force on faces abcd
and efgh; on the bottom face, τyx is to the left (the negative x-direction), whereas
on the top face, [τyx + (∂τyx/∂y) dy] is to the right (the positive x-direction).
These directions are consistent with the convention that positive increases in all
three components of velocity. u, v and w, occur in the positive directions of the
axes. For example, in Fig. 2.5, u increases in the positive y-direction. There-
fore, concentrating on face efgh, u is higher just above the face than on the
face; this causes a ‘tugging’ action which tries to pull the fluid element in the
positive x-direction (to the right) as shown in Fig. 2.5. In turn, concentrating
on face abcd, u is lower just beneath the face than on the face; this causes a
retarding or dragging action on the fluid element, which acts in the negative
x-direction (to the left) as shown in Fig. 2.5. The directions of all the other vis-
cous stresses shown in Fig. 2.5, including τxx, can be justified in a like fashion.
Specifically on face dcgh, τzx acts in the negative x-direction, whereas on face abfe,
[τzx + (∂τzx/∂z) dz] acts in the positive x-direction. On face adhe, which is per-
pendicular to the x-axis, the only forces in the x-direction are the pressure force
p dx dz, which always acts in the direction into the fluid element, and τxx dy dz,
which is in the negative x-direction. In Fig. 2.5, the reason why τxx on face adhe is
to the left hinges on the convention mentioned earlier for the direction of increasing
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velocity. Here, by convention, a positive increase in u takes place in the positive
x-direction. Hence, the value of u just to the left of face adhe is smaller than the
value of u on the face itself. As a result, the viscous action of the normal stress
acts as a ‘suction’ on face adhe, i.e. there is a dragging action toward the left that
wants to retard the motion of the fluid element. In contrast, on face bcgf, the pres-
sure force [p+ (∂p/∂x) dx] dy dz presses inward on the fluid element (in the negative
x-direction), and because the value of u just to the right of face bcgf is larger than
the value of u on the face, there is a ‘suction’ due to the viscous normal stress which
tries to pull the element to the right (in the positive x-direction) with a force equal
to [τxx + (∂τxx/∂x)] dy dz.

With the above in mind, for the moving fluid element we can write

⎧⎪⎨⎪⎩ Net surface force

in the x-direction

⎫⎪⎬⎪⎭ =

[
p−

(
p +

∂p
∂x

dx

)]
dy dz

+

[(
τxx +

∂τxx

∂x
dx

)
−τxx

]
dy dz

+

[(
τyx +

∂τyx

∂y
dy

)
−τyx

]
dx dz

+

[(
τzx +

∂τzx

∂z
dz

)
−τzx

]
dx dy (2.32)

The total force in the x-direction, Fx, is given by the sum of Eqs. (2.31)
and (2.32). Adding, and cancelling terms, we obtain

Fx =

(
−∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z

)
dx dy dz +ρ fx dx dy dz (2.33)

Equation (2.33) represents the left-hand side of Eq. (2.30).
Considering the right-hand side of Eq. (2.30), recall that the mass of the fluid

element is fixed and is equal to

m = ρ dx dy dz (2.34)

Also, recall that the acceleration of the fluid element is the time-rate-of-change
of its velocity. Hence, the component of acceleration in the x-direction, denoted by
ax, is simply the time-rate-of-change of u; since we are following a moving fluid
element, this time-rate-of-change is given by the substantial derivative. Thus,

ax =
Du
Dt

(2.35)

Combining Eqs. (2.30), (2.33), (2.34) and (2.35), we obtain

ρ
Du
Dt

= −∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ρ fx (2.36a)
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which is the x-component of the momentum equation for a viscous flow. In a similar
fashion, the y and z components can be obtained as

ρ
Dv
Dt

= −∂p
∂y

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ρ fy (2.36b)

and

ρ
Dw
Dt

= −∂p
∂z

+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ρ fz (2.36c)

Equations (2.36a, b and c) are the x-, y- and z-components respectively of the mo-
mentum equation. Note that they are partial differential equations obtained directly
from an application of the fundamental physical principle to an infinitesimal fluid
element. Moreover, since this fluid element is moving with the flow, Eqs. (2.36a, b
and c) are in non-conservation form. They are scalar equations, and are called the
Navier–Stokes equations in honour of two men—the Frenchman M. Navier and the
Englishmen G. Stokes—who independently obtained the equations in the first half
of the nineteenth century.

The Navier–Stokes equations can be obtained in conservation form as follows.
Writing the left-hand side of Eq. (2.36a) in terms of the definition of the substantial
derivative,

ρ
Du
Dt

= ρ
∂u
∂t

+ρ�V ·

Δ

u (2.37)

Also, expanding the following derivative,

∂(ρu)
∂t

= ρ
∂u
∂t

+ u
∂ρ

∂t

or,

ρ
∂u
∂t

=
∂(ρu)
∂t
−u

∂ρ

∂t
(2.38)

Recalling the vector identity for the divergence of the product of a scalar times a
vector, we have

Δ

· (ρu�V) = u

Δ

· (ρ�V) + (ρ�V) ·

Δ

u

or
ρ�V ·

Δ

u =

Δ

· (ρu�V)−u

Δ

· (ρ�V) (2.39)

Substitute Eqs. (2.38) and (2.39) into Eq. (2.37).

