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Solving the Colebrook Equation for Friction Factors  

 
Introduction: 
 
 
In 1944 Lewis F. Moody, Professor, Hydraulic Engineering, Princeton University,  
published “Friction Factors for Pipe Flow”1.  The work of Moody, and the Moody 
Diagram on page 672 of the published transactions, has become the basis for 
many of the calculations on friction loss in pipes, ductwork and flues.  While there 
are modified versions of the original Moody Diagram, I will strive to use the 
original diagram as the basis for terminology used here. 
 
Moody references the work of C.F. Colebrook and C.M. White, amongst others, in 
developing his Moody Diagram.  The Moody Diagram can be used as a graphical 
solution of the Colebrook Equation.  There are tools available today that allow 
solution of the Colebrook Equation, in both its Implicit forms and Explicit forms, 
without using the graphical approach.  These are much more useful when working 
with electronic spreadsheets as will be done in this series.   
 
The series will examine: 
 
Implicit Forms of Colebrook: 
We will look at the three common forms of the Colebrook Equation.  The 
differences between these three equations will be examined and the deviations in 
the results that they produce will be explored. 

 
User Defined Functions (UDF) for the Implicit Forms of Colebrook: 
We will look at UDFs that solve the three Implicit forms of Colebrook.  The 
functions are written in the Visual Basic Editor which is part of Excel 
spreadsheets.  The accuracy of the UDFs will be compared to those obtained by 
Iteration.  
 
Explicit Forms of Colebrook: 
In this section we will be looking at four forms of the Colebrook Equations that I 
am familiar with.  I would also like to solicit the readers for any other explicit 
equations that they are familiar with and these will be included as well.  The four 
equations that I plan to discuss are: 
 Serghide’s Solution.3 
 Zigrang and Sylvester Solution.4 
 Swamee and Jain.5 
 Altshul-Tsal.6 
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Special Cases: 
In this section, several special case equations will be examined.  Where possible, 
the deviations between these equations and the parent equations will be 
evaluated.  We will also examine if these special case equations are needed 
because the Colebrook solutions are inadequate or if they are useful as merely 
simplified equations. 
 
 
What should be considered in selecting a method to solve Colebrook: 
Several alternatives will be presented for calculating the Friction Factor, “f ”.  Easy 
of use, accuracy, alternatives and limits of use are among the considerations to 
be evaluated. 
 
 
Implicit Forms of Colebrook 
 
There are at least three forms of the Colebrook Equation that can be found in 
current literature on hydraulics.  These are: 

 
Where: 
 f is the Friction Factor and is dimensionless 
 ε is the Absolute Roughness and is in units of length 
 D is the Inside Diameter and, as these formulas are written, is in the same 
units as ε.  
 R is the Reynolds Number and is dimensionless. 
 Note that ε/D is the Relative Roughness and is dimensionless. 
 
These three equations are referred to as “Implicit” Equations.  “Implicit” means 
that “f”, the Friction Factor, is “Implied or understood though not directly 
expressed”2.  Simply stated, the equations ARE NOT in the form of “f = ………”.  
These are sometimes referred to as “equivalent” but as we will see, the results will 
vary when calculated to the fourth significant digit. 
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These equations can be solved for “f” given the Relative Roughness (? /D) and 
the Reynolds Number, (R), by iteration.  Such iterations can be performed using 
an electronic spreadsheet. A spreadsheet, “Friction Factor Formulas for 
Cheresource.xls” is presented for demonstration.  The spreadsheet contains four 
worksheets.  The first “Tab” is labeled “Iterations”.  The Iterative solutions are 
generated by breaking the formulas in two parts, that which is left of the equal 
sign and that which is right of the equal sign.  (See row 20 as an example.)  The 
Iteration then tests values of “ f ” that will result in the difference between the two 
sides to be zero or very close to zero.  (A complete explanation was published in 
the ASHRAE Journal of September, 20027.)   
 
If you open the spreadsheet to the “Iterations” workbook and enter valves for 
Relative Roughness of .001 in cell C3 and Reynolds Number of 1,000,000 in cell 
C4, you will see cells C9, C11 and C13 all indicate that “Iteration Required”.  This 
is indicating that a solution has not been found and that an Iteration must be 
performed.  You will note that there is a Command Button titled “Perform 
Iterations” in the upper left hand area of the spreadsheet.  A macro was written to 
perform the necessary Iterations on the three formulas when this Command 
Button is clicked.  (You can alternatively execute the macro for the three Iterations 
using the Hotkeys “Ctrl – I” or execute the Iterations manually using the Tools / 
Goal Seek commands from the menu bar.) 
 
