
Alabama Supercomputer Authority

HPC User Manual

Alabama Supercomputer Authority

HPC USER MANUAL
Ninth edition

Alabama Supercomputer Authority
686 Discovery Drive
Huntsville, AL 35806

The Alabama Supercomputer
Authority

HPC User Manual

Ninth Edition

Alabama Supercomputer Authority
686 Discovery Drive
Huntsville, AL 35806

 HPC User Manual - 9th Edition Alabama Supercomputer Authority

i

Publication Date Description

1st Edition February 1988 Original printing
Revision A September 1988 Minor typographical and editorial corrections
2nd Edition June 1990 Updates and modifications of 1st Edition
3rd Edition June 1993 Complete rewrite
Revision A October 1993 New procedures and locations
4th Edition January 1994 Update for Cray C90 and editorial corrections
5th Edition March 1997 Updates, modifications, and new format
6th Edition July 1999 Updates and modifications of 5th Edition
7th Edition January 2005 Updates for Cray XD1 and SGI Altix 350
8th Edition October 2008 SGI Altix 450, DMC, and new format
9th Edition December 2010 Updated to reflect hardware upgrades

AMD Opteron, and the AMD 64 Opteron logo are registered trademarks of Advanced
Micro Devices, Inc.

Itanium is a registered trademark of Intel Corporation.

HyperTransport is a registered trademark of the HyperTransport Technology
Consortium.

Linux is a registered trademark of Linus Torvalds.

EXPRESS is a registered trademark of ParaSoft Corporation.

SGI, NUMAlink, Altix, SGI Linux, and SGI ProPack are registered trademarks of
Silicon Graphics, Inc.

InfiniBand is a trademark of the InfiniBand Trade Association.

X Window System is a product of the Massachusetts Institute of Technology.

The section on the vi editor is reproduced with permission of the publisher, Howard
W. Sams and Co., Indianapolis Indiana, UNIX System V Primer, Waite, Augtin and
Prata, © 1984.

All other trademarks are property of their respective owners.

 HPC User Manual - 9th Edition Alabama Supercomputer Authority

ii

Preface
This manual is provided for the users of the Alabama Supercomputer Center (ASC) as
the primary reference for use of the High Performance Computing (HPC) systems at
the Alabama Supercomputer Center. The manual covers the supercomputer
configuration, available software and hardware, access methods, and user support.

Suggestions for additions or corrections to this manual should be directed to
hpc@asc.edu or to:

 HPC User Manual
 Alabama Supercomputer Center
 686 Discovery Drive
 Huntsville, AL 35806

This manual is supplemented by a set of policies, which cover various aspects of
services provided by the Alabama Supercomputer Authority. Alabama
Supercomputer Authority policies are available at
http://www.asc.edu/usermanual/policies/policymenu.shtml or by contacting the
helpdesk at 800.338.8320 or helpdesk@asc.edu

 HPC User Manual - 9th Edition Alabama Supercomputer Authority

iii

Table of Contents

Preface.. iii

..1. Introduction! 1
....................The Alabama Supercomputer Authority ! 1

..About this Manual! 2

...Online Help! 3

.......................................Technical Support for Users ! 4

...........................2. Account Administration! 6
.......................................Requesting an ASC Account! 6

..ASC Accounting System! 8

..Disk Quotas ! 8

.......................3. Supercomputer Hardware! 10
.................SGI Altix Shared Memory Supercomputer! 12

...Dense Memory Cluster! 12

..................................NVIDIA Tesla GPU Accelerators! 15

...................................4. Available Software! 17

.............5. Accessing the Supercomputers! 20
.........ssh connections from OS-X, Linux, or Cygwin! 20

......................................ssh connections from PuTTY! 21

...Transferring Files with sftp! 24

 HPC User Manual - 9th Edition Alabama Supercomputer Authority

iv

..Transferring Files with scp! 27

..X-Windows ! 28

......................................Installing and running Xming! 29

...Cygwin Installation! 29

...........................Using Cygwin X-Windows with SSH! 33

..................................6. Working with Linux! 34
..Files and Directories ! 35

.......................................ASC Linux File Organization! 36

.............................Manipulating Files and Directories! 39

............................Frequently Used Linux Commands! 43

......................Using Pipes and Regular Expressions! 50

.................................Redirection of Input and Output! 52

...........................Introduction to the nano Text Editor! 53

...........Introduction to the Screen-Oriented Editor vi! 55

...Shell Scripts ! 61

............7. Working with the Queue System! 64
..Selecting a Queue ! 65

...Monitoring Jobs! 67

...Deleting Queued Jobs ! 69

...................Running Existing Applications Software ! 69

..................................Running User Written Software ! 70

...Using the qsub Command! 74

 HPC User Manual - 9th Edition Alabama Supercomputer Authority

v

.......................................Efficient Parallel Processing! 75

....................................Running Parallel Applications! 78

...Writing Parallel Software ! 78

.................Estimating CPU Time and Memory Needs ! 80

..8. Using Modules! 83

.............................9. Account Configuration! 85
...Environment variables! 85

...Hidden files ! 87

...........................The source and module commands! 89

...The Command Prompt! 90

..Creating an alias! 90

........Tips for Effectively Using the Supercomputers ! 91

...............................10. Compiling Software! 92
.......................................A Fortran Program Example ! 94

...A C Program Example ! 94

..Optimization! 95

......................................Programming Best Practices ! 100

...............................Appendix: ASA Policies! 105

...Bibliography! 129

 HPC User Manual - 9th Edition Alabama Supercomputer Authority

vi

1. Introduction
This manual is intended for people who will use the supercomputers provided by the
Alabama Supercomputer Authority (ASA). This manual gives an introduction to the
computing hardware, applications, operating system, how to connect to the
computers, and how to run jobs. More detailed information on each of those topics is
available in other locations, and referenced as each is discussed. Other books are
referenced in the bibliography.

High performance computing (HPC) is the currently trendy monicker for
supercomputing. Thus the terms “high performance computing”, “HPC”, and
“supercomputing” are used interchangeably in this manual. Likewise the term
“supercomputer” and “computing cluster” or just “cluster” are all synonymous.

The Alabama Supercomputer Authority
The Alabama Supercomputer Authority (ASA) provides high performance computing
resources to state academic users, state government agencies, national industrial
users, and federal government agencies. ASA is a public state nonprofit corporation
that develops, maintains, and operates the Alabama Supercomputer Center (ASC) and
the Alabama Research and Education Network. Technical services are provided
through professional services and facilities management contractor CSC (formerly
Computer Sciences Corporation). See Chapter 10 for more information about ASA.

The Alabama Supercomputer Authority provides a host of services in addition to high
performance computing. The Alabama Research and Education Network (AREN) is
a statewide high-speed network installed and maintained by ASA. Network services
provided include access to ASA high performance computing resources, Internet
access, World Wide Web services, and training. ASA provides email and web hosting
services for a number of customers. These include some large repositories, such as
the Alabama Virtual Library (AVL). A number of customers also host disaster
recovery equipment at the Alabama Supercomputer Center.

ASA’s high performance computing resources include a SGI Altix 450 supercomputer
and a Dense Memory Cluster (DMC). Usage of these systems is free for academic
usage by faculty and students at public institutions in Alabama. The majority of this
manual is devoted to the description and use of these systems.

 HPC User Manual - 9th Edition Introduction

1

About this Manual
Some items of information in this manual deserve particular attention by the reader.
These are denoted by the presence of one of the following icons in the left margin.

Tips are suggestions for ways to use the system more effectively. The user can
usually get work done without reading the tips, but will find that the tips describe
ways to make frequent tasks more convenient.

WARNING: Warnings indicate pitfalls that could cause significant problems for
the user. All users should read the warnings and follow their advice.

As the name implies, examples show a specific usage of a tool. Text that is not
denoted as an example is a description of how to use the tool. The example icon
is used to indicate a significant size example, not just a single line of text.

Reminders indicate information that is presented in other locations, but is also
particularly important to understand to fully appreciate the current discussion.

Figures are set aside from the text through the use of a box with rounded corners, a
black border, and a pale green background. Tables are presented in a similarly shaped
box with a pale blue background.

There are also sections of this manual that show text as it is displayed on the
computer screen. This is denoted by the use of a Courier New font. Text in Courier
New bold face indicates the command that the user actually types. The non-bold text
indicates the text provided by the system, such as the command prompt, or results
displayed by a command. Here is a short sample of output to the screen.

asndcy@dmc:~> ls -l ls_test
-rw-r--r-- 1 asndcy analyst 742 2008-06-03 13:06 ls_test
asndcy@dmc:~> chmod +x ls_test
asndcy@dmc:~> ls -l ls_test
-rwxr-xr-x 1 asndcy analyst 742 2008-06-03 13:06 ls_test

In this example, the text “asndcy@dmc:~>” is the command prompt consisting of
the user name, machine name, and directory (the tilde “~” means home directory).

Information that the user must fill in with the appropriate name is denoted by < >
signs, like this

 ls -l <file_name>

 HPC User Manual - 9th Edition Introduction

2

 Tip!

!

EXAMPLE

Reminder

Optional command line arguments are denoted by [] signs, like this

 ls [-l] ls_test

The notation “CTRL-D” means to hold down the “control” key on the computer
keyboard while pressing the D key.

Online Help
Various online help facilities are available. Linux information can be obtained with
the man command. For example;

 man <command_name>

or

 man -k <keyword>

The man command locates and prints the entry named command_name. The title is
entered in lowercase. The following example reproduces the description of man on
the standard output:

 man man

For example, to get information on the gcc command, type:

 man gcc

Nearly all HPC software packages come with electronic versions of the
documentation. These are kept on the system in the directory /opt/asn/doc and its
subdirectories. These directories also contain README.txt files with a description
of how to configure your account to run the software, and how to submit jobs to the
queue system.

Documentation from SGI is available online at
http://techpubs.sgi.com/library/tpl/cgi-bin/init.cgi

The terms of the software license agreement for many of the software packages are
online. To see the list of software packages that have license agreements online, or
see the license agreement for a specific program, type.

 show_license list
 show_license <program>

 HPC User Manual - 9th Edition Introduction

3

The literature citations for many of the software packages are online. To see the list
of software packages that have citations online, or see the citation for a specific
program, type.

 show_citation list
 show_citation <program>

Technical Support for Users
Support for ASC HPC users combines central site (ASC) support with an applications
analyst and optional training and collaboration services. This support allows the user
to utilize the HPC systems productively as rapidly as possible. Ongoing support to
overcome problem areas and in mapping high performance computing technology
into the researcher's specific area of study may be available on a case by case basis.

An applications analyst based in Huntsville is available to provide support services to
the HPC user community. A manned help desk is available 24 hours a day to assist
with problem solving and to answer user questions about the status of the ASA
systems and AREN.

The following means can be utilized to contact the technical support staff at the
Alabama Supercomputer Center.

 Applications Analyst Email: hpc@asc.edu
 Help Desk Phone (in Huntsville): (256) 971-7448
 Help Desk Phone (outside Huntsville): (800) 338-8320
 Help Desk Email: helpdesk@asc.edu

 HPC User Manual - 9th Edition Introduction

4

The HPC support staff can often give the fastest, best response if you send an
email to hpc@asc.edu and include as much as you can of the following;

• The command you typed
• The error message
• Which cluster you were logged in on at the time
• The error log file
• The job number from the queue

If the output is rather large or multiple files, you can alternatively tell the support
staff the directory name and file name to look at.

The focal point for technical support is the applications analyst. The analyst provides
the following services to both educational and industrial users across the state:

General Support: The analyst provides assistance in establishing user accounts,
finding documentation and example inputs, program compilation and execution, and
other user support as needed.

User Training: The analyst provides introductory lectures, classroom training, and
one-on-one instruction.

Application Program Support: The analyst provides support for installation of
programs, limited optimization of code, use of application packages, and resource
management.

Outreach Support: The analyst assists in promotion of ASA resources to potential
academic and industrial users, through formal technical presentations,
demonstrations, benchmarking of codes, and technical consultation.

Collaboration: A number of types of collaboration opportunities can be negotiated
on a case-by-case basis. These include hosting services at ASA, joint ventures for
acquisition and operation of systems, and specialized training.

 HPC User Manual - 9th Edition Introduction

5

 Tip!

2. Account Administration
In order to use the supercomputers, users must get an account which consists of a user
name, password, and disk space to store files. From that account, small jobs can be
run on the login node, and larger jobs can be run on the compute nodes via the queue
system. There is a wide selection of software available.

Requesting an ASC Account
There are three types of accounts on the supercomputers; academic accounts, class
accounts, and commercial accounts. Each user must have a separate account on the
supercomputer.

Academic Accounts
Academic accounts are free for academic usage by faculty and students at the public
educational institutions in Alabama. Academic usage can be course work, thesis
research, or work to be published in the peer reviewed literature. Work that will
become the unpublished property of the funding agency is not eligible to be done in
an academic account, but can be done in a commercial account.

To request an academic account, the user should submit an ASA HPC Annual Grant
Request Form. This form is on the web at.

http://www.asc.edu/cgi-bin/account_request.cgi

NOTE: You must use your campus email address when applying for an academic
account. The account request will be denied if you use a commercial email address
such as gmail, hotmail, or yahoo.

Many people ask about the CPU Hours item on the account request form. This CPU
hours request is not a hard limit. You can still keep running jobs when that many
hours are used up. The supercomputer center staff uses the CPU hours for planning
based on users anticipated needs. The applicant needs only fill in their best estimate.
If other people in the same research group are doing this type of work, they may
know how much they are using (ask them to login and type "usage" which shows year
to date usage). Student taking a parallel programming class typically use 10 - 100
hours. Graduate students occasionally doing calculations typically use 1000 - 5000

 HPC User Manual - 9th Edition Account Administration

6

!

hours. Graduate student doing all of their thesis work on supercomputers typically
use 200,000 - 500,000 hours per year.

After completing the form, click “Submit Grant Application”. This will create a
second page summarizing the information that was entered. This second page must
be printed, signed and faxed to 256-971-7491. Once the account is established, the
user is notified by email and given additional information on using the account.
Users are typically notified within three business days of when the faxed form is
received.

Each year after receiving an academic account, the user will receive an email
reminder to again fill out the account request form on the web. The user can change
the email address to which the renewal reminder is sent by editing the .forward file in
their account. It is not necessary to fax anything in when filling out an annual
renewal. If the renewal form is not filled out, the account is locked, the student’s
research adviser is contacted to see if they need the files, then the account is deleted.

Class Accounts
Class accounts are for the use of students enrolled in a course using the HPC systems
for homework assignments. Like academic accounts, access to class accounts is free.
Unlike academic accounts, class accounts are deleted at the end of the semester. In
order to obtain class accounts, the instructor should contact the HPC staff at
hpc@asc.edu . In order to create the accounts, the staff will need to know the name
of the course, the number of accounts required, and any software packages that will
be used. The account passwords are provided to the instructor. Course instructors are
advised to keep track of which account has been assigned to each student.

Commercial Accounts
Commercial accounts are available for the use of individuals in industry, government,
private academic institutions, and academic institutions outside of Alabama.
Commercial account time is purchased in advance and charged by the CPU hour. The
minimum initial purchase is $2000 with additional time purchased in increments of
$1000. Hours purchased must be used within 12 months of the date that the
purchaser gets their account on the machine.

To obtain a formal written quote for CPU time, contact Donna Daniel, ASA Director
of Client Services, at ddaniel@asc.edu or 334-242-0175.

Some of the software packages at the center can be used at no additional cost, while
others require an additional license fee for commercial usage. For information on
commercial software pricing, include the list of desired software packages in the
request for quote that you send to Donna Daniel.

 HPC User Manual - 9th Edition Account Administration

7

Feel free to contact technical staff at hpc@asc.edu if you have any technical
questions. Contact Donna Daniel for financial questions.

ASC Accounting System
The computer accounting system for the Alabama DMC cluster and SGI Altix
supercomputers uses standard Linux accounting data with several enhancements. The
enhancements provide the following functions:

• Tracking average and peak utilization
• Computing dollar values of the usage of each user
• Tracking total monthly usage for each campus, department, user, and application
• Tracking the work volume in each queue

The Alabama Supercomputer Authority reviews month-end accounting report files.
Actual dollar amounts from these reports are used by the Authority's accounting
system to compute the amount billed to commercial users and users with software
royalty charges. Unsponsored academic research accounts are not billed directly.

The accounting system and related procedures handle all the administrative
requirements for accounting. Procedures in place for adding new accounts, deleting
unused or expired accounts, and modifying existing accounts include actions to
handle such situations as changing rate schedules, changing expiration dates, and
handling security in case of forgotten passwords. The helpdesk or applications
analyst can help solve problems relating to such issues.

Disk Quotas
Each account has a quota that limits how much data can be stored. There is a soft
quota and a hard limit. When the soft quota is exceeded, an error will be displayed
when the user logs in on the system, and queue scripts provided by the staff will
refuse to submit new jobs to the queue system. When the hard limit is reached, no
additional data can be written to the account, which can result in having the running
jobs halt execution.

When an account is created, a small quota is put in place (10 GB). Users can request
up to a 200 GB quota at no additional charge. Users can purchase additional disk
space. Requests for a larger quota can be emailed to hpc@asc.edu . Requests for
quote to purchase disk spaces larger than 200 GB can be sent to Donna Daniel, ASA
Director of Client Services, at ddaniel@asc.edu or 334-242-0175.

 HPC User Manual - 9th Edition Account Administration

8

It has always been the policy that the Alabama Supercomputer Center systems
are not intended to be used for permanent archival or storage of data. The home
directory on the supercomputers is intended to be used for work in progress.
Completed work should be transferred back to campus for permanent storage on
the appropriate system there.

The “quota” command presents disk utilization information to the user. By default,
“quota -q” is run during the login sequence for all user accounts. The following are
the most frequently used options.

 quota [-q]

 -q show information only if the user is over their quota

The amount of disk usage shown by the quota command is updated nightly.
Thus if you are over quota and have deleted files, you may have to wait until
the next day for the system to show you as being under quota.

The usage command gives a larger listing of information about the users computer
use. It is invoked by simply typing

 usage

This shows information for a user including disk quota, CPU hours used, login status,
queued jobs, unix group membership, and system access.

The amount of disk space taken up by individual files can be displayed with the
command

 ls -l

The amount of disk space entire directories take up can be displayed with the
command.

 du -sk <directory_name>

 HPC User Manual - 9th Edition Account Administration

9

Reminder

!

3. Supercomputer Hardware
There are two high performance computing systems at the Alabama Supercomputer
Center. One is a shared memory system, consisting of a cluster of SGI Altix 450
nodes. The other is a locally architected fat node cluster, called the Dense Memory
Cluster (DMC). This section of the manual describes the configuration of these
systems. The systems are often upgraded annually. Thus the most recent
specifications on the number of CPUs and amount of memory, can be found on the
web at;

 http://www.asc.edu/supercomputing/hardware.shtml

The supercomputers are connected to the Alabama Research and Education Network
(AREN), which provides high speed network lines to the academic institutions in
Alabama, as well as connections to the Internet and Internet 2. Connections to the
supercomputers pass through a firewall, which excludes traffic from outside of the
United States. Only encrypted connections are allowed to the supercomputers. Thus
the primary means for connecting are ssh, scp and sftp. Telnet and ftp connections
are not allowed.

There are several other security mechanisms in place. Users can change their
password with the “passwd” command, but it will only accept passwords that are
not readily broken by common computer hacking tools. The default home directory
permissions prevent users from seeing files owned by other users. Users may alter
these permissions to allow others to see all or part of their files.

Each cluster has a login node for interactive work (altix.asc.edu and dmc.asc.edu).
The same password is used for both login nodes. Changing the password results in
changing it both places. The same home directory and files are also visible on both
systems.

The home directories are backed up nightly. Those backups are saved only one to
two weeks. Users who have accidentally deleted files should contact the
supercomputer center staff immediately at hpc@asc.edu .

There are some differences between clusters also. There is a scratch file system
mounted as /scratch in the directory tree. Each cluster has a completely different
scratch file system, running on different hardware, and containing different files.

 HPC User Manual - 9th Edition Supercomputer Hardware

10

Users compiling their own software must keep in mind that software compiled on the
Altix will not execute on the DMC and vice versa. Both clusters are capable of
executing generic 32 bit x86 linux executables. However, the 32 bit executables run
in an emulation mode on the Altix which runs much slower than on a 32 bit desktop
computer. Thus users writing their own software are advised to compile that software
on the supercomputers in order to take advantage of the performance of these 64 bit
systems.

Both clusters share the same Torque/Moab queue system. This means that, for
example, jobs submitted from the DMC login node may actually get run on the Altix.
Jobs submitted with the run scripts provided on the system will run anywhere the
desired software is available. Users writing their own software can submit it to the
queue with the “run_script <filename>” command, which will prompt the
user to specify where the job should be allowed to run. The queue system is
described in more detail later in this manual.

run_script <file> Runs a job on a single processor, or
 multiple processors on the same node.

run_script_mpi <file> Runs a job using processors across
 different nodes, but all on the same cluster.

Supercomputer systems can be broadly categorized as shared memory systems,
distributed memory systems, and hybrid systems. On a shared memory system,
parallel software will run on a single node. A node is a collection of CPUs that run
under the same instance of the operating system and can access all of the memory on
the node. On a distributed memory system, parallel jobs can use CPUs on different
nodes and communicate via some manner of message passing network. With the
emergence of dual core and quad core CPUs, the majority of computing clusters
today are hybrid systems which have multiple CPU cores on each node, but can also
allow parallel jobs to run across multiple nodes. The SGI Altix is a cluster of shared
memory nodes. The DMC is a hybrid cluster.

WARNING: Software will only run in parallel (using multiple CPU cores) if the
software has been specifically written to run in parallel. In that case the
documentation will talk about parallel execution using a given mechanism such as
MPI or OpenMP.

 HPC User Manual - 9th Edition Supercomputer Hardware

11

!

SGI Altix Shared Memory Supercomputer
The ASA SGI Altix system is a cluster of SGI Altix 450 nodes. SGI Altix 450 nodes
can have up to 72 CPU cores and just under one terabyte of memory per node. The
login node (altix.asc.edu) is an SGI Altix 350 node with 6 CPUs and 8 GB of
memory.

The SGI Altix 450 series is physically constructed of vertical blades in order to fit
many processors and memory DIMMs in a single rack. Communication between
blades is handled by a NUMAlink switch on the back plane. At the time this manual
was written, the Alabama Supercomputer Center had three Altix 450 compute nodes.
Two of those nodes (altix7 and altix8) contain 72 CPU cores and 432 GB of memory.
One node (altix9) contains 12 CPU cores and 464 GB of memory. These are 1.6 Ghz
(altix7 & altix8) and 1.67 GHz (altix9) dual-core Intel Itanium2 processors with a
maximum result rate of 6.68 GFLOPs. The web site http://www.asc.edu/
supercomputing/hardware.shtml should be consulted for the number of CPU cores
and amount of memory currently installed.