ρ
Du
Dt

=
∂(ρu)
∂t
−u

∂ρ

∂t
−u

Δ

· (ρ�V) +

Δ

· (ρu�V)

ρ
Du
Dt

=
∂(ρu)
∂t
−u

[
∂ρ

∂t
+

Δ

· (ρ�V)

]
+

Δ

· (ρu�V)
(2.40)

The term in brackets in Eq. (2.40) is simply the left-hand side of the continuity
equation given as Eq. (2.27); hence the term in brackets is zero. Thus Eq. (2.40)
reduces to
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ρ
Du
Dt

=
∂(ρu)
∂t

+

Δ

· (ρu�V) (2.41)

Substitute Eq. (2.41) into Eq. (2.36a).

∂(ρu)
∂t

+

Δ

· (ρu�V) = −∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ρ fx (2.42a)

Similarly, Eqs. (2.36b and c) can be expressed as

∂(ρv)
∂t

+

Δ

· (ρv�V) = −∂p
∂y

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ρ fy (2.42b)

and
∂(ρw)
∂t

+

Δ

· (ρw�V) = −∂p
∂z

+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ρ fz (2.42c)

Equations (2.42a–c) are the Navier-Stokes equations in conservation form.
In the late seventeenth century Isaac Newton stated that shear stress in a fluid is

proportional to the time-rate-of-strain, i.e. velocity gradients. Such fluids are called
Newtonian fluids. (Fluids in which τ is not proportional to the velocity gradients are
non-Newtonian fluids; blood flow is one example.) In virtually all practical aerody-
namic problems, the fluid can be assumed to be Newtonian. For such fluids, Stokes,
in 1845, obtained:

τxx = λ

Δ

· �V + 2μ
∂u
∂x

(2.43a)

τyy = λ

Δ

· �V + 2μ
∂v
∂y

(2.43b)

τzz = λ

Δ

· �V + 2μ
∂w
∂z

(2.43c)

τxy = τyx = μ

(
∂v
∂x

+
∂u
∂y

)
(2.43d)

τxz = τzx = μ

(
∂u
∂z

+
∂w
∂x

)
(2.43e)

τyz = τzy = μ

(
∂w
∂y

+
∂v
∂z

)
(2.43f)

where μ is the molecular viscosity coefficient and λ is the bulk viscosity coefficient.
Stokes made the hypothesis that

λ = −2
3
μ

which is frequently used but which has still not been definitely confirmed to the
present day.
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Substituting Eq. (2.43) into Eq. (2.42), we obtain the complete Navier–Stokes
equations in conservation form:

(2.44a)

(2.44b)

(2.44c)

∂(ρu)
∂t

+
∂(ρu2)
∂x

+
∂(ρuv)
∂y

+
∂(ρuw)
∂z

=− ∂p
∂x

+
∂

∂x

(
λ

Δ

· �V + 2μ
∂u
∂x

)
+
∂

∂y

[
μ

(
∂v
∂x

+
∂u
∂y

)]

+
∂

∂z

[
μ

(
∂u
∂z

+
∂w
∂x

)]
+ρ fx

∂(ρv)
∂t

+
∂(ρuv)
∂x

+
∂(ρv2)
∂y

+
∂(ρvw)
∂z

=− ∂p
∂y

+
∂

∂x

[
μ

(
∂v
∂x

+
∂u
∂y

)]
+
∂

∂y

(
λ

Δ

· �V + 2μ
∂v
∂y

)

+
∂

∂z

[
μ

(
∂w
∂y

+
∂v
∂z

)]
+ρ fy

∂(ρw)
∂t

+
∂(ρuw)
∂x

+
∂(ρvw)
∂y

+
∂(ρw2)
∂z

=− ∂p
∂z

+
∂

∂x

[
μ

(
∂u
∂z

+
∂w
∂x

)]
+
∂

∂y

[
μ

(
∂w
∂y

+
∂v
∂z

)]

+
∂

∂z

(
λ

Δ

· �V + 2μ
∂w
∂z

)
+ρ fz

2.7 The Energy Equation

In the present section, we derive the energy equation using as our model an in-
finitesimal moving fluid element. This will be in keeping with our derivation of the
Navier–Stokes equations in Sect. 2.6, where the infinitesimal element was shown in
Fig. 2.5.

We now invoke the following fundamental physical principle:

2.7.1 Physical Principle: Energy is Conserved

A statement of this principle is the first law of thermodynamics, which, when applied
to the moving fluid element in Fig. 2.5, becomes
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Rate of change of

energy inside the

fluid element

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Net flux of

heat into

the element

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Rate of working done on

the element due to body

and surface forces

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
or,

A = B + C (2.45)

where A, B and C denote the respective terms above.
Let us first evaluate C, i.e. obtain an expression for the rate of work done on the

moving fluid element due to body and surface forces. It can be shown that the rate
of doing work by a force exerted on a moving body is equal to the product of the
force and the component of velocity in the direction of the force (see References 3
and 14 for such a derivation). Hence the rate of work done by the body force acting
on the fluid element moving at a velocity �V is

ρ �f · �V(dx dy dz)