Assuming that the valves suggested have been entered and the Command Button 
has been clicked, cells C9, C11 and C13 should now contain valves.  Note that 
each value is identical for at least three significant digits, that being .0199…for the 
example given.  (If you refer to a Moody Diagram, you will see that the graphical 
solution appears to be approximately .02.)  You should also note that there is 
some difference between these cells starting at the fourth significant digit.  You 
may wonder if this is an error in the iteration or difference in the formulas 
themselves. 
 
The accuracy of the Iterative Solution can be validated by back substituting the 
result into the original equation.  I’m going to refer to this as the “Check Value”.  
Modifying Eq 1 by multiplying both sides of the equation by the square root of “f “ 
becomes: 
 

 
Back substituting the given Relative Roughness and Reynolds Numbers and the 
calculated Friction Factor, an exact solution would result in a “Check Value” of: 
  1 = 1.000000…… 
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The result of an iteration is limited by either the number of iterations or the 
maximum deviation allowed.  The result here, although extremely accurate, is less 
than exact.  (You may note that the difference in cell I20 was multiplied by 1000 to 
improve the accuracy over the default “Maximum Change” of .001 in Excel.)  
Given that the original formula was empirically derived, and that there is some 
difference between the results from the three forms of Colebrook, something less 
than the exact solution must be deemed acceptable.  What is practical from the 
stand point of Good Engineering Practice is something that will be discussed in 
the last section of this series.  For now, I will present “Check Values” taken to the 
sixth decimal point for comparing various solutions. 
 
In the spreadsheet, you will notice that “Check Values” are given in both columns 
D and E.  In column D, the “Check Values” are calculated using the same 
equation used in the iteration.  This indicates that the iterations produced very 
accurate results.  Column E, on the other hand, is calculated using the Friction 
Factor from the iteration of Eq 2 or 3, but back substituted into Eq 1 for calculating 
the “Check Values”. 
 
There is a problem with Eq 3; it isn’t capable of producing a result when a Relative 
Roughness of zero (representing smooth pipe) is entered.  The Visual Basic 
dialog box will appear with the message, “Run-time error ‘1004’.  Reference is not 
valid”  Click on the “End” Button to get out of the macro.  A good approximation 
can be calculated by entering a very small Relative Roughness, say .000 000 001. 
 
Enough for now on Iterative Solutions.  We will revisit this subject and the other 
solutions to be covered in the last section of this series. 
 
 
User Defined Functions: 
 
As an alternative to solving Colebrook using Iteration, User Defined Functions 
(UDFs) can be written that use a variety of methods to solve Colebrook.  In this 
series, we will examine the use of an iterative like approach that doesn’t require 
the initiation of the built-in Iteration Function (Goal Seek).  One advantage of this 
UDF that it can be used in a series of calculations such as a piping network 
without initiating an Iteration.  Another advantage is that it can be used in 
conjunction with another Iteration without embedding Iterations.  An example of 
this second advantage would be to Iterate for a fixed pressure drop by changing 
the flow, diameter or Relative Roughness.  An example will be presented. 
 
The UDFs presented in the demonstration spreadsheet are defined in the Visual 
Basic Editor.  (It’s not necessary to examine them but if you desire to do so, they  



                                    

“Solving the Colebrook Equation for Friction Factors”, Tom Lester, P.E., Bergmann Associates 
www.cheresources.com 

 
can be viewed from the menu bar Tools/Macro/Visual Basic Editor or from the 
keyboard shortcut “Alt-F11”.  In the Editor, the UDF “=fEq1()” is Module1.  These 
UDFs require the bare minimum knowledge of Visual Basic.  This, however, is 
beyond the scope of this series, although I would encourage the reader to look at 
how they have been created.) 
 
Each UDF is basically identical with only the difference in the right side of the 
equation changed for the three Colebrook Equations.  The basic routine is: 
-Visualize a plot of the Difference (as described in the previous Section) versus 
the Friction Factor. 
-Get an initial value for “f “ using the Swamee and Jain equation.  (More on 
Swamee and Jain Equation in the Explicit Section.) 
-Enter a “Do Loop Until” loop. 
-Calculate the slope of the Difference line. 
-Project where a straight line with this slope and “f “ value will cross the Friction 
Factor line. 
-Using the projected value from above, repeat the process until the conditions are 
satisfied. 
For a detailed explanation, refer to “Solving for Friction Factor”, ASHRAE Journal 
July 20038. 
 
