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1.3 Floating Point Form
Floating point numbers are used by computers to approximate real numbers.

On the surface, the question is a simple one. There are an infinite number of
real numbers, but a computer is a finite machine so it can only represent a finite
number of real numbers. That is, not all real numbers can be stored exactly.
Therein lies the problem.

If the computer can only store an approximation of a real number, then it is
essential that there is a discussion of the error involved.

In this section we will address each of these issues.

Floating Point Numbers
Each of the following numbers is equal to 123.4567 in base ten:

12345.67 · 10−2, 1.234567 · 102, and 0.01234567 · 104.

• In the first case, multiplying by 10−2 moves the decimal point two places to
the left, so 12345.67 · 10−2 = 123.4567.

• In the second case, multplying by 102 moves the decimal point two places to
the right, so 1.234567 · 102 = 123.4567.

• In the third case, multiplying by 104 moves the decimal point four places to
the right, so 0.01234567 · 104 = 123.4567.

Computers use a form of scientific notation to store approximations of real
numbers in n-digit floating point form.

n-digit Floating Point Form. An n-digit floating point has the form

±d1.d2d3 . . . dn · bm.

Note that the sign occurs first (plus or minus), followed by an n-digit number
d1.d2d3 . . . dn called the matissa. The number b is called the base and m is
called its exponent. Each digit di of the mantissa is an integer such that
0 ≤ di < b, for i = 2, 3, . . . , n. The first digit must satisfy 0 < d1 < b unless
the floating point number is zero.

For example, in base ten, the number 2.3854 · 10−13 is in 5-digit floating point
format, but the numbers 238.54 · 10−12 and 0.0023854 · 1012 are not.
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• In the first case, 238.54 · 10−12 has more than one digit to the left of the
decimal point. We can place this number in 5-digit floating point form by
repositioning the decimal point and adjusting the exponent. That is,

238.54 · 10−12 = 2.3854 · 10−10.

• In the second case, the first digit to the left of the decimal point in the number
0.0023854 · 1012 is zero, but 0.0023854 · 1012 is not zero. Again, we can place
this number in floating point form by repositioning the decimal point and
adjusting the exponent. That is,

0.0023854 · 1012 = 2.3854 · 109.

In the examples that follow, let’s assume that we are working on a base ten
machine that stores numbers in 5-digit floating point format.

I Example 1. Change the number 888.341983765 into 5-digit base ten floating
point format.

First, reposition the decimal point so that there is exactly one nonzero digit
to the left of the decimal point.

888.341983765 = 8.88341983765 · 102

The machine we are working on can only handle 5-digit floating point form. It
can’t store all the digits of the mantissa above. Therefore, we must determine the
closest 5-digit floating point number available and use that as an approximation
for our number. Note that our number lies between the two 5-digit floating point
numbers

8.8834 · 102 < 8.88341983765 · 102 < 8.8835 · 102,

but it is closer to 8.8834 · 102. Hence, in 5-digit floating point form,

888.341983765 ≈ 8.8834 · 102.

Note that we rounded towards zero in this example. Because the digit following
the 4 in 8.88341983765 · 102 is a 1, which is less than 5, we truncate the number
at 8.8834 · 102.

Let’s look at another example.

I Example 2. Change the number 0.00075493671278 into 5-digit base ten
floating point form.
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First, reposition the decimal point so that there is exactly one nonzero digit
to the left of the decimal point.

0.00075493671278 = 7.5493671278 · 10−4

Again, our machine can only handle 5-digit mantissas. Our number lies between
the following two 5-digit floating point numbers

7.5493 · 10−4 < 7.5493671278 · 10−4 < 7.5494 · 10−4,

but it is closer to the number 7.5494 · 10−4. Hence, in 5-digit floating point form,

0.00075493671278 = 7.5494 · 10−4.

Note that we rounded away from zero in this example. Because the digit following
the 3 in 7.5493671278 · 10−4 is a 6, which is 5 or greater, we add 1 to the previous
place before truncating to get 7.5494 · 10−4.

Let’s look at another example.

I Example 3. Suppose that the 5-digit base ten floating point representation
of a real number x is x∗ = 2.3086 · 10−4. Find the range of possible values for the
real number x.