With regard to the surface forces (pressure plus shear and normal stresses), con-
sider just the forces in the x-direction, shown in Fig. 2.5. The rate of work done on
the moving fluid element by the pressure and shear forces in the x-direction shown
in Fig. 2.5 is simply the x-component of velocity, u, multiplied by the forces, e.g. on
face abcd the rate of work done by τyxdx dz is uτyxdx dz, with similar expressions
for the other faces. To emphasize these energy considerations, the moving fluid el-
ement is redrawn in Fig. 2.7, where the rate of work done on each face by surface
forces in the x-direction is shown explicitly. To obtain the net rate of work done on
the fluid element by the surface forces, note that forces in the positive x-direction do
positive work and that forces in the negative x-direction do negative work. Hence,

Fig. 2.7 Energy fluxes associated with an infinitesimally small, moving fluid element. For
simplicity, only the fluxes in the x direction are shown
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comparing the pressure forces on face adhe and bcgf in Fig. 2.7, the net rate of work
done by pressure in the x-direction is

[
up−

(
up +

∂(up)
∂x

dx

)]
dy dz = −∂(up)

∂x
dx dy dz

Similarly, the net rate of work done by the shear stresses in the x-direction on
faces abcd and efgh is

[(
uτyx +

∂(uτyx)

∂y
dy

)
−uτyx

]
dx dz =

∂(uτyx)

∂y
dx dy dz

Considering all the surface forces shown in Fig. 2.7, the net rate of work done on
the moving fluid element due to these forces is simply

[
−∂(up)

∂x
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y
+
∂(uτzx)
∂z

]
dx dy dz

The above expression considers only surface forces in the x-direction. When the
surface forces in the y- and z-directions are also included, similar expressions are
obtained. In total, the net rate of work done on the moving fluid element is the sum
of the surface force contributions in the x-, y- and z-directions, as well as the body
force contribution. This is denoted by C in Eq. (2.45), and is given by

C =

[
−
(
∂(up)
∂x

+
∂(vp)
∂y

+
∂(wp)
∂z

)
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y

+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z
+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

]
dx dy dz +ρ �f · �V dx dy dz (2.46)

Note in Eq. (2.46) that the first three terms on the right-hand side are simply

Δ

· (p�V).
Let us turn our attention to B in Eq. (2.45), i.e. the net flux of heat into the ele-

ment. This heat flux is due to: (1) volumetric heating such as absorption or emission
of radiation, and (2) heat transfer across the surface due to temperature gradients,
i.e. thermal conduction. Define q̇ as the rate of volumetric heat addition per unit
mass. Noting that the mass of the moving fluid element in Fig. 2.7 is ρ dx dy dz, we
obtain ⎧⎪⎨⎪⎩ Volumetric heating

of the element

⎫⎪⎬⎪⎭ = ρq̇ dx dy dz (2.47)

In Fig. 2.7, the heat transferred by thermal conduction into the moving fluid ele-
ment across face adhe is q̇x dy dz where q̇x is the heat transferred in the x-direction
per unit time per unit area by thermal conduction. The heat transferred out of the
element across face bcgf is [q̇x + (∂q̇x/∂x) dx] dy dz. Thus, the net heat transferred
in the x-direction into the fluid element by thermal conduction is
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[
q̇x −

(
q̇x +

∂q̇x

∂x
dx

)]
dy dz = −∂q̇x

∂x
dx dy dz

Taking into account heat transfer in the y- and z-directions across the other faces
in Fig. 2.7, we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Heating of the

fluid element by

thermal conduction

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = −
(
∂q̇x

∂x
+
∂q̇y

∂y
+
∂q̇z

∂z

)
dx dy dz (2.48)

The term B in Eq. (2.45) is the sum of Eqs. (2.47) and (2.48).

B =

[
ρq̇−

(
∂q̇x

∂x
+
∂q̇y

∂y
+
∂q̇z

∂z

)]
dx dy dz (2.49)

Heat transfer by thermal conduction is proportional to the local temperature gra-
dient:

q̇x = −k
∂T
∂x

; q̇y = −k
∂T
∂y

; q̇z = −k
∂T
∂z

where k is the thermal conductivity. Hence, Eq. (2.49) can be written

B =

[
ρq̇ +

∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)]
dx dy dz (2.50)

Finally, the term A in Eq. (2.45) denotes the time-rate-of-change of energy of
the fluid element. The total energy of a moving fluid per unit mass is the sum of its
internal energy per unit mass, e, and its kinetic energy per unit mass, V2/2. Hence,
the total energy is (e + V2/2). Since we are following a moving fluid element, the
time-rate-of-change of energy per unit mass is given by the substantial derivative.
Since the mass of the fluid element is ρ dx dy dz, we have

A = ρ
D
Dt

(
e +

V2

2

)
dx dy dz (2.51)

The final form of the energy equation is obtained by substituting Eqs. (2.46),
(2.50) and (2.51) into Eq. (2.45), obtaining:

ρ
D
Dt

(
e +

V2

2

)
= ρq̇ +

∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− ∂(up)
∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y

+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z

+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

+ρ �f · �V
(2.52)
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This is the non-conservation form of the energy equation; also note that it is in
terms of the total energy, (e + V2/2). Once again, the non-conservation form results
from the application of the fundamental physical principle to a moving fluid element.

The left-hand side of Eq. (2.52) involves the total energy, (e + V2/2). Frequently,
the energy equation is written in a form that involves just the internal energy, e. The
derivation is as follows. Multiply Eqs. (2.36a, b, and c) by u, v, and w respectively.

