Boundary Scan

• Developed to test interconnect between chips on PCB
 – Originally referred to as JTAG (Joint Test Action Group)
 – Uses scan design approach to test external interconnect
 – No-contact probe overcomes problem of “in-circuit” test:
 • surface mount components with less than 100 mil pin spacing
 • double-sided component mounting
 • micro- and floating vias

• Standardized test interface
 – IEEE standard 1149.1
 – Four wire interface
 • TMS - Test Mode Select
 • TCK - Test Clock
 • TDI - Test Data In
 • TDO - Test Data Out
 • TRST - reset (optional & rarely included)
Boundary Scan (cont.)

Additional logic:

- 1 Boundary Scan cell per I/O pin
- Test Access Port (TAP)
 - 4-wire interface
 - TMS
 - TCK
 - TDI
 - TDO
 - TAP controller
 - 16-state FSM
 - controlled by TMS & TCK
 - various registers for
 - instructions
 - operations
Boundary Scan Cell Architecture

Basic BS Cell

- **IN**
- **Shift_DR**
- **Capture_DR**
- **Update_DR**
- **Mode_Control**
- **MUX**
- **D Q**
- **CAP CK**
- **D Q**
- **UPD CK**
- **OUT**
- **S_IN**

BS Cell Operation

<table>
<thead>
<tr>
<th>Operational Mode</th>
<th>Data Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Scan</td>
<td>IN → OUT</td>
</tr>
<tr>
<td>Capture</td>
<td>S_IN → CAP</td>
</tr>
<tr>
<td>Update</td>
<td>IN → CAP</td>
</tr>
<tr>
<td></td>
<td>CAP → UPD</td>
</tr>
</tbody>
</table>

Bi-directional buffers require multiple BS cells

- **Input data to IC core**
- **BS test data in (S_IN)**
- **Tri-state control**
 - From IC core
- **Output data from IC core**
- **Output data**
- **BS test data out (S_OUT)**
- **Pad**
Boundary Scan TAP Controller Operation

1. Send test instruction serially via TDI into Instruction Register (\textit{shift-IR})
2. Decode instruction and configure test circuitry (\textit{update-IR})
3. Send test data serially into Data Register (\textit{shift-DR}) via TDI
4. Execute instruction (\textit{update-DR} & \textit{capture-DR})
5. Retrieve test results captured in Data Register (\textit{shift-DR}) serially via TDO

Note: transitions on rising edge of TCK based on TMS value
Boundary Scan Instructions

Defined by IEEE 1149.1 standard:

- Mandatory Instructions
 - Extest – to test external interconnect between ICs
 - Bypass – to bypass BS chain in IC
 - Sample/Preload – BS chain samples external I/O
 - IDCode – 32-bit device ID

- Optional Instructions
 - Intest – to test internal logic within the IC
 - RunBIST – to execute internal Built-In Self-Test
 - if applicable (this is rare)
 - UserCode – 32-bit programming data code
 - for programmable logic circuits
 - User Defined Instructions
Boundary Scan: User-Defined Instructions

• User-defined instructions facilitate:
 – public instructions (available for customer use)
 – private instructions (for the manufacturer use only)
 – extending the standard to a universal interface
 • for any system operation feature or function
 • a communication protocol to access new IC test functions

• In FPGAs
 – Access to configuration memory to program device
 – Access to FPGA core programmable logic & routing resources
 • Xilinx is one of few to offer this
Boundary Scan: Advantages

- It’s a standard!!! (IEEE 1149.1)
 - allows mixing components from different vendors
 - provides excellent interface to internal circuitry
- Supported by CAD tool vendors, IC & FPGA manufacturers
- Allows testing of board & system interconnect
 - back-plane interconnect test w/o using PCB functionality
 - very high fault coverage for interconnect
- Useful in diagnosis & FMA
 - provides component-level fault isolation
 - allows real-time sampling of devices on board
 - useful at wafer test (fewer probes needed)
- BS path reconfigured to bypass ICs for faster access

- P1500 uses BS circuitry around cores inside SoCs
 - TRST pin is not optional in order to initialize all cores
Boundary Scan: Disadvantages

• Overhead:
 – Logic: about 300 gates/chip for TAP + about 15 gates/pin
 • overall overhead typically small (1-3%)
 • but significant for only testing external interconnect
 – especially tri-state (2 cells) & bi-directional buffers (3 cells)
 – I/O Pins: 4
 • 5 if optional TRST (Test Reset) pin is included
 – Must be included in SoC cores to meet P1500 standards
 – I/O delay penalty
 • 1 MUX delay on all input & output pins
 – this can be reduced by design
• Internal scan design cannot have multiple chains
• Cannot test at system clock speed
 – But internal BIST can run at system clock speed