Open the workbook under the Tab “User Defined Func”.  In column G the 
corresponding UDF is given for each form of Colebrook.  As different values of 
Relative Roughness and Reynolds Number are entered, the results from the 
UDFs are changed immediately.  The Iteration Command Button can be clicked to 
perform the Iterations as before so that the Iteration results can be compared with 
the UDFs.  “Check Values” in column I show that the UDF’s have successfully 
calculated the Friction Factor to 1.000000 in all cases. 
 
Example:  
From the “User Defined Func”workbook, first enter a Relative Roughness in cell 
C3 of .005 and a Reynolds Number of 1,000,000.  The various Friction Factors 
will be approximately .0304…..  Now lets assume that we want to know what 
Relative Roughness will give us a Friction Factor of .0200. 
-In cell E9 enter the formula “=G9*1000” without the quotation marks.  (This is 
necessary to achieve the desired accuracy.) 
-Place the cursor in cell E9. 
-Select Tools \Goal Seek from the menu. 
-The “Set Cell” should show “E9” if the cursor started in cell “E9” 
-Tab down to the “To Value” and enter 20.  (This is 1000 times the desired Friction 
Factor of .0200.) 
-Tab down to the “By Changing cell” and enter C3.  (This is the Relative 
Roughness number that will be changed to give the desired result.) 
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-Hit the “OK” Button and again hit the “OK” Button. 
 
At this point, the Relative Roughness in cell C3 should have changed to .0010124 
and the Friction Factor in cell G9 should have changed to .0200…. 
 
UDFs exist in the spreadsheet that they were created in or in a spreadsheet were 
they have been copied to.  They don’t exist in a blank spreadsheet.  To facilitate 
the process of using the UDF’s in an existing or new spreadsheet, each UDF has 
been exported to a “filename”.bas file.  To copy a UDF to a blank or existing 
spreadsheet; 
 
-Place the desired “filename”.bas in a directory where it can be easily found. 
-Open the spreadsheet that you wish to add the UDF to. 
-Go to the Visual Basic Editor.  (From the menu, Tools/Macro/Visual Basic Editor 
or use the keyboard shortcut “Alt-F11”. 
-In the Visual Basic Editor, from the menu bar, do a File/Import File/Hilight the file 
to be imported, a “filename”.bas file. 
-Hit the OK button and close the Visual Basic Editor. 
 
The UDF is now part of your spreadsheet and will be saved as part of the file, 
when you save it. 
 
To use the new spreadsheet, first decide which cells will contain the Relative 
Roughness and the Reynolds Number.  Second, you can do either; 

-From the Functions List, under User Defined Functions, you can select the 
Function and assign cell references for the Relative Roughness and 
Reynolds Number 

or 
-Simply write in the formula as “=fEq1(C3,C4)” assuming you want to use 
“fEq1(), the Relative Roughness is in cell C3 and Reynolds Number is in 
cell C4. 

 
There is a problem with Eq 3; it isn’t capable of producing a result for a Relative 
Rouhgness of zero (0), (representing smooth pipe).  If the Iteration is run with a 
zero (0) entered, the Visual Basic dialog box will appear with the message, “Run-
time error ‘1004’.  Reference is not valid”  Click on the “End” Button to get out of 
the macro.  A good approximation can be calculated by entering a very small 
Relative Roughness, say .000 000 001.  The UDF for Eq 3 will return “#VALUE!” 
with zero (0) Relative Roughness. 
 
 
That completes the Section on UDFs.  Next we will examine several Explicit 
Functions to calculate Friction Factor. 
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Explicit Forms 
 
 
 
As mentioned in the Introduction, there are four Explicit Equations that will be 
discussed. 
 
Serghide’s Solution.3 
 A = -2 log10[(RelRough / 3.7) + (12 / Reynolds#)] 
 B = -2 log10[(RelRough / 3.7) + (2.51*A / Reynolds#)] 

C = -2 log10[(RelRough / 3.7) + (2.51*B / Reynolds#)] 
f = (A-((B-A)2 / (C-(2*B) + A))-2 

 
 
Serghide can be used across the entire range of the Moody Diagram.  Its 
accuracy is unparalleled amongst the Explicit Equations evaluated here.  It 
appears to be based on Eq 1, as do all the Explicit Equations presented.  There is 
less deviation between Serghide and Eq 1 then there is between Eq 1 and either 
Eq 2 or Eq 3.   
 
The soft spot, if one can call this minimal deviation a soft spot, exists with Smooth 
Pipe (ε/D = 0) and a Reynolds Number of 170,000.  At this point, the deviation 
between Serghide and the iterative solution of Eq 1 is 0.0031%.  Because 
Serghide so closely mirrors Eq 1, it has approximately the same deviation to Eq 2 
and Eq 3 as does Eq 1. 
 
