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Abstract—With the increasing demand for location-based ser-
vice, WiFi-based localization has become one of the most popular
methods due to the wide deployment of WiFi and its low cost. To
improve this technology, we propose DeepMap, a deep Gaussian
process for indoor radio map construction and location esti-
mation. Received signal strength (RSS) samples are used in
DeepMap to generate accurate and fine-grained radio maps. A
two-layer deep Gaussian process model is designed to determine
the relationship between the location and RSS samples, while the
model parameters are optimized with an offline Bayesian training
method. To identify the location of a mobile device, a Bayesian
fusion method is proposed, which leverages RSS samples from
multiple access points (APs) to achieve high location estima-
tion accuracy. We conduct comprehensive experiments to verify
the performance of DeepMap in two indoor settings. DeepMap’s
robustness is validated using limited training data.

Index Terms—Deep Gaussian process, deep learning, indoor
localization, radio map construction.

I. INTRODUCTION

OCATION-BASED service has drawn great interest in

the industry and research community [1]-[5], largely due
to the popularity of mobile devices and wide deployment of
wireless networks. However, producing accurate location esti-
mates for mobile devices using radio-frequency (RF) signals is
still a challenging problem. This is because RF signals propa-
gate unpredictably in indoor environments (e.g., the multipath
effect degrades the localization precision of many indoor local-
ization systems [6]—[10]). To address the problem of accuracy
degradation that results from the complex signal propaga-
tion indoors, fingerprinting-based localization approaches have
gained notoriety and shown high promise. A fingerprinting-
based localization approach consists of an offline stage and an
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online stage. Fingerprints, in the form of RF signal features
and location pair, are collected and stored in the offline stage,
consisting of exhaustive records of the serviced area. In the
online stage, location estimation is obtained by comparing the
newly collected records to the stored fingerprints [11].

Owing to its low hardware requirement and ubiquitous
use, the received signal strength (RSS) of WiFi signals has
been leveraged as fingerprints in many proposed localiza-
tion systems. In the seminal work [12], the RSS was utilized
as fingerprints for the first time. Moreover, Youssef and
Agrawala [13] developed a discrete-space estimator for high
localization accuracy of an RSS-based fingerprinting system.
In more recent years, the channel state information (CSI)
has gained much attention from researchers because it car-
ries fine-grained information of the wireless channel estimated
from each subcarrier [14]-[19]. However, the density of fin-
gerprints is a key factor that significantly affects the accuracy
of indoor fingerprinting. To achieve high-accuracy localiza-
tion, a wardrive is essential for fingerprint collection, which
is usually time consuming and laborious.

To reduce the dependency on wardriving, a radio map can
be constructed with discrete training data in some localiza-
tion systems. The Gaussian process is a useful method for
building such radio maps. Regarding cellular networks, a
Gaussian process was used in the GPPS system for generating
radio maps [20]. In GPPS, the distribution of signal strength
was modeled by a Gaussian process and an unknown loca-
tion was estimated by maximizing a joint likelihood of RSSs
with respect to the position. Furthermore, a Gaussian pro-
cess regression (GPR) was utilized to model the relationship
of signal strength and location in many positioning systems
[21]-[26]. With a model regressed by a Gaussian process,
the distance between mobile devices and access points (APs)
could be conveniently inferred, and the estimated location of
the mobile device can be obtained by triangulation. However,
to locate mobile devices, it is necessary to know the accurate
locations of the APs. In many real-world scenarios, it is usu-
ally hard, if not impossible, to acquire the precise coordinates
of the surrounding APs.

A Gaussian process is depicted by its mean and covari-
ance functions. According to [20]-[26], Gaussian processes
are capable of measuring the uncertainty in the RSS data
over a continuous space. It belongs to the class of Bayesian
nonparametric models. Thus, the Gaussian process could be
leveraged to regress the relationship between RSS measure-
ment values and their corresponding locations. Furthermore,
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the Gaussian process has the ability to accurately represent
data when there is sufficient training data. However, this abil-
ity degrades dramatically when there is only sparse training
data, which typically happens in RF fingerprinting. In fact, the
Gaussian process is not effective at handling the nonstationary
components of RSS samples due to the lack of fusion of ker-
nels for dealing with complex training data [27]. Therefore,
the Gaussian process could perform poorly with an unaccept-
able localization accuracy when it is trained with inadequate
training data.

To address these challenges, we propose DeepMap, a
deep Gaussian process-based system for indoor radio map
construction and location estimation [28]. Like traditional
fingerprinting-based methods, the DeepMap system includes
an offline training stage and an online location estimation
stage. In the offline stage, RSS samples, along with their cor-
responding location coordinates, are passed into a two-layer
deep Gaussian process model that estimates the relationship
between RSS values and location coordinates in a continuous
space. In addition, we employ a Bayesian training method
to maximize the marginal distribution of the observed RSS
samples, to derive the optimal hyperparameters, where a vari-
ational lower bound is utilized to make the problem tractable.
Unlike the Gaussian process, a deep Gaussian process is capa-
ble of constructing a precise radio map even with inadequate
training data. The structural advantage of a deep Gaussian pro-
cess enhances the learning capacity for training complicated
data sets associated with abstract information [29]. Thus, the
features of a small data set could be better captured by a deep
Gaussian process when constructing radio maps.