ρ

D

(
u2

2

)

Dt
= −u

∂p
∂x

+ u
∂τxx

∂x
+ u

∂τyx

∂y
+ u

∂τzx

∂z
+ρu fx (2.53a)

ρ

D

(
v2

2

)

Dt
= −v

∂p
∂y

+ v
∂τxy

∂x
+ v

∂τyy

∂y
+ v

∂τzy

∂z
+∂v fy (2.53b)

ρ

D

(
w2

2

)

Dt
= −w

∂p
∂z

+ w
∂τxz

∂x
+ w

∂τyz

∂y
+ w

∂τzz

∂z
+ρw fz (2.53c)

Add Eqs. (2.53a, b and c), and note that u2 + v2 + w2 = V2. We obtain

ρ
DV2/2

Dt
=−u

∂p
∂x
− v

∂p
∂y
−w

∂p
∂z

+ u

(
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z

)

+ v

(
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z

)
+ w

(
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z

)

+ρ(u fx + v fy + w fz) (2.54)

Subtracting Eq. (2.54) from Eq. (2.52), noting that ρ �f · �V = ρ(u fx + v fy + w fz),
we have

ρ
De
Dt

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− p

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
+τxx

∂u
∂x

+τyx
∂u
∂y

+τzx
∂u
∂z

+τxy
∂v
∂x

+τyy
∂v
∂y

+τzy
∂v
∂z

+τxz
∂w
∂x

+τyz
∂w
∂y

+τzz
∂w
∂z

(2.55)

Equation (2.55) is the energy equation in terms of internal energy, e. Note
that the body force terms have cancelled; the energy equation when written in
terms of e does not explicitly contain the body force. Eq. (2.55) is still in non-
conservation form.

Equations (2.52) and (2.55) can be expressed totally in terms of flow field vari-
ables by replacing the viscous stress terms τxy, τxz, etc. with their equivalent ex-
pressions from Eqs (2.43a, b, c, d, e and f ). For example, from Eq. (2.55), noting
that τxy = τyx, τxz = τzx, τyz = τzy,
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ρ
De
Dt

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− p

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
+τxx

∂u
∂x

+τyy
∂v
∂y

+τzz
∂w
∂z

+τyx

(
∂u
∂y

+
∂v
∂x

)
+τzx

(
∂u
∂z

+
∂w
∂x

)
+τzy

(
∂v
∂z

+
∂w
∂y

)

Substituting Eqs. (2.43a, b, c, d, e and f ) into the above equation, we have

ρ
De
Dt

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− p

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
+λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)2

+μ

⎡⎢⎢⎢⎢⎢⎣2
(
∂u
∂x

)2

+ 2

(
∂v
∂y

)2

+ 2

(
∂w
∂z

)2

+

(
∂u
∂y

+
∂v
∂x

)2

+

(
∂u
∂z

+
∂w
∂x

)2

+

(
∂v
∂z

+
∂w
∂y

)2⎤⎥⎥⎥⎥⎥⎦ (2.56)

Equation (2.56) is a form of the energy equation completely in terms of the flow-
field variables. A similar substitution of Eqs. (2.43a, b, c, d, e and f ) can be made
into Eq. (2.52); the resulting form of the energy equation in terms of the flow-field
variables is lengthy, and to save time and space it will not be given here.

The energy equation in conservation form can be obtained as follows. Consider
the left-hand side of Eq. (2.56). From the definition of the substantial derivative:

ρ
De
Dt

= ρ
∂e
∂t

+ρ�V ·

Δ

e (2.57)

However,
∂(ρe)
∂t

= ρ
∂e
∂t

+ e
∂ρ

∂t
or,

ρ
∂e
∂t

=
∂(ρe)
∂t
− e

∂ρ

∂t
(2.58)

From the vector identity concerning the divergence of the product of a scalar
times a vector,

Δ

· (ρe�V) = e

Δ

· (ρ�V) +ρ�V ·

Δ

e

or
ρ�V ·

Δ

e =

Δ

· (ρe�V)− e

Δ

· (ρ�V) (2.59)

Substitute Eqs. (2.58) and (2.59) into Eq. (2.57)

ρ
De
Dt

=
∂(ρe)
∂t
− e

[
∂ρ

∂t
+

Δ

· (ρ�V)

]
+

Δ

· (ρe�V) (2.60)
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The term in square brackets in Eq. (2.60) is zero, from the continuity equation,
Eq. (2.27). Thus, Eq. (2.60) becomes

ρ
De
Dt

=
∂(ρe)
∂t

+

Δ

· (ρe�V) (2.61)

Substitute Eq. (2.61) into Eq. (2.56):

∂(ρe)
∂t

+

Δ

· (ρe�V) = ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)

+
∂

∂z

(
k
∂T
∂z

)
− p

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)

+λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)2

+μ

⎡⎢⎢⎢⎢⎢⎣2
(
∂u
∂x

)2

+ 2

(
∂v
∂y

)2

+ 2

(
∂w
∂z

)2

+

(
∂u
∂y

+
∂v
∂x

)2

+

(
∂u
∂z

+
∂w
∂x

)2

+

(
∂v
∂z

+
∂w
∂y

)2⎤⎥⎥⎥⎥⎥⎦ (2.62)

Equation (2.62) is the conservation form of the energy equation, written in terms
of the internal energy.