Serghide is perhaps the most complex entry that must be made into a 
spreadsheet.  The A, B and C parameters can be entered into separate cells and 
then the Friction Factor can be calculated in a fourth cell.  In the actual 
demonstration spreadsheet, under the Tab “Explicit Eq”, the calculations are 
placed in cells B42 to C48.  A User Defined Function, fSerg, was written as well.  
The VBM for this is fSerg.bas and can be copied to an existing worksheet in the 
same manner as described in the User Defined Function Section. 
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Zigrang and Sylvester Solution.4 

f = 1 / (-2log10(RelRough / 3.7 - 5.02 / Reynolds# * log10(RelRough / 3.77 –  
5.02 / Reynolds# * log10(RelRough / 3.77 + 13 / Reynolds#))))2 

 
Zigrang, like Serghide, can be used across the entire range of the Moody 
Diagram.  Of the Explicit Equations evaluated here, It is second in accuracy to 
Serghide.  The soft spot exists with Smooth Pipe (ε/D = 0) and a Reynolds 
Number of 64,500.  At this point, the deviation between Zigrang and the iterative 
solution of Eq 1 is 0.11%.  (This still compares favorable with the maximum 
deviations between Eq 1 and either Eq 2 or Eq 3.)  The deviation between Zigrang 
and Eq 2, at these same conditions, is 0.22%. 
 
One significant advantage of Zigrang is that it can be placed in a single cell of a 
spreadsheet, albeit a long entry. 
 
 
Swamee and Jain.5 
 f = .25 / (log10((RelRough / 3.7) + (5.74 / Reynolds#^.9)))2 
 
 
Swamee & Jain has limits but varies sources state these limits differently.  The 
referenced source states the limits as: 
 
 10-6 < ε/D < .01 and 5000 < Reynolds Number < 3x108 
 
Statements vary around accuracy but the reference states, “An easier, and almost 
as accurate procedure as the Moody Diagram is to use the empirical formulas of 
Swamee and Jain,…..”  Deviation to Eq 1 of 2.8+% is seen at ε/D of .01 and 
Reynolds Number of 5000. 
 
Swamee and Jain is easily entered into a single cell of a spreadsheet.  The fact 
that is has a limited range of use, while other Explicit Equations, specifically 
Serghide or Zigrang, do not, is a significant disadvantage. 
 
 
Altshul-Tsal6 
 f ’= 0.11 * (RelRough + 68/Reynolds#).25 
 if f ’ < .018, f = .85 f ’ + .0028 
 otherwise, f = f ’ 
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Altshul – Tsal can be found in numerous references and is generally not 
accompanied with any limited range of use.  This is regrettable as its accuracy is 
limited to Relative Roughness in the lower half of the Moody Diagram.  In the 
extreme case of Relative Roughness of .05, there is a 27+% deviation with the 
iterative solution of Eq 1, across the entire range of Reynolds Numbers. 
 
Special Cases: 
 
Terminology is critical when we speak of Special Cases.  Literature is inconsistent 
in referring to the various areas of the Moody Diagram.  As stated previously, I will 
strive to use terminology consistent with the original article of Moody (1944) and 
the Moody Diagram shown in that paper. 
 
The zones and special lines in the Moody Diagram are: 
 
Laminar Zone:  This is the area of Reynolds Number less than 2000.  In this zone, 
the Friction Factor is defined as f = 64 / Reynolds Number.  The Colebrook 
Equation does not apply. 
 
Critical Zone:  This is the area between  Reynolds Numbers greater than 2000 
and less than 4000.  The Colebrook Equation is not intended for this area. 
 
Smooth Pipe:  This is the line drawn at Relative Roughness, (ε/D) equal to zero. 
 
Dashed Line:  This is the line plotted from the relationship: 

1 / f.5 = R x ε/D / 200. 
 
Transition Zone:  Area bound by Reynolds Number greater than 4000, the 
Smooth Pipe Line and the Dashed Line. 
 
Complete Turbulence, Rough Pipe:  Area to the right of the Dashed Line. 
 
By applying a set of logical “IF Statements” consistent with these definitions, we 
can determine where on the Moody Diagram a set of conditions lies.  This is done 
in the demonstration spreadsheet, under the Tab “Special Cases”, cells E1 to I4.  
Knowing the Zone, we can determined if a “Special Case” applies. 
 