In the online stage, we leveraged a Bayesian method to
achieve high localization precision. The mobile device at an
unknown location will collect new RSS samples from all
the surrounding APs. With the radio maps generated by the
deep Gaussian process, the estimated location of the mobile
device can be obtained by using maximum a posteriori (MAP)
estimation. Although the original DeepMap system is imple-
mented with WiFi [28], this method is not restricted to use
with only WiFi RSS values. It could be applied in systems
using other types of wireless signals, such as RF identification
(RFID) and Bluetooth low energy (BLE).

The main contributions made in this article can be summa-
rized as follows.

1) We propose the DeepMap system that is the first, to the
best of our knowledge, to use a deep Gaussian process
model for radio map construction and indoor localiza-
tion, and that effectively overcomes the drawbacks of
the Gaussian process by generating detailed radio maps
using sparse training data.

2) We design a two-layer deep Gaussian process model to
regress the relationship between RSS samples and loca-
tion, a Bayesian training method that optimizes model
parameters, and a Bayesian fusion method that boosts
localization performance.

3) We validate the performance of the proposed DeepMap
system in two indoor environments with various lev-
els of data availability and comparison with baseline
schemes.
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In the following, we discuss related works in Section II and
present the preliminaries and motivates in Section III. The
DeepMap design and analysis are introduced in Section IV,
and the performance study is presented in Section V.
Conclusions are given in Section VI.

II. RELATED WORK

Recently, various indoor localization systems have been
devoted to promoting localization precision with advanced
methods and algorithms. In this section, we review the
fingerprinting-based indoor localization systems and discuss
two classes of fingerprinting-based systems that are closely
related to DeepMap, i.e., 1) deep-learning-based systems and
2) radio map-based systems.

The first RSS-based fingerprinting system, RADAR [12],
localized a target by comparing the fingerprints collected
during the online stage to the saved RSS fingerprints using
a deterministic method. To improve localization precision,
Horus [13] leveraged a K-nearest-neighbor-based probabilistic
method. However, the nature of RSS restricts the performance
of RSS-based systems. First, the RSS values are significantly
influenced by the multipath and shadow fading effects. Thus,
due to the diversity of RSS, two consecutive RSS readings
collected at the exact same location could be very different.
Second, the RSS value is coarse information. Useful chan-
nel information could be easily lost. Compared to RSS, CSI
is more fine-grained and depicts the characteristics of each
subcarrier. FIFS [30] and PinLoc [31] utilized CSI to build fin-
gerprints. The experimental results showed that both FIFS and
PinLoc outperformed Horus. Although these fingerprinting-
based systems had agreeable localization precision, the enor-
mous fingerprint databases they require limited their applica-
tion on mobile devices with limited storage.

Deep-learning-based indoor localization systems rely on
deep neural networks to learn location features from CSI and
use these features as fingerprints. DeepFi [14], [32] was the
first work to use an autoencoder to extract features from CSI.
DeepFi utilized the bias and weights from a well trained,
three-layered autoencoder as fingerprints. PhaseFi [15], [33]
and DFLAR [34] proposed to train the autoencoder with
the phase values and images generated by CSI. Bi-modal
CSI data was utilized in the BiLoc system [16] with an
autoencoder for improved location performance. Additionally,
WiDeep [35] improved the robustness of localization esti-
mation by combining a stacked denoising autoencoder deep
learning model with a probabilistic framework. Furthermore,
Youssef and Agrawala [36] and Wang et al. [34] contributed to
device-free indoor localization improvement with deep autoen-
coder networks. Due to the strong abilities of the convolutional
neural network (CNN) in fields such as computer vision, it
has been used to improve the performance of indoor local-
ization systems. For example, a 6-layer CNN was employed
in CiFi [17], [18]. In contrast to previous fingerprinting-based
systems, CiFi did not use the fingerprinting database in the
online stage and only stored a set of weights and biases
for localization. Alternatively, Shao et al. [37] contributed to
improving localization precision by preventing the “overfitting
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problem” with a limited training data set. ResLoc [19] utilized
a deep residual network to obtain submeter-level accuracy
using a single AP.

However, due to the nature of fingerprinting-based systems,
the localization problem was treated as a matching problem
or multiclassification problem. Therefore, the density of fin-
gerprints was closely related to the performance of the
fingerprinting-based localization system. To address these
problems, He and Chan [21] and Kumar et al. [38] generated
radio maps for an indoor environment with a Gaussian pro-
cess, which modeled the RSS values in a continuous space. By
producing interpretable radio maps, researchers provided solu-
tions to the existing fingerprinting-based localization problem.
For example, WinIPS [39] leveraged GPR with polynomial
surface fitting mean to predict RSS with virtual reference
points. It overcame the laborious fingerprint collection effort
in the offline phase and updated the radio map automati-
cally in a dynamic environment. DncIPS [40] presented the
FWA-GPR algorithm based on GPR and a fireworks algorithm
(FWA). It was robust to environmental changes. However, the
AP locations were not essential in DncIPS, which helped to
improve its flexibility. Although both WinIPS and DncIPS
solved the problem of updating fingerprints in a dynamic envi-
ronment, their localization precision was not comparable to
other deep-learning-based localization systems.

