Ad hoc networks, which include a variety of autonomous networks for specific purposes, promise to enable a broad range of civilian, commercial, and military applications. These networks were originally envisioned as collections of autonomous mobile or stationary nodes that dynamically auto-configure themselves into a wireless network without relying on any existing network infrastructure or centralized administration. With the significant advances achieved in the last decade, the concept of ad hoc networks now assumes an even broader scope, referring to the many types of autonomous wireless networks designed and deployed for a specific task or function, such as wireless sensor networks, vehicular networks, home networks, and so on. In contrast to the traditional wireless networking paradigm, such networks are all characterized by sporadic connections, highly error-prone communications, distributed autonomous operation, and fragile multi-hop relay paths.

The various forms of ad hoc networks have led to significant new and interesting research challenges and problems, attracting substantial attention from academia, industry, and government. The new wireless networking paradigm necessitates reexamination of many established concepts and protocols, and calls for developing new understanding of fundamental problems such as interference, mobility, connectivity, capacity, and security, among others. While it is essential to advance theoretical research on fundamental and practical research on efficient policies, algorithms and protocols, it is also critical to develop useful applications, experimental prototypes, and real-world deployments to achieve immediate impact on society for the success of this wireless networking paradigm.

The annual International Conference on Ad Hoc Networks (AdHocNets) aims to provide a forum that brings together international researchers and practitioners to showcase recent research advances in ad hoc networks. AdHocNets 2009, the first edition of this event, was held in Niagara Falls, Canada, in September 2009. This special issue includes a collection of nine outstanding research papers selected from the technical program of AdHocNets 2009, which is a result of a two-stage rigorous selection process. First, out of the 109 submissions from 16 countries/regions in 5 continents, 43 papers were accepted for presentation, including a few invited papers. Among the 43 papers, 9 papers were invited to extend and enhance their work for further consideration for publication, and were finally accepted for inclusion in the special issue after revision based on the reviewers’ comments provided in a rigorous review process.

The papers included in this special issue cover a range of topics that report recent research advances in ad hoc networks. In the first paper, “Scalable Max–Min Fairness in Wireless Ad Hoc Networks”, Zhou and Maxemchuk demonstrate how to apply a macro model that they previously proposed to perform flow and access control in wireless ad hoc networks to achieve max–min fair rate allocation, which can guarantee the quality of service for many real-time applications.

In the second paper, “Upper Bounding Service Capacity in Multihop Wireless SSMA-Based Ad Hoc Networks,” Du, et al. study the upper bounds on the service carrying capacity of a multihop wireless SSMA-based ad hoc network, and present an efficient tabu search-based heuristic algorithm to solve the problem and rigorously assess the quality of the results.

The third paper, “Connectivity-Aware Minimum-Delay Geographic Routing with Vehicle Tracking in VANETs,” by Shafiee and Leung, et al. proposes a connectivity-aware minimum-delay geographic routing (CMGR) protocol for vehicular ad hoc networks (VANETs), which adapts well to the continuously changing network status in such networks, and studies the performance limitations of CMGR in special vehicular networking situations.

The fourth paper, “Joint Random Access and Power Control Game in Ad Hoc Networks with Non-cooperative Users,” by Long, et al. considers the joint random access and power control problem in wireless ad hoc networks and formulates the problem as a non-cooperative game, in which each user minimizes its average transmission cost to support a given rate requirement. An asynchronous distributed algorithm is proposed to compute the solution of
the game based on myopic best response updates, which converges to the Nash equilibrium globally.

The fifth paper, “Contact Time in Random Walk and Random Waypoint: Dichotomy in Tail Distribution,” by Zhao and Sichitiu performs a mathematical analysis of the contact time distribution in random walk models in the hope of bridging the gap between two existing models: the direct traversal model and the consecutive random walk model, and concludes that for general random walks with uniform speed distribution, the probability distribution function of the contact time has a tail that is actually between the two extremes, a power-law-sub-exponential dichotomy.

In the sixth paper, “Performance Analysis of Slotted ALOHA and Network Coding for Single-Relay Multi-User Wireless Networks,” Umehara, et al. develop mathematical models that can be used to analyze the throughput and delay of slotted ALOHA (S-ALOHA) and S-ALOHA with network coding (S-ALOHA/NC) in single-relay multi-user wireless networks with bidirectional data flows.

In the seventh paper, “Graph Marginalization for Rapid Assignment in Wide-Area Surveillance,” Ebden and Roberts consider the problem of decentralized optimization in a wide-area surveillance sensor network setting. Graph marginalization in the form of belief propagation is employed to achieve the goal of maximizing an arbitrary utility function related to object tracking or identification.

The eighth paper, “SPECS: Secure and Privacy Enhancing Communications Schemes for VANETs,” by Chim, et al. provides a software-based solution which makes use of only two shared secrets to satisfy the privacy requirement and gives lower message overhead and at least a 45 percent higher success rate than previous solutions in the message verification phase using Bloom filter and the binary search techniques.

In the last paper, “Computationally Efficient Mutual Entity Authentication in Wireless Sensor Networks,” Li and Gong propose a computationally efficient authentication framework based on learning parity with noise (LPN), which introduces a new noise mode to prevent a general man-in-the-middle attack against previous LPN-based protocols, presents a gentle approach to securely combine several HB-like one-way authentication protocols, and extends to mutual authentication which effectively thwarts the reflection attack.

The papers included in this special issue represent recent significant research advances in ad hoc networks. We hope that the readers will find this collection timely and informative, and that the special issue will become an important reference for researchers and practitioners in the area.