File Systems and Infrastructure Servers
There is a Panasas storage array for storage of data. This collection of storage nodes
is broken into four volumes. Two of these are PanFS mounted as /apps and /home on
both the Altix and DMC clusters. One volume is served via the PanFS file system
as /scratch on the Altix nodes only. One is PanFS mounted as /scratch on the DMC
nodes only. The Panasas arrays connect to the nodes via 10 Gigabit Ethernet,
Infiniband, and Gigabit Ethernet.

The infrastructure for the supercomputers also includes servers for passwords, group
memberships, software licenses, operating system updates, and the queue system.
Figure 3.1 shows a view of this infrastructure. The servers and network gear shown
in the bottom third of this diagram are common to both the Altix and the DMC.

Dense Memory Cluster
The Dense Memory Cluster (DMC) is a fat node cluster which was architected at the
Alabama Supercomputer Center. It was put together from some commodity
components, and some components that were already on hand at the Alabama
Supercomputer Center. Components for the DMC were obtained from Microway,
Penguin, Cisco, Voltaire, Linksys, Cluster Resources, Novell, SGI, Spectrum,
Avocent, and Panasas. This cluster was designed as a hybrid system with each
compute node pushed as far towards a big memory, shared memory configuration as
commodity hardware would allow. This was done to create a cluster that could run

 HPC User Manual - 9th Edition Supercomputer Hardware

12

the majority of the jobs at the Alabama Supercomputer Center at an optimal price
point.

The DMC nodes were purchased over several years. Each purchase was influenced
by available technology, and the needs of the user community. The node
configuration is listed in Table 3.1 . The first 20 nodes have processors that do two
floating point operations per clock tick, the rest do four floating point operations per
clock tick. The newer DMC nodes (dmc21 and up) are physically configured as
“twin” systems with two complete nodes in each 1U of rack space, as shown in
Figure 3.2 . The newest nodes (dmc61 and up) have redundant power supplies.

 HPC User Manual - 9th Edition Supercomputer Hardware

13

Figure 3.1

The file system and network infrastructure.

At the time this manual was written, the DMC had a total of 1512 CPU cores and 8.2
Terabytes of memory. The web site http://www.asc.edu/supercomputing/
hardware.shtml should be consulted for the number of CPU cores and amount of
memory currently installed.

 HPC User Manual - 9th Edition Supercomputer Hardware

14

Figure 3.2

Two compute nodes fit in
each 1U rack mount server
in the DMC. Each twin node
has two quad-core or 8-core
processors.

Table 3.1 DMC Nodes

Nodes Cores Memory Processors
dmc 8 32 GB 3.0 GHz AMD Opteron 8222 dual-core

dmc1 - dmc20 8 64 GB 3.0 GHz AMD Opteron 8222 dual-core

dmc21 - dmc60 8 64 GB 2.3 GHz AMD Opteron 2356 quad-core

dmc61 - dmc124 8 24 GB 2.26 GHz Intel Xeon E5520 quad-core

dmc125 - dmc128 8 24 GB 2.26 GHz Xeon E5520 + 2 Tesla GPUs

dmc129 - dmc156 8 24 GB 2.26 GHz Intel Xeon E5520 quad-core

dmc157 - dmc172 16 128 GB 2.3 GHz AMD Opteron 6134 8-core

The DMC can run shared memory parallelized applications up to the 16 CPU cores
on a single node, or it can run distributed memory parallelized applications across
multiple nodes. Message passing between nodes goes across an Infiniband network.

The DMC nodes connect to the same home directory and applications file systems
that are used by the SGI Altix. The DMC has a separate /scratch file system. The
scratch file system is a Panasas object-based storage solution.

NVIDIA Tesla GPU Accelerators
Some of the DMC nodes also have specialized NVIDIA Tesla hardware accelerators
attached. These accelerators leverage recent advances in commodity graphics
processor technology to provide significantly higher performance than a traditional
CPU for certain classes of applications. A single Tesla 10-series GPU supports a peak
of 933 GFLOPs when performing single-precision floating point operations and 78
GFLOPs when performing strictly double-precision floating point operations. For
comparison, the conventional 64-bit processors in the DMC nodes can provide up to
9.2 GFLOPs per core. To support this high rate of computation, each GPU also
includes 4 GB of dedicated memory that provides 102 GB/s peak memory bandwidth

 HPC User Manual - 9th Edition Supercomputer Hardware

15

Figure 3.3

A Tesla S1070 with four
GPUs.

compared to 10.6 GB/s per processor for the AMD Opteron processors in a DMC
node.

Each Tesla S1070 contains four GPUs that are attached in pairs to DMC compute
nodes via PCI Express cables, as shown in Figure 3.3. At the time this manual was
written, two NVIDIA Tesla S1070s installed. This amounts to a total of eight GPUs
and 32 Gigabytes of dedicated GPU memory attached to four DMC compute nodes.
The web site http://www.asc.edu/supercomputing/hardware.shtml should be
consulted for the number of GPUs currently installed.

Software development is supported by a NVIDIA compiler suite known as CUDA
that allows programmers to target NVIDIA GPUs using the standard C programming
language with GPU-specific extensions for thread and memory management.
NVIDIA also provides libraries that support a large number of functions from the
standard BLAS and FFTW programming libraries, and allow users to leverage GPUs
through minor code modification and linking against a different library. Further
details on using GPUs may be found in the directory /opt/asn/doc/gpu

 HPC User Manual - 9th Edition Supercomputer Hardware

16

4. Available Software
The Alabama Supercomputer Authority provides a selection of software to be used on
the high performance computing systems. Software packages are purchased based on
the number of user requests, within budgetary constraints.

The software packages available on the HPC systems include both commercial and
open source programs. The Alabama Supercomputer Center staff, installs these
software packages, creates queue scripts to run them, and writes up README.txt
files with instructions on how to use the software. The documentation and
instructions on how to access each software package can be found on the system in
the directory /opt/asn/doc

Public domain software packages, such as those licensed under the GNU Public
License (GPL) are available to all users of the supercomputers. The majority of the
commercial software packages are purchased under licenses that allow academic
usage only. Commercial customers may be required to pay an additional license fee
to use the commercial software packages in order to cover the cost of obtaining the
necessary commercial license.

Users may install software that is licensed for the use of their research group only.
These packages can be installed in the users home directory, or the users can request
that the Alabama Supercomputer Center staff install the software for them by
contacting the staff at hpc@asc.edu . The staff can install software in a centralized
directory, then put a permission group on that software so that only authorized users
can access it.

Software packages are added to or removed from the system from time to time. For a
complete listing of the programs currently available see
http://www.asc.edu/supercomputing/software.shtml

To request new software packages, or new versions of software contact the HPC staff
at hpc@asc.edu Commercial software is upgraded as updates come out. Public
domain software is updated by user request only.

Table 4.1 gives is a listing of the software packages that were available at the time
this manual was written. Those marked with an asterisk (*) require an additional fee
for commercial usage.

 HPC User Manual - 9th Edition Available Software

17

 HPC User Manual - 9th Edition Available Software

18

Table 4.1 Available Software

Bioinformatics Programming Quantum Chemistry

AMOS
AMOS

GNU Assembler ACES II *

Bowtie Blassic CPMD

CAP3 C/C++ Dalton

ClustalW Fortran (77, 90, 95) GAMESS

Cufflinks GASNet GAMESSPLUS

GARLI gprof Gaussian

Genome Analysis Toolkit LISP GaussView

Karma MPI GAUSSRATE

Maq Objective Caml Jaguar *

Mothur ompP JuNoLo

mpiBLAST OpenMP LmtART

MrBayes Perl, Python, awk, tk, tcl MULTILEVEL *

MUMmer Unified Parallel C NWChem

NCBI Toolbox Totalview ORCA

NEXUS Class Library POLYRATE

PHASE Molecular PSI3

PhyloBayes Mechanics / Dynamics Quantum-ESPRESSO

RAxML Amber *

RepeatMasker * Autodock Other Simulations

RNA2MAP Desmond M5sim

SHRiMP GROMACS NS-2

TopHat GULP * Sim-Alpha

TRF LAMMPS TauDEM

Twinscan NAMD

UMFPACK Tinker Semiempirical

Velvet AMSOL *

WU-Blast * MOPAC

 HPC User Manual - 9th Edition Available Software

19

Table 4.1 (Continued) Available Software

Mathematics CFD Structural Analysis

ACML CFD-ACE+ *
ACE

ABAQUS *

deal.II CFD-FASTRAN * Hyperworks *

f2cblaslapack INS2D

GAP INS3D

IMSL MM5 Crystallography

Lapack++ WRF ABINIT

METIS CCP4 *

MKL CNS *

Octave X-PLOR *

PETSc Visualization

R gnuplot Operating Systems

SCSL Grace SLES

SLATEC NCAR Graphics Ubuntu

Trilinos VMD CernVM

5. Accessing the Supercomputers

Access to the supercomputers is available via encrypted connections, such as ssh, scp
and sftp. Connections via telnet and ftp are not allowed. The ssh program allows the
user to open a text console session on a remote computer. Thus ssh is essentially an
encrypted version of telnet. The scp and sftp commands are for transferring files
between computers. The sftp program works like an encrypted form of ftp.

When a user connects to a computer at ASC, the user must enter their user_id and the
appropriate password. This is done from a shell or terminal prompt on a Linux or
Unix system, from a Unix shell on a PC (using a Unix-in-windows tool, such as
Cygwin or MKS), or using a graphical ssh program under windows, such as PuTTY.

ssh connections from OS-X, Linux, or Cygwin
Connections to the supercomputers via ssh can be made from a terminal window.
On a Macintosh computer, the Terminal.app program is in Applications/Utilities.
Some Linux distributions have a terminal icon on the menu bar, and others have a
menu pick to open it, such as Applications->Accessories->Terminal in Ubuntu. A
Windows computer with Cygwin installed will have a Cygwin icon on the desktop.

Once the terminal window is open, the commands syntax is usually the same on all
systems. Typical variations on the ssh command line syntax are:

ssh <user_id>@hostname
ssh –l <user_id> hostname

where hostname is the name of the login node (altix.asc.edu or dmc.asc.edu) and
<user_id> is replaced by your account name.

Examples:

local>ssh asndcy@altix.asc.edu
local>ssh –l asndcy dmc.asc.edu

These command should bring up another line asking you to type in your password.
Enter your password, and press Return. Note that nothing is shown on the screen
when you type the password, not even asterisks (which show an onlooker how many

 HPC User Manual - 9th Edition Accessing the Supercomputers

20

EXAMPLE

characters are in your password). If you get a message about password database
being too restrictive, it means that you mis-typed the password. The password must
be typed exactly as sent to you including the use of upper and lower case characters.

Once the correct password has been entered, a message will be displayed with any
current announcements. You are now logged in on the supercomputer, and can use
any of the Linux, module, or queue system commands described in this manual.

To logoff the supercomputers, enter “exit” and press return.

ssh connections from PuTTY
Windows does not come with a ssh program, but several free ssh programs are
available. The easiest to use, free ssh program is PuTTY. The Cygwin program
described later in this chapter is a more powerful system that installs a Linux
environment on a Windows system. Cygwin is over kill for a simple ssh connection,
but a powerful tool providing a Linux environment on a Windows computer and for
running graphical programs on the supercomputers.

The free PuTTY program can be downloaded from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html . This is a
simple, free ssh program for Microsoft Windows. It can be used in conjunction with
some X-window clients, such as X-Win32.

The file to download from the web site is named putty.exe . Usage of psftp.exe and
pscp.exe from the same web site is discussed later in this chapter.

Unlike most software packages, putty.exe is not a package with an installation
program. It is a single, executable file that needs to be run to use PuTTY. The
putty.exe can be saved directly to the desktop. Another option is to save putty.exe to
a directory of your choice, then create a desktop shortcut to it.

To connect to the supercomputers with PuTTY, first double click on the PuTTY icon
on the Windows desktop. Windows may pop up a security warning message that
requires you to click on “Allow”, or “Run”, or “Continue” in order to allow the
PuTTY software to run. This will open the PuTTY Configuration window, shown in
Figure 5.1 .

Enter the host name, either dmc.asc.edu or altix.asc.edu in the “Host Name (or IP
Address)” box. The rest of the settings should be correct with the defaults. These are
Port 22, SSH, and keyboard-interactive under Connection->SSH->Auth.

 HPC User Manual - 9th Edition Accessing the Supercomputers

21

When using commands involving a host name, such as ssh or scp, users should
always specify the full name, e.g. dmc.asc.edu

Clicking on the “Open” button should cause the initial window to be replaced by the
PuTTY terminal window shown in Figure 5.2

The PuTTY terminal window will appear with the “login as:” prompt. Enter your
supercomputer account name, and press Return.

Next, the “Password:” prompt will appear. Enter your password, and press Return.
Note that nothing is shown on the screen when you type the password, not even
asterisks (which show an onlooker how many characters are in your password). If
you get a message about password database being too restrictive, it means that you
mis-typed the password. The password must be typed exactly as sent to you
including the use of upper and lower case characters.

 HPC User Manual - 9th Edition Accessing the Supercomputers

22

Figure 5.1

The PuTTY
configuration
window.

Reminder

Once the correct password has been entered, a message will be displayed with any
current announcements. You are now logged in on the supercomputer, and can use
any of the Linux, module, or queue system commands described in this manual.

To logoff the supercomputers, enter “exit” and press return.

 HPC User Manual - 9th Edition Accessing the Supercomputers

23

Figure 5.2

The PuTTY
terminal
window.

Transferring Files with sftp
Files can be transferred between systems on the network using the “sftp” command.
The sftp program is very similar to ftp, except that sftp uses a secure, encrypted
connection.

Files are usually transferred as ASCII files. Binary files can also be transferred. Use
of sftp requires a valid userid and password on the remote system. The commands
covered in this section are:

 sftp Establish a remote connection.

 get Move a file from the remote host to the local host.

 put Move a file from the local host to a remote host.

 mkdir Create a new directory on a remote host.

 cd Change directories on a remote host.

 ls List files in the current remote directory.

 lcd Change directories on the local host.

 lpwd Display the current directory path on the local host.

 quit Exit from ftp.

For additional information about the sftp command, enter “man sftp”.

In Linux, OS-X, or Cygwin; Open a terminal as described in the ssh directions
earlier in this chapter. To establish a connection to a remote system, use the sftp
command with the username and network address. After the connection is
established, provide a valid password, as shown in the following example;

 sftp asndcy@altix.asc.edu
 Connecting to altix.asc.edu...
 asndcy@altix.asc.edu's password:
 sftp>

Using psftp.exe: Download psftp.exe from the PuTTY web site the same way that
putty.exe was downloaded. Double click on the psftp icon on the Windows desktop.

 HPC User Manual - 9th Edition Accessing the Supercomputers

24

A Windows security message may appear requiring you to click “Run”, “Continue” or
“Allow” to allow psftp.exe to run. Initiate the connection to the supercomputer with
the command “open dmc.asc.edu” or “open altix.asc.edu”. Type in
your user name and press Return, then type in your password and press Return.

The sftp> prompt indicates that anything you type now should be sftp commands.
This helps minimize confusion as some sftp command, such as cd and mkdir, are very
similar to commands available from the regular login shell.

Using psftp.exe: The rest of the directions on using sftp work the same in psftp.exe
with one exception. psftp does not always function correctly when directory names
contain spaces. Thus you may not be able to transfer files in or out of the
“My Documents” directory. The work around for this is to make a top level directory,
such as C:\downloads and transfer all files in and out of that directory.

The get Command

The get command is used to transfer a file from the remote system to the local
system. The syntax is:

 get <remotefilename> <localfilename>

If the local file name is omitted, the remote file name will be used for both files.
Below is how this should look.

 sftp> get hello.f
 Fetching /home/asndcy/hello/hello.f to hello.f
 /home/asndcy/hello/hello.f 100% 65 0.1KB/s 00:00
 sftp>

 HPC User Manual - 9th Edition Accessing the Supercomputers

25

The put Command

The “put” command is used to send a file from the local host to the remote host. The
syntax is:

 put <localfilename> <remotefilename>

If the remote file name is omitted, the local file name will be used for both files.
Below is an example of how this should look.

 sftp> put test1.inp test_input.inp
 Uploading test1.inp to /home/asndcy/test_input.inp
 test1.inp 100% 5 0.0KB/s 00:00
 sftp>

The mkdir Command

The “mkdir” command is used to create a new subdirectory on the remote host. The
syntax is:

 mkdir <new-sub-dir>

The following is an example of how this should look.

 sftp> mkdir demosftp
 sftp>

The cd Command

The “cd” command is used to change directories on the remote host. The syntax is:

 cd <dir-name>

The following is an example of how this should look.

 sftp> cd demosftp
 sftp>

 HPC User Manual - 9th Edition Accessing the Supercomputers

26

The ls Command

The “ls” command is used to get a listing of the files in the current remote directory.
The syntax is the same as the Linux ls command syntax. For example;

sftp> ls
a.out demosftp hello.f test.inp
sftp> ls -l
-rwxr-xr-x 1 asndcy analyst 800106 May 19 11:58 a.out
drwxr-xr-x 2 asndcy analyst 6 May 20 11:49 demosftp
-rw-r--r-- 1 asndcy analyst 65 May 18 13:49 hello.f
-rw-r--r-- 1 asndcy analyst 5 May 20 11:48 test.inp
sftp>

The lcd Command

The “lcd” command is used to change directories on the local host. The syntax is;

 lcd <dir-name>

The lpwd Command

The “lpwd” command shows the full path to the current directory on the local host.
No argument is required.

The quit Command

The quit command exits from the ftp session. The quit command does not require
any arguments. After typing quit, the session should return to the command prompt,
as shown in the following example.

 sftp> quit
 asndcy01@delldhp2 /tmp>

Transferring Files with scp
The following describes how the “scp” command works on Linux, OS-X, and
Cygwin. There is a pscp.exe program on the same web site as PuTTY. pscp.exe
works similarly, but does not work on all versions of Windows.

The commands scp and sftp can be used to copy files from your desktop computer to
the supercomputers, or from the supercomputers to you desktop. Full documentation
for these commands can be viewed on the supercomputers by typing “man scp” or
“man sftp”.

 HPC User Manual - 9th Edition Accessing the Supercomputers

27

The scp command works like the cp command, but requires that a username and
computer network address be specified also. For example, if you are on your
computer, in a Cygwin shell, in a directory containing myfile.txt and you want to
copy it to the supercomputers, the following command would be used.

 scp myfile.txt <login_id>@dmc.asc.edu:~

The <login_id> would be replaced by your user name. The tilde “~” designates that
the file should be put in your home directory.

The scp command to copy the file back from the supercomputer to the directory you
are currently in within a Cygwin shell would look like this

 scp <login_id>@dmc.asc.edu:~/myfile.txt .

In this case the single period at the end indicates that the file is copied to the directory
your are currently in.

Savvy users that move large amounts of data around tend to use scp because it
requires less typing than sftp.

X-Windows
Some software packages at ASC have graphical interfaces, which require the use of
an X-Windows server program. X-Windows is the graphical user environment used
on UNIX and Linux computers. Unlike Microsoft Windows, X-Windows was
designed from its inception to display graphical interfaces on a computer that is
geographically removed from the one actually running the program. X-Windows
software is usually included with Linux or Unix operating systems. There is an X-
Windows server for Macintosh OS-X systems called X11, which is included on the
operating system installation DVD but not installed by default. For Microsoft
Windows users, it will be necessary to install an X-Windows server.

If you wish to use a program that utilizes an X-Windows interface and run it from a
PC, first contact your campus information technology office. Some campuses have
X-Windows servers available at a reduced cost or no cost. There are several good
commercial X-Windows clients, such as X-Win32 or Exceed. The free Xming, and
Cygwin packages also include X-Windows servers.

 HPC User Manual - 9th Edition Accessing the Supercomputers

28

 Tip!

Cygwin or Xming work with some Windows versions and not others. Check their
web sites for information about using the latest version on your version of Windows.
The Xming X-Windows client is easier to install than Cygwin.

Installing and running Xming
The Xming software can be downloaded from

 http://www.straightrunning.com/XmingNotes/

Here are extra notes about doing the Xming installation.

• On the web page, scroll down to the "Releases" section and to the second table
under the column heading saying "Public Domain Releases". Click on the link that
just says "Xming". This should take you to a Sourceforge web page and open a
download window. If the download window doesn't open, it may be necessary to
set an exception to the pop up blocker in your web browser.

• The downloaded file can be run (i.e. from Windows Explorer) to install the
software. During the installation, several security windows may require you to
indicate that the installation should be allowed and unblocked.

• The default Xming installation settings should work.

• To start Xming, select Start->All Programs->Xming->Xlaunch Use the default
Xlaunch options with the exception of; Start a program, Using PuTTY, and fill in
the machine name (i.e. dmc.asc.edu) your userid and password. This should open
an xterm window with you logged in on the DMC.

• Once you are logged in try typing “xclock”. If a window with a clock is displayed
on the screen, Xming is working correctly.

Cygwin Installation
Cygwin is a more complex and powerful environment than Xming. Xming simply
installs a X-Window server and ssh program. Cygwin sets up a complete Linux
environment on a Windows computer. This allows you to run scripts, compile
software, and run a large number of Linux applications on a Windows computer.
Cygwin is a favorite of people who have a Windows computer, but would like to run
Linux applications, develop software, or utilize the powerful scripting features of
Linux. The following discussion of Cygwin installation and use is provided for the
benefit of users that would like to use Cygwin for ssh, as an X-Window server and

 HPC User Manual - 9th Edition Accessing the Supercomputers

29

 HPC User Manual - 9th Edition Accessing the Supercomputers

30

Figure 5.3

Recommended Cygwin
installation options are;

Install from Internet
Default directory
Unix text file type
Direct Connection

other functions.

You may obtain the Cygwin setup.exe file from http://www.cygwin.com/ .
Download the setup.exe file, then execute it. The images shown in Figure 5.3 show
recommended settings in the Cygwin installation. There may be additional steps to
verify that it is valid software, allow it to run and unblock it’s access to the internet.

Note that the mirror site name shown here is at Virginia Tech (vt.edu). This address
must be selected as shown in Figure 5.4.

WARNING: Cygwin will not install the X-Windows components by default. In
order to get a Cygwin installation capable of running X-Windows software, you
must follow these directions closely.

The default installation is a minimal installation. Additional tools to install can be
added by clicking the packages (as shown in Figure 5.5). Additional tools can be
added later by running the setup program again. Browsing this setup menu is a good
way to find out about the available options in Cygwin. Additional packages can be
added by clicking on the word to the right of the little circling-arrows icon.