The Special Cases evaluated here are those dealing with Complete Turbulence, 
Rough Pipe and Smooth Pipe.  The first case is the Complete Turbulence, Rough 
Pipe. 
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Looking at Eq 1  and a Moody Diagram, it can be seen that; 

1. The fraction with Reynolds Number in denominator approaches zero 
as Reynolds Number becomes larger and larger. 

2. At higher Relative Roughness, the Reynolds Number has less 
impact on the Friction Factor. 

3. At Reynolds Number of 108, all Relative Roughness curves are 
essentially flat and the Friction Factor is independent of the 
Reynolds Number. 

 
 
This gives rise to a simplification of the Colebrook Equation where the Friction 
Factor is factorable: 
 
 f = 1 / ( 2*log10(3.7 / ε/D )2 
 
One question might be, “Does the Colebrook Equation still produce accurate 
results under the above condition?”  The demonstration spreadsheet, under the 
Tab “Special Cases” can help answer this question.  Along the Relative 
Roughness Curve of 0.05, examine the deviation between the Friction Factor as 
calculated with the full Colebrook Equation versus the Special Case: 
 

Reynolds Number Colebrook Eq 1 Special Case Equation 
15,000* .0730635 .0715507 

1,000,000 .0715738 .0715507 
100,000,000 .0715509 .0715507 

 *  The Dashed Line intersects the ε/D of .05 at approximately this point 
 
Two observations can be made: 

1. At the Dashed Line, there is a definite deviation, (2.07… %) 
2. At Reynolds Number of 100,000,000, the deviation is extremely small 

 
With regard to the first observation, a visual examination of the Moody Diagram 
will reveal that at .05 Relative Roughness and Reynolds of 15,000, the Relative 
Roughness curve still has some curvature to it.  Given that, some deviation should 
be expected. 
 
The example used is an extreme case but it shows that the Colebrook Equation is 
accurate in this Special Case situation.  This leads me to conclude that the 
Special Case Equation was developed for ease of use and not accuracy. 
 
The second Special Case is used for Smooth Pipe, where the Relative 
Roughness is zero.  Here again, simplification of the Colebrook Equation, for this  
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condition, exists that is factorable for “f”.  Two equations are given for two ranges 
of Reynolds Numbers: 
 

f = 0.3164 / Reynolds Number .25 
 limited to Reynolds Number <105 

and 
 f = 0.0032 + 0.221 / Reynolds Number .237 
  limited to 105 < Reynolds Number < 3*106 
 
Deviations of 1.09…%, at Reynolds Number of 99,999 and 1.97…% at Reynolds 
Number of 100,001 compared to Eq 1 can be seen in the demonstration 
spreadsheet.  I have no standard by which to judge the deviations.  At the 
Reynolds Numbers used, there is a .89…% variation between the two Special 
Cases themselves.  I suspect, without an real data, that the Colebrook Equation is 
perfectly adequate for this Special Case situation. 
 
What Should be Considered in Selecting a Method to Solve Colebrook: 
 
 
With the spreadsheets available today, numerous methods exist for calculating 
the Friction Factor from the Colebrook Equation.  Some cover the entire range of 
the Moody Diagram while others are limited to only part of the Diagram.  Special 
Cases, while simpler in format, are limited in their application as well.  It is the 
writers opinion the there is an overwhelming advantage to using a method that 
has no limits.  This seems especially true where a spreadsheet will be shared.  
While the original writer of the spreadsheet may be aware of its limitations, use by 
others, not familiar with these limitations, could lead to significant inaccuracies. 
 
The issue of Ease of Use is very much as individual matter.  Some may shy away 
from UDF’s as too complicated but for myself, I find UDF’s very easy to 
incorporate in both new and existing spreadsheets.  Once they exist in a 
spreadsheet, I find them easier to enter than the Explicit Equations that I would 
consider as acceptable alternatives. 
 
Iterations, once setup are easy to use on an individual case but are not easy to 
use in a piping network.  This is particularly true when “What If” scenarios are 
being evaluated. 
 
Eq 3 and fEq3 do not produce a result with Relative Roughness of 0.0.  While 
there are ways to deal with this, such as using an extremely low Relative 
Roughness, they do posse a problem that isn’t an issue with many other methods. 
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Whats acceptable?  That’s up to the engineer.  For me, I want a solution that 
covers the full range of the Moody Diagram, is as accurate as the deviations 
between the various forms of Colebrook and is easy to use.  I find that all of the 
following meet these criteria: 
 

1. UDF’s “fEq1”, fEq2” or “fSerg” 
2. The Explicit Methods of Serghide and Zigrang 
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