We thank all the authors for their contributions to this special issue. We are grateful to all reviewers for their time and efforts in carefully reviewing all the papers and providing valuable review comments. We would also like to thank Prof. Ian F. Akyildiz, the Editor-in-Chief of the Ad Hoc Networks journal, for providing the opportunity to accommodate this special issue. We would also like to thank Devaprapsh Kohandapani, the Journal Manager, Jie Chen, the Content Development Coordinator, and all other production staff for their support during the publication process.

Guest Editors

Jun Zheng
National Mobile Communications Research Laboratory,
Southeast University, Nanjing, Jiangsu 210096, China
E-mail address: junzheng@seu.edu.cn

Shiwen Mao
Department of Electrical and Computer Engineering,
Department of Auburn University, Auburn, AL 36849-5201,
United States
E-mail address: smao@auburn.edu

Scott F. Midkiff
Bradley Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA 24061, United States
E-mail address: midkiff@vt.edu

Tommaso Melodia
Department of Electrical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, United States
E-mail address: tmelodia@eng.buffalo.edu

Jun Zheng (junzheng@seu.edu.cn) received the Ph.D. degree in Electrical and Electronic Engineering from The University of Hong Kong, Hong Kong, in 2000. He is a Full Professor at the National Mobile Communications Research Laboratory, Southeast University (SEU), Nanjing, Jiangsu, China. Before joining SEU, he was with the School of Information Technology and Engineering, University of Ottawa, Ottawa, ON, Canada. He has co-edited (chief editor) the book Wireless Sensor Networks: A Networking Perspective (New York: Wiley-IEEE Press, 2009), and has published more than 80 technical papers in refereed journals and magazines, and peer-reviewed conference proceedings. His research interests include mobile communication networks, wireless sensor networks, and mobile ad hoc networks, focused on network architectures and protocols. He serves as an Associate Technical Editor of IEEE Communications Magazine, an Editor of IEEE Communications Surveys & Tutorials, and an editorial board member of several other refereed journals, including Elsevier Ad Hoc Networks Journal and Wiley Wireless Communications and Mobile Computing. He has co-edited ten special issues for different refereed journals and magazines, including IEEE Journal on Selected Areas in Communications and IEEE Network, all as Lead Guest Editor. He has served as the founding General Chair of AdHocNets’09, General Chair of AccessNets’07, and TPC or Symposium Co-Chair for several international conferences and symposia, including IEEE GLOBECOM’08, ICC’09, GLOBECOM’10, and ICC’11. He has also served as a TPC member for a number of international conferences and symposiums. He is a senior member of the IEEE.

Shiwen Mao (smao@auburn.edu) received the Ph.D. degree in Electrical and Computer Engineering from Polytechnic University (now Polytechnic Institute of New York University), Brooklyn, NY in 2004. He was a Research Scientist at Virginia Tech, Blacksburg, VA from 2003 to 2006. Currently, he is an Assistant Professor in the Department of Electrical and Computer Engineering at Auburn University, Auburn, AL, USA. His research interests include modeling, performance analysis, optimization, and algorithms for wireless networks, with current focus on cognitive radio networks, free space optical
networks, and multimedia communications. His research has been, and is supported by the NSF, DOD, and TranSwitch Corporation. He received the US National Science Foundation (NSF) Faculty Early Career Development (CAREER) Award in 2010. He is a co-recipient of the 2004 IEEE Communications Society Leonard G. Abraham Prize in the Field of Communications Systems, and the Best Paper Runner-up Award of The Fifth International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine) in 2008. He is on the Editorial Board of IEEE Transactions on Wireless Communications, Elsevier Ad Hoc Networks Journal, Wiley International Journal of Communication Systems, and ICST Transactions on Mobile Communications and Applications. He also chairs the Interest Group on Cross-layer Design for Multimedia Communications of IEEE Communications Society’s Technical Committee on Multimedia Communications for the term of 2010. He is a member of Tau Beta Pi, Eta Kappa Nu, and a Senior Member of the IEEE.

Scott F. Midkiff (midkiff@vt.edu) is Professor and Department Head in the Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. He received the B.S.E. and Ph.D. degrees from Duke University, Durham, NC, and the M.S. degree from Stanford University, Stanford, CA, all in Electrical Engineering. He worked at Bell Laboratories and held a visiting research position at Carnegie Mellon University, Pittsburgh, PA. He joined Virginia Tech in 1986. From 2006 to 2009, he served as a Program Director at the National Science Foundation. His research and teaching interests include wireless and ad hoc networks, network services for pervasive computing, and cyber-physical systems.

Tommaso Melodia (tmelodia@eng.buffalo.edu) is an Assistant Professor with the Department of Electrical Engineering at the University at Buffalo, The State University of New York (SUNY), where he directs the Wireless Networks and Embedded Systems Laboratory. He received his Ph.D. in Electrical and Computer Engineering from the Georgia Institute of Technology in 2007. He had previously received his “Laurea” (integrated B.S. and M.S.) and Doctorate degrees in Telecommunications Engineering from the University of Rome “La Sapienza,” Rome, Italy, in 2001 and 2006, respectively. He is the recipient of the BWN-Lab Researcher of the Year award for 2004. He coauthored a paper that was recognized as the Fast Breaking Paper in the field of Computer Science for February 2009 by Thomson ISI Essential Science Indicators. He is an Editor for the Computer Networks (Elsevier) Journal, IEEE Communications Surveys & Tutorials, Transactions on Mobile Computing and Applications (ICST) and for the Journal of Sensors (Hindawi). He serves in the technical program committees of several leading conferences in wireless communications and networking, including IEEE Infocom, ACM Mobisym, and ACM Mobihci. He was the technical co-chair of the Ad Hoc and Sensor Networks Symposium for IEEE ICC 2009. His current research interests are in modeling and optimization of multi-hop wireless networks, cross-layer design and optimization, cognitive radio networks, multimedia sensor networks, and underwater acoustic networks.