 HPC User Manual - 9th Edition Accessing the Supercomputers

31

Figure 5.4

The vt.edu mirror site
usually gives good
download speeds to
locations in Alabama.

!

Adding the following packages to the default selections is recommended, as shown in
Figure 5.5.

X11 -> Install All (the X Window server)

under Editors
Nano -> Install (an easy to use text editor)
Vim -> Install (the vi text editor for power users)

under Mail
Exim -> Install (send email from the command line)

under Net
Openssh -> Install (for SSH and X Window client)

under Shell
Rxvt -> Install (alternative to the dos prompt)

 HPC User Manual - 9th Edition Accessing the Supercomputers

32

Figure 5.5

The following optional
components must be
selected in order to get a
Cygwin installation
capable of running X-
Windows and performing
other tasks discussed in
the supercomputer
documentation.

X11
Nano
Vim
Exim
Openssh
Rxvt

Other items that some users may wish to install include; emacs (under Editors), math
tools, programming utilities such as make and the gcc C/C++ compiler (under Devel),
and TeX (under Publishing).

Follow the installer prompts to finish the installation with default options.

Additional packages can be added into an existing Cygwin installation later by
rerunning the installation program.

Create a shortcut to the X-Windows program by clicking the right mouse button on
the desktop background. From the menu that appears, select New then select
Shortcut from the submenu. If you used the default installation paths, the target will
be C:\cygwin\bin\startxwin.bat . On Windows Vista systems, the desktop icons
may not show up until the next time the computer is restarted.

Using Cygwin X-Windows with SSH
Start an X-Windows terminal on your PC by double clicking on the startxwin icon
on your desktop. Alternatively, it can be started using
Start->All Programs->Cygwin-X->XWin Server It may be necessary to use either
of these start options several times in order to get the software to start on a Windows
Vista system. The Start menu option is used for newer versions of Cygwin on
Windows 7.

Open a secure connection to your supercomputer account with a command like this

 ssh –Y –l <user_id> altix.asc.edu

At this point, you should be able to run X-Windows commands and have them
display on your local computer screen. You can test this by typing xclock . This
should display a clock in a small window on your PC screen.

If this X-Windows client setup does not work, the most common problem is
limitations imposed by network firewalls. Contact your local information technology
department to determine if there might be a firewall filtering network traffic between
your computer and the AREN network.

 HPC User Manual - 9th Edition Accessing the Supercomputers

33

6. Working with Linux
The Linux operating system is a public domain operating system, which mostly
conforms to the POSIX standard (the technical specification for the UNIX operating
system). It was developed by large number of volunteer programmers around the
world. The original inception and much of the project coordination is attributed to
Linus Torvalds, then a student at the University of Helsinki, Finland. Both the DMC
and the Altix are running versions of Linux. The Linux version on the Altix comes
with additional tools developed by SGI. The operating system on these machines is
very much like Linux operating systems on a wide variety of other computers.

Most of the differences between the operating systems on the SGI Altix and DMC are
items that concern the system administrators, but are not directly visible to the users
of these systems. The one exception to this is that users compiling their own MPI
parallelized programs will have to follow slightly different procedures in order to use
the version of MPI applicable to each system.

Linux provides the standard UNIX commands, libraries, and features, such as user
shells, pipes, tees, and filters. Also included are text editors (nano and vi),
communications programs (ssh, sftp, and X-Windows), and compilers (C, C++, and
FORTRAN90). The job queuing system (Moab) is a third party add-on to Linux
systems. Moab allows users to create a file of commands for the computer to execute
at a later time rather than simply typing in the commands one by one from a terminal.
Effective use of the computers, particularly for large jobs, requires use of the Moab
queue system.

Many popular Linux guides and textbooks also provide valuable information and are
generally applicable to Linux. Most documentation for Linux can be accessed online
via the man command. See the “Online Help” and “Technical Support for Users”
sections of this manual for information about getting help.

Using Linux interactively is described in the following pages. The Moab queue
system is designed to accept the same commands as for interactive use. You can
prepare a file for submittal to the Moab system with one of the text editors and then
place it into an appropriate batch queue.

 HPC User Manual - 9th Edition Working with Linux

34

Files and Directories
The same rules apply to both file and directory names in Linux.

WARNING: Linux is case sensitive! Uppercase is distinguished from lowercase.
For example, prog.c is not the same file as Prog.c .

Directory and file names may be from 1 to 254 characters long. Periods and
underlines may be used to substitute for blanks (which are strongly discouraged) to
clarify what the names mean. For example, a documentation file might be designated
read.me or read_me Nearly any keyboard character may be used in file and
directory names.

When naming files and directories, it is best to avoid the characters that Linux uses
in other situations, such as / \ " ' * ; - ? [] () ~ ! $ { } < > tab and the space
character, which all potentially can create confusion.

Directories in a Linux system are organized in a tree structure. The root directory is
the top of the directory tree. The root directory is designated / . Users on the system
have their directories and files placed in a branch of the root corresponding to their
account. Other important directories, such as apps (where applications are stored) opt
(where additional information is stored) and bin (where built in programs reside), also
branch directly from the root directory. These directories are designated /home,
/apps, /opt, and /bin.

Subdirectories are indicated with a / preceded by the name of their parent directory.
If there is a user subdirectory called asndbg in home, for example, the full designation
for that subdirectory, starting from the root, would be /home/asndbg . The user
asndbg might have organized FORTRAN programs into a subdirectory called fort,
and one of those programs might reside in the file prog.f within the fort subdirectory.
The full path designation for the file prog.f thus would be:

 /home/asndbg/fort/prog.f

Figure 6.1 shows a sample directory tree. This example includes the directory
described above, the mail directory also belonging to user asndbg and the home
directory of user asndcy.

 HPC User Manual - 9th Edition Working with Linux

35

!

 Tip!

Any given directory has a parent directory, in which it is a subdirectory. Shorthand for
the parent directory is "..". To get to the directory mail from directory fort in Figure
6.1, one uses the change directory command “cd” in Linux. The cd command is used
to move up one directory, then down (indicated by the slash) into a different directory
like this

 cd ../mail

The shorthand designation, "." represents the current directory. The shorthand
designation, "~" represents the users home directory.

The asterisk “*” is a wild card character which indicates any number of characters at
that point. For example, to copy all files with extension .f from the parent directory
to the current directory, use the following command:

 cp ../*.f .

ASC Linux File Organization
The Linux filesystem is best described with the Linux Filesystem Hierarchy. This
standard can also be found on the web at
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/

In addition to the standard file system ASN uses the directory structure shown in
Figure 6.2 for locally installed software and user accounts.

 HPC User Manual - 9th Edition Working with Linux

36

Figure 6.1

A graphical depiction of a directory tree.

/! ! home! ! ! asndbg! ! fort

! ! ! ! ! ! ! ! mail

! ! ! ! ! asndcy

The following are some of the directories on the HPC systems at the Alabama
Supercomputer Center, which are of importance to users of the system.

/home – Used for storing users’ files

/opt/asn – All software we install goes here, as well as other material available to
users

/opt/asn/doc – Documentation and directions for running many third party software
packages.

/apps/bio/unzipped - Genomic databases

/opt/asn/etc/asn-bash-profiles – Files sourced from the users .bashrc file

/opt/asn/etc/asn-bash-profiles-special – Files users have the option of sourcing from
their .bashrc.local.altix file or .bashrc.local.dmc file. Sourcing these files may not be
needed or safe for all users. Generally if something here needs to be sourced for a
given software package, it will be explained in the documentation in /opt/asn/doc .

/scratch – A large shared temporary file system for storing calculation data. Files on
this file system are automatically deleted if they have not been accessed in 7 days.
Users may create and delete files here. There are currently 15 TB of scratch on the
Altix and the DMC.

 HPC User Manual - 9th Edition Working with Linux

37

Figure 6.2

Directories used by many
users.

 /

/opt

/home /username1

/username2

/scratch

/doc

/asn /apps

/etc /asn-bash-profiles

/asn-bash-profiles-special
/bin

/include

/lib

/man

There are some hidden files in each users home directory. These files are put there
before the user ever logs in. Commands can be put in the account setup files to
customize the behavior of the account, or to configure the account to use certain
software programs.

Files are hidden files if the file name begins with a period. However, the “ls”
command that displays a list of files can be told to include the hidden files by using a
-a flag like this.

 ls -a

If the user account is brand new and has no files, typing “ls -a” would still result in
showing the following;

 . .bashrc.local .flexlmrc
 .. .bashrc.local.altix .ldaprc
 .alias .bashrc.local.dmc .nwchemrc
 .bashrc .poly_path9.3

The . (period) entry is a pointer to the current directory. The .. (period period) entry is
a pointer to the directory above the current directory. Here are notes on a number of
these files.

The .alias file can contain aliases, which create shortcut versions of commands. An
alias can also be used to create a new default behavior of a command, or tell your
account to use an alternative version of the same command.

The .bashrc file is the primary point of user account customization on most Linux
systems. The Alabama Supercomputer Center has a site specific account
configuration. Because of this, the .bashrc file should never be altered.

The .bashrc.local file can be altered to install customizations that will be seen on both
of the high performance computers at the Alabama Supercomputer Center.
The .bashrc.local.altix and .bashrc.local.dmc files can be edited to customize the
behavior on just one of the high performance computing systems at the Alabama
Supercomputer Center.

The files .poly_path9.3 .flexlmrc .ldaprc and .nwchemrc configure your account to
use certain software packages. These files should never be altered.

 HPC User Manual - 9th Edition Working with Linux

38

WARNING: The .bashrc .poly_path9.3 .flexlmrc .ldaprc and .nwchemrc files
should never be altered on the supercomputers.

Manipulating Files and Directories
The following are some of the Linux commands that are most often used to create,
move, copy, or delete files and directories. Each command must be in lower case as
shown. The examples shown here are the simplest, most frequently used command
line options. Most of these commands have additional command line options, which
can be displayed on line with the command “man <command>”.

cd
Typing “cd” without arguments puts the user in the user's home directory. With a
directory name as an argument, the command moves the user to that directory. If the
directory name starts with a slash, it is a full path name from the root directory. For
example;

 cd /opt/asn/doc

If the directory name does not start with a slash, it implies a subdirectory of the
current location. For example;

 cd gaussian

To go up one directory, use two periods like this;

 cd ..

cp!
The “cp” command makes copies of files in two ways. This example makes a copy of
filea and names it fileb.

 cp filea fileb

The following example puts copies of all the files named into the directory.

 cp [list of files] <directory>

 HPC User Manual - 9th Edition Working with Linux

39

!

The cp command can be given an asterisk “*” as a wild card character to move
multiple files. For example, the following command would copy every file with a
name ending in .c to the directory named source.

 cp *.c source

The cp command makes a second copy of the file, unlike the mv command which
leaves only one copy of the file but moves it to a new location.

file
The “file” command examines the contents of a file to see what type of file it is. This
is called with the file name as the only argument like this.

 file <filename>

If the program is compiled to run on the altix, the file command will show that it is an
IA-64 architecture executable like this.

asndcy@dmc:ia64> file environ
environ: ELF 64-bit LSB executable, IA-64 (Intel 64 bit
architecture), version 1 (SYSV), for GNU/Linux 2.4.0,
statically linked, not stripped

If the program is compiled to run on the DMC, the file command will show that is is
an x86-64 architecture executable like this.

asndcy@dmc:x86_64> file environ
environ: ELF 64-bit LSB executable, x86-64, version 1
(SYSV), for GNU/Linux 2.4.0, statically linked, not
stripped

ls
The “ls” command lists the files in the current directory or the directory named as an
argument. The ls command can be used without arguments, but there are many
options available. For example;

 ls -a [directory]

lists all files, including files whose names start with a period. If a directory name is
not specified, ls lists files in the current directory. Files that have names starting with
a period are hidden unless the -a option is given. These are account setup files which
should be altered seldom if ever.

 HPC User Manual - 9th Edition Working with Linux

40

 ls -l [directory]

lists files in long form: links, owner, size, date and time of last change.

 ls -C [directory]

lists files in columns using full screen width.

 ls -R [directory]

recursively lists files in current directory and all subdirectories.

mkdir
mkdir makes a new subdirectory in the current directory. For example;

 mkdir fort

makes a subdirectory called fort.

more (or less)
The “more” command is used to display a text file. For example, filea.txt can be
displayed with the command

 more filea.txt

Within more, the next page of text can be viewed by pressing the space bar. The next
line of text can be viewed by pressing the Return key. You can also use the “f” key
to move forward and “b” key to move backwards by the page. Typing “q” exits
more. On most Linux systems “more” and “less” behave identically.

mv!
The “mv” command moves or changes the name of a file. The following example;

 mv filea fileb

changes the name of filea to fileb. If the second argument is a directory, the file is
moved to that directory but keeps the same name.

When the mv command is used, there is only one copy of the file, in contrast to using
the cp command which makes a second copy of the file.

 HPC User Manual - 9th Edition Working with Linux

41

pwd!
The “pwd” command returns the name of the current working directory. It tells
where the current directory is in the directory tree. No arguments required.

rm!
The “rm” command removes each file in a list from a directory. For example, the file
program.cc can be deleted with the command.

 rm program.cc

All of the files ending in .cc can be deleted with the command

 rm *.cc

WARNING: Using the asterisk with the rm command can result it deleting much
more than desired. Before using rm with an asterisk, it is advisable to check a
listing of which files will be deleted with the ls command like this “ls *.cc”.

Option -i causes rm to inquire whether each file should be removed or not, like this;

 rm -i *.cc

Option -r causes rm to delete a directory along with any files or directories in it. For
example;

 rm -r source

rmdir
The “rmdir” command removes an empty directory from the current directory. For
example;

 rmdir fort

removes the subdirectory named fort (if it contains no files).

To remove a directory and all files in that directory, either remove the files first and
then remove the directory or use the “rm -r” command described above.

 HPC User Manual - 9th Edition Working with Linux

42

!

Frequently Used Linux Commands
The previous section of this manual listed commands that are used for manipulating
files and directories. This section lists a number of other Linux commands. This is
by no means a comprehensive listing. There are thousands of Linux commands,
many of which are only used by systems administrators, and a few of them a career
systems administrator will have never had occasion to use. However, the commands
listed here are the small set of commands that a user of a Linux system will utilize
99% of the time.

As in the previous section of this manual, the examples shown here are the simplest,
most frequently used command line options. Most of these commands have
additional command line options, which can be displayed on line with the command
“man <command>”.

awk
The “awk” command can be used to run an entire script written in the awk language,
or used as a command that runs one line of awk line functionality from the command
prompt or in a shell script. Most often, awk is used to insert a single line of awk
script code in a shell script. This is done because Bourne shell or bash shell scripts
are easier to write, but lack awk’s facility for floating point mathematics and
formatting columns of data. This is very powerful tool for writing Linux scripts, but
too complex to use to be covered in this manual. Users intending to use Linux scripts
heavily should look up the awk command in a book on shell programming. Several
good books on shell programming are referenced in the bibliography at the end of this
manual.

cat
The “cat” command concatenates (combines) and prints the files given as arguments.
The output goes to the standard output, which is usually the screen. For example, the
following command would print the contents of filea.txt to the screen.

 cat filea.txt

Note that printing a text file to the screen is a sensible thing to do. There is seldom
any reason to print the contents of a binary file, such as an executable program.
Indeed printing binary files to the screen often resets terminal settings, thus making it
necessary to close your session and reconnect to the supercomputer.

If no file is given, input is taken from the keyboard. A CTRL-D terminates keyboard
input and brings you back to the command prompt.

 HPC User Manual - 9th Edition Working with Linux

43

Often output is redirected with the operator >. For example;

 cat filea fileb > filec

concatenates filea and fileb and places the result in filec.

chmod
The “chmod” command changes the file permission status of a file. Permissions may
be granted to read, write, or execute the file. That permission may be given to the
user, the user's group, or to the world. When one uses the “ls -l” command, these
permissions are listed at the left as a series of r's, w's, or x's, with - indicating that
permission is not granted.

For example, -rwxrwxrwx indicates read, write, and execute permission is granted to
all three groups; -rw-r----- grants the owner of the file read and write permissions, the
members of the owners group read permission, and no access to users not in the
owners group. The chmod command changes the status of these permissions. The
form is the following:

 chmod [ugo] [+-] [rwx] files

The flags u, g, or o stand for user, group, or others. The + or - indicate whether the
permission is to be given or denied. The r, w or x indicate whether read, write, or
execute permission is to be given. For example;

 chmod +x myfile

will give myfile execute permissions for everyone. Or the command;

 chmod ug+x filea

will give filea execute permission to the user and the user's group.

When a new file or directory is created, the default permissions granted are those
specified by the user's umask (or default permission mask). The operating system has
a default umask, which is set on all user accounts. The user can change the umask
value to suit the user's needs. See the man page on umask for details by typing
“man umask”.

date
The “date” command outputs the date and time. The date command does not
require any arguments.

 HPC User Manual - 9th Edition Working with Linux

44

echo
The “echo” command repeats whatever text is given to it on the standard output. For
example,

 echo Whats up, doc?

will print What's up, doc? on the screen (default for standard output). If echo is
used inside of a script (discussed later) there would need to be double quotes around
the words to print.

The echo command can also be used to display the values of environment variables.
Environment variable names are denoted by a dollar sign, like this

 echo $PATH

finger
The “finger” command allows users to see who owns a given user account. This is
done by typing “finger” followed by the account name, like this

 finger asndcy

grep
The “grep” command finds lines of text that contain a given string. For example, to
find the lines containing the word “energy” in the file water.out use

 grep energy water.out

head
The “head” command prints the first part of a file given to it as an argument. For
example, the following would print the first 30 lines of the file water.txt

 head -30 water.txt

By default head outputs 10 lines of text.

 HPC User Manual - 9th Edition Working with Linux

45

ldd
The “ldd” command prints the list of dynamically linked libraries called by a
program, or another library. For example

 ldd /opt/asn/bin/f2c

This is used to analyze the problem when a dynamically linked program can’t find it’s
libraries.

mail
The “mail” command invokes an electronic mail system. The mail command can be
used to send mail. The ASC supercomputers do not allow mail to be received. For
example

 mail hpc@asc.edu

sends mail to hpc (user help on the supercomputers) at the address asc.edu. The user
names are arguments to the command. Users are prompted for a subject after the
command. The letter should be entered line by line and finished with a line
containing only a period or a CTRL-D character.

Alternatively, the redirection operator < may be used to route a letter prepared with
an editor to mail. For example

 mail hpc@asc.edu <errors.txt

would send the previously prepared letter to the supercomputer help email address.

For contacting the technical support staff, it is better to use your regular email
account, which allows them to reply to you. However, the mail command can be
convenient for writing scripts that automatically email information to your regular
email account.

 HPC User Manual - 9th Edition Working with Linux

46

 Tip!

man !
The “man” command provides online documentation for all UNIX commands and
utilities, making quite detailed descriptions instantly available. The commands or
utilities are arguments to man. For example;

 man cat

will give a summary of the use of the concatenate command.

Another very useful feature is illustrated in this example

 man -k <keyword>

which will give information on all commands relevant to the given keyword.

nm
The “nm” command gives a list of functions in an executable or library. For example

 nm /usr/lib/libjpeg.a

This is used to determine which libraries need to be linked when a compile command
gives an unresolved symbol error.

passwd
The “passwd” command allows the user to change her password. No arguments are
required for the passwd command. The passwd command will prompt the user to
supply the old and new passwords.

The passwd command in use at the Alabama Supercomputer Center is slightly
different from the way this command is set up on other systems. The command at
this center gives the user the option of inputting a new password or letting the passwd
program generate a secure password. It only accepts passwords that cannot be broken
by common computer hacking utilities. If an invalid password is entered, it will
explain why the password is invalid. It is necessary to use a word that is not in the
dictionary and include a number or non-letter symbol.

 HPC User Manual - 9th Edition Working with Linux

47

ps
The “ps” command shows what processes are running in the current shell. The ps
command can be run without any arguments.

Note that the ps command does not show processes belonging to jobs submitted
through the queue system. Those jobs are running on other nodes in the cluster
and thus can be seen with “qstat” but not with “ps”.

sed
The “sed” command copies files (standard input by default) to standard output, edited
according to a script of commands. This is very powerful tool for writing Linux
scripts, but too complex to use to be covered in this manual. Users intending to use
Linux scripts to do string processing should look up the sed command in a book on
shell programming. Several good books on shell programming are referenced in the
bibliography at the end of this manual.

sort !
The “sort” command can be used to sort lines of text. The simplest form of this
command would look like this

 sort <filename>

which sorts the lines in the file in lexicographical order, meaning that the alphabet is
extended to include special symbols and digits.

A command line flag can be put between the word “sort” and the file name. Here are
some useful flags for controlling the behavior of sort.

 -b ignores initial blanks
 -d uses a dictionary order, without special digits or symbols
 -f treats upper and lower case as equals
 -n sorts numerically
 -r reverses the sort order

One frequent use of sort is to put the results in a different file, like this

 sort -o <output_file> <input_file>

 HPC User Manual - 9th Edition Working with Linux

48

Reminder

tail
The “tail” command prints the last part of a file given to it as an argument. For
example, the following would print the last 30 lines of the file water.txt

 tail -30 water.txt

By default tail outputs 10 lines of text.

top
The “top” command can be typed without arguments to see what processes are using
the most CPU time on the current node. The top command is exited by typing the
letter “q”.

Note that the top command does not show processes belonging to jobs
submitted through the queue system. Those jobs are running on other nodes in
the cluster. The top command only shows processes on the current node, the
login node, and thus cannot see queued jobs. The queued job status can be seen
with the “qstat” command, which is described in the section of this manual
about using the queue system.

wc
The “wc” command counts lines, words, and characters in files. By default, the wc
command will return counts for all three. The parameters -l, -w, and -c will limit the
report to lines, words, and characters, respectively. In the simplest form, the wc
command can be given just a file name, like this;

 wc .bashrc.local.dmc
 100 276 3399 .bashrc.local.dmc

The output indicates that the file .bashrc.local.dmc. contains 100 lines of text,
276 words, and 3399 characters.

which
The “which” command gives the full path to the location of an executable file. There
is also a locally written “whence” command that works with aliases as well. For
example;

 which grep

 HPC User Manual - 9th Edition Working with Linux

49

Reminder

who
The “who” command lists the login names of all users currently on the system, their
terminals, and when they logged on. The who command does not require any
arguments.

Linux also allows users, or at least their shell scripts, to ask existential questions with
the following commands;

 who am i
 whoami

Using Pipes and Regular Expressions
The previous section of this chapter discussed using Linux commands by typing
single command at the command prompt. One of the great sources of convenience
and power in the Linux operating system is the ability to easily use multiple
commands together.