III. PRELIMINARIES AND MOTIVATION

As a kernel-based Bayesian model, the Gaussian process has
been successfully applied to solve regression and classification
problems [27]. With the help of the Gaussian process, the
uncertainty in input data distributed over a continuous space
could be measured. Generally, a Gaussian process could be
delineated by its covariance and mean function, which is a
generalization of a multivariate Gaussian distribution.

For issues with radio map construction, we could treat mea-
sured RSS samples and the corresponding locations as a GPR
model, that is

s(x) =f(x) +€ (D

where s(x) is the measured RSS sample at location x, f(x)
represents the pure RSS at location x, and € is the observation
noise, which follows an independent, identically distributed
(i.i.d.) Gaussian distribution with zero mean and variance
o?. The Gaussian process model assumes that the RSS mea-
surements s, and s, at two different positions x, and x4,
respectively, follow a joint Gaussian distribution with covari-
ance k(xp, x4), which is a kernel function for the two locations
given by

2 1 2
k(xp, xq) = of exp(—ﬁ xp — x4 > 2)

where oy and [ are the hyperparameters. Specifically, o? rep-
resents the variance and [/ is a length scale, both of which
describe the smoothness of the kernel function. The predicted
RSS for an unknown position x, can be obtained by

Pr(f(xo)IX. Z.x) = N(f () e, 02) 3
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where k, is an n x 1 vector of covariances between training
locations X and x,, K is the covariance matrix of training
locations X, and Z is a matrix of training observation values.
In addition, the hyperparameters oy and / can be estimated by
a maximum-likelihood approximation method.

We use the Broun Hall data set (see Section V-A) collected
on the third floor of Broun Hall in the Auburn University
campus as an example. The RSS radio maps constructed by
Gaussian process models using the Broun Hall data set are
shown in Fig. 1(a). We utilized all the samples in the Broun
Hall data set to train the Gaussian process model. Obviously,
the bell-shaped RSS radio map is consistent with most ground-
truth RSS measurements. Thus, this example verifies that a
Gaussian process could model the distribution of RSS values
in an indoor environment and regress the relationship with
adequate training data. However, the ability of the Gaussian
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Fig. 2. DeepMap system architecture.

process to depict RSS data distributions degrades when there
is inadequate training data. Fig. 1(b) plots an RSS radio map
constructed with 20% of the training data in the Broun Hall
data set using the Gaussian process. We find that the RSS
radio map in Fig. 1(b) is flat and lacks details. Clearly, most
of the variations in Fig. 1(a) are lost in Fig. 1(b), although the
upper right corner is still the highest position in Fig. 1(b). In
other words, the nonstationary components of RSS values are
lost during radio map construction by the Gaussian process
model, due to the lack of fusion of kernels in the complex
input data set. Therefore, this coarse RSS radio map is the
result of a deficiency of the Gaussian process that hampers
high localization accuracy during the online stage. To address
this problem, we propose a DeepMap system to construct RSS
radio maps using deep Gaussian process models in Section IV.

IV. DEEPMAP SYSTEM
A. DeepMap System Architecture

Fig. 2 presents the architecture of the DeepMap system. The
DeepMap system is a fingerprinting-based indoor localization
method that consists of two stages: 1) the offline training stage
and 2) the online location estimation stage. In the offline stage,
we recorded the RSS samples from training positions along
with their corresponding location coordinates. For each train-
ing location, RSS measurements are collected from as many
available APs as possible to enhance localization accuracy. To
guarantee that the RSS records from all the training locations
are of the same size, we collect all potential RSS readings (i.e.,
from all the APs). If the RSS for a specific AP is not detected,
the corresponding RSS reading will be set to —99 dBm. This
way, a training data set will be generated with RSS records and
their corresponding location labels. To construct the RSS radio
map of an indoor environment, we used a deep Gaussian pro-
cess to regress the training data set. The well-trained model
(a constructed map) describes the relationship between RSS
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Fig. 3. Deep Gaussian process model for RSS radio map construction.

samples and location labels in a continuous space. This radio
map will be used for location estimation in the online stage.

In the online stage, we collect new RSS samples using the
mobile device at an unknown location and contrast the new
RSS samples with the RSS samples in the constructed radio
map. When we determine the similarities between the mea-
sured RSS values and the recorded RSS values from the radio
map, we will be able to infer the location of the mobile device
using a Bayesian fusion method.

Unlike traditional fingerprinting methods, which save the
original RSS samples as fingerprint [12], [13], or the previous
autoencoder-based methods, which use a bunch of well-trained
weights as fingerprint [14]-[16], [33], the DeepMap system
incorporates two different storage strategies. Depending on
each mobile device’s specifications, DeepMap allows users to
store the model at an edge device or in the cloud, and use
it to estimate location in the online stage if storage space
is limited. Alternatively, the constructed radio maps can be
saved at the mobile device to accelerate the localization pro-
cess. Furthermore, the resolution of the constructed radio maps
can be adaptive. In fact, a high-resolution map offers high
localization precision at the cost of localization speed, while
a low-resolution map achieves a coarse precision but also fast
localization. In the following sections, we will show that sat-
isfactory localization results can be achieved by the proposed
DeepMap system even with a low-resolution map.