Repeating the steps from Eq. (2.57) to Eq. (2.61), except operating on the total
energy, (e + V2/2), instead of just the internal energy, e, we obtain

ρ
D

(
e + V2

2

)
Dt

=
∂

∂t

[
ρ

(
e +

V2

2

)]
+

Δ

[
ρ

(
e +

V2

2

)
�V

]
(2.63)

Substituting Eq. (2.63) into the left-hand side of Eq. (2.52), we obtain

∂

∂t

[
ρ

(
e +

V2

2

)]
+

Δ

·
[
ρ

(
e +

V2

2
�V

)]

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)

+
∂

∂z

(
k
∂T
∂z

)
− ∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y
+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z

+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

+ρ �f · �V (2.64)

Equation (2.64) is the conservation form of the energy equation, written in terms of
the total energy, (e + V2/2).
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As a final note in this section, there are many other possible forms of the energy
equation; for example, the equation can be written in terms of enthalpy, h, or to-
tal enthalpy, (h + V2/2). We will not take the time to derive these forms here; see
Refs. [1–3] for more details.

2.8 Summary of the Governing Equations for Fluid Dynamics:
With Comments

By this point in our discussions, you have seen a large number of equations, and they
may seem to you at this stage to be ‘all looking alike’. Equations by themselves can
be tiring, and this chapter would seem to be ‘wall-to-wall’ equations. However, all
of theoretical and computational fluid dynamics is based on these equations, and
therefore it is absolutely essential that you are familiar with them, and that you
understand their physical significance. That is why we have spent so much time and
effort in deriving the governing equations.

Considering this time and effort, it is important to now summarize the important
forms of these equations, and to sit back and digest them.

2.8.1 Equations for Viscous Flow

The equations that have been derived in the preceding sections apply to a viscous
flow, i.e. a flow which includes the dissipative, transport phenomena of viscosity and
thermal conduction. The additional transport phenomenon of mass diffusion has not
been included because we are limiting our considerations to a homogenous, non-
chemically reacting gas. If diffusion were to be included, there would be additional
continuity equations—the species continuity equations involving mass transport of
chemical species i due to a concentration gradient in the species. Moreover, the
energy equation would have an additional term to account for energy transport due to
the diffusion of species. See, for example, Ref. [4] for a discussion of such matters.

With the above restrictions in mind, the governing equations for an unsteady,
three-dimensional, compressible, viscous flow are:

Continuity equations
(Non-conservation form—Eq. (2.18))

Dρ
Dt

+ρ

Δ

· �V = 0

(Conservation form—Eq. (2.27))

∂ρ

∂t
+

Δ

· (ρ�V) = 0
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Momentum equations
(Non-conservation form—Eqs. (2.36a–c))

x-component : ρ
Du
Dt

= −∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ρ fx

y-component : ρ
Dv
Dt

= −∂p
∂y

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ρ fy

z-component : ρ
Dw
Dt

= −∂p
∂z

+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ρ fz

(Conservation form—Eqs. (2.42a–c))

x-component :
∂(ρu)
∂t

+

Δ

· (ρu�V) = −∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ρ fx

y-component :
∂(ρv)
∂t

+

Δ

· (ρv�V) = −∂p
∂y

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ρ fy

z-component :
∂(ρw)
∂t

+

Δ

· (ρw�V) = −∂p
∂z

+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ρ fz

Energy equation
(Non-conservation form—Eq. (2.52))

ρ
D
Dt

(
e +

V2

2

)
= ρq̇ +

∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− ∂(up)
∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y
+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y

+
∂(vτzy)

∂z
+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

+ρ �f · �V

(Conservation form—Eq. (2.64))

∂

∂t

[
ρ

(
e +

V2

2

)]
+

Δ

·
[
ρ

(
e +

V2

2
�V

)]

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)

+
∂

∂z

(
k
∂T
∂z

)
− ∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y
+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y

+
∂(vτzy)

∂z
+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

+ρ �f · �V
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2.8.2 Equations for Inviscid Flow

Inviscid flow is, by definition, a flow where the dissipative, transport phenomena
of viscosity, mass diffusion and thermal conductivity are neglected. The governing
equations for an unsteady, three-dimensional, compressible inviscid flow are ob-
tained by dropping the viscous terms in the above equations.

Continuity equation
(Non-conservation form)

Dρ
Dt

+ρ

Δ

· �V = 0

(Conservation form)
∂ρ

∂t
+

Δ

· (ρ�V) = 0

Momentum equations
(Non-conservation form)

x-component : ρ
Du
Dt

= −∂p
∂x

+ρ fx

y-component : ρ
Dv
Dt

= −∂p
∂y

+ρ fy

z-component : ρ
Dw
Dt

= −∂p
∂z

+ρ fz

(Conservation form)

x-component :
∂(ρu)
∂t

+

Δ

· (ρu�V) = −∂p
∂x

+ρ fx

y-component :
∂(ρv)
∂t

+

Δ

· (ρv�V) = −∂p
∂y

+ρ fy

z-component :
∂(ρw)
∂t

+

Δ

· (ρw�V) = −∂p
∂z

+ρ fz

Energy equation
(Non-conservation form)

ρ
D
Dt

(
e +

V2

2

)
= pq̇− ∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+ρ �f · �V

(Conservation form)

∂

∂t

[
ρ

(
e +

V2

2

)]
+

Δ

·
[
ρ

(
e +

V2

2

)
�V

]
= ρq̇− ∂(up)

∂x
− ∂(vp)

∂y

− ∂(wp)
∂z

+ρ �f · �V
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2.8.3 Comments on the Governing Equations

Surveying the above governing equations, several comments and observations can
be made.