Let’s look at an example of how to use this ability. Login on the supercomputer, and
check what jobs are running through the queue system by typing the following.

 qstat

The “qstat” command show one line of text for every job submitted to run on the
compute nodes through the queue system. Because of this, the output from qstat can
be hundreds of lines of text. It is inconvenient to wade through all of that information
to find out about your own jobs. However, Linux gives a convenient way to find just
the desired information. For example, if user asndcy wants to see just their own jobs,
they could type the following;

 qstat | grep asndcy

What happened here? The vertical bar “|” is called a pipe. That pipe tells Linux to
take the output from one command and feed it into the input of another command. A
large percentage of the commands in the previous section of this chapter can be used
in this way. The “grep” command outputs only the lines of text containing its search
query, called a regular expression. In this example, the regular expression is
“asndcy”.

For an example of piping more than two commands together, we could count how
many jobs user asndcy has running by typing the following;

 HPC User Manual - 9th Edition Working with Linux

50

 qstat | grep asndcy | wc -l

Here the word count command (wc) is used to count how many lines of text are
output by the previous commands. Likewise pipes can be used to combine even 20
commands.

The grep command has a very rich set of options for selecting which lines to output.
For example, the export commands in the hidden account setup file .bashrc.local.altix
can be displayed with the following command.

 grep export .bashrc.local.altix

It often happens that some of the lines in the .bashrc.local.altix file are commented
out by putting a pound sign (#) at the beginning of the line. It is possible to display
just the commented out export commands like this

 grep “#export” .bashrc.local.altix

The regular expression is put inside of double quotes so that Linux will know that the
pound sign is part of the regular expression, not performing another function
(commenting out a script line).

To display the export lines that are not commented, use a command like this;

 grep export .bashrc.local.altix | grep -v "#export"

In this example, the -v flag causes grep to display everything that does not fit the
pattern.

The regular expression should be enclosed in single or double quotes if it contains
one or more blanks. A regular expression contains the usual ASCII characters, but
some characters have special meanings, depending on their location within the
expression. The characters with special meaning are . * [] \ $ and ^.

The period substitutes for any character in one position in the expression.
(Expression matching with the ls command uses a question mark in place of a
period.) For example, .abc will match with aabc, babc, 7abc, and so on, and a.bc
matches a1bc, a2bc, azbc, etc.

 HPC User Manual - 9th Edition Working with Linux

51

Multiple occurrences of a character may be matched with an asterisk. For example,
a*bc will match patterns with zero or more characters between the “a” and “b”
characters, such as occurrences of axbc appbcd abc aaaaaaaaaaaaaabc etc.

A backslash before a special character will remove the special meaning from the
character, so that it can be matched for itself. For example, * within a regular
expression will match * in that position.

Redirection of Input and Output
Standard input and output may be redirected for any process with the use of the
symbols < and >.

Putting the following after a command “<file.txt“ redirects standard input (by
default, the keyboard) so that input is taken from the file named after the symbol.
This can be used to automate tasks that normally require input from the keyboard.
The exact input from keyboard, including returns, can be put in a file and piped into
the command.

Putting the following after a command “>file.txt” redirects standard output (by
default, the screen) to the file named after the symbol.

WARNING: When output is redirected to a file with >filename Any
information currently stored in the file specified is overwritten and lost.

Here is an example of putting the output of the ls command into a file.

 ls >ls.txt

The special symbol >> appends new data to the named file. Thus the following
command would double the size of the ls.txt file from the previous example and result
in having two copies of the same information in the file.

 ls >>ls.txt

Putting the following after a command >&file.txt redirect both stdout and stderr
to the file.

Putting the following after a command <<xxx redirects input until it encounters a
line with only xxx, beginning in column 1. This can be used in scripts to put an input
file inline within the script.

 HPC User Manual - 9th Edition Working with Linux

52

!

Introduction to the nano Text Editor
Programming language source code, scripts, and the input files used for many
applications are text files. It it convenient to be able to create, edit, and view text files
via an ssh connection to the supercomputers. This is done with a text editor. A text
editor is like a word processor that only creates text files, similar to Notepad on a
Microsoft Windows system or TextEdit on a Macintosh.

There are a number of text editors available for Linux systems. This manual will
discuss two of those editors named “nano” and “vi”. The nano text editor is an
excellent choice for first time users. Power users often expend the additional effort to
learn the more powerful vi editor. This section of this manual discusses nano. The
next section of this manual discusses vi.

The nano text editor is an easy to use editor for creating ASCII text files from a
terminal window. The nano program is not included with all distributions of Linux
and Unix, but it can be downloaded free from http://www.nano-editor.org/ On the
ASC supercomputers, nano is in users default path.

To invoke nano type the following command:

 nano [options] <filename>

 HPC User Manual - 9th Edition Working with Linux

53

Figure 6.3

The nano text
editor.

A complete list of the nano command line options can be seen by typing
“man nano”. This description discusses the most frequently used options.

Most frequently, users edit files without using any of the optional command line
arguments. For example, the file myscript.sh could be edited with the command

 nano myscript.sh

The nano program fills the whole terminal window, as shown in Figure 6.3. The top
line shows the nano header including the name of the file you are editing in reverse
video. The second line of the screen is left blank to be more visually appealing….
this does not mean that the first line of your file is a blank line. The text of your file
is displayed in the middle of the screen. The bottom of the screen displays most used
nano commands in inverse video. The carat ̂ means to hold down the CTRL key on
the keyboard while typing the following letter. The prompts at the bottom of the
screen display upper case characters, but the same letter in lower case works as well.

The cursor position is indicated by a single character in inverse video. Move the
cursor around the screen with the arrow keys. Any text you type will be inserted to
the left of the cursor. You can position the cursor one line beyond the end of the file
to append new text, even though the file may not have a blank line at the end. The
Backspace key deletes text to the left of the cursor, and the Delete key deletes the
character that the cursor is positioned over.

The changes you make are now written out to the file until you tell nano to write
them. Typing CTRL-O results in writing out to the file.

If you type CTRL-X to exit without first writing the changes to the file, nano will ask
if you want the changes saved to the file.

 HPC User Manual - 9th Edition Working with Linux

54

Here is a sample nano session.

The user should be in the directory in which the new file is to be located.

To begin editing the sample file from the previous exercise called hello.f in the
current working directory, type:

 nano hello.f

The editor will display a screen like the one in Figure 6.3.

Position the cursor at the end of the word Hello then type another word, say
World. Type CTRL-X to exit nano. The nano program will ask you want to
save the changes that were made to the hello.f file. Type Y to save the changes.

Recompiling the program will now give an executable that prints out
“Hello World”.

Introduction to the Screen-Oriented Editor vi
The “vi” editor is a very powerful text editor for Unix and Linux. The vi command is
part of the Unix and Linux operating system, thus it should be on every Linux
computer. The vi editor is designed to be used over a text only connection, such as
ssh. In order to get a very powerful editor without the benefit of a mouse, and pull
down menus, vi uses a rather complex set of keyboard commands. This makes vi
powerful, but difficult to learn.

Users who will spend a significant amount of time creating text files on Linux
systems (i.e. systems administrators and programmers) will find the effort
expended learning vi to be well worth the time invested. Users who only
occasionally create or edit small files on Linux computers are advised to use the
nano editor until the time that they find nano no longer meets their needs.

The vi editor has a command mode and a text input mode. When vi is first started it
is in command mode. In command mode any key pressed is interpreted as a
command to perform some function. Entering commands to insert, append, or
overwrite text put the editor into text input mode. When the editor is in text input
mode, any text typed is put into the file being edited. The esc key is pressed in order
to exit text input mode and resume command mode.

 HPC User Manual - 9th Edition Working with Linux

55

EXAMPLE

 Tip!

The following narrative intersperses an example vi session with a listing of vi
commands. The example session is all part of one on-going example throughout the
narrative.

Sample vi session

Edit a file in the directory where the file is located or should be located (in the
case of a new file). Begin editing a new file by typing the following:

 vi file.txt

Insertion of text can be done after issuing the i command by typing the
following;

 i
 Augy had a little lamb,
 its fleece was white as snow (etc)
 <esc>

Move about in the file with the h j k and l keys when in command mode (the
<esc> returns one to command mode).

Cursor Positioning Keys--in the Command Mode

 h Moves cursor one character to the left.
 j Moves cursor down one line anywhere in text.
 k Moves cursor up one line anywhere in text.
 l Moves cursor one character to the right.

Move with these keys to the "f" in "fleece" in the second line, and type cw.
The word "fleece" disappears, replaced by a $. Type "fur" in substitution then
esc.

To save the file, with changes, type :wq This exits to the shell.

 HPC User Manual - 9th Edition Working with Linux

56

EXAMPLE

EXAMPLE

Entering text input mode--End this mode with an <esc>

 a Append text after the cursor. Enter as many lines and<return>'s as
needed.

 i Insert text before the cursor. Enter as many lines of text and <return>'s
as needed.

 o Open a new line below cursor. Ready for the text input.

 O Open a new line above cursor. Ready for the text input.

 R Replace characters on the screen, starting at the cursor, with any
characters typed.

These commands, after execution, return the editor to the command mode

 r Replace a single character under the cursor with a single character that
is typed.

 /foo Search sequence; looks for next occurrence of pattern following / (in
this case, the word "foo").

 ?foo Search sequence; like /, but searches backwards from the cursor.

 n Used after / or ? to advance to the next occurrence in the buffer of the
pattern.

 u Undo the last command.

 U Undo all the changes to the current line.

 x Delete character highlighted or underlined by the cursor.

 or # or CTRL-H This backspace feature of the shell also works in
the editor. These commands move the cursor character by character, left within a
line, erasing each character from the buffer.

 CTRL-F Scroll or page the screen forward one page at a time.

 CTRL-B Scroll or page the screen backward one page at a time.

 HPC User Manual - 9th Edition Working with Linux

57

 CTRL-D Scroll or page the screen down one-half page at time.

 CTRL-U Scroll or page the screen up one-half page at time

 CTRL-G Identify the line where the cursor is located by line number.

 nG Position the cursor at line n in the file.

 :%s/text1/text2/g Replace all instances of text1 with text2
throughout the entire document.

Operators in the Command Mode

 d Delete indicated text starting at the cursor. For example, use dw to
delete a word and dd to delete a line; 3dd deletes 3 lines. Deleted text is stored
temporarily in a buffer whose contents can be printed out with the p command. Also,
d can be used with named buffers in the manner described for y command.

 c Delete indicated text starting at the cursor and enters Text Input Mode.
Thus, cw deletes from the cursor to the end of the word, allowing users to add text
between those positions.

 y Copy indicated text, starting at the cursor, and stores it in a buffer.
There are nine unnamed buffers (1-9) that store the last nine delete or yank
operations, and 26 named buffers (a-z) that can be used for storage. The double quote
mark (") is used to tell the editor the name of the buffer. Thus, "cy$ will store text
from the cursor to the end of the line in a buffer named c.

 p Inserts "delete" and "yank" buffer contents after the cursor or on the
next line. Command p puts the last item yanked or deleted back into the file just after
the cursor, and "cp will put the contents of buffer c after the cursor.

Scopes for Use with Operators

 e The scope from the cursor to the end of the current word; e. g., if the
cursor is on the "u" in "current", and the user types de, then "urrent" is deleted.

 w The scope is from the cursor to the beginning of the next word,
including the space.

 b The scope is from the letter before the cursor, backwards, to the
beginning of the word.

 HPC User Manual - 9th Edition Working with Linux

58

 $ The scope is from the cursor to the end of the line.

 O The scope is from just before the cursor to the beginning of the line.

) The scope is from the cursor to the beginning of the next sentence. A
sentence is ended by ".", "!", or "?", followed by 2 spaces or by an "end of
line" (provided by the <return> key).

 (The scope is from just before the cursor back to the beginning of the
sentence containing the cursor.

 } The scope is from the cursor to the end of a paragraph. A paragraph
begins after an empty line.

 { The scope is from just before the cursor back to the beginning of a
paragraph.

Leaving the Editor

 <esc>:w Write the contents of the buffer into the current file of the same
name. Can write to a new filename. Also, can send partial buffer contents using line
numbers, such as A:3,10w popcorn.

 <esc>:q Quit the buffer after a :w command.

 <esc>:wq Write and quit, placing buffer contents in file.

 <esc>:q! Quit editor without making changes in file. Dangerous.

 <esc>ZZ Write and quit, placing buffer contents in file.

Using the ex editor while in vi

 : Generate a colon (:) prompt at the bottom of the screen and let users
make one ex command. Users are returned to the vi mode when the command
finishes execution.

 Q Quit vi and place users in the ex editor, giving users a command mode
prompt, the colon (:) at the bottom of the screen. Users can get back to vi while in
the command mode.

 HPC User Manual - 9th Edition Working with Linux

59

When in Doubt

 esc Put users in the command mode.

There are many good books with tutorials on the use of the vi editor. One such is
published by O’Reilly & Associates, Inc. and is titled “Learning the vi and Vim
Editors” by Arnold Robbins, Elbert Hannah, and Linda Lamb.

 HPC User Manual - 9th Edition Working with Linux

60

Shell Scripts
This manual has already discussed a number of features that make Linux a very
powerful command line environment. One of the best features of all is that anything
that can be typed on the command line can be automated by putting the same
commands in a shell script.

Users that only run software already installed on the supercomputers may not need to
read this section of the manual. Users who write their own software, want to do
system administration, or find themselves doing a large amount of repetitive typing
should read on.

A shell script, or just script, is different from a binary program in that the script is not
compiled into an executable, machine language file. A script is a text file which
contains commands in some scripting language. The script language interpreter
executes the commands as it reads that text file. The advantage of shell scripts is that
they are easy to write and automate tasks. The disadvantage is that they run much
slower than compiled programs and are thus not an appropriate way to write the main
program that uses thousands of hours of CPU time. Shell scripts automate many
tasks within the operating system, and for the convenience of the users. Often scripts
wrap the computationally intensive program, meaning that the shell script stages input
data to the working directory, sets up environment variables, creates a nodes list, calls
the computationally intensive program, then copies the results back to the users home
directory.

There are thousands of scripting languages. Here are just a few to consider. Bourne
shell scripts can be used to automate tasks on both Linux and Unix computers. Bash
shell scripts have some enhanced features, but are specific to Linux and not on most
Unix systems by default. Perl is a scripting language specifically for generating
reports of data with a tabular format. Python is a scripting language powerful enough
to approach the level of capability of a compiled programming language, thus making
it sometimes ideal for rather large scripting projects that aren’t quite big enough to
justify going to a compiled language. The rest of this section of the manual will
discuss Bourne shell scripting only.

A shell is the process which interacts with the commands issued by a logged-on user.
Each logged-on user has his own shell. A new shell (and even multiple new shells)
can be created by a user with the command “sh”. The command can also execute
shell scripts.

 HPC User Manual - 9th Edition Working with Linux

61

For example If the file named “check” contained the lines

 #
 date
 who

then the command

 sh check

would create a separate shell from the one the user is operating under, execute the
commands (printing the date and the current users on the screen), and return to the
user's original shell. The new shell would disappear as soon as the commands were
finished executing.

To create a check file that can be executed directly, without typing sh every time,
write it like this.

 #!/bin/sh
 date
 who

Then make it be an executable file with the command

 chmod +x check

Now you can just type “check”. This shell script works as though it is any other
program, even though it is not a compiled program.

Another useful scripting feature is to use the accent character (backwards single quote
at the top left of the keyboard) to feed the output from a command into a variable in
the script, like this.

 myname=`whoami`

This can be combined with the pipe discussed previously to make the following
script, that we named myqstat

 #!/bin/sh
 # This shows only my jobs from qstat
 myname=`whoami`
 qstat5 | grep $myname

 HPC User Manual - 9th Edition Working with Linux

62

Once the chmod command is used to make myqstat executable, you can type
“myqstat” and see a listing of only your own jobs in the queue system. This is
much more convenient than wading through thousands of lines of output to find the
relevant information.

Scripts can contain many of the constructs found in other languages such as variables,
loops, arrays, conditional statements (“if” statements), and subroutines. Some
scripting languages have very rich feature sets, such as Python having more string
processing functions than most compiled languages. Many books on scripting with
titles containing phrases like “Unix Shell Programming”, “Learning BASH”,
“Python”, or “Linux Shell Scripting” can be found at most book stores and libraries.
A selection of these books are listed in the Bibliography at the end of this manual.

 HPC User Manual - 9th Edition Working with Linux

63

7. Working with the Queue System

Nearly all supercomputing facilities use a job queue system. A job queue system is
similar to a printer queue in that a pile of work can be submitted then the queue
system software will start each job when the necessary resources become available.
In the case of a job queue system, the resources being managed are computer
processors, memory, and sometimes software licenses.

The queue system is the researchers friend. If you want to get a large amount of
work done, the best thing you can do is learn how to utilize the queue system
effectively.

A queue system is a valuable tool for users. A pile of jobs can be submitted on Friday
night to be run when resources become available. Before the invention of queue
systems, supercomputer users would frequently find themselves having to log in at
2:00 a.m. on a Sunday morning because that was when the resources were available.
The queue system also guarantees that the users job will get the number of CPUs and
amount of memory that they requested when the job was submitted.

Programs run interactively (without using the queue system) on the login nodes
are limited to 10 minutes of CPU time. After 10 minutes, interactive jobs are
automatically killed. Any job larger than this must be run through the queue
system.

The queue system at the Alabama Supercomputer Center is a Torque queue system
with a Moab scheduler. This is often referred to as a Moab queue system in order to
minimize confusion with other types of Torque installations, such as those with the
Torque or Maui schedulers.

The Moab queue system readily facilitates integrating multiple clusters under one
queue system. Thus a job submitted from the dmc.asc.edu login node may actually
end up running on one of the Altix compute nodes. The queue scripts provided for
running individual applications have been written to allow the software to run on any
node where the specific application can be run. The queue scheduler will run the
calculation on the node that gives the best turn around time. Users compiling their
own applications must either specify the cluster where the application is compiled, or
compile for both clusters and create a run script to select the correct version of the
software. Submitting user written software to the queue system is discussed later in
this manual.

 HPC User Manual - 9th Edition Working with the Queue System

64

Reminder

 Tip!

Selecting a Queue
There are a number of queues available. A list of the queues available can be
displayed with the “qlimits” command. The qlimits command is called without
any arguments. Calling qlimits gives an output like the following

 Queue CPU Mem # CPUs
 -------------- ---------- ------ ------
 large-serial 240:00:00 35gb 1
 medium-serial 90:00:00 4gb 1
 small-serial 40:00:00 1gb 1
 medium-parallel 100:00:00 32gb 2-16
 large-parallel 240:00:00 120gb 2-64
 small-parallel 48:00:00 8gb 2-8
 sysadm 168:00:00 1280gb 1-1000
 class 2:00:00 30gb 1-16
 express 01:00:00 500mb 1
 special 1008:00:00 340gb 1-80
 commercial 1008:00:00 360gb 1-16
 daytime 4:00:00 16gb 1-4

 Interactive limits:
 CPU Mem File
 ---------------- ------- ------ ------
 INTERACTIVE 600sec 4gb 40gb

The “CPU” column in this output gives the amount of time, per CPU that can be
requested in the format HH:MM:SS. The “Mem” column shows the maximum
memory that can be requested, which is a total for all CPUs. The “# CPUs” column
shows how many CPUs can be requested by a job in that queue

The express queue is accessible to everyone on the system. Express jobs are limited
to 1 hour of CPU time, making it unusable for the majority of research calculations.
However express jobs get into a run state almost immediately.

An old supercomputer users trick is to submit a test job to the express queue, let it
run a few minutes, then kill it. This is done as a check on whether the input file is
constructed correctly, as incorrect inputs typically cause the calculation to fail
within the first few minutes. Once this check on correct inputs is made the job can
be submitted to the appropriate queue to allow it to run to completion.

 HPC User Manual - 9th Edition Working with the Queue System

65

 Tip!

The small, medium and large queues are available to all users of the system. These
queues are used to run the majority of the work on the supercomputers.

The “class” queue is available for working on course homework assignments. It is
typically only accessible to class accounts. These accounts only exist for the duration
of the semester, and contain the letters “cls” in the account name. Instructors wishing
to get class accounts for their student should contact the staff at the Alabama
Supercomputer Center by emailing hpc@asc.edu

The “special” queue is available for academic research that requires resources beyond
those available through the large queues. Access to the special queues is turned on
for a six month period of time, after having been granted access to this queue. In
order to get access to the special queue, the user must first do a time complexity
calculation to estimate the amount of CPU time and memory required by their job.
They must then have their research adviser send a request for special queue access,
including the resource requirements and a description of the work to hpc@asc.edu
This is done because the system has capacity to allow a few people to be running
exceptionally large jobs, but can’t support allowing all users to run jobs of this
magnitude.

A second mechanism for running exceptionally large jobs is to request dedicated
machine time. Dedicated time means having the entire resources of the Alabama
Supercomputer Center (or one of the clusters) reserved for the use of just one person.
This is done for a once in a lifetime type of opportunity. For example, the last use of
dedicated machine time was by a UAH professor who had their experiment flying on
the space shuttle, and thus had to get data from the shuttle, use that data to run a
simulation, and use the simulation results to call back up to the mission specialist on
the shuttle to alter the experimental settings. Getting dedicated time requires months
of prior planning, proposals and arrangements.

A third way of getting larger than normal resources is do a collaborative computing
hardware purchase. A researcher with computing needs beyond what the existing
facilities can accommodate can work with the Alabama Supercomputer Authority to
contribute money towards the purchase of additional computing resources. There
would then be queues that are only accessible to the members of that research group,
which has additional CPUs reserved for their usage. For example, there were once
queues named dixon-serial and dixon-parallel, which were for the use of researchers
working for Dr. David Dixon at the University of Alabama. One advantage of doing
this is that the staff at the Alabama Supercomputer Center can take care of system
administration, hardware maintenance and software installation. Another advantage
is that it is possible to run work that utilizes both the resources purchased by the
faculty members and the existing resources to run calculations larger than could be
run if the same grant money were used to simply put a new system on campus. This

 HPC User Manual - 9th Edition Working with the Queue System

66

can result in getting access to a very large amount of computing resources, as a few
hundred thousand dollars buys a large amount of computing power at today’s prices.

The “commercial” queue is available to industry customers. These customers are
paying by the CPU hour for access to the computing resources. For a quote on
purchasing CPU time, contact the HPC staff at hpc@asc.edu

The “sysadm” queue is used by the staff at the Alabama Supercomputer Center. It is
used for testing new queue settings, reproducing problems users are having, testing
hardware, and other administrative functions.