In Examples 1 and 2, we saw that the computer will sometime rounds to-
wards zero and other times round away from zero, depending on the value of the
sixth digit in 5-digit floating point format. In this example, we’re given the 5-digit
base ten floating point form of the number, namely

x∗ = 2.3086 · 10−4.

• The very smallest that x could be is x = 2.30855 · 10−4. Any smaller, such
as x = 2.30854999 . . . · 10−4, and x would have been rounded towards zero to
x∗ = 2.3085 · 10−4.

• The very largest that x could be is x = 2.30864999 . . . · 10−4. Any larger,
such as x = 2.30865 · 10−4, and x would have been rounded away from zero to
x∗ = 2.3087 · 10−4.

Therefore, x could be any number in the range

2.30855 · 10−4 < x < 2.30864999 . . . · 10−4.
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Binary Floating Point Form
In binary (base two), things work pretty much the same. Note that the number
1.0011 ·2−3 is in 5-digit base two floating point form, but the numbers 1101.1 ·2−4

and 0.00011001 · 25 are not.

• In the first case, 1101.1 ·2−4 has more than one digit to the left of the decimal
point. We can place this number in floating point form by repositioning the
decimal point and adjusting the exponent.

1101.1 · 2−4 = 1.1011 · 2−1

• In the second case, the first digit to the left of the decimal point in the number
0.00011001 · 25 is not zero, but we can again reposition the decimal point and
adjust the exponent.

0.00011001 · 25 = 1.1001 · 21

Error
In this section we discuss the error made when storing a real number in n-digit
floating point form on a computer.

We will discuss two important types of error: (1) absolute error, and (2)
relative error.

In the discussion that follows, we will let x represent the real number and x∗

represent the n-digit floating point approximation of x.

Absolute and Relative Error. Let x∗ be the n-digit floating point rep-
resentation of the real number x. Then the absolute and relative error in
approximating x with x∗ is given by the formulae

Absolute Error = |x∗ − x|

and

Relative Error = |x∗ − x|
|x|

.

Let’s look at an example.

I Example 4. Calculate both the absolute and relative error when the real
number x = 938 756 is stored in 3-digit base ten floating point form.
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First, reposition the decimal point so that there is one nonzero digit to the
left of the decimal point.

x = 938 756 = 9.38756 · 105

We can only use 3 digits in the mantissa. The next digit to the right of 8 is a 7,
which is greater than 5, so we round up (away from zero) to

9.38756 · 105 = 9.39 · 105.

The result x∗ = 9.39 · 105 is in 3-digit base ten floating point form. We calculate
the absolute error with the following computation.

|x∗ − x| =
∣∣9.39 · 105 − 938 756

∣∣ = 244

That seems to be an very large error! But on second glance, note what the relative
error reveals.

|x∗ − x|
|x|

=
∣∣9.39 · 105 − 938 756

∣∣
|938 756|

≈ 2.6 · 10−4

A calculator was used to determine the approximation. Note that the number
x = 9.38756 · 105 and its approximation x∗ = 9.39 · 105 agree in about 3 places
and the exponent in the relative error 2.6 · 10−4 is −4.

We’ll see that the relative error is more useful. Let’s look at another example.

I Example 5. Calculate both the absolute and relative error when the real
number 0.000005823417658 is stored in 5-digit base ten floating point form.

Reposition the decimal point so that there is one nonzero digit to the left of
the decimal point.

x = 0.000005823417658 = 5.823417658 · 10−6

The mantissa is allowed 5 digits. Note that the next digit after the 4 is a 1, which
is less than 5, so we round down (towards zero) by truncating.

5.823417658 · 10−6 = 5.8234 · 10−6

The result x∗ = 5.8234 · 10−6 is in 5-digit base ten floating point form. The
absolute error is

|x∗ − x| =
∣∣5.8234 · 10−6 − 0.000005823417658

∣∣ = 1.7658 · 10−11,

which at first glance, appears very small indeed. But again, how small is the error
relative to the numbers involved? The relative error reveals the answer.
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|x∗ − x|
|x|

=
∣∣5.8234 · 10−6 − 0.000005823417658

∣∣
|0.000005823417658|

≈ 3.0 · 10−6 (1.1)

A calculator was used to find an approximation for the relative error. Note that
this error is much larger than the absolute error.