(1) They are a coupled system of non-linear partial differential equations, and hence
are very difficult to solve analytically. To date, there is no general closed-form
solution to these equations.

(2) For the momentum and energy equations, the difference between the non-
conservation and conservation forms of the equations is just the left-hand side.
The right-hand side of the equations in the two different forms is the same.

(3) Note that the conservation form of the equations contain terms on the left-hand
side which include the divergence of some quantity, such as

Δ

· (ρ�V),

Δ

· (ρu�V),
etc. For this reason, the conservation form of the governing equations is some-
times called the divergence form.

(4) The normal and shear stress terms in these equations are functions of the veloc-
ity gradients, as given by Eqs. (2.43a, b, c, d, e and f ).

(5) The system contains five equations in terms of six unknown flow-field variables,
ρ, p, u, v, w, e. In aerodynamics, it is generally reasonable to assume the gas
is a perfect gas (which assumes that intermolecular forces are negligible—see
Refs. [1, 3]. For a perfect gas, the equation of state is

p = ρRT

where R is the specific gas constant. This provides a sixth equation, but it also
introduces a seventh unknown, namely temperature, T . A seventh equation to
close the entire system must be a thermodynamic relation between state vari-
ables. For example,

e = e(T, p)

For a calorically perfect gas (constant specific heats), this relation would be

e = cvT

where cv is the specific heat at constant volume.
(6) In Sect. 2.6, the momentum equations for a viscous flow were identified as the

Navier–Stokes equations, which is historically accurate. However, in the mod-
ern CFD literature, this terminology has been expanded to include the entire
system of flow equations for the solution of a viscous flow—continuity and en-
ergy as well as momentum. Therefore, when the computational fluid dynamic
literature discusses a numerical solution to the ‘complete Navier–Stokes equa-
tions’, it is usually referring to a numerical solution of the complete system of
equations, say for example Eqs. (2.27), (2.42a, b, c, d, e and c) and (2.64). In
this sense, in the CFD literature, a ‘Navier–Stokes solution’ simply means a
solution of a viscous flow problem using the full governing equations.
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2.8.4 Boundary Conditions

The equations given above govern the flow of a fluid. They are the same equations
whether the flow is, for example, over a Boeing 747, through a subsonic wind tun-
nel or past a windmill. However, the flow fields are quite different for these cases,
although the governing equations are the same. Why? Where does the difference
enter? The answer is through the boundary conditions, which are quite different for
each of the above examples. The boundary conditions, and sometimes the initial
conditions, dictate the particular solutions to be obtained from the governing equa-
tions. For a viscous fluid, the boundary condition on a surface assumes no relative
velocity between the surface and the gas immediately at the surface. This is called
the no-slip condition. If the surface is stationary, with the flow moving past it, then

u = v = w = 0 at the surface (for a viscous flow)

For an inviscid fluid, the flow slips over the surface (there is no friction to promote
its ‘sticking’ to the surface); hence, at the surface, the flow must be tangent to the
surface.

�V ·�n = 0 at the surface (for an inviscid flow)

where �n is a unit vector perpendicular to the surface. The boundary conditions else-
where in the flow depend on the type of problem being considered, and usually
pertain to inflow and outflow boundaries at a finite distance from the surfaces, or an
‘infinity’ boundary condition infinitely far from the surfaces.

The boundary conditions discussed above are physical boundary conditions im-
posed by nature. In computational fluid dynamics we have an additional concern,
namely, the proper numerical implementation of the boundary conditions. In the
same sense as the real flow field is dictated by the physical boundary conditions, the
computed flow field is driven by the numerical boundary conditions. The subject
of proper and accurate boundary conditions in CFD is very important, and is the
subject of much current CFD research. We will return to this matter at appropriate
stages in these chapters.

2.9 Forms of the Governing Equations Particularly Suited
for CFD: Comments on the Conservation Form

We have already noted that all the previous equations in conservation form have a
divergence term on the left-hand side. These terms involve the divergence of the flux
of some physical quantity, such as:

(From Eq. (2.27)): ρ�V — mass flux
(From Eq. (2.42b)): ρu�V —flux of x-component of momentum
(From Eq. (2.42b)): ρv�V —flux of y-component of momentum
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(From Eq. (2.42c)): ρw�V —flux of z-component of momentum
(From Eq. (2.62)): ρe�V — flux of internal energy
(From Eq. (2.64)): ρ

(
e + V2/2

)
�V — flux of total energy

Recall that the conservation form of the equations was obtained directly from a
control volume that was fixed in space, rather than moving with the fluid. When the
volume is fixed in space, we are concerned with the flux of mass, momentum and
energy into and out of the volume. In this case, the fluxes themselves become im-
portant dependent variables in the equations, rather than just the primitive variables
such as p, ρ, �V , etc.