Monitoring Jobs
The “qstat” command shows what jobs are running and pending in the queue system.
The qstat command can be called with or without arguments. For example, the
following are the most common ways of running qstat

 qstat
 qstat -an
 qstat -f <job_number>

The first two of these commands show a list of jobs. The job number is in the left
hand column. The numeric part of the job number can be used to get more
information about the job, kill the job, or request help from the ASC staff. These
commands also show a job status indicated by R or Q. If the status is R the job is
running. If the status is Q the job is waiting to run. The flags “-an” cause qstat to
also output which compute nodes the job is running on. The “-f” flag gives a full
listing of a large amount of information available to the queue system about that job.

The staff at the Alabama Supercomputer Center have written a number of scripts to
show what the queue system is doing in more convenient formats. These can be
used by typing “qstat4”, “qstat5”, “qstat6”, “qstat7” or “qstat8”.

Jobs may be pending for a number of reasons. The job could be requesting more
memory, CPUs, or software licenses than are presently available. It is sometimes the
case that the requested resources aren’t within the capabilities of the cluster. The
easiest way to find out why a job isn’t running is with the command;

 checkjob_asn <job_number>

 HPC User Manual - 9th Edition Working with the Queue System

67

 Tip!

The checkjob_asn command analyzes various information and attempts to output a
single sentence description of why the job isn’t running. A much more verbose set of
information about the job can be displayed with the command

 checkjob -v <job_number>

The command “mdiag -p” can be used to display information about the priority
ranking of pending jobs.

Once a queued job completes, an additional file will be created in the directory with
the job inputs. This is referred to as an error log file. The file name consists of the
job name from the queue and the queue job number. This file contains information
about how the job was submitted to the queue, stdout output from the job, stderr
output from the job, and a listing of resource utilization. If a job fails to start or fails
to run to completion, this file is one of the primary places to find out what is wrong.
If you contact the ASC staff for help, they will want to see this file.

The resource utilization section of the error log file looks like the following;

##
Your job finished at : Mon Nov 8 13:10:39 CST 2010
Your job requested :
cput=336:00:00,mem=2gb,neednodes=1:ppn=2,nodes=1:ppn=2,walltime=235:
00:00
Your job used :
cput=00:00:01,mem=4372kb,vmem=35580kb,walltime=00:00:32
Your job's parallel cpu utilization : 1%
Your job's memory utilization (mem) : 0.21%
Alabama Supercomputer Center - PBS Epilogue
##

This entry is useful for determining why the job died, and what resources it needs.
For example, if the job requested 2gb of memory and it used 2012kb (2gb) of
memory, the queue system may have killed the job due to exceeding its memory
allocation. The results from a job that ran correctly can be used to determine how
much memory should be requested next time.

Jobs that request more CPUs and memory can take longer to get into a run state.
Thus it is to the users advantage to request a reasonable amount of memory,
usually about 10% more than the job is expected to need. Choosing the optimal
number of CPUs is discussed in the parallel processing section of this manual.

 HPC User Manual - 9th Edition Working with the Queue System

68

 Tip!

Deleting Queued Jobs
It is sometimes necessary to delete jobs from the queue. This can be because the job
was submitted with the wrong inputs, isn’t running correctly, or is stuck in a pending
state due to invalid queue settings. Running or pending jobs can be deleted with the
command

 qdel <job_number>

Use only the numeric part of the job number, not the .mds1 extension.

Running Existing Applications Software
Applications software installed by the ASC staff have both an associated queue script
and a README.txt file with notes specific to running the software on the ASC
systems. The README.txt files are in subdirectories of /opt/asn/doc For example,
the notes on how to use the Gaussian software are in the directory
/opt/asn/doc/gaussian In the example of the Gaussian software, a calculation using
the input file water.com (which would have to be in the current directory) can be run
with the following commands.

rung03 water.com
This runs Gaussian in the current directory via the queue system
Report problems and post questions to the HPC staff (hpc@asc.edu)

Choose a batch job queue:

Queue CPU Mem # CPUs
-------------- ---------- ------ ------
commercial 20:00:00 80gb 1-16
small-parallel 48:00:00 8gb 2-8
sysadm 168:00:00 1280gb 1-160
large-serial 168:00:00 35gb 1
express 01:00:00 500mb 1
medium-serial 90:00:00 4gb 1
small-serial 40:00:00 1gb 1
medium-parallel 100:00:00 32gb 2-16
large-parallel 168:00:00 64gb 2-64
special 1008:00:00 340gb 1-80
class 01:00:00 30gb 1-16

Interactive limits:
 CPU Mem File
---------------- ------- ------ ------
INTERACTIVE 600sec 100mb 1gb

 HPC User Manual - 9th Edition Working with the Queue System

69

Enter Queue Name (default <cr>: small-serial) small-parallel

Enter number of cpus (default <cr>: 2) 2

Enter Time Limit (default <cr>: 96:00:00 HH:MM:SS)

Enter memory limit (default <cr>: 1gb) 2gb

Choose your job starting date and time (<cr> for now):
If not running right now, enter time and date as [[CC]YY]MMDDhhmm
[.ss]

Enter a name for your job (default: watercomG03)
water

==
===== Summary of your Gaussian job =====
==
 The input file is: water.com
 The output file is: water.com.log
 The time limit is 96:00:00 HH:MM:SS.
 The target directory is: /home/asndcy/calc/gaussian/tests
 The memory limit is: 2gb
 The number of CPUs is: 2
 The job will start running after: 200810131149.36
 Look for: water in queue: small-parallel

The output file will not be placed in your directory,
until the job is complete.

Gaussian has default memory and disk use set for the small-serial
queue.
For other queues, set %mem and MaxDisk in your input file.

Job number 82641.mds1.asc.edu

All of the queue scripts on the system use this same set of prompts for the queue,
memory, etc. If it is not possible for a given program to run in parallel, the script will
not ask for a number of CPUs. With many programs, it is necessary to construct the
inputs appropriately for parallel execution, as well as requesting multiple CPUs from
the queue script. It is possible to respond to all of the interactive prompts by pressing
“Return” to take the defaults. Once the queue has been entered, the default prompts
will reflect reasonable values for that queue.

Running User Written Software
When the user has written their own software, there will not be a queue script already
available tailored to that software. There is however, a queue script named
“run_script” which is configured to run any script that does not require arguments on
a single node. There is a “run_script_mpi” command for mpi parallelized software.
Consider the example of a user that has compiled a program on the altix. For

 HPC User Manual - 9th Edition Working with the Queue System

70

Press “Return”
to take the
default.

example, the program may be named foo and require an argument with the name of
an input file such as bar.inp In this example, the program can’t be submitted directly
to run_script because it requires an argument. However, the user can create a script,
say named myscript, that contains the following text.

 #!/bin/sh
 # script to run the foo program on altix
 ./foo bar.inp

The user can put this text in the myscript file using a text editor such as nano. The
characters “./” in front of the program name indicate that the script expects to find
the foo program in the same directory as the bar.inp and myscript files.

The myscript file must be made executable with a command like this

 chmod +x myscript

This calculation can now be submitted to the queue system with the following
command;

 run_script myscript

The run_script program will give the same prompts as the other queue scripts with
one additional prompt. The final prompt asks which cluster it should be allowed to
run on. Since the program in this example was compiled on the altix, the user must
enter “altix” at this prompt.

Now consider what could be done if the program foo has been compiled twice make
both an altix executable and a dmc executable. In this case, the script must be able to
identify whether it is running on the altix or the dmc and use the correct version of
foo. A script like this is shown on the following page.

The following script must determine whether it is on an altix compute node or a dmc
compute node. The “hostname” command returns the name of the node. The altix
compute nodes have names like altix7 or altix9. The dmc compute nodes have names
like dmc2 or dmc34. The output from hostname is piped into the command
“tr -d ‘0123456789’”. The tr command can translate one character into
another, but the -d flag tells it to delete any of the specified characters. The small
back ticks before the hostname command and after the tr command tell the script to
execute those commands and place the result in the $myhost variable. This results in
having the $myhost variable set to either “altix” or “dmc” with no numbers appended.

 HPC User Manual - 9th Edition Working with the Queue System

71

For more information on writing scripts like this, see the section of this manual on
Shell Scripts.

 #!/bin/sh
 #
 # script to run foo on either the altix or DMC
 #

 myhost=`hostname | tr -d '0123456789'`

 # see if I'm on an altix node
 if ["$myhost" == "altix"]
 then
 foo_path=/home/asndcy/foo/bin_altix
 fi

 # see if I'm on a dmc node
 if ["$myhost" == "dmc"]
 then
 foo_path=/home/asndcy/foo/bin_dmc
 fi

 # see if foo_path has been set
 if [$foo_path]
 then
 # run the program
 ${foo_path}/foo bar.inp
 else
 echo "ERROR: this is not altix or dmc"
 fi

This new script can be made executable, then submitted to the queue with run_script.
This time, when run_script asks which cluster to use, the user can press “Return” to
signify that it can run on either cluster.

 HPC User Manual - 9th Edition Working with the Queue System

72

Another function typically found in scripts submitted to the queue is copying the
work over to be done on the /scratch drive. The user home directories are visible to
all compute nodes, but these directories are on a lower performance file system. If
the calculation does a large amount of accessing data on the disk drive, it will run
faster on the high performance /scratch file system. Here is an example of a script
that utilizes /scratch

#!/bin/sh
#
Sample script for submitting jobs to the queue system
This script shows how to run the calculation
in the /scratch directory
#
Replace the USER name in this script "asndcy"
with your own user name.
Replace the program name "mandy_gcc" with your own program name.
Replace the input file name "test1.in" with your own input name.
#
This script must be made executable like this
chmod +x my_script
#
Submit this script to the queue with a command like this
run_script my_script

put in my user name
USER=asndcy

create a directory on /scratch
mkdir /scratch/$USER

copy the program and input files to scratch
cp mandy_gcc /scratch/$USER
cp test1.in /scratch/$USER

run the program
cd /scratch/$USER
./mandy_gcc test1

copy the results back to my home directory
cp test1.bmp /home/$USER

 HPC User Manual - 9th Edition Working with the Queue System

73

Using the qsub Command
The application specific queue scripts and the run_script & run_script_mpi
commands are specific to the Alabama Supercomputer Center. For most users, this is
all they need. However, some users may be more familiar using “qsub” as is done at
many other computing centers. The use of run_script and the application queue
scripts is recommended, however the following discussion is provided for the benefit
of those users that are interested in learning about qsub.

The application run scripts perform a number of tasks, such as setting up paths,
environment variables and temporary working directories. These scripts then call the
“qsub” command, which is the command that is specific to the Torque/Moab queue
system. Other queue systems such as NQS, PBS, Sun Grid Engine, and LSF also
have commands to submit a job to the queue system, and many of them call that
command “qsub”. However, all these different qsub commands do not use the same
arguments or syntax. Sometimes a different syntax is needed even for running the
same queue system software on two different systems that have been configured
differently.

Detailed information on the options available to the qsub command are available by
typing “man qsub”. Additional information is available on the MOAB web page,
which is at http://www.clusterresources.com/products/mwm/docs/index.shtml
The commands reference is in Appendix G of the manual at
http://www.clusterresources.com/products/mwm/docs/a.gcommandoverview.shtml
The Torque manual is at http://www.clusterresources.com/torquedocs/

The queue system has been configured with defaults so that very few arguments are
absolutely necessary. In the simplest case, a job can be submitted with the command;

 qsub <myscript>

This will result in submitting the job to the small-serial queue, available to any
cluster, using 1 CPU.

The qsub command can be given a rich variety of options to control how the job is
run. For example, the following submits the job to the express queue on the dmc
cluster.

 qsub -q express -l partition=dmc <myscript>

 HPC User Manual - 9th Edition Working with the Queue System

74

Here are some other qsub options that are useful.

 -I open an interactive session on a compute node
 -joe send stderr and stdout to the same file
 -l cput=12:00:00 request 12 hours of CPU time
 -l mem=8gb request 8gb of memory
 -l nodes=1:ppn=4 request 4 CPUs on one node
 -r n Mark the job as not rerunable.
 -X X-window forwarding

WARNING: It is highly recommended that the option “-r n” always be included.
Failing to do so can result in having the job failing in an infinite loop.

Requesting multiple CPUs on the SGI Altix can be done with the syntax
“-l nodes=1:ppn=8”. This same syntax is used to request multiple CPUs on the
same node of the DMC (up to 16 CPUs). To request multiple CPUs across multiple
nodes of the DMC, use the syntax “-l nodes=32”.

It is also possible to open an interactive session on a compute node. This is not
generally recommended as it makes inefficient use of the compute node resources.
Also, any work being run in this way will be killed if there is a network outage of
some sort. It can also take a very long time to establish an interactive session on a
compute node, as it may be necessary for the desired amount of memory or CPUs to
become available. However, there are rare cases where the ASC staff will
recommend this option. An interactive session can be opened by leaving out the
script name and including the “-I” flag like this.

 qsub -I -q express -l partition=dmc

Efficient Parallel Processing
Parallel computing is a very elegant idea. The naive, partially correct idea is that a
computational task that takes 8 hours to complete using one CPU could be done in 4
hours on two CPUs and similarly scale to large numbers of CPUs. In actuality there
are many algorithms or steps of algorithms that can only be executed serially (single
CPU/thread execution). A second reason that this ideal case is not achieved, and
seldom close is that the program must do additional work to coordinate the efforts of
the multiple processors working on the calculation. In a few cases, each processor is
actually recomputing values that would have been computed only once if it were run
on a single CPU. Here are three examples to consider.

 HPC User Manual - 9th Edition Working with the Queue System

75

!

Example 1

 Number of CPUs 1 2 4 8
 Execution time (hrs) 8 4 2 1

Example 1 is called “linear speedup”. In reality there are very few algorithms that
approach this ideal case. A couple of examples of algorithms that can come close to
linear speedup are fractal geometry and testing encryption solutions. These
algorithms work so well because each CPU can be given a different piece of data to
work on, and will not need to access data or results from the other CPUs.

Example 2

 Number of CPUs 1 2 4 8 16 32
 Execution time (hrs) 8 4.5 3.2 3.5 5.3 12.7

Example 2 illustrates the most common case. Many algorithms can be parallelized to
some extent. Thus adding CPUs improves performance up to some optimal number
of CPUs. Going beyond the optimal number of CPUs often degrades performance,
since the code is doing more work to parallelize the problem than actually solving the
problem. The optimal number of CPUs depends on the algorithm being used, how
heavily it has been parallelized, and the size of the problem being solved. Examples
of problems that show this behavior are quantum chemistry and engineering
simulations based on finite element algorithms.

Example 3

 Number of CPUs 1 2 4 8
 Execution time (hrs) 8 8.2 10 23

Example 3 illustrates an algorithm that parallelizes so poorly that attempts to do so
harm the overall performance. Some of the highly correlated quantum chemistry
algorithms show this behavior. This behavior can also be seen when the problem
being simulated is so small that it really only took a small amount of time to run on a
single CPU.

In theory the underlying algorithm determines how well a program can be
parallelized. In practice the extent to which the software developers have completely
rewritten the code for parallel execution is often the limiting factor. Even within a
single program, there might be a large difference depending upon which input options
were selected.

 HPC User Manual - 9th Edition Working with the Queue System

76

There are several ways to get a quantitative measurement of how well a program is
parallelized. The software developers typically report a parallel efficiency as a
percentage. Parallel efficiency is the ideal time divided by the wall clock time. The
ideal time is the time to run the same calculation as an un-parallelized, single CPU
application divided by the number of processes being used in the parallel test.

 Parallel = (time to run single processor) * 100
 Efficiency (%) (number of processors) * (parallel wall clock time)

Thus if a calculation took 8 hours to run on a single processor and 2.5 hours to run on
four processors, it’s parallel efficiency would be 80%. As a general rule of thumb, if
the parallel efficiency is below 75%, it is better to use fewer processors for each job
and run more jobs at the same time. Parallel efficiency is one of the best measures of
how well a program has been parallelized. However, parallel efficiency isn’t
convenient for the users of the application to work with because it requires doing both
the single processor calculation and the multiple processor calculation.

It is often more convenient for users to look at the parallel utilization. The parallel
utilization is the CPU time divided by the dedicated time. The CPU time reported at
the end of the error log file is the sum total of the time that each processor was
actually running, not sitting idle. The dedicated time is the wall clock time times the
number of processors used.

 Parallel = (CPU time) * 100
 Utilization (%) (number of processors) * (parallel wall clock time)

If the parallel utilization is 100% it means that all of the processors were working all
of the time. If the parallel utilization is less than 100% it usually means that there
were times during the calculation that just the master processor was running and the
other processors were idle. This happens because there are sections of the code that
are mathematically impossible to run in parallel, and because there are sections of the
code that haven’t yet been rewritten to run in parallel. For example, if four processors
are requested, the master process runs 100% of the time, and each of the three slave
processes run 5% of the time, the parallel utilization is 28.75%.

While the job is running, the parallel utilization can be viewed with the “qstat7”
command. When the job is complete, the parallel utilization and memory utilization
is put in the error log file.

As a general rule of thumb, if the parallel utilization is below 75%, it is better to
use fewer processors (CPUs) for each job and run more jobs at the same time.
Jobs also tend to get through the queue system faster if the requested memory
results in a memory utilization of 80% or higher.

 HPC User Manual - 9th Edition Working with the Queue System

77

 Tip!

Parallel utilization is not quite as good a measure of program performance as parallel
efficiency. This is because parallel utilization fails to take into account that the CPU
time is usually somewhat larger than the time to run the single processor job. This is
because there is additional work involved in coordinating the efforts of multiple
processors and passing data between those processors. There are a few software
packages that show extremely large discrepancies between CPU time and single
processor execution time because each processor is recomputing values that would
have been computed only once in single processor execution.

Note: If parallel utilization is below 75%, the job can be killed because of
exceeding wall time limits before it has exceeded it’s CPU time limit.

Running Parallel Applications

Two things must be done to run a parallel application. First, the desired number of
CPUs must be requested from the queue system when the job is submitted. Second,
the application must be told how many CPUs to use, and sometimes requires a list of
which CPUs. Some of the application software queue submit scripts take care of both
of these.

Users writing their own codes will need to handle both tasks. The request to the
queue system is made with options to the “run_script” command or the
“run_script_mpi” command. The run_script command tells the queue system that
all CPUs must be on the same node. The run_script_mpi command allows CPUs to
be utilized on different nodes of the cluster. The way that the application is given a
CPU count depends upon the mechanism that was used to parallelize it.

Writing Parallel Software
Parallel computers do not automatically run applications in parallel. Each piece of
software must be written and compiled to run in parallel. This adds another whole
dimension to programming projects. Thus it is advisable to read books and take
classes on parallel programming before embarking on a parallel programming project.

The following paragraphs discuss parallelization mechanism available on the
computers at the Alabama Supercomputer Center. At present, MPI and OpenMP
constitute about 95% of the parallelized software for high performance computing
applications.

MPI (Message Passing Interface) At the time this manual was written, MPI was the
most widely used parallelization mechanism. MPI programs can run on both shared

 HPC User Manual - 9th Edition Working with the Queue System

78

!

memory computers and distributed memory clusters. Most of the programs that scale
up to the use of hundreds of CPUs or more are parallelized with MPI. The downside
of using MPI is that converting a program from serial to parallel usually requires
rewriting a major percentage of the code.

OpenMP OpenMP parallelized programs can be run on shared memory computers,
but not on distributed memory systems. OpenMP is often desirable because a
program can be parallelized in sections with a fairly modest amount of effort.
OpenMP generally works best for fine grained parallelization (at the loop level),
when parallel programs will be executed on a small number of CPUs (2-16), and
when all CPUs will be frequently accessing shared data.

P-Threads The p-threads library is used by the Unix operating system for managing
multiple execution threads. It can also be used by an application for writing a shared
memory parallel program. Parallelization with p-threads requires a large amount of
low-level programming. Thus pthreads are generally only used when there is a
technical reason for needing this low-level control over the shared memory threading.

Java threads The Java virtual machine has the ability to execute multi-threaded Java
programs. The support for manipulating threads is included in the Java language and
is augmented by open source libraries, such as the “spin” library.

PVM (Parallel Virtual Machine) PVM is the predecessor of MPI. Today most PVM
codes have been converted to MPI.

High Performance Fortran is an extension of Fortran 90, which allows the
programmer to put in directives for parallel execution.

Parallel Math Libraries Some math libraries have versions that have been compiled
with support for parallel execution of the functions in that library.

Parallelizing Compilers There are compilers that attempt to parallelize a serial
program automatically. At present this technology is still in its infancy, so other
parallelization methods almost always give a better parallelization.

Note: Parallelizing compilers are considered the holy grail of parallel
programming. However, this infancy stage technology does not yet perform as
well as other parallelization mechanisms.

Global Arrays The Global Arrays toolkit allows software to be written as though it
were on a shared memory computer, even though it may actually be running on a
distributed memory system. Global Arrays are often used in conjunction with other
tools, such as MPI or TCGMSG. The Global Arrays tools are implemented on top of

 HPC User Manual - 9th Edition Working with the Queue System

79

!

ARMCI (Aggregate Remote Memory Copy Interface). The TCGMSG message
passing library is also distributed with the Global Arrays toolkit.

Estimating CPU Time and Memory Needs
The HPC systems at the Alabama Supercomputer Center have multiple queues, which
allow jobs to run for various lengths of time and use different amounts of memory.
Most users of desktop computers aren’t used to thinking about how long it will take
the computer to do the work, or how much memory is required. This isn’t often a
problem on desktop computers because the computer has been designed with capacity
to run typical business applications, and uses a small percentage of that capacity most
of the time, except when it bogs down running a video game.

Processing time, memory and disk space become an issue with the type of
applications typically run on supercomputers. This is because these applications can
take days or weeks to run using hundreds of gigabytes of memory and terabytes of
disk space. Furthermore, there are hundreds of people running work on a
supercomputer. If resources like memory weren’t managed, one persons program
would be killed when another persons program used all of the memory. This doesn’t
happen because the queue system assigns memory and processors to each job, thus
guaranteeing access to the necessary resources. In order to make this system work,
the user must specify how much memory their job needs. If that estimate is
unreasonably high, it will result in waiting much longer for the job to get access to
those resources, and fewer jobs can be run at once. Thus it is to the advantage of the
user to know how to give a reasonable estimate of the resource needs for their
calculations.

The memory and CPU time needs for many calculations are often not proportional to
the size of the input. Consider the example of a software package that computes
properties of molecules. This program might need to compute the distance between
each pair of atoms. Thus if there are 20 atoms, the distances between each pair could
be stored in a 20x20 element array, which would have 400 elements in the array.
Thus the amount of memory needed by this step of the program would be
proportional to the square of the number of atoms. Likewise the amount of CPU time
required to compute the distances between each pair of atoms would be proportional
to the square of the number of atoms. The size of the problem, in this example the
number of atoms, is typically called “n”. The time complexity or memory
complexity is then represented as O(n2), a format known as Big O Notation. The rest
of this section of the book uses the term “time complexity” but the same type of
analysis could be used for estimating memory or disk space needs.