B. Deep Gaussian Process for Radio Map Construction

We propose a deep Gaussian process model for radio map
construction using WiFi RSS samples. This process is rep-
resented by a graphical model with three different layers of
nodes, including the leaf nodes, the intermediate latent nodes,
and the parent nodes [29]. The model is illustrated in Fig. 3.
For radio map construction, the leaf nodes represent RSS sam-
ples, denoted by Y € RNV*D where N and D are the number
of training locations and the number of APs, respectively. The
intermediate latent nodes are denoted by H € RV*2, where
Q is the number of the intermediate latent nodes in this layer.
These latent nodes are not observable in the training stage. For
the DeepMap system, we adopt one intermediate latent layer
to obtain a deep Gaussian process model. The parent nodes
are denoted by X € RV*Mwhere M is the size of input data.
For radio map construction, the parent nodes X represent the
training locations.

Our proposed deep Gaussian process model for radio map
construction is a generative model for regression. This gener-
ative process can be formulated as

hng =f11 ) + ey g=12,....0. x, €R (6
Yd =ff () +€r), d=1,2,...,D, h,eR? (7
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where 7 ~ GP(0, k" (X, X)) and f¥ ~ GP(0, kY (H, H)) are
Gaussian processes, and the latent nodes H connect them. Note
that these two processes only depend on the covariance func-
tion k for different inputs, which is chosen to be the automatic
relevance determination (ARD) covariance function, given by
1 Q 2
k(x,-, xj) =2 exp —3 Z Wy (xi,q - xj,q) ®)
gq=1

where o is the hyperparameter and w,, is the weight for latent
node g. Irrelevant dimensions can be removed by setting their
weights to zero.

C. Offline Bayesian Training

The objective of Bayesian training is to maximize the
marginal distribution of observed RSS values Y to determine
the optimal hyperparameters, which is formulated as

max logp(Y) = 1Og/xH1D(YIH)P(HIX)P(X)- €))

Because of the nonlinear functions for H and Z, it is diffi-
cult to solve the integral in (9) using the maximum-likelihood
method. In DeepMap, we apply Jensen’s inequality to find a
variational lower bound for this marginal distribution, denoted
by £ <logp(Y) and given by

p(Y,FY, H,F X)
L= 0 - log (10)
FY H,FH X 0

where Q is the variational distribution. F is the collection of
latent function instantiations, which has a normal distribution
given by

)
F= A =1 . (11)

Similarly, F? is given by
F =i Vo fg =11 o).
The term p(Y, FY H,FA X)is given by
p(Y,FY,H,F?, X) = p(Y|F") - p(FY|H) - p(H|F")
x p(F11X) - p(X).

12)

13)

However, integral (10) is still intractable due to the nonlin-
earity in both p(F|H) and p(F¥|X). Consider the probability
space with K auxiliary pseudoinputs H € RE*C and X €
REXM [41], whose function values are UY e 9HEXP and
UH e RKXQ, respectively. Then, we derive the augmented
probability space as

p(Y,F*,H,F? x, U", U" H,X)
=p(YIFY) - p(F"|U", H) - p(U |H)
x p(HIFT) - p(FT U™, X) - p(UT1X) - pX).  (14)

To remove the nonlinear items p(FY|UY,H) and

p(FH|UH | X), the variational distribution Q can be defined as
follows:

Q = p(F'|\U", H) - q(U"|H) - q(H)

x p(FMU™, X) - q(U"1X) - g0 (15)
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where g(UY|H) and g(U"|X) are free-form variational distri-
butions, and g(H) and ¢(X) are both Gaussian.

According to (13) and (15), we update the variational lower
bound in (10) as

B p(VIFY)p(UY|H)p(HIF™)p(U1X)p(X)
. _/ Q1°g< g(U718)q(H)q(UF|X) g(X) )

where the integration is with respect to {FY, H, FH X,
U, UY}. By grouping the variables for Y and H, respectively,
we can rewrite the variational lower bound as

L =sy+ sy —q(H) -log(q(H)) — KL(g(X)[|p(X)) (16)

where KL is the Kullback—Leibler divergence [42], sy is
calculated by

p(U YIFI)>
q(U"|H)
(17)

Sy = ]Ep(FY|UY,H)q(UY|1:1)q(H) (10gp(Y|FY) + log

and sy is calculated by
G
q(U"X))
(18)

s = Epprju x)q(uH1%)900 (IOgP(H |F) +log

It can be seen that both sy and sy are Gaussian densities,
and are thus tractable. In fact, Bayesian training for a deep
Gaussian process can maximize the variational lower bound £
to find the suboptimal hyperparameters, inducing points (i.e.,
H and X), and variational parameters [29].