Let us pursue this idea further. Examine the conservation form of all the govern-
ing equations—continuity, momentum and energy. Note that they all have the same
generic form, given by

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= J (2.65)

Equation (2.65) can represent the entire system of governing equations in conser-
vation form if U, F, G, H and J are interpreted as column vectors, given by

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

ρu

ρv

ρw

ρ(e + V2/2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρu

ρu2 + p−τxx

ρvu−τxy

ρwu−τxz

ρ(e + V2/2)u + pu− k
∂T
∂x
−uτxx− vτxy−wτxz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρv

ρuv−τyx

ρv2 + p−τyy

ρwv−τyz

ρ(e + V2/2)v + pv− k
∂T
∂y
−uτyx− vτyy−wτyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρw

ρuw−τzx

ρvw−τzy

ρw2 + p−τzz

ρ(e + V2/2)w + pw− k
∂T
∂z
−uτzx− vτzy−wτzz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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J =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

ρ fx
ρ fy
ρ fz
ρ(u fx + v fy + w fz) +ρq̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In Eq. (2.65), the column vectors F, G, and H are called the flux terms (or flux

vectors), and J represents a ‘source term’ (which is zero if body forces are negligi-
ble). For an unsteady problem, U is called the solution vector because the elements
in U (ρ, ρu, ρv, etc.) are the dependent variables which are usually solved numeri-
cally in steps of time. Please note that, in this formalism, it is the elements of U that
are obtained computationally, i.e. numbers are obtained for the products ρu, ρv, ρw
and ρ(e + V2/2) rather than for the primitive variables u, v, w and e by themselves.
Hence, in a computational solution of an unsteady flow problem using Eq. (2.65),
the dependent variables are treated as ρ, ρu, ρv, ρw and ρ(e + V2/2). Of course,
once numbers are known for these dependent variables (which includes ρ by itself ),
obtaining the primitive variables is simple:

ρ = ρ

u =
ρu
ρ

v =
ρv
ρ

w =
ρw
ρ

e =
ρ(e + V2/2)

ρ
− u2 + v2 + w2

2

For an inviscid flow, Eq. (2.65) remains the same, except that the elements of
the column vectors are simplified. Examining the conservation form of the inviscid
equations summarized in Sect. 2.8.2, we find that

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

ρu

ρv

ρw

ρ(e + V2/2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
; F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρu

ρu2 + p

ρuv

ρuw

ρu(e + V2/2) + pu

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρv

ρuv

ρv2 + p

ρwv

ρv(e + V2/2) + pv

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
; H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρw

ρuw

ρvw

ρw2 + p

ρw(e + V2/2) + pw

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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J =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

ρ fx
ρ fy
ρ fz
ρ(u fx + v fy + w fz) +ρq̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

For the numerical solution of an unsteady inviscid flow, once again the solution
vector is U, and the dependent variables for which numbers are directly obtained are
ρ, ρu, ρv, ρw, and ρ(e + V2/2). For a steady inviscid flow, ∂U/∂t = 0. Frequently,
the numerical solution to such problems takes the form of ‘marching’ techniques;
for example, if the solution is being obtained by marching in the x-direction, then
Eq. (2.65) can be written as

∂F
∂x

= J− ∂G
∂y

+
∂H
∂z

(2.66)

Here, F becomes the ‘solutions’ vector, and the dependent variables for which
numbers are obtained are ρu, (ρu2 + p), ρuv, ρuw and [ρu(e + V2/2) + pu]. From
these dependent variables, it is still possible to obtain the primitive variables, al-
though the algebra is more complex than in our previously discussed case (see
Ref. [5] for more details).

Notice that the governing equations, when written in the form of Eq. (2.65), have
no flow variables outside the single x, y, z and t derivatives. Indeed, the terms in
Eq. (2.65) have everything buried inside these derivatives. The flow equations in the
form of Eq. (2.65) are said to be in strong conservation form. In contrast, examine
the form of Eqs. (2.42a, b and c) and (2.64). These equations have a number of x, y
and z derivatives explicitly appearing on the right-hand side. These are the weak
conservation form of the equations.

The form of the governing equations given by Eq. (2.65) is popular in CFD; let
us explain why. In flow fields involving shock waves, there are sharp, discontinu-
ous changes in the primitive flow-field variables p, ρ, u, T , etc., across the shocks.
Many computations of flows with shocks are designed to have the shock waves ap-
pear naturally within the computational space as a direct result of the overall flow-
field solution, i.e. as a direct result of the general algorithm, without any special
treatment to take care of the shocks themselves. Such approaches are called shock-
capturing methods. This is in contrast to the alternate approach, where shock waves
are explicitly introduced into the flow-field solution, the exact Rankine–Hugoniot
relations for changes across a shock are used to relate the flow immediately ahead
of and behind the shock, and the governing flow equations are used to calculate the
remainder of the flow field. This approach is called the shock-fitting method. These
two different approaches are illustrated in Figs. 2.8 and 2.9. In Fig. 2.8, the com-
putational domain for calculating the supersonic flow over the body extends both
upstream and downstream of the nose. The shock wave is allowed to form within
the computational domain as a consequence of the general flow-field algorithm,
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Fig. 2.8 Mesh for the
shock-capturing approach