 HPC User Manual - 9th Edition Working with the Queue System

80

Computer programs can have many different time complexities, and each function
within a given computer program can be assigned it’s own time complexity. Some
functions require the same amount of time, no matter how much data is involved, thus
giving a constant time complexity or O(1). Some things scale linearly with the size
of the problem, denoted as O(n). Some processes are slightly better than linear, such
as O(n log n). Many algorithms scale as some power of the size of the problem, such
as O(n3) or O(n8). There are a few algorithms that scale very badly, such as
factorially scaling problems with a time complexity of O(n!).

This slightly theoretical discussion of time complexity notation shows that different
programs and functions within programs scale differently. We must now find a way
to practically apply this knowledge to making an estimate of how long it will take to
run a given program. The first step is to look at some calculations that have already
been completed. At the end of the error log file is an entry that looks like the one
shown in Figure 7.1.

If similar size calculations have already been run, simply looking at the error log file
from those calculations may be all that is needed to find out how much CPU time and
and memory to expect a calculation to require.

 HPC User Manual - 9th Edition Working with the Queue System

81

Figure 7.1

The resource utilization information at
the end of the error log file.

Many researchers will do several test calculations leading up to a large calculation.
They will do a small calculation to estimate the resource requirements of a medium
size calculation. Then use those results to estimate the requirements of the large
calculation. This is done using the time complexity of the algorithm. For example, if
the algorithm has an O(n3) complexity and the time for a smaller calculation (T1) is
known along with it’s size (n1), then the time for the larger calculation (T2) can be
computed from it’s size (n2) as follows.

 T2 = T1 * (n2 / n1)3

In these examples, the size might be the number of atoms, number of elements in a
finite element calculation, number of basis functions, or some other aspect of the
calculation. Often a moderate size calculation is better than a small calculation for
doing complexity estimates. This is because the smallest calculations have resource
utilization dictated more by overhead than by the critical portion of the code.

If you don’t know the time complexity of a software algorithm, there is a formula for
determining it. There is an example of how to do this in the file
/opt/asn/doc/gaussian/Estimating_CPU_time.pdf

A very few software packages have a “check” mode which performs an estimation of
the resource utilization, but doesn’t actually run the calculation. These should be
used when available, but they are unfortunately rather rare.

There is an experimental piece of software written at the Alabama Supercomputer
Center called “swami”. The name swami is a reference to an old Johnny Carson skit
where he played a mystical swami that predicted the answers to questions before
reading the question. Swami predicts the CPU time and memory required for
Gaussian and NWChem calculations. Swami uses an artificial intelligence learning
algorithm. Results of completed calculations can be loaded into Swami with the
“swami-learn” program. As more results are entered, the predictions made by
swami become more accurate. More information about swami can be found in the
directory /opt/asn/doc/swami

 HPC User Manual - 9th Edition Working with the Queue System

82

8. Using Modules
The term “modules” is used in a number of different ways in the computer science
field. In this context “modules” refer to Tcl Modules, which is a way of controlling
your account environment settings. Modules are used to configure your account to
access some of the software packages installed on the supercomputers.

If it is necessary to use a module for one of the software packages, the appropriate
module command will be described in the file
/opt/asn/doc/PROGRAM/README.txt (i.e. /opt/asn/doc/gaussian/README.txt)

In order to use modules, the following must appear in your .bashrc.local file.

source /opt/asn/etc/asn-bash-profiles-special/modules.sh

In many cases, modules are working behind the scenes but you are not aware of them.
For example, jobs using the Gaussian software are submitted to the queue with the
command “rung09 <filename>”. The rung09 script calls the appropriate
module to load the Gaussian environment settings. These environment settings tell
the operating system where to find the Gaussian executables, the associated libraries,
and other data files. Modules can also remove conflicting settings, thus allowing
multiple version of the same software package to be installed without problems from
getting the wrong one accidentally.

The list of modules available on the system can be shown with the command

 module avail

Note that many software package have more than one version that can be accessed
through loading the appropriate module. One of those versions may be labeled as the
default version.

Information about a given module can be displayed with the command

 module help <module_name>

 HPC User Manual - 9th Edition Using Modules

83

 Tip!

The module name can be of the form “name” or “name/version”. Specifying a
name without the version will give information for the default version. For example,
try typing “module help gaussian”.

The list of modules currently loaded in your session can be shown with the command

 module list

Unless you have configured your account to automatically load modules on login, this
command will probably indicate that no modules are currently loaded.

A module can be loaded with a command like this

 module load <module_name>

For example, typing “module load gaussian” will load a default version of
Gaussian, as shown by typing “module list”. If your account has not been given
permission to access the Gaussian program, attempting to load it will give an error.
To load a different version of Gaussian, you could type
“module load gaussian/g09a02”. Module load commands can be put in
your .bashrc.local.altix & .bashrc.local.dmc & .bashrc.local files in order to
automatically load modules when you log in.

Loading a module may result in loading several other modules automatically. This
may be done if a piece of software needs access to the libraries associated with a
particular compiler, math library, or MPI version.

Modules can be unloaded with the command

 module unload <module_name>

WARNING: Unloading modules doesn’t always bring back the default account
environment. This is because modules can override default paths. Unloading the
module removes the overrides, but does not put back the settings that were
overridden. Thus it is sometimes necessary to log off and log back in again after
unloading a module.

Sometimes loading a module also loads the “standard” module. The standard module
is a special module that strips many of the default paths and configuration settings out
of the environment. This is done when some of the defaults could result in a conflict
that prevents the software from working correctly.

 HPC User Manual - 9th Edition Using Modules

84

!

9. Account Configuration
Casual users of Linux and the Alabama Supercomputer Center can skip this chapter
and still get all of their work done. Individuals that expect to spend a large amount of
their time on Linux will find a number of items in this chapter to make their work
more efficient. An understanding of account configuration is also useful to
understand why things aren’t working correctly, which is important if you want to
administer Linux systems.

WARNING: The parts of Linux described in this chapter fill important roles in the
operating system, and can be valuable tools. However, changing them incorrectly
can cause many things to break, at least for your own account. It’s best to tread
carefully, and ask questions if you feel you don’t understand how to use them
correctly.

The following sections discuss various ways to customize the behavior of your Linux
account. Many of these changes take effect the next time you login on the system.

Environment variables
Environment variables are values that are visible to all of the software running on a
computer. These are often used to tell the operating system how it should behave,
and to tell software packages which directories to find important files in.

Login to your Linux account and type the command “env”. This shows a list of all
the environment variables that your account currently sees. Some are found in all
Linux systems, some are specific to the bash shell, and some are specific to a given
computer program. Table 9.1 list a selection of the environment variables that are
amongst the more important to account configuration.

Some environment variables are redundant. For example, the variables
LIBRARY_PATH, LD_LIBRARY_PATH, LIBPATH, and SHLIB_PATH all tell the
operating system where to look for static libraries and shared object files (.so files are
dynamic linked libraries, equivalent to .dll files in Windows). There are multiple
environment variables doing the same job because some are used by different shells,
or linux distributions. Since different programs look at different ones, a redundant
configuration keeps all of the programs finding the paths to the libraries.

 HPC User Manual - 9th Edition Account Configuration

85

!

The value of an environment variable can be displayed with the “echo” command.
For example, the PATH environment variable tells the operating system where to look
for programs to run. You can see where the run_script program resides by typing

 HPC User Manual - 9th Edition Account Configuration

86

Table 9.1 Useful environment variables

Variable What it Does

CLASSPATH Java programs use this to find their libraries

DISPLAY tells X-Windows where to display graphics

HISTSIZE number of commands displayed by the “history” command

HOME your home directory

HOST, HOSTNAME the computer (or cluster node) you are logged in on

HOSTTYPE, CPU the computer processor architecture

INCLUDEDIR, INCLUDE paths to header files

INFOPATH, INFODIR paths to data displayed by the “info” command

LD_LIBRARY_PATH,
LIBRARY_PATH,
LIBPATH, SHLIB_PATH

paths to static linked and dynamic linked libraries

LS_COLORS allows customizing colors used by the “ls” command

LS_OPTIONS default options for the “ls” command

MANPATH paths to data for the “man” command

PATH paths to find executable files

PS1 changes the bash command prompt

PWD the current directory

TERM terminal display settings

USER, LOGNAME your user name

_ (underscore) the command currently being executed

“which run_script”. To see all of the directories that the operating system is
looking in to find run_script, type the following;

 echo $PATH

You can set new environment variables, or add data to existing environment
variables. For example, you may want to create some of your own programs and
scripts. In order for those programs to be found when you run them, you can put
them in a new subdirectory, typically named /home/MYNAME/bin . In order to tell
the operating system to look for your programs in this directory, you would add a line
like this into your .bashrc.local file.

 export PATH="$PATH:/home/MYNAME/bin"

Note that by including $PATH: in the new value of PATH, you are appending a
new directory onto the existing path list. The directory names are separated by
colons. If you left out this $PATH: part of the line you would be taking away all of
the paths to the operating system commands, thus breaking most of the
functionality of your account.

Environment variables can be used in shell scripts. For example, if you wanted a
shell script to create a directory with your user name, you could use a line like this
“mkdir /scratch/$USER”. Environment variables are accessible within most
compiled computer languages also, although the mechanism for accessing them
varies from one language to the next.

Hidden files
Any file or directory that has a name starting with a period will be hidden by default
when you use the “ls” command. To see the hidden files in your home directory
type “ls -a”.

Hidden files and directories are typically used to store configuration settings that
control how your account behaves. These settings tell your account how to find
operating system commands, access various applications software, and set default
behavior of programs. A list of some of the common hidden files and directories is
shown in Table 9.2 . Many other hidden files may appear in your account only if you
are using certain software packages.

 HPC User Manual - 9th Edition Account Configuration

87

!

WARNING: The .rhosts file and files in the .ssh directory can be configured to
allow you to move between systems without typing a password. This is
convenient, but it can also be dangerous. If you do this then a criminal gets into
one of your accounts, they can instantly get into all of the other accounts as well.

The files .bashrc.local .bashrc.local.altix and .bashrc.local.dmc are the ones that must
most frequently be modified in order to configure your account to run a given
software package, or to change the default behavior. The .alias file is used for setting
aliases, described later in this chapter. The .forward file contains an email address
where any notifications generated on the system will be sent. On SUSE Linux
systems, the .profile file is edited only in rare cases, such as setting the LS_COLORS
environment variable. Modifications needed for a specific program will be listed in
the file /opt/asn/doc/PROGRAM/README.txt

The order in which commands are put in these files is sometimes important. For
example, the module load commands for some software packages also load the
“standard” module, which erases many of the default settings to give a clean SUSE

 HPC User Manual - 9th Edition Account Configuration

88

Table 9.2 Useful hidden files & directories

File or Directory What it Does

.alias location for alias commands

.bashrc primary account configuration file for most Linux systems.
WARNING: Do not modify .bashrc on the ASC systems

.bashrc.local settings that affect both altix and dmc

.bashrc.local.altix settings that affect the altix only

.bashrc.local.dmc settings that affect the dmc only

.bash_logout commands run at logout, less often used

.cshrc, .login, .profile primary configuration file on other shells, Linux, or Unix versions

.flexlmrc license server configuration

.forward holds email address where notices are sent

.rhosts for passwordless rlogin between system

.ssh directory with encrypted ssh keys & configuration

.vimrc configuration for the vi editor

!

Linux environment. This will remove many of the settings that may come before it in
the .bashrc.local files.

The source and module commands
Sometimes the account configuration needed by a program is more complex than is
convenient to ask users to type into their .bashrc.local file. In this case a whole list of
settings can be loaded with a single command using the “source” or “module”
commands.

Either the “source” or “module” command is needed to configure your account
to use many software packages interactively. These are often not needed to run
programs through the job queue system, as the queue scripts provided on the
system handle this for you.

The “source” command is available in all distributions of Linux (in some shells it is a
period instead of the word “source”). The “module” command is part of the Tcl
Modules package, which is an add-on to the operating system described in the
previous chapter. The Alabama Supercomputer Center is slowly shifting software
packages from using the “source” command to using the “module” command.

The “source” or “module” command syntax needed to run a given software package
will be documented in the file /opt/asn/doc/PROGRAM/README.txt (i.e.
/opt/asn/doc/gaussian/README.txt).

The “source” command can be put in your .bashrc.local or .bashrc.local.dmc
or .bashrc.local.altix file. Here are examples of typical source and module load
commands. As shown here, comments (beginning with #) can be added to remind
yourself when each should be used.

The following sets the X-Windows $DISPLAY variable.
This is needed for some X-Windows clients
Do not source this for cygwin with -Y flag in ssh
source /opt/asn/etc/asn-bash-profiles-special/display.sh

this is needed to run Gaussview
module load gaussian/g09b01

 HPC User Manual - 9th Edition Account Configuration

89

Reminder

The Command Prompt
The default bash shell command prompt includes the full path to the current directory.
This can be inconvenient when working in a directory deep within the directory tree
and the command prompt is taking up most of the screen space, like this;

asntest@dmc:/opt/asn/doc/gaussian/sample_inputs_g09_A01>

This can be changed by setting the PS1 environment variable in the .bashrc.local file.
For example, try using the setting;

 export PS1='\h:\W> '

This will result in seeing a command prompt like this.

dmc:sample_inputs_g09_A01>

Command prompts can have the machine name, path, time, date and other
information. Details of how to set all of these options can be seen on the bash manual
page that you get by typing “man bash” and on web sites such as
http://www.linuxselfhelp.com/howtos/Bash-Prompt/Bash-Prompt-HOWTO-2.html

Creating an alias
Aliases are keystroke short cuts. For example, the user asndcy might frequently want
to see what jobs he has running in the queue. He does this with a command like this.

 qstat5 | grep asndcy

While this works, it may be more than he wants to type many times each day. He can
make a faster way of doing this by putting the following line in his .alias file.

 alias qs="qstat5 | grep asndcy"

After setting this, he must log off and log back in for the command to take effect.
From then on, he can simply type “qs” to check the jobs he has in the queue. An
alias can also be used to ensure that a given command line option is always added to a
command.

If you have problems with an alias, try typing the command that the alias runs.
List this command when contacting technical support.

 HPC User Manual - 9th Edition Account Configuration

90

 Tip!

Tips for Effectively Using the Supercomputers
The following are some suggestions for getting the most out of the altix and dmc.

• Set aliases for frequently typed, long commands.

• Learn to use multiple Linux commands like head, tail, cat, and grep in a single
command line with data piped from one to the next.

• Learn to write scripts to automate tasks.

• Create a bin directory for your scripts, and add it to the PATH variable.

• Organize your files into directories so you can find them easily.

• Have a plan for what files to keep, which you get rid of, where you store them
on campus, and when they get deleted.

• Run tests to find out how many processors your software will use efficiently.
Too many will hurt your productivity more than using less than optimal.

• Learn to utilize the queue system effectively.

• Look at the README.txt file for your program in /opt/asn/doc/PROGRAM

• Put your most frequently checked email address in the .forward file so that
you will get notices about your supercomputer usage.

 HPC User Manual - 9th Edition Account Configuration

91

 Tip!

10. Compiling Software
The majority of the applications on supercomputers are written in compiled languages
such as C++, C, and Fortran. Compiled programs tend to run faster and use less
memory than interpretive languages, such as Perl, R, or Matlab. Languages that
compile to byte codes, such as Java, are intermediate in performance.

The Fortran programming language was originally created in the 1950s as a language
for mathematical applications. Major revisions to the Fortran specification were
released in 1966, 1977, 1990, 1995 and several times since (not yet available). These
revisions have added support for newer programming conventions such as pointers.
However, Fortran remains a procedural, line oriented language, making it archaic by
the standards of the computer science field. Fortran is a very small percentage of all
software development in the world. In spite of this, Fortran code remains rather
common in the high performance computing field due to the number of software
packages that utilize code that was written in Fortran decades ago.

The C language is the programming language of choice for writing operating systems
and hardware device drivers. It is a procedural language that is powerful enough to
do things that could only be done in processor specific assembly language before the
invention of C. However, C is rather unforgiving as a language for applications
development as it is weakly typed and contains no intrinsic error checking. As such,
C is rarely used for writing mathematical simulation software.

The C++ language is an object-oriented, strongly typed derivative of C. With a few
notable exceptions, C programs will compile as C++ code. However, the majority of
C++ code is object oriented code, which would not compile as C code. C++ has been
used for a large percentage of applications software written in the past 20 years.

Prior to the invention of the Java language, most graphic interface based programs
could only be used under one operating system. Java changed that situation by
creating a programming language that could be used to write graphic interfaces that
would run on many different platforms without any change to the code, or even being
recompiled. Thus Java is very popular for graphic interface development. However,
Java compiles to byte codes which results in it not executing as quickly as natively
compiled programs for complex mathematical operations. Many software packages
use a Java graphic interface on top of mathematical executables written in C, C++ or
Fortran.

 HPC User Manual - 9th Edition Compiling Software

92

There are several different compiler suites available on the ASC systems. These
include the following.

• GNU C, C++, and Fortran
• Intel C, C++, and Fortran
• Portland Group C, C++, and Fortran for the DMC only
• Special purpose languages such as CUDA, Objective Caml, Unified Parallel C, and

LISP

Selecting the best compiler is not necessarily a trivial task. One rule of thumb is to
follow the software makers recommendations, if a recommendation is given. Many
public domain software packages are developed using GNU compilers, and in rare
cases may only compile with the GNU compilers. Some legacy codes, such as those
originally developed for Vax Fortran, compile best with the Portland Group
compilers. Those exceptions aside, the Intel compilers most frequently give the best
optimized executables, which thus run the fastest.

Additional information about the compilers is available by using the
“man <command>” command. There are also documentation and README files
in the directories /opt/asn/doc/compilers_altix and /opt/asn/doc/compilers_dmc

In some cases, ASC keeps old versions of compilers. A users account can be
configured to use these older versions by adding commands to the .bashrc.local
and .bashrc.local.altix and .bashrc.local.dmc files. Settings in .bashrc.local affect
both clusters. Those options are documented in the README.txt files in the
directories listed in the previous paragraph.

The compile C, C++, and Fortran commands are;

 gcc GNU C/C++
 g++ GNU C++, loads C++ libs
 gfortran GNU Fortran 95 (includes Fortran 77 & 90)
 pgf77 Portland Group Fortran 77
 pgf90 Portland Group Fortran 90
 pgf95 Portland Group Fortran 95
 pghpf Portland Group High Performance Fortran
 icc Intel C
 icpc Intel C++
 ifort Intel Fortran 66, 77, 90, 95

 HPC User Manual - 9th Edition Compiling Software

93

A Fortran Program Example

The basic sequence for compiling a Fortran program is as follows:

 ifort program.f –o program

The source code must be in a file named with the extensions .f or .f90

The program can be executed interactively by simply typing the following.

 ./program

If the output executable name isn’t specified on the compile line, it will be named
a.out

The following is an example of a console session in which a Fortran program is
compiled and executed.

altix:~/hello $ ls
hello.f
altix:~/hello $ ifort hello.f
altix:~/hello $ ls -l
total 1028
-rwxr-xr-x 1 asndcy analyst 800106 May 19 11:58 a.out
-rw-r--r-- 1 asndcy analyst 65 May 18 13:49 hello.f
altix:~/hello $./a.out
 Hello
altix:~/hello $

A C Program Example

The GNU C compiler is called with the gcc command:

 gcc source.c -o myprogram

The command above compiles the source code in the file “source.c” and creates an
executable named “myprogram”. If the executable file name is not specified, it will
be named a.out

The following line executes the program

 ./myprogram

 HPC User Manual - 9th Edition Compiling Software

94

EXAMPLE

The following is an example of a console session in which a C program is
displayed, compiled and executed.

asndcy@dmc:~/hello> ls
hello.c
asndcy@dmc:~/hello> ls -l
total 4
-rw-r--r-- 1 asndcy analyst 81 May 19 12:06 hello.c
asndcy@dmc:~/hello> cat hello.c
#include <stdio.h>
main()
{
 printf ("Hello Worldfrom C\n");
 return;
}

asndcy@dmc:~/hello> gcc hello.c
asndcy@dmc:~/hello> ls -l
total 20
-rwxr-xr-x 1 asndcy analyst 13351 May 19 12:07 a.out
-rw-r--r-- 1 asndcy analyst 81 May 19 12:06 hello.c
asndcy@dmc:~/hello> ./a.out
Hello Worldfrom C
asndcy@dmc:~/hello>

Optimization
This section provides information about techniques you can use to optimize Fortran,
C, or C++ code on the ASC supercomputers.

Optimization is the process of changing a program or the environment in which it
runs to improve its performance. Performance gains generally fall into one of two
categories of measured time:

• User CPU time. Time accumulated by a user process when it is attached to a CPU
and executing. When running on a single CPU, CPU time is a fraction of elapsed
time. When multitasked, CPU time is a multiple of elapsed time.

• Elapsed (wall-clock) time. The amount of time that passes between the start and
termination of a user process. Elapsed time includes the following:

• User CPU time
• Linux system CPU time
• I/O wait time
• Sleep or idle time

Optimization begins with code that has been debugged and is running correctly on the
system.

 HPC User Manual - 9th Edition Compiling Software

95

EXAMPLE

Manual parallelization with libraries like MPI, PVM, ARMCI and LINDA is very
labor intensive. It is advisable to try all other optimization options and analyze the
size of future runs carefully before embarking on this path. Furthermore, some codes
will parallelize well while others get only marginal improvement. For an algorithm
that does parallelize well, this can allow you to decrease the elapsed execution time in
proportion to the number of CPUs used.

The first step is to compile using the best compiler options and data types for your
program. The following paragraphs give recommendations for the compilers
available at ASC.

ALL COMPILERS: The first optimization step is to try -O1 -O2 and -O3 compiler
flags. -O3 is usually the best, but in rare cases a code won't compile correctly with
-O3. GNU compilers use -O in place of O1.

INTEL COMPILERS: Other flags that can improve optimization are; -Bstatic,
-static, -fast, -fnsplit, -ip, -ipo, -prof_use, -tpp2.

PORTLAND COMPILERS: Other flags that can improve optimization are; -Bstatic,
-fast, -O4, Mcache_align, -Mdalign, -Mllalign, -Mfunc32, -Munroll, -Minline,
-Mscalarsse.

GNU COMPILERS: Other flags that can improve optimization are; -fcaller-saves,
-fcse-follow-jumps, -fcse-skip-blocks, -fdelayed-branch, -felide-constructors,
-fexpensive-optimizations, -ffast-math, -ffloat-store, -fforce-addr, -fforce-mem,
-fmemoize-lookups, -fno-defer-pop, -fno-function-cse, -fno-peephole,
-fomit-frame-pointer, -frerun-cse-after-loop, -fschedule-insns, -fschedule-insns2,
-fstrength-reduce, -fthread-jumps, -static, -funroll-all-loops, -funroll-loops. The
-fexpensive-optimizations can be a useful catch-all to try first. Beware of -ffast-math
if your code is sensitive to numerical precision.