We use the same Broun Hall data set as an example of
the proposed method. The constructed RSS radio map shown
in Fig. 4(a) is generated by a deep Gaussian process with
100% training data in the Broun Hall data set. Although a
similar bell-shaped surface is created by the Gaussian process
[see Fig. 1(a)], our proposed deep Gaussian process produces
more details that help to improve localization precision. For
example, the slight fluctuations close to the coordinate’s origin
is captured by the deep Gaussian process model in Fig. 4(a).
However, the corresponding area in Fig. 1(a) tends to be a flat
surface, which is constructed by the Gaussian process model.
In Fig. 4(b), the RSS radio map is constructed by the deep
Gaussian process model using only 20% of the training data.
Clearly, a bell-shaped surface is maintained similarly as in the
radio map generated using 100% training data, even though
only 20% of the training data is utilized. Additionally, the
surface contains many nonlinear characteristics.

From this comparison example of the Gaussian process
and deep Gaussian process models, it is safe to say that the
deep Gaussian process model can handle nonstationary com-
ponents, in contrast to the detail-less surfaces constructed by
the Gaussian process model in Fig. 1. Moreover, nonlinear
characteristics are also reproduced with only minimal train-
ing data because the deep Gaussian process has a deep and
heterogeneous nonlinear structure that is more effective for
complex training data. Thus, WiFi RSS radio maps constructed
by the deep Gaussian process model capture more detailed
information about the distribution of real RSS samples in
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Fig. 4. RSS radio map constructed using the deep Gaussian process
model using different amount of training data. (a) Using 100% training data.
(b) Using 20% training data.

indoor environments, which considerably contributes toward
improving localization precision.

D. Online Location Estimation

In the online localization stage, we use a Bayesian method
to estimate the location of a mobile device using newly mea-
sured RSS samples from totally D APs and the constructed
radio maps obtained in the offline stage. We discretize the
continuous RSS radio map to obtain T reference positions.
The size of T is dependent upon the resolution of the RSS
radio map.

The pseudocode for online location estimation is presented
in Algorithm 1. The input to Algorithm 1 is the newly mea-
sured RSS values v; and the constructed radio map # for each
AP j, and the total number of APs D. We have T = |//|. In
the DeepMap system, we assume that the likelihood function
p(vjll;) is a Gaussian function. Thus, the' similarity between
the measured RSS value v; and the data ’Jl,- at location /; from
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Algorithm 1 Pseudocode for Online Location Estimation
Input: the newly measured RSS samples v; and the con-
structed radio map # for each AP j, the total number of
APs D;
Output: the estimated location i;
1: //j denotes the index of APs
2: //i represents the index of reference points in radio map
P

3 forj=1:Ddo
4. fori=1:T=|F| do
5 /Icompute the likelihood function p(v;|/;)
6: pjlly) = exp(—hlj—2 Vi — rJli H),
7:  end for
8:  //compute the posterior probability p(/;|v;)
9 Lilv:) = pjll) .
UV = S
10: end for
11: //derive the location of the mobile device using MAP

estimation

N D
12: [ = afgmax{ll,h,...,m(H;:1P(li|"j))?
13: return 1.

AP j is computed in step 6 [14]. Here, o' is the variance and
A is the parameter of the variance of input RSS samples.

Based on the likelihood function, the posterior probability
p(li|vj) for AP j can be obtained by

pUpp(vjlli)
iy pop(vill)
where p(l;) is the prior probability for the device placed at
position /;. Generally, p(I;) is assumed to have a uniform distri-

bution over the T reference positions. Therefore, the posterior
probability p(l;]v;) is obtained in step 9, as

p(vilh)
> i1 P(v] lk)
Additionally, we assume that the posterior probability p(/;|v;)
is independent for each AP. Consequently, we derive the loca-

tion of the mobile device using MAP estimation as follows
(see step 12):

(19)

p(lilvy) =

p(lilvj) = (20)

D

2: argmax p l|V
{2t l_[ (dilv)

21
j=1

V. EXPERIMENTAL STUDY
A. Experiment Methodology

For this article, we prototype the DeepMap system
with commodity WiFi devices to evaluate its localization
performance. Three baseline schemes are implemented and
evaluated for comparison purpose. The first one, termed
“Gaussian process,” is implemented by replacing the deep
Gaussian process model with a Gaussian process model [38],
while keeping all other parts the same. The RADAR [12] and
Horus [13] are the two other baseline schemes we imple-
mented for comparison purpose. Both RADAR and Horus

Authorized licensed use limited to: Auburn University. Downloaded on January 10,2023 at 00:28:34 UTC from IEEE Xplore. Restrictions apply.



11244

54 m

Y
Y

»
=1

J

o
"o-o-o-

|

Sl

%L.

o

]

o
100

o0
o

L,

I —_— oo

%].u. o0
3 S P R
oo oo B
) oo
oo 00

o0
o

ﬁ o’ N ::

gL

=[] ]

—

[
-

Fig. 5. Layout of the third floor of Broun Hall at Auburn University: training
locations are marked as blue dots and testing locations are marked as yellow
squares.

are representative RSS-based fingerprinting schemes, while
RADAR uses a deterministic scheme and Horus utilizes a
K-nearest-neighbor bases probabilistic method for location
estimation. To limit bias, all the schemes are executed using
the same Broun Hall and public data sets; thus, the training
data and test data for the schemes are identical. Additionally,
the same online location estimation algorithm presented in
Section IV-D is used for DeepMap and Guassian process
schemes to ensure consistency.

