Timing Issues

- Normally only steady-state behavior considered
- But transient behavior can also be important
 - Behavior may differ from steady state expectations
- Gates have finite delays
 - Unit gate delay (1 unit of delay per gate)
 - Propagation delay (gate delay \propto gate size)
- Delays differ through various paths
 - Can lead to ‘glitches’ on combinational logic outputs
 - Called timing hazards (or just hazards, with timing implied)
 - Static-1 hazard: produces a glitch to logic 0
 - Static-0 hazard: produces a glitch to logic 1
Static Hazards

• **Definitions:**
 - Static-1 hazard caused by a pair of input values that:
 1. Differ by only one input variable (distance = 1),
 2. Both produce a logic 1 output, *and*
 3. Cause a momentary logic 0 (also called a 0 glitch) at the output during a transition from one input value to the other
 - Static-0 hazard caused by a pair of input values that:
 1. Differ by only one input variable (distance = 1),
 2. Both produce a logic 0 output, *and*
 3. Cause a momentary logic 1 (also called a 1 glitch) at the output during a transition from one input value to the other

• **Important properties:**
 - A properly designed 2-level AND-OR (SOP) circuit has no static-0 hazards, but may have static-1 hazards
 - A properly designed 2-level OR-AND (POS) circuit has no static-1 hazards, but may have static-0 hazards
Static-1 Hazard Example

Multiplexer logic diagram

- A
- S
- B
- Z
- \(AS' \)
- \(BS \)
- \(AB \)

\[Z = AS' + BS \]

Timing diagram

- A
- B
- S
- S'
- \(AS' \)
- \(BS \)
- Z

\[Z = AS' + BS + AB \]

Note: this group removes hazard

Hazard-free multiplexer output

C. E. Stroud