Using a static compilation flag can improve execution speed performance and make
the executable easier to run on a different computer. However, static linking makes
the executable take more disk space. In theory, static linking can result in the
software using more memory at run time, but in practice this effect is usually very
small.

More information on compiler flags can be found in the man pages for each compiler
command, and in files in the directories /opt/asn/doc/compilers_altix and
/opt/asn/doc/compilers_dmc on both supercomputers.

 HPC User Manual - 9th Edition Compiling Software

96

Before continuing any further with optimization, it is highly advisable to prepare a
set of test calculations and correct results to compare them to. Although it is
usually possible to make a program get the same answer much faster, there is
definitely a risk that the changes you make might break the program, causing it to
give incorrect results. Throughout the course of optimization work, save the last
copy of the source code that ran correctly, and rerun the test set frequently.

Optimizing code is an iterative process requiring the following steps.

1. evaluate the code
2. determine possible areas where optimization techniques can be applied
3. apply the techniques
4. check code performance
5. is code sufficiently optimized?

• if not, return to step 1
• if yes, the code is optimized for single CPU performance

The evaluation step is most often done using a program called a profiler. In order to
use a profiler, first recompile the program with a compiler flag that turns on profiling.
Then run a test calculation, which generates an extra output file with profiling data.
Then run the profiler, which analyzes the data and outputs information about how the
program ran.

Usually, there are two crucial pieces of data in the profiler output; how much time
was spent executing each subroutine, and how many times each subroutine is called.
The most productive optimization is usually making the functions that spend the most
time executing run more efficiently. The second most productive optimization is
usually cutting down on the number of calls to a function that is called millions of
times.

On the following page is an example of how to compile a C++ program with the g++
compiler, run a calculation, and profile the code with the gprof profiler.

 HPC User Manual - 9th Edition Compiling Software

97

 Tip!

altix:~/source/mandy $ g++ mandy.cc -O3 -pg -o mandy
altix:~/source/mandy $ mandy test5_big
altix:~/source/mandy $ gprof mandy
Flat profile:

Each sample counts as 0.000976562 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
100.00 263.00 263.00 1 263.00 263.00 mandelbrot(_IO_FILE*)
 0.00 263.00 0.00 1 0.00 0.00 _GLOBAL__I_x_initial
 0.00 263.00 0.00 1 0.00 0.00 write_header
(_IO_FILE*)
 0.00 263.00 0.00 1 0.00 0.00
__static_initialization_and_destruction_0(int, int)

 % the percentage of the total running time of the
time program used by this function.

(more explanation of columns listed here)

 Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.00% of 263.00 seconds

index % time self children called name
 <spontaneous>
[1] 100.0 0.00 263.00 main [1]
 263.00 0.00 1/1 mandelbrot(_IO_FILE*) [2]
 0.00 0.00 1/1 write_header(_IO_FILE*) [9]

 263.00 0.00 1/1 main [1]
[2] 100.0 263.00 0.00 1 mandelbrot(_IO_FILE*) [2]

 0.00 0.00 1/1 __do_global_ctors_aux [14]
[8] 0.0 0.00 0.00 1 _GLOBAL__I_x_initial [8]

 0.00 0.00 1/1 main [1]
[9] 0.0 0.00 0.00 1 write_header(_IO_FILE*) [9]

 0.00 0.00 1/1 __do_global_ctors_aux [14]
[1 0] 0 . 0 0 . 0 0 0 . 0 0 1
__static_initialization_and_destruction_0(int, int) [10]

 (more explanation of the above table printed here)

In the first table generated by gprof, the third column indicates how much time was
spent executing each function. Since essentially all of the CPU time was spent on the
mandelbrot function, that is the only one that the programmer needs to worry about
optimizing. It is very typical that the majority of the CPU time executing even a
complex program is spent in executing just a handful of the functions.

In the example above each function was called only once (column 4 of the first table).
However, if there were a function called millions of times, it would show up here.
The second table shows where each function was called from.

 HPC User Manual - 9th Edition Compiling Software

98

Because the program was compiled with the “–pg” option, it generated an additional
file, named gmon.out when it was executed. The profiler is analyzing both the
executable and the gmon.out file to give an analysis of how the program performed
for this one specific calculation. Ideally the test calculation should run anywhere
from 5 minutes to 30 minutes. If the running time is too short, there won’t be enough
data to give useful results. If the running time is too large, it will be inconvenient to
do the optimization work.

Note that profilers give information only to a certain accuracy. This is because the
operating system kernel tracks the time threads are running only to a certain accuracy.
As a general rule of thumb, times of a second or more are meaningful for a five
minute calculation, but fractions of a second are not. More understanding of the
source of these errors can be gained by investigating kernel accounting based on a
“jiffy counter” (currently used in all versions of Linux) and the alternative, more
accurate, scheme called “microstate accounting” that is currently available only in the
Solaris version of Unix available from Sun Microsystems.

Once the sections of code needing to be optimized have been identified, the
programmer must find a way to get the exact same result more efficiently. Here are
some of the most common ways to do this. These start with number 1 being the most
likely to help, working down to ones that give less significant improvements.

1. See if there are known algorithms for doing the same task that have a better time
complexity than the current algorithm.

2. Look at nested loop structures.
1. Add a test to determine whether an inner loop needs to be executed on a given

iteration.
2. See if a function can be moved from an inner loop to an outer loop.
3. See if the loops can be reordered.

3. Look for values that are being computed more than once. Compute them once
and store them in a variable, array, or even a file.

4. Are values being computed, which could be replaced by constants? For example,
replace sqrt(2.0) with 1.414213562

5. Cut down on the number of times a given function is called.
6. See if sorts can be replaced by a data structure that maintains the data in order.
7. Look for large data moves that could be replaced with pointers.
8. Minimize the use of transcendental functions. For example X*X*X is faster to

evaluate than pwr(X, 3.0).
9. Replace single character file I/O with block reads and writes.
10. Programs that do very large amounts of file I/O can be limited by I/O. It is

sometimes productive to store data in memory instead of files, or to recompute
values rather than storing them for reuse later.

 HPC User Manual - 9th Edition Compiling Software

99

Programming Best Practices
Well written software is a pleasure to work with, and to write. Badly written software
can be a nightmare for everyone involved. Degree programs tend to focus on
learning programming languages, data structures, algorithms, and architecture. Once
you have graduated (regardless of having a degree in computer science, chemistry or
some other field) you will find that any professionally run organization has a strong
emphasis on good programming practices. Many organizations have code reviews
where your boss and senior coworkers review the source code you have written and
critique how you could have done a better job. The details of programming best
practices vary from one organization to the next, but the same topics are addressed.
The following paragraphs discuss the most important aspects of programming best
practices. References to additional information are in the Bibliography.

Code basics

Variable naming is important to remind yourself, and programmers that come after
you what the variable does. Consider the following examples

d this tells you nothing
distance a bit better
distanceToSun now we know what distance
ldDistanceToSun prefix indicates locally scoped, double precision
ldDistanceToSunKM excellent, we know what it is, and the units

Many companies have variable naming standards. Probably the most comprehensive
is the Hungarian Naming scheme created at Microsoft, and used by many other
organizations.

Indents in code show which lines are inside of loops, “if” statements, etc. Even
archaic Fortran allows indents past the seventh character.

Comments are sections of code that are not compiled or executed. These are where
you put notes about what the function does, what it assumes about input data, longer
descriptions of variables, why you inserted specific lines of code, etc. Many people
have regretted not putting in enough comments. We have never heard of a problem
with too many comments.

Use dynamic allocation. Dynamic allocation is setting the size of arrays at run time,
not at compile time. This prevents problems from arrays being sized too small, or the
program using too much memory to run small problems.

 HPC User Manual - 9th Edition Compiling Software

100

Do not hard code paths or input values. Program input should be in a file that is
read by the program, or provided interactively through a graphic interface. The path
to the location of needed files can be set in an input file, on the command line, or in
an environment variable.

Enumerate flags. It is often necessary to tell a function how to select from optional
behaviors. Doing so with integers makes the code difficult to read. Enumerate the
flags so that you can use English words as flags.

Create plenty of error traps. It is immensely aggravating to debug software that
passes garbage data from one function, to another, to another, to another. Error traps
are “if” statements that check that the data sent to a function is valid, and if not print
out a usable message with the function name, problem, and data value. As a matter of
self discipline many organizations require error traps to also halt program execution.
If error traps slowing down code execution is a concern, have a way to turn them off
through the use of a command line flag, or compile time #ifdef statement.

Expect user input to be wrong. A user’s first impression of a program is based how
well it behaves when they are initially learning to use it. Users can, will, and do leave
out portions of the input, put in extra input, put text in numeric fields, and put in
combinations of options that make no logical sense to an expert in the field. As such,
any user input should be heavily error trapped. Error message should give a clear
English description of what is wrong, and if possible how to fix it. Even the most
experienced users will occasionally make mistakes and appreciate good checking of
input data. Good input error traps and descriptive error messages will also cut down
on the number of technical support calls you get.

Software architecture

Writing code is not the first step in software development. The first step is typically
to define who will use the software and their use cases. Use cases are examples of
the types of tasks that must be performed using the software. Each task can then be
broken down into a set of steps, input values, buttons, command line flags, etc.

Software can be prototyped. If the core of the software is dependent upon creating a
new algorithm for solving some scientific problem, it might be best to test that
algorithm before writing the whole program. This is sometimes done with a lighter
duty scripting language. Graphical software can have paper prototypes showing how
it will look, and even used for initial usability testing.

Design the software’s high level architecture. There are many discussions of this in
books on design patterns. Design patterns are high level architectural constructs
such as a client-server architecture, wrappers, interpreters, etc.

 HPC User Manual - 9th Edition Compiling Software

101

Give careful consideration to the use of third party function libraries. Libraries can
save large amounts of software development work. However, if the library is poorly
maintained it might introduce errors into the code, incompatibilities with certain
operating systems, etc. Every library used increases the difficulty of getting the
software to install and compile on another computer.

Avoid machine dependent code. If the software uses functions specific to one
operating system or hardware platform, it can be difficult or impossible to get it to run
on other computers.

Manage shared object libraries. Shared objects (dll’s in Windows) are libraries of
functions that are loaded into memory only once, even if being used by multiple
programs. This saves memory and disk space. However, your software can break if a
new version of the needed library is installed on the system. Some developers static
link all executables to avoid these programs, and improve run time performance.
Some manage paths with wrapper scripts or the Modules functions described
elsewhere in this manual. Others include all needed libraries with the code and force
the paths to use that copy, even if it is duplicating something that is part of the
operating system.

Organization

Have an automated build process. This can be done with the Linux “make”
command, the “ant” software, or shell scripts. In any case, there should be a single
command to compile the whole software package.

Use a code repository. These are systems that store all of (and all previous versions
of) the source code, often including documentation, tests, and example input data.
The code repository database will have a mechanism to undo changes that broke the
software, and to see what the code looked like in any previous version of the
software. There are public domain version control systems such as CVS and
Subversion as well as web portals and commercial software packages.

Have a database of all known bugs in the software. This can be as simple as a ring
binder, but is most often a relational database with a web front end. Most bug
tracking systems also have mechanism to enter feature requests, assign bugs to
developers, and track what version the bug was fixed or identified in.

Have code reviews. A code review is a meeting in which source code is examine by
technical management and senior coworkers. Even the most diligent programmer
will become lax if no one ever looks at their code. Knowing that lax programming
will be publicly discussed keeps people adhering to the standards.

 HPC User Manual - 9th Edition Compiling Software

102

Establish appropriate project management practices. There are many software
project management methodologies with names like waterfall, spiral, agile, and
extreme. Which is best depends upon whether the software is dependent upon
experimental algorithms, is highly cost driven, or will be developed for many years to
come.

Validation and refinement

Functional tests are tests of the entire program. These tests and various subsets of
them are usually automated. Functional tests verify that correct results are being
generated and that functions are working together correctly. There is often an
automated mechanism that runs a good selection of functional tests every night.

Unit tests are tests of individual functions within the software. Unlike functional
tests, unit tests can tell which subroutine is broken. Unit tests are used when routines
are written and modified. If the final program is expected to be more than a few
thousand lines of code, start writing unit tests from day one and require programmers
to check in the unit tests when they check in the code. Failure to do so will result in
not knowing which functions to trust and having to constantly hand check function
after function as part of debugging.

Profile the software, and optimize key sections for performance. Especially for
modeling and simulation software, a few weeks of performance optimization can save
years of run time.

There are static code analysis programs, and run time analysis programs. These
identify problems such as memory leaks, and many types of programming errors.
Often turning on all compiler warnings can find a large percentage of these problems.

If security issues are a concern, use testing techniques specifically designed to
identify those problems.

Documentation

Don’t expect the documentation person to do your job for you. Writing
documentation is part of programming, even if there is a documentation expert to
pretty it up.

User manuals are as important as the software itself. User manuals must describe
the functions of the buttons and input values, but that is not sufficient. It is necessary
to have documentation discuss reasonable values, and provide tutorials. Really good
documentation describes when and why you would use a particular setting.

 HPC User Manual - 9th Edition Compiling Software

103

Self documenting code is a myth. Write a developers guide, even if it is just a text
file. Describe the code architecture, object classes, build processes, and other
development specifics. If the new intern is asking piles of questions or can’t get
anything done, you need a better developers guide.

Include example files with the software distribution, so users can see a working input
and the corresponding output.

 HPC User Manual - 9th Edition Compiling Software

104

Appendix: ASA Policies
This appendix contains the Alabama Supercomputer Authority policies. Any new
revisions to these policies will be posted on the ASA web site at

http://www.asc.edu/usermanual/policies/policymenu.shtml

Privacy and security statements are distributed on the Alabama Department of
Finance Information Services Division website at

http://isd.alabama.gov/isd/statements.aspx

 HPC User Manual - 9th Edition ASA Policies

105

Policy: ASAP01 - R4
Title: ASA Policies
Date: 01/01/94:Revised 3/8/2005
Distribution: All ASA Users

A. PURPOSE.

This policy defines the ASA policy document as a vehicle for documenting and
communicating policies relating to the Alabama Supercomputer Authority (ASA) and
its user community.

B. DESCRIPTION.

ASA policies are numbered and controlled documents that define current policies of
the Alabama Supercomputer Authority (ASA). Policies defined in these documents
will be followed in operating the George C. Wallace Supercomputer Center
(GCWSC), the Alabama Research and Education Network (AREN) and other ASA
activities. Policies will be numbered ASAP01-R0, ASAP02-R0, etc. Revisions will be
indicated by incrementing the revision number: ASAP01-R1, ASAP01-R2, etc.

C. APPROVAL.

All ASA policies will be approved by the Alabama Supercomputer Authority (ASA)
and concurred to by the current professional services contractor.

D. FREQUENCY.

ASA policies will be issued and updated on an as-needed basis.

E. DISTRIBUTION.

ASA policies are applicable to clients of GCWSC, AREN, High Performance
Computing (HPC) and Alabama Supercomputer Authority (ASA) and its professional
services contractor. Copies of policies are available electronically through ASA's web
site http://www.asc.edu/usermanual/policies/policy02.shtml

F. SUBJECT MATTER.

ASA policies will address issues which affect users of GCWSC, AREN, and HPC and
generally relate to the operational and administrative activities of ASA. While
procedures may be defined in the "ASA User Guide", the ASA policy will be the
official document for overall guidance.

 HPC User Manual - 9th Edition ASA Policies

106

Policy: ASAP02 - R8
Title: List of Current Policies
Date: 08/16/95:Revised 9/1/2009
Distribution: ASA Staff, ASA Clients

A. OVERVIEW.

This policy exists to provide a list of all current ASA policies. This list will be
updated on a periodic basis as needed to remain current.

B. CONTENTS.

 HPC User Manual - 9th Edition ASA Policies

107

Policy Number Revision Number Revision Date Policy Title

ASAP01 R4 Mar 8, 2005 ASA Policies

ASAP02 R8 Sep 1, 2009 List of Current Policies

ASAP03 R5 Mar 8, 2005 ASA- Hours of Operation

ASAP04 R7 Sep 1, 2009 HPC Charges for Commercial Clients

ASAP05 R8 Sep 1, 2009 HPC Client File Storage

ASAP06 R5 Mar 24, 2005 HPC Proprietary Program Charges

ASAP08 R6 Apr 21, 2005 ASA User Accounts

ASAP13 R2 Apr 18, 2005 Configuration Change Request

ASAP14 R5 Mar 24, 2005 Access to GCWSC

ASAP17 R4 Sep 1, 2009 Requesting Dedicated Time on ASA
HPC Platforms

ASAP20 R4 Mar 15, 2005 ASA Acceptable Use Policy

ASAP21 R1 Mar 9, 2005 CIPA Content Filtering Policy

ASAP22 R0 In Process ASA Disaster Recovery

Policy: ASAP03 - R5
Title: ASA Hours of Operation
Date: 01/01/94:Revised 3/8/05
Distribution: All ASA Clients

A. OVERVIEW

This policy defines the scheduled hours of operation of the George C. Wallace
Supercomputer Center (GCWSC), the Alabama Research and Education Network
Operations Center, the ASA Network Office, and the ASA Business Office.

B. THE ASA BUSINESS OFFICE

Alabama Supercomputer Authority
Center for Commerce
401 Adams Avenue
Suite 758
Montgomery, Alabama 36130

(334) 242-0100
(334) 242-0637 (fax)

The ASA office is opened Monday - Friday, 0800-1700 (closed on all State holidays).

C. THE AREN NETWORK OPERATIONS CENTER

AREN Network Operation Center
George C. Wallace Supercomputer Center
686 Discovery Drive
Huntsville, Alabama 35806
(256) 971-7448
1-800-276-0670
helpdesk@asc.edu

The Network Operations Center (NOC) for the Alabama Research and Education
Network is manned, 24 hours per day, 7 days per week, 365 days per year.

Planned network outages will be posted on the ASA web site www.asc.edu at least
four (4) days in advance.

Network outages required by unexpected hardware or software problems will be
posted as soon as possible to give users as much advance notice as possible.

 HPC User Manual - 9th Edition ASA Policies

108

The George C. Wallace Supercomputer Center is open to users (and visitors by
appointment) Monday through Friday, 0800 to 1700. Off-hour access to users is
available, by prior arrangement.

These schedules relate to the functioning of all equipment and services that provide
network connectivity to ASA clients.

D . T H E A S A N E T W O R K O F F I C E G E O R G E C . WA L L A C E
SUPERCOMPUTER CENTER

686 Discovery Drive
Huntsville, Alabama 35806
(256) 971-7404
(256) 971-7473 (fax)
asainfo@asc.edu

The ASA Network office is opened Monday - Friday, 0800-1700 (closed on all State
holidays).

 HPC User Manual - 9th Edition ASA Policies

109

Policy: ASAP04 - R7
Title: HPC Charges for Commercial Clients
Date: 01/01/94:Revised 9/1/2009
Distribution: All ASA Commercial Clients

A. OVERVIEW.

This policy establishes guidelines for charging for processing on ASA's High
performance Computing (HPC) platforms. Currently, ASA maintains two (2) HPC
platforms, an SGI 350 and a Dense Memory Cluster system. The method is based
upon a cost recovery charge per CPU hour.

B. HPC SYSTEM CHARGES.

• There is a minimum purchase of 2000 CPU hours upon which an account is
established.

• Current CPU/hour rates are on the ASA web site www.asc.edu under HPC services.
• CPU hours on each platform are assigned a value. ASA reserves the right to change

the dollar value per CPU hour at any time (will not effect current contracts).
• Jobs that are submitted without a sufficient CPU hour balance will be automatically

suspended until additional CPU hours are purchased.
• Special services will be addressed on a case-by-case basis.
• AREN access charges may or may not apply
• All HPC contracts expire within one year unless changed by mutual agreement

C. SOFTWARE CHARGES

Clients that request use of software provided by ASA must abide by the software
license agreements for those software packages. Most of the software packages have
the license terms included in the online documentation.

Most of the software provided by ASA is licensed for academic use. Commercial
users or university researchers doing work under contract to commercial firms
must contact the Alabama Supercomputer Authority to see if this usage is
allowed by the current license.

D. ADDITIONAL CHARGES

Additional charges may be incurred if additional disk space is required above the
assigned initial space.

Charges for additional consultation may be deemed appropriate when time is
expended above and beyond the normal is experienced.

 HPC User Manual - 9th Edition ASA Policies

110

All users are responsible for the safe disposition (backup) of their own program
and data files.

 HPC User Manual - 9th Edition ASA Policies

111

Policy: ASAP05 - R8
Title: HPC Client File Storage Capacities
Date: 08/16/95:Revised 9/1/2009
Distribution: All ASA Users

A. OVERVIEW.

The policy relates to file storage capacities for clients using ASA High Performance
Computing (HPC) facilities.

The client is responsible for providing his/her own backup by what ever method is
appropriate (e.g. ftp to local node, etc.).

File backup is performed at the central site only for unscheduled outages and disaster
recovery.

B. CLIENT PERMANENT FILE STORAGE.

Each client account is assigned a /home directory in a file system for a particular HPC
platform. Client files stored within this directory are termed permanent client storage.
Files stored here remain until removed by the client or by the PERMANENT
STORAGE PURGE (see C, below).

File storage limits in the /home directory are set at 1 GB (1 gigabyte) for the
particular HPC platform and a total of 2 GB (2 Gigabytes) across all systems
excluding scratch disk.

If a client requires more file space (up to 40 GB) the client must request additional
space from ASA's HPC Computational Specialist at hpc@asc.edu .

Clients requiring file space over and above 20 GB must make a request directly
through ASA's Chief Fiscal Officer, there will be a charge involved.

C. PERMANENT STORAGE PURGE.

When the /home limit is reached, clients will get a warning message indicating that
disk usage must be reduced below their assigned limit within in 7 days. After 7 days
without reducing usage, any process attempting to create additional files will be
killed.

 HPC User Manual - 9th Edition ASA Policies

112

D. CLIENT TEMPORARY DISK STORAGE.

To accommodate jobs that require large amounts of temporary scratch space, clients
will have access to the /scratch directory. This directory provides 1.1 TB (1.1
Terabytes) of temporary storage. Data left in this directory after calculation
completes will be purged after seven (7) days with no backup.

E. CLIENT DISK BACKUP.

To provide recovery in the event of a storage hardware failure, files on HPC file
storage facilities will be backed up periodically to a RAID server. These backups are
not available for recovery of individual files deleted by a client. No backup is
maintained for files on /scratch .