without any special shock relations being introduced. In this manner, the shock
wave is ‘captured’ within the domain by means of the computational solution of
the governing partial differential equations. Therefore, Fig. 2.8 is an example of the
shock-capturing method. In contrast, Fig. 2.9 illustrates the same flow problem, ex-
cept that now the computational domain is the flow between the shock and the body.
The shock wave is introduced directly into the solution as an explicit discontinuity,
and the standard oblique shock relations (the Rankine–Hugoniot relations) are used
to fit the freestream supersonic flow ahead of the shock to the flow computed by the
partial differential equations downstream of the shock. Therefore, Fig. 2.9 is an ex-
ample of the shock-fitting method. There are advantages and disadvantages of both
methods. For example, the shock-capturing method is ideal for complex flow prob-
lems involving shock waves for which we do not know either the location or number
of shocks. Here, the shocks simply form within the computational domain as nature
would have it. Moreover, this takes place without requiring any special treatment
of the shock within the algorithm, and hence simplifies the computer programming.
However, a disadvantage of this approach is that the shocks are generally smeared
over a number of grid points in the computational mesh, and hence the numeri-
cally obtained shock thickness bears no relation what-so-ever to the actual physical
shock thickness, and the precise location of the shock discontinuity is uncertain
within a few mesh sizes. In contrast, the advantage of the shock-fitting method is

Fig. 2.9 Mesh for the
shock-fitting approach
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that the shock is always treated as a discontinuity, and its location is well-defined
numerically. However, for a given problem you have to know in advance approxi-
mately where to put the shock waves, and how many there are. For complex flows,
this can be a distinct disadvantage. Therefore, there are pros and cons associated
with both shock-capturing and shock-fitting methods, and both have been employed
extensively in CFD. In fact, a combination of these two methods is possible, wherein
a shock-capturing approach during the course of the solution is used to predict the
formation and approximate location of shocks, and then these shocks are fit with
explicit discontinuities midway through the solution. Another combination is to fit
shocks explicitly in those parts of a flow field where you know in advance they oc-
cur, and to employ a shock-capturing method for the remainder of the flow field in
order to generate shocks that you cannot predict in advance.

Again, what does all of this discussion have to do with the conservation form of
the governing equations as given by Eq. (2.65)? Simply this. For the shock-capturing
method, experience has shown that the conservation form of the governing equations
should be used. When the conservation form is used, the computed flow-field results
are generally smooth and stable. However, when the non-conservation form is used
for a shock-capturing solution, the computed flow-field results usually exhibit unsat-
isfactory spatial oscillations (wiggles) upstream and downstream of the shock wave,
the shocks may appear in the wrong location and the solution may even become
unstable. In contrast, for the shock-fitting method, satisfactory results are usually
obtained for either form of the equations—conservation or non-conservation.

Why is the use of the conservation form of the equations so important for the
shock-capturing method? The answer can be seen by considering the flow across
a normal shock wave, as illustrated in Fig. 2.10. Consider the density distribution
across the shock, as sketched in Fig. 2.10(a). Clearly, there is a discontinuous in-
crease in ρ across the shock. If the non-conservation form of the governing equa-
tions were used to calculate this flow, where the primary dependent variables are
the primitive variables such as ρ and p, then the equations would see a large dis-
continuity in the dependent variable ρ. This in turn would compound the numerical
errors associated with the calculation of ρ. On the other hand, recall the continuity
equation for a normal shock wave (see Refs. [1, 3]):

ρ1u1 = ρ2u2 (2.67)

From Eq. (2.67), the mass flux, ρu, is constant across the shock wave, as illustrated
in Fig. 2.10(b). The conservation form of the governing equations uses the product
ρu as a dependent variable, and hence the conservation form of the equations see no
discontinuity in this dependent variable across the shock wave. In turn, the numer-
ical accuracy and stability of the solution should be greatly enhanced. To reinforce
this discussion, consider the momentum equation across a normal shock wave [1,3]:

p1 +ρ1u2
1 = p2 +ρ2u2

2 (2.68)

As shown in Fig. 2.10(c), the pressure itself is discontinuous across the shock;
however, from Eq. (2.68) the flux variable (p + ρu2) is constant across the shock.



50 J.D. Anderson, Jr.

Fig. 2.10 Variation of flow
properties through a normal
shock wave

This is illustrated in Fig. 2.10(d). Examining the inviscid flow equations in the con-
servation form given by Eq. (2.65), we clearly see that the quantity (p +ρu2) is one
of the dependent variables. Therefore, the conservation form of the equations would
see no discontinuity in this dependent variable across the shock. Although this ex-
ample of the flow across a normal shock wave is somewhat simplistic, it serves to
explain why the use of the conservation form of the governing equations are so
important for calculations using the shock-capturing method. Because the conser-
vation form uses flux variables as the dependent variables, and because the changes
in these flux variables are either zero or small across a shock wave, the numerical
quality of a shock-capturing method will be enhanced by the use of the conservation
form in contrast to the non-conservation form, which uses the primitive variables as
dependent variables.

In summary, the previous discussion is one of the primary reasons why CFD
makes a distinction between the two forms of the governing equations—conservation
and non-conservation. And this is why we have gone to great lengths in this chap-
ter to derive these different forms, to explain what basic physical models lead to
the different forms, and why we should be aware of the differences between the
two forms.
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