First, we evaluate DeepMap’s performance with the Broun
Hall data set (collected from the third floor of Broun Hall at
Auburn University). In this scenario, we use Wi-Fi Scanner
3.4 to collect RSS measurements in the offline and online
stages within a surveillance area of about 2300 m?. The floor
plan is shown in Fig. 5, where 157 locations are included in
the training data set (represented by blue dots). The space
between each blue dot is 2 m. The test data are gathered from
43 locations, each represented by a yellow square, and the
space between yellow squares was 4 m. In this data set, the
RSS values are gathered from 433 APs (for the four-layer
building), which consists of both 5-GHz APs and 2.4-GHz
APs from various manufacturers. Furthermore, the RSS values
for out-of-range APs are set to —99 dBm, as discussed.

Additionally, we also tested the DeepMap system using a
public data set to examine its localization performance [43].
The experimental area is approximately 860 m? and includes
eight classrooms, four offices, and a main hallway. The floor
plan is shown in Fig. 6. Similar to the Broun Hall data set,
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Fig. 6. Layout of the public data set from [43]: blue dots denote the training
positions, red squares are APs on the fifth floor, orange squares are APs on
the fourth floor, and white squares are the APs on the third floor (figure
courtesy [43]).

the RSS measurements in the public data set are also collected
from APs deployed on multiple floors. In the public data set
layout, blue dots denote the training positions, red squares are
APs on the fifth floor, orange squares are APs on the fourth
floor, and white squares are the APs on the third floor. All
RSS values in the data set are collected from both 5-GHz
APs and 2.4-GHz APs. The training data is collected for 82
locations, and the test data set includes RSS values from 34
locations (their coordinates are known as ground truth, but are
not shown in the figure). The distance between two adjacent
locations is 2.6 m. In the online localization stage, new RSS
samples are collected for every testing location twice, each
time facing a different direction.

B. Accuracy of Location Estimation

1) Comparison With Gaussian Process: First, we confirmed
the localization accuracy with adequate training data. Fig. 7
illustrates the cumulative distribution function (CDF) of local-
ization errors for the proposed DeepMap system and the
Gaussian process-based baseline scheme. In both schemes,
we use all the RSS samples in the Broun Hall data set to
train the models. For DeepMap, the median localization error
is 1.3 m, and the Gaussian process-based scheme obtains a
median error of 1.5 m. This comparison shows that DeepMap
is more accurate than the Gaussian process-based scheme.
Additionally, 60% of the localization errors are lower than
2 m for the Gaussian process, whereas 75% of the localiza-
tion errors are lower than 2 m with DeepMap. Furthermore, the
Gaussian process’s largest error is 6.182 m, which is greater
than DeepMap’s largest error of 5.207 m. Thus, DeepMap out-
performs the Gaussian process-based scheme with respect to
localization accuracy, when adequate training data is available.

Similarly, Fig. 8 shows the localization performance of both
schemes using the public data set [43]. When we use the
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Fig. 7. CDF of localization errors for the proposed DeepMap system and

the Gaussian Process-based scheme when 100% of the training data in the
Broun Hall data set is used.
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Fig. 8. CDF of localization errors for the proposed DeepMap system and

the Gaussian Process-based scheme when 100% of the training data in the
public data set is used.

public data set to train these two algorithms, the median errors
for DeepMap and Gaussian process are 1.668 and 2.2017 m,
respectively. Again, DeepMap achieves a better localization
accuracy than the Gaussian process-based scheme in this envi-
ronment. For DeepMap, we also note that more than 80%
errors are under 2.8 m; however, only 65% test points for
the baseline scheme could reach this same level of accu-
racy. Therefore, for the experiment using the public data
set, DeepMap also outperforms the Gaussian process-based
scheme when the entire training data set is available.
Additionally, we evaluated the performance of both schemes
using only a fraction of the training data. In Fig. 9, we plot
the mean distance errors achieved by the two schemes when
different percentages of training data in the Broun Hall data
set are used. Regarding the Broun Hall data set experiment,
the mean distance error is 1.569 m when all fingerprints are
used. However, when 90% training data are used by DeepMap,
the minimum mean distance error 1.536 m is reached. We
also find that distance errors are robust to changes in the
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Fig. 9. Mean localization errors for the proposed DeepMap system and the
Gaussian Process-based scheme using different percentages of training data
in the Broun Hall data set.

percentage of samples when more than 50% fingerprints are
available to DeepMap. The Gaussian process achieves its best
performance, 1.845 m, when all the training data are available.
Regardless, this value is greater than the lowest mean distance
error for DeepMap. Although the Gaussian process’s mean
distance errors are robust when more than 60% samples are
available, the distance error increases dramatically to 3.725 m
when 50% of samples are used. Additionally, the Gaussian
process mean distance error increases further to 8.3496 m
when 20% of fingerprints are used to train the model. The
distance error for our DeepMap system does not change such
abruptly; its largest distance error is 3.8447 m when 20%
of fingerprints are utilized to train the model. Note that in
Fig. 9, all errors obtained by DeepMap are lower than the
corresponding errors achieved by the Gaussian process-based
scheme.