In the event that client /home directory files are destroyed by hardware or software
system failure, /home, directory files will be restored from the latest backup
available. Files on /scratch cannot be restored. A news notification will be posted.

F. ACCOUNT EXPIRATION.

Accounts are established on an annual basis. Home directory files are maintained
up to one year after account expiration.

 HPC User Manual - 9th Edition ASA Policies

113

Policy: ASAP06 - R5
Title: HPC Proprietary Program Charges
Date: 01/01/94:Revised 3/24/2005
Distribution: All ASA HPC Clients

A. OVERVIEW.

This policy discusses charges to ASA High Performance Computation (HPC) clients
for proprietary application programs available on ASA HPC platforms.

B. CHARGING.

ASA Policy ASAP04 specifies the charging policy for ASA HPC platforms. This
policy documents only the ADDITIONAL charges each user is to pay for using
certain proprietary programs. These charges are specified by the vendor of each
particular program, and are based on program usage.

• Proprietary charges are in ADDITION to the normal processing charges for HPC
time.

• Proprietary charges are always billed by the Alabama Supercomputer Authority,
unless the user has received an exemption.

 HPC User Manual - 9th Edition ASA Policies

114

Policy: ASAP08 - R6
Title: Establishing an ASA HPC User Account
Date: 05/01/94: Revised 04/21/2005
Distribution: ASA HPC Clients

A. OVERVIEW.

This policy describes how accounts are established for High Performance
Computation clients.

Parties interested in establishing accounts should contact the ASA HPC
Computational Specialist by email hpc@asc.edu or telephone (256-971-7434).

B. ACCOUNT CATEGORIES.

The Alabama Supercomputer Authority has four (4) categories of accounts:

• Academic/Education - Accounts allocated to state academic education without
charge

• Academic/Fee-based - A state academic researcher working off a grant which pays
for HPC use (sponsored research), state academic researcher working on an
Industrial/Government sponsored project, or a private institution researcher are
charged a fee for using ASA HPC resources.

• Collaborative Client - A state researcher who has entered into an agreement with
ASA to provide and utilize resources to be located at ASC.

• Commercial - Paid use from Industry or Government Agency. Charges for these
account categories are outlined in policy ASAP04 and current rates are displayed on
ASA's website www.asc.edu.

C. ACADEMIC/COMMERCIAL ACCOUNTS

Potential clients should contact the ASA HPC Computational Specialist hpc@asc.edu
or ASA directly information@asc.edu in order to initiate a "Request for Services
Contract".

D. ACCOUNT EXPIRATION.

Accounts will expire one year from when the account was established or last
renewed. Accounts will be reactivated as soon as new account requests are received
and approved by ASA. Users with queued jobs that will run past this deadline can

 HPC User Manual - 9th Edition ASA Policies

115

complete the ASA HPC Grant Request form up to one week prior to the account
expiration date. Other users will be required to complete this form after the expiration
date. The form can be completed online at www.asc.edu/cgi-bin/account_request.cgi.

Accounts may be closed at anytime based on a request from an academic or a
commercial account representative prior to expiration. When an account expires, the
account is deleted from all platforms. Files are held for 30 days and then deleted
unless a special request is made in writing prior to the expiration date.

E. ACCOUNT PASSWORDS.

Initial passwords are assigned by the Account Administrator at ASC. Users may set
their own password.

Clients who have lost passwords, or suspected security breeches, should contact the
ASA HPC Computational Specialist hpc@asc.edu or 256-971-7434 as soon as
possible.

 HPC User Manual - 9th Edition ASA Policies

116

Policy: ASAP13 - R2
Title: ASA Configuration Change Request
Date: 01/01/94:Revised 4/18/2005
Distribution: ASA Staff

A. GENERAL

The purpose of this policy is to establish guidelines for the ASA Configuration
Change Request (CCR). The purpose of the CCR is to provide a documented
procedure to effect changes and enhancements to the services provided by the
Alabama Supercomputer Authority by ASA's Professional Services Contractor not
covered in the current contract. The requested changes should be submitted and
labeled "Configuration Change Request" (CCR).

B. SUBMISSION.

A CCR can be submitted by ASA or ASA's professional services contractor to the
ASA COO. Copies (in electronic form or paper) will be passed around for discussion
as necessary.

C. APPROVAL.

The ASA COO will then make any additional comments and send it on to the ASA
CEO for approval or disapproval. Since the request may mean the expenditure of
funds, the responsible party (originator) is not to take any action until given
direction/approval by the ASA CEO.

 HPC User Manual - 9th Edition ASA Policies

117

POLICY: ASAP14 - R6
Title: Access to the George C. Wallace Supercomputer Center
DATE: 05/01/94:Revised 3/24/05
Distribution: ASA Staff, Contractor Personnel, and ASA Clients

A. OVERVIEW

This policy defines the procedure governing physical access to the George C. Wallace
Supercomputer Center (GCWSC).

B. ACCESS CONTROL PROCEDURE

Access to the GCWSC is electronically controlled 7 days per week, 24 hours per day.
Electronic "keys" are be assigned to necessary and essential personnel based on a
category system (see below). Each key is electronically encoded for facility access
and tracking purposes. The ASA facilities manager is responsible for the issuance and
accounting for all keys. The ASA facilities manager is also responsible for
maintaining the electronic access control and camera system.

C. GCWSC ACCESS LIST

The access list for GCWSC is structured into three sections or categories:

1. Category 1 - Permanent Staff

Category 1 is defined as Permanent staff: ASA staff personnel and ASA's contractor
personnel permanently assigned to the GCWSC. Assignments to this list will be
directed by the ASA CEO and COO and controlled by the ASA facilities manager.

Permanent staff will have unrestricted access to the facility Monday through Friday
during business hours. Access after close of business on weekdays and on weekends
will require signing in and out on the visitor log located in the front lobby desk.
Signing the visitor log is not required between the hours of 0700 to 1700 on
weekdays.

Internal access to individual offices will be controlled through mechanical key
assignments determined by ASA and ASA contractor management. The ASA facilities
manager will assign and account for mechanical keys.

Category 1 personnel are authorized to escort guests.

Category 1 personnel should make every effort to inform their management and
operations helpdesk personnel in advance of guest arrivals.

 HPC User Manual - 9th Edition ASA Policies

118

2. Category 2 - Approved on-site Users

Category 2 is defined as on-site or contract users who may be assigned space at
GCWSC. Category 2 users must be approved by ASA and assigned space at GCWSC.
Application for office or computer room space consists of correspondence to ASA
management indicating purpose and duration of requirement. Category 2 users will be
required to sign the visitors log at all times. Personal identification may be requested.
Movement within the facility is limited to the assigned office and public areas on the
first floor.

These users are not authorized to escort guests.

3. Category 3 - Other building visitors

a. Emergency Personnel

Emergency personnel shall have all rights of access necessary to perform their duties.
If required, network operations personnel or the ASA facilities manager will escort or
arrange escort in compliance with emergency procedures.

b. Tours and Training Sessions

Tours of the facility and training sessions shall be scheduled in advance with ASA.
ASA will be advised of time, group identity, and expected size in advance. These
visitors shall not have access to contractor offices or the ASA offices. Tours of the
computer room must be scheduled in advance and approved by ASA and ASA's
contractor management. Groups must be escorted by Category 1 staff at all times in
areas other than the public areas in the front of the first floor.

c. Vendors and Maintenance Personnel

All vendor support personnel, building support personnel and maintenance personnel,
must sign the visitor log and be escorted or confirmed by Category 1 personnel.

All other visitors to the GCWSC will be required to sign the visitor log. They must be
announced to their point of contact who will then give operations personnel verbal
acceptance and instructions.

Only Category 1 management may grant exceptions to this procedure; such
exceptions are to be documented in the visitor log and acknowledged by the member
of management granting the exception and initialing the entry.

 HPC User Manual - 9th Edition ASA Policies

119

D. OFFICE ASSIGNMENTS

Office assignment will be the responsibility of the ASA CEO. A copy of the approved
space application indicating room number and length of stay will be provided to ASA.
The ASA facilities manager is responsible for providing access to the assigned office
space and whatever communications they might need.

 HPC User Manual - 9th Edition ASA Policies

120

POLICY: ASAP17-R4
TITLE:Requesting Dedicated Time on ASA HPC Platforms
DATE: 01/01/94:Revised 9/1/2009
Distribution: All ASA Clients

A. OVERVIEW.

This policy defines the process for requesting dedicated time on the Alabama
Supercomputer Authority (ASA) HPC platforms, the associated charges for use, and
the time available for dedicated machine use.

Dedicated time means that one client has the sole use of the complete platform for a
specific period of time and is established for commercial clients.

B. REQUESTING DEDICATED MACHINE TIME.

Requests for dedicated machine time should be directed to the HPC Computational
Specialist at HPC@asc.edu. The reason for dedicated time must be specified. A
description of what activities will be performed and what assistance is needed.

C. CHARGES FOR DEDICATED TIME.

Charges for dedicated time will be negotiated with ASA. Dedicated time will include
one hour of preparation time to configure the platform for dedicated use. If a client
signs up for dedicated time and fails to use it, the user will be charged for one hour of
use at the rate negotiated.

D. AVAILABILITY OF DEDICATED MACHINE TIME.

The DMC Cluster and the SGI ALTIX 350 are available for dedicated time as
negotiated.

 HPC User Manual - 9th Edition ASA Policies

121

Policy: ASAP20 - R4
Title: ASA Acceptable Use Policy
Date: 01/01/94:Revised 3/15/2005
Distribution: All ASA Clients

 1. OVERVIEW

 The Alabama Supercomputer Authority, a state non-profit corporation (1975
Alabama Code §§ 41-10-390 to 41-10-406), administers the Alabama Research and
Education Network (AREN), a statewide education network, and operates the George
C. Wallace Supercomputer Center. The purpose of this policy is to provide a
definition for acceptable use by authorized clients of ASA services and to indicate
recommended action if the policy is violated. In those cases when information is
transmitted across regional networks or Internet, ASA clients are advised that
acceptable use policies of those networks apply and may limit access.

 2. ASA ACCEPTABLE USE POLICY

• ASA services are for the use of individuals legitimately affiliated with ASA clients,
to facilitate the exchange of information consistent with the academic, educational,
and research purposes of its member organizations.

• It is not acceptable to use ASA services for illegal purposes.

• It is not acceptable to use ASA services to transmit threatening, obscene, or
harassing materials.

• Access to the INTERNET is provided through agreements with INTERNET Service
Providers. These agreements allow ASA to grant access to the INTERNET to
government, education, and industrial clients. Charges may be assessed by ASA to
facilitate network and Internet connectivity.

• The reselling of the ASA services is prohibited unless approved in writing by ASA.

• It is not acceptable for ASA clients to interfere with or disrupt network users,
services or equipment (intentionally and unintentionally) through the use of ASA
services. Disruptions include, but are not limited to, unsolicited advertising,
propagation of computer worms or viruses, and using AREN to make unauthorized
entries to any other computers accessible via the network. ASA clients are
responsible for maintaining an acceptable security status on all assets connected to
AREN.

 HPC User Manual - 9th Edition ASA Policies

122

• ASA clients must respect the legal protection applied to programs, data,
photographs, music, text documents and other material as provided by copyright,
trademark, patent, licensure and other proprietary rights mechanisms.

• Authorized ASA clients are required to protect their attached computers, servers,
and networks from computer viruses or worms that cause a systemic disruption to
ASA and its INTERNET services.

• Authorized ASA clients are required to provide current and accurate client contact
information to enable ASA representatives to have ready access for resolution of
problems.

• Information and resources accessible through ASA services are private to the
individuals and organizations which own or hold rights to those resources and
information unless specifically stated otherwise by the owners or holders of rights.
It is therefore not acceptable for an individual to use ASA services to access
information or resources unless permission is granted by the owners or holders of
rights to those resources or information.

The intent of this policy is to identify certain types of uses that are not appropriate,
but this policy does not necessarily enumerate all possible inappropriate uses. Using
the guidelines given above, ASA may at any time make a determination that a
particular use is not appropriate.

C. VIOLATION OF POLICY

All organizations authorized to access ASA services are responsible for informing
their users of this acceptable use policy. All users of ASA services are required to
follow the acceptable use guidelines, both in letter and spirit.

ASA reserves the right to monitor and review all traffic and data on ASA provided
services for potential violations of this policy. Violations of policy that are not
promptly remedied by individuals or ASA clients may result in termination of access
to ASA services. ASA will only release sensitive, confidential or personally
identifiable information to third parties when required by law, or when in ASA's
judgment, release is required to prevent serious injury or harm that could result from
violation of this policy.

Final authority for the determination of violation of the ASA Acceptable Use
Policy and subsequent penalty rests with the ASA Board of Directors.

 HPC User Manual - 9th Edition ASA Policies

123

It is the responsibility of ASA clients to contact ASA, in writing, regarding
questions of interpretation. Until such issues are resolved, questionable use
should be considered "not acceptable".

 HPC User Manual - 9th Edition ASA Policies

124

Policy: ASAP21-R1
Title: CIPA Content Filtering Policy
Date: 5/8/2002 Revised:3/9/2005
Distribution: All ASA Clients

A. OVERVIEW

The Alabama Research and Education Network (AREN) is a statewide education
network administered by the Alabama Supercomputer Authority (ASA), a state non-
profit corporation. ASA provides connectivity and Internet access to many K-12
public school systems and public libraries within the state of Alabama. By July 1,
2002 all public school systems and public libraries that receive E-rate funds were
required to conform to the Children's Internet Protection Act (CIPA), an act signed
into law by Congress on December 21, 2001.

 "No public school or public library may receive discounts unless it certifies
that it is enforcing a policy of Internet safety that includes the use of filtering or
blocking technology". - (CIPA 12/21/2001)

ASA utilizes a vendor-supplied content filtering service that is available to "all"
AREN clients. This service may be used as the "Technology Protection Measure"
referenced in CIPA.

 "A Technology Protection Measure is a specific technology that blocks or
filters Internet access. It must protect against access by adults and minors to
visual depictions that are obscene, child pornography, or with respect to use of
computers with Internet access by minors harmful to minors. It may be disabled
for adults engaged in bona fide research or other lawful purposes." - (CIPA
12/21/2001)

The use of the ASA content filter does not make a public school system or a
public library fully "CIPA compliant". Additional steps (i.e. design and implement
an "Internet Safety Policy", provide public notice and hold a public hearing etc.) must
be taken by the public school or the public library as outlined within CIPA.

B. ASA CONTENT FILTERING, TECHNOLOGY PROTECTION MEASURE

 1. The ASA's current content filtering solution refers to the Technology
Protection Measure in use by ASA for AREN Internet web access at any point in time.

 2. ASA must have in its possession at the time of activation a valid "ASA
Agreement for Activation of CIPA Content Filtering" and a SLD Form 479 from the
respective public school system or public library.

 HPC User Manual - 9th Edition ASA Policies

125

 3. The ASA content filtering service provides for filtering according to various
profiles available to clients (i.e. public libraries, elementary schools, high schools,
etc.). The default profile will block Internet web sites classified under the current
CIPA requirements:

 "block or filter Internet access for both minors and adults to certain
visual depictions. These include visual depictions that are (1) obscene, or (2)
child pornography, or (3) with respect to use of computers with Internet access
by minors, material that is harmful to minors" - (CIPA 12/21/2001)

C. FILTERING / BLOCKING FLEXIBILITY

 1. The filtering software vendor includes provisions for reviewing and
classifying all web sites that have not been classified. If a filtered client reaches an
obviously inappropriate site, the vendor will automatically update to block the site
within 72 hours. This automatic update occurs because lists of all unclassified sites
are sent to the vendor for classification and review on a daily basis.

 2. In order to expedite filtering of unclassified sites, a manual request for
filtering change can be requested.

 3. Requests for filtering changes must come directly from the client's
designated filtering coordinator. The filtering coordinator would normally be the
school system's technology coordinator or the library's network manager but may be
any person designated by the school superintendent or library administrator on the
ASA Agreement for Activation of CIPA Content Filtering.

 4. No action will be taken by ASA personnel to change filtering profiles,
unblock sites, or block sites until a client's filtering coordinator has requested such
action via the ASA Content Management System (CMS).

 5. The ASA CMS can be accessed by designated filtering coordinators via the
following URL: https://intranet.asc.edu/client_graphing/client_login.php

 6. Requests for site re-classification (blocking open sites or unblocking
filtered sites) made through ASA CMS will be automatically forwarded to our
filtering vendor for review. The review and reclassification process may still take up
to 72 hours but should occur faster than the automatic classification process.

 7. Immediate blocking or unblocking of filtered content may be requested, but
such requests are discouraged. If immediate action is a normal requirement of a
client, that client should use local resources to accomplish immediate blocks. These

 HPC User Manual - 9th Edition ASA Policies

126

local resources could include proxy server or router based content filters that are
managed locally by the client.

 8. Requests for immediate blocking or unblocking should be made through the
ASA CMS and will be serviced on a first-come-first-served basis. All requests will be
serviced within two school hours. If ASA personnel have taken no action within two
hours, the filtering coordinator may contact the ASA helpdesk by phone with their
ticket number and ask that the issue be expedited. Immediate blocking or unblocking
requests made during the weekend will be addressed before noon on the following
workday.

D. ADDITIONAL INFORMATION

 1. ASA CIPA Content Filtering FAQ will provide additional information
about how content filtering will be implemented.

 2. The AREN client who wants to utilize the provided content filtering must
sign an ASA Agreement for Activation of CIPA Content Filtering and a signed copy
SLD Form 479.

 3. The ASA Agreement for Activation of CIPA Content Filtering and signed
SLD Form 479 should then be mailed or faxed to:

 Alabama Supercomputer Authority
 Center for Commerce
 401 Adams Avenue
 Suite 758
 Montgomery, AL 36130
 (334) 242-0100
 (fax) 334-242-0637

E. DISCLAIMERS AND LIABILITY

 1. ASA's content filtering solution is designed to block inappropriate web sites
as defined by current CIPA guidelines. This solution does not filter inappropriate
content contained in email or chat rooms.

 2. ASA will strive to provide a content filtering service that is useful and
current and will attempt to address problems where the filtering service is found to be
deficient.

 HPC User Manual - 9th Edition ASA Policies

127

 3. ASA assumes no liability in the event that the content filtering service is not
100% effective. ASA also assumes no responsibility for the currency of the filter or
the content provided through it.

 4. All ASA clients are responsible to abide by the ASA Acceptable Use Policy
(ASAP20).

 5. ASA clients may add additional content filtering to their own networks in
addition to the one provided by ASA.

 6. ASA clients may discontinue their use of ASA's content filtering service
with written notification and with proof of use of an alternative content filtering
technology protection measure.

 HPC User Manual - 9th Edition ASA Policies

128

Bibliography
This manual undoubtedly will not cover everything you need to know. This section is
provided to suggest some other useful references. There are several important points
to note in addition. First, with the rise of Linux there is now a large amount of useful
information freely accessible on the internet (and an even larger amount of useless
information). Second, many, many books published by O’Reilly have proven to
provide consistently high quality information on topics related to computing.
Documentation for specific software packages in available by logging in on the HPC
systems and accessing the directory /opt/asn/doc

Tutorials for beginning users of Linux

Kiddle, Oliver , Jerry Peek, Peter Stephenson. From Bash to Z Shell. Berkeley, CA,
Apress L.P., 2004.

Newham, Cameron. Learning the Bash Shell 3rd Edition. Sebastopol, CA, O’Reilly &
Associates, Inc., 2005.

Blum, Richard. Linux For Dummies, 9th Edition. Hoboken, NJ, Wiley Publishing,
2009.

Printed compilations of Linux commands

Barrett, Daniel. Linux Pocket Guide. Sebastopol, CA, O’Reilly & Associates, Inc.,
2004.

Siever, Ellen, Robert Love, Arnold Robbins, Stephen Figgins. Linux in a Nutshell 6th
Edition. Sebastopol, CA, O’Reilly & Associates, Inc., 2009.

Volkerding, Patrick, Kevin Reichard. Linux System Commands. New York, NY, John
Wiley & Sons, 2000.

Hughes, Phil. Linux for Dummies Quick Reference 3rd edition. Hoboken, NJ, Wiley
Publishing, 2000.

 HPC User Manual - 9th Edition Bibliography

129

Books about using specific Linux commands

Robbins, Arnold, Elbert Hannah, Linda Lamb. Learning the vi and Vim Editors.
Sebastopol, CA, O’Reilly & Associates, Inc., 2008.

Information on writing shell scripts

Burtch, Ken. Linux Shell Scripting with Bash. Indianapolis, IN, Sams Publishing.
2004.

Robbins, Arnold, Nelson Beebe. Classic Shell Scripting. Sebastopol, CA, O’Reilly &
Associates, Inc., 2005.

Cooper, Mendel. Advanced Bash-Scripting Guide. http://www.tldp.org/LDP/abs/html/
Kochan, Stephen, Patrick Wood. Unix Shell Programming. Carmel, IN, Hayden
Books, 2003.

Information on parallel programming

Chandra, Rohit, Leo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, Ramesh
Menon. Parallel Programming in OpenMP, San Francisco, CA, Morgan Kaufmann,
2000.

Dongarra, Jack, Ian Foster, Geoffrey Fox, Ken Kennedy, Andy White, Linda Torczon,
William Gropp. Sourcebook of Parallel Computing. San Francisco, CA, Morgan
Kaufmann, 2003.

Gropp, William, Ewing Lusk, Anthony Skjellum. Using MPI. Cambridge, MA, MIT
Press., 1999.

Sloan, Joseph. High Performance Linux Clusters. Sebastopol, CA, O’Reilly &
Associates, Inc., 2004.

Wadleigh, Kevin, Isom Crawford. Software Optimization for High Performance
Computing: Creating Faster Applications (HP Professional Series) Prentice Hall,
2000.

 HPC User Manual - 9th Edition Bibliography

130

Sources of information on time complexity of algorithms

Big O Notation, Wikipedia
http://en.wikipedia.org/wiki/Big_O_notation

Young, David. Computational Chemistry; A Practical Guide for Applying Techniques
to Real World Problems. New York, NY, John Wiley & Sons, 2001.

Most text books on algorithms and data structures discuss time complexity.

Programming best practices

McConnell, Steve. Code Complete: A Practical Handbook of Software Construction
2nd Edition. Redmond, WA, Microsoft Press, 2004.

McConnell, Steve. Rapid Development: Taming Wild Software Schedules. Redmond,
WA, Microsoft Press, 1996.

Sutter, Herb, Andrei Alexandrescu. C++ Coding Standards; 101 Rules, Guildelines,
and Best Practices. Boston, MA, Addison-Wesley, 2005.

Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA, Addison-Wesley,
1994.

Hass, Anne Mette Jonassen. Guide to Advanced Software Testing. Boston, MA,
Artech House, 2008.

 HPC User Manual - 9th Edition Bibliography

131