Also, note that x = 5.823417658 · 10−6 and x∗ = 5.8234 · 10−6 agree in ap-
proximately 5 digits and the exponent on the relative error 3.0 · 10−6 is −6.

Indeed, there is a technical definition for the number of significant digits.

Significant Digits. The number x∗ is said to approximate x to n significant
digits if n is the largest nonnegative integer for which

|x∗ − x|
|x|

< 5 · 10−n.

Thus, for example, in Example 4, we approximated x = 938 756 with x∗ =
9.39 · 105 and found that the relative error was

|x∗ − x|
|x|

≈ 2.6 · 10−4,

so the relative error is less than 5 · 10−4. Thus, by the definition, we say that
x∗ = 9.39 · 105 approximates x = 938 756 to 4 significant digits. However, note
that only the first two leading digits are the same.

In Example 5, we approximated x = 5.823417658 · 10−6 with x∗ = 5.8234 ·
10−6 and found that the relative error was

|x∗ − x|
|x|

≈ 3.0 · 10−6,

so the relative error is less than 5 · 10−6. Thus, by the definition, we say that
x∗ = 5.8234 · 10−6 approximates x = 5.823417658 · 10−6 to 6 significant digits.
Note, however, that only the first 5 leading digits are the same.

It is important to realize that the notion of significant digits and the the
number of digits of agreement between a number and its floating point form are
related, but not exactly the same. For example, in 5-digit floating point form,
approximating x = 7.899966666 · 103 with with its 5-digit floating pont form
x∗ = 7.9000 · 103 provides a relative error

|x∗ − x|
|x|

≈ 4.2 · 10−6,
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which is less than 5 · 10−6. Thus, x∗ approximates x to 6 significant digits.
However, the numbers x = 7.89996666 · 103 and x∗ = 7.9000 · 103 have only the
first leading digit in common. Still, in the sense of the relative error, it’s not
difficult to imagine the closeness of the digits in x∗ = 7.9000 · 10−6 to the first 6
digits of 7.89996666 · 10−6.

n-Digit Floating Point Form and Significant Digits. What is most
important to understand is the fact that there is a definite relationship be-
tween the the number of digits used to store the mantissa, the relative error,
and the number of significant digits.

Propogation of Error
Whenever we store an n-digit floating point form of a real number, we are making
an error. This error has a special name.

Roundoff Error. The error incurred when we store a real number in n-digit
flooting point form is called roundoff error.

With today’s modern computers, we can store numbers so that the initial
roundoff error is fairly insignificant. The difficulty lies in the fact that computers
can literally do billions of computations very quickly, so it is not uncommon to see
the original roundoff error propogate through a series of calculations, diverging
quickly so as to make the final outcome meaningless.

In the next section we will study some ways to keep this propogation of error
under control.
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1.3 Exercises

In Exercises 1-8, place the given num-
ber in 4-digit base ten floating point
form. In each case, calculate the ab-
solute and relative error made.

1. 1 885 934

2. 12 345 612

3. 0.0001234567

4. 0.0085188342

5. 888.456123

6. 1 765.33458

7. 0.0002312316

8. 0.00000556781245

In Exercises 9-12, a 4-digit base ten
floating point approximation x∗ of a
real number x is given. Determine a
range of possible values for x.

9. 2.446 · 10−12

10. 4.453 · 108

11. 5.684 · 105

12. 1.104 · 10−6

In Exercises 13-16, Place the given
number into n digit floating point for-
mat for the given value of n, calculate
the relativer error, then use the result
to determine the the number of signif-
icant digits in the approximation.

13. 1 789.23456, n = 5

14. 0.008456174 · 10−6, n = 3

15. 0.0000456712345 · 10−11, n = 6

16. 18.9123456 · 106, n = 4
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1.3 Answers

1. 1.886 · 106

3. 1.235 · 10−4

5. 8.885 · 102

7. 2.312 · 10−4

9. Range from 2.4455·10−12 to 2.4464999 . . .·
10−12.

11. Range from 5.6835·105 to 5.6844999 . . .·
105.

13. 1.7892 · 103, relative error is ap-
proximately 1.9 · 10−5, 5 significant
digits.

15. 4.56712·10−16, relative error ap-
proximately 7.6 · 10−7, 6 significant
digits.