Furthermore, we conduct similar experiments using the pub-
lic data set. In Fig. 10, minimum distance errors of 2.12 m for
DeepMap and 2.489 m for the Gaussian process are obtained
when all training data are available. However, distance error
for the Gaussian process-based approach increases dramat-
ically with a decrease in the available training data. With
only 20% training data available to the Gaussian process-
based scheme, the maximum distance error is 11.67 m. Both
methods show larger errors when the algorithms are trained
with only 20% data, but the maximum error produced by
DeepMap is about half of that of the Gaussian process-based
scheme. However, the performance of DeepMap is improved
significantly when at least 40% samples are used to train the
algorithm. For example, at 40% data availability, the mean
distance error for DeepMap becomes 3.892 m, which is simi-
lar to the performance of the Gaussian process-based scheme
when 70% of public data is available. Thus, DeepMap exhibits
a more robust performance with incomplete training data sets.

In conclusion, when there is sufficient training data, both
DeepMap and the Gaussian process-based scheme are able to
regress the outline of the RSS surface. However, more detailed
maps are generated by DeepMap than by the baseline scheme.
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Fig. 10. Mean localization errors for the proposed DeepMap system and the
Gaussian Process-based scheme using different percentages of training data
in the public data set.

Regarding the map constructed by the Gaussian process-based
scheme, it does not contain much detail, such as nonstationary
components, and thus, the minimum error is slightly greater
than that produced by DeepMap. When only limited amounts
of RSS training samples are available, the localization error
of the Gaussian process-based scheme increases dramatically,
while DeepMap is more robust to this change. Additionally,
nonlinear characteristics are captured by DeepMap even with
few available RSS samples. Thus, DeepMap achieves higher
localization accuracy and is more robust than the Gaussian
process-based baseline scheme.

2) Comparison With RADAR and Horus: For more com-
parisons, we also evaluate the performance of two existing
localization methods, RADAR and Horus, using the Broun
Hall data set and the public data set. Both methods have been
introduced in Section II. Fig. 11 depicts the mean localiza-
tion errors achieved by the four schemes using either 50% or
100% of fingerprints in the Broun Hall data set. We can see
that the precision of Horus is comparable to the performance
of DeepMap when all the fingerprints are leveraged to train
the model. Furthermore, the localization error of RADAR is
much higher than that of the other three methods. With 50%
fingerprints, the localization precision of all the four methods
degrades in varying degrees. The mean distance error of Horus
increases from about 1.5 to 2.0 m, which is higher than the
corresponding error of DeepMap. Moreover, Horus shows bet-
ter performance than the Gaussian process when the training
fingerprints are inadequate.

We present the mean distance errors for the public data set
in Fig. 12. Overall, all the methods perform worse than with
the Broun Hall data set. This is because the Broun Hall data
set includes many more APs than the public data set. We note
that DeepMap has the best accuracy no matter fingerprints are
adequate or not. Even though the availability of fingerprints
does not affect the precision of Horus significantly, its mean
distance error is much higher than DeepMap when 100% fin-
gerprints are utilized. Therefore, it is safe to say that DeepMap
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has the best accuracy among these localization methods, and
it is sufficiently robust to deficiency of fingerprints.

C. Impact of Design Parameters

To investigate the impact of system parameters on the local-
ization precision of DeepMap, we use all the RSS samples
in the Broun Hall data set in the following experiments. In
each experiment, we repeat the training process five times
with identical parameter settings. We recorded the average test
result and present it in the plots.

1) Impact of the Number of Inducing points: In the
DeepMap system, K represents the number of inducing points.
Although it could be different for every layer of the overall
structure, we keep the number of inducing points the same
in each layer to simplify this article. As is shown in Fig. 13,
we compare the mean distance errors for different values of
K. According to Fig. 13, the mean distance error gradually
decreases along with the increase in K. After K is greater
than 40, the impact of K on the mean distance error decreases
and the mean distance error converges to 1.65 m. Fig. 14
depicts the corresponding training times for different values
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Fig. 13. Mean distance errors at different values of K.
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Fig. 14. Mean training times at different values of K.

of K. As shown, the mean training time increases along with
the increase in K. Considering that the training time (in the
offline stage) would not jeopardize the user experience in the
online stage, K is set to 48 for obtaining the best localization
performance in the following experiments.

2) Impact of the Number of Latent Nodes: The number of
latent nodes in the deep Gaussian process is denoted by g.
Ideally, each latent node would have its own weight w,, but
the node could also be removed by setting the weight to 0. We
designed a specific experiment to evaluate the effect of g on
the performance of our DeepMap system and to optimize the
value of g that achieves the best localization precision. In this
experiment, the value of K is set to 48 to eliminate its effect.
Twenty different values of g are assessed with DeepMap to
evaluate their effect on the performance of our system. For
each g value, the training process was repeated five times to
minimize randomness in the results.

Fig. 15 shows the mean distance errors as ¢ is increased.
As the number of latent nodes raises from 1 to 9, the mean
distance error declines rapidly from about 6 m to about 2 m.
When the value of ¢ is between 11 and 27, the mean distance
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error does not fluctuate significantly. The lowest error is pro-
duced when g is between 15 and 19. When g becomes greater
than 27, it produces a sharp rise in the mean distance error
from 1.77 to 8.4 m. Therefore, we conclude that the localiza-
tion precision of our DeepMap system could be degraded with
an oversized g value, even though the weight for the excessive
latent node could be set to zero. Additionally, we investigated
the impact of g on the mean training time. The results are
presented in Fig. 16. Similar to the impact of K, the mean
training time goes up gradually with increases in g. To obtain
the highest localization precision, we set g to 17 in the fol-
lowing experiments. Fig. 16 shows that the training time is
only about 14 min when ¢ is 17. Note that all the samples in
the Broun Hall data set are utilized in this experiment. The
training process would speed up if fewer samples are utilized;
thus, the DeepMap system could react to the change of envi-
ronment by updating the RSS samples and training the deep
Gaussian process model in real time.

3) Impact of the Number of Iterations for Initializing the
Variational Distribution: Fig. 17 plots the influence of the
number of iterations performed for initializing the variational
distribution on the localization precision of DeepMap. As
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TABLE I
MAP CONSTRUCTION TIME, TESTING TIME, AND MAP SIZES AT DIFFERENT MAP RESOLUTIONS

Map Resolution (cm) ‘ 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Map Construction Time (s) | 243 9.38 5.08 3.13 211 156 124 095 077 063 053 046 040 033 0.33
Testing Time (s) 091 046 027 020 015 0.2 0.11 0.09 0.09 008 0.07 0.04 004 003 003
Map Size (MB) 124 552 317 203 138 103 083 064 051 044 036 031 027 022 021
4 3
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2.5

(98]

1
)

Mean Distance Error (m)
TSN

—_

=]
W

100 200 300 400 500
Initialization Iteration

1000 1500 2000 2500

Fig. 17. Mean distance errors at different numbers of iterations for initializing
the variational distribution.

shown in Fig. 17, the mean distance error drops slightly when
the initialization iterations increase from 100 to 200. When
initialization iterations range between 200 and 500, the local-
ization precision remains stable and the mean distance error
is about 3 m. To better assess the effect of initialization itera-
tions on localization precision, we increased the initialization
iteration number in steps of 500 in the rest of the experiments.
With 1000 initialization iterations, the localization precision
is improved significantly. When the number of initialization
iterations reaches 1500, the mean distance error continued to
decrease. However, the localization performance of DeepMap
does not continue to improve once the number of initializa-
tion iterations becomes greater than 1500. Moreover, the mean
distance error remains at the level around 1.6 m.

4) Impact of the Resolution of Constructed Radio Map:
Fig. 4 depicts the reconstructed RSS radio map that was gener-
ated by 100% of fingerprints in the Broun Hall data set, where
the green dots represent the reconstructed RSS values at var-
ious reference positions. The resolution of the reconstructed
RSS radio map is decided by the density of the reference
points. To investigate the impact of map resolution on the
performance of the DeepMap system, we generate 15 maps
with different resolutions using the well-trained deep Gaussian
process model. As shown in Fig. 18, localization precision is
not significantly affected by map resolution when the resolu-
tion is higher than 200 cm. Additionally, Table I shows that
the size of the RSS radio map shrinks rapidly when map res-
olution is decreased from 50 to 200 cm. Thus, a fine-grained
RSS radio map is not essential for the improved performance
of the DeepMap system. However, mean distance error gets

[\S]
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Fig. 18. Mean distance errors at different map resolutions.

larger if the map resolution is further decreased. The worst
localization precision is obtained with the map resolution of
400 cm.

According to Table I, map size and time of map construc-
tion are correlated to the map’s resolution. When the map
resolution is 50 cm, the mean distance error is 1.5 m, but the
RSS radio map would be enormous and cost a mobile device
12.4 MB in storage. Correspondingly, testing and map con-
struction times are also higher than those obtained by lower
resolution maps. Combining the results from Table I and the
mean distance errors in Fig. 18, the best performance of the
DeepMap system is achieved when the resolution of an RSS
radio map is set to 200 cm. At this resolution, map construc-
tion and testing times decrease to 1.24 and 0.11 s, respectively.
With the help of this shorter testing time, DeepMap has
the potential to provide real-time localization and navigation
services to indoor mobile device users. Additionally, at this
optimal resolution, map size is only 0.83 MB, which can fit
on most mobile devices.

VI. CONCLUSION

In this article, we presented the DeepMap system, a deep
Gaussian process model for indoor radio map construction and
location estimation. Compared to traditional Gaussian process
models for constructing radio maps, the DeepMap system con-
sists of a two-layer deep Gaussian process model that is able
to extract nonlinear characteristics from RSS samples. We also
proposed a Bayesian training method to optimize the model
parameters in the offline stage and a Bayesian fusion algo-
rithm in the online stage for location estimation. We conducted
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extensive experiments to evaluate DeepMap’s performance
using two data sets. The results indicated that DeepMap out-
performs the Gaussian process-based baseline scheme in all
the experiments with respect to location precision and that it
is robust to deficient training data.
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