

COMP-4640: Intelligent & Interactive Systems

Lecture #12: Uninformed Search

Incremental Problem Formulation (The N-Queens Problem)

[image: image1.png]Q
@
®
@

1234

Q
@
®
@
=
s Q=4
Q
@
® :
@ 2
®
@
Q=1

Q=3

[image: image32.png]=181]

Bookmarks Tooks _Help

constraint satisfaction problems |4

(35 | W tttpsfen.wipecta.rgfwkifConstraint_saisaction_problem

7, Pl e Wikied by supporing i mancialy 2 Signin create account
[“articte | [dsousson | [editthis page | [ristry

The Free Encyclopedia

navigation
Wain page
Corterts
Festured cantent
Curtent everts

Rendom ertice

interaction
= About Wikipedia

= Community portal
= Recent changes
= Contact Wiipecia
= Donate to Wikipedi
= bel

search

=
6o | _5eseh

toalbax
= WhatInks here
= Related changes
= Uploa fle

= Special pages

= Printable version
= Permanent nk

= Cfetis erticle

~Ton tings you g o bout Wipeda -

Constraint satisfaction problem

From Wikipsdia, the free encyclopedia

Constraint satisfaction problems or CSPs are mathematical problerns where one must find states or objects that satisfy a nurmber of
constraints or ciiteria. CSPs are the subject of intense research in both artificial intelligence and operations research. Many CSPs require &
combination of heuristics and combinatorial search methods to be solved in a reasonable time.

Exarmples of constraint satisfaction problems:

= Eight queens puzzle
= Map coloring problern
= Sudoku

= [onléan satishabiiy

Algorithrms used for sohing constraint satisfaction problems include the AC-3 algorithr, Backtracking, and the min-conflicts algorithm.
Theoretical aspects of CSPs [edit]

CSPs are also studied in cormputational complexity theory and finite model theory. An important question is whether for each set of relations,
the set of all CSPs that can be represented using only relations chosen from that set is either in PTIME or otherwise NP-complete (assuming P
#NP). If such a dichotomy is true, then CSPs provide one of the largest known subsets of NP which avaids problems that are neither
polynorial time solvable nor NP-corplete, whose existence was demonstrated by Ladner. Dichotorny results are known for CSPs where the
dornain of values s of size 2 or 3, but the general case is still open

Most classes of CSPs that are known to be tractable are those where the hypergraph of constraints has bounded treewidth (and there are no
testrictions o the set of constraint relations), o where the constraints have arbitrary form but there exist essentially non-unary polymorphisms
ofthe set of canstraint relations.

See also [edit]

= Constraint satisfaction
= Declarative programming

= Canstraint programming
- Dictributad Constraint Satisfartinn Brohlam (Nis S

Dore

COMP-4640: Intelligent & Interactive Systems

Lecture #12

[image: image30.png]

COMP-4640: Intelligent & Interactive Systems

Lecture #12
CSP (Constraint Satisfaction Problems)

Treat States as Black boxes leads to the invention of a range of powerful new search methods and a deeper understanding of problem structure and complexity

Search Algorithm

Each state is a Black Box assessed through problem specific routines

-successor function

-heuristic function

- goal test

CSP – the standard representation of the goal test reveals the structure of the problem itself
CSP assessment

Initial state is empty assignment {}

Successor function-value can be assigned to any unassigned variable provided that it does not conflict with previously assigned variables
Goal test- the current assignment is complete

Path cost – constant cost (e.g. 1) for every step
COMP-4640: Intelligent & Interactive Systems

Lecture #12
Constraint Satisfaction Search

· A constraint satisfaction problem (CSP) is a problem composed of variables and constraints. The objective is to assign values to variable in such a way that all of the constraints are satisfied.
· A CSP can be more formally viewed as a triple <D,X,C> where:
· D represents a set of n domains
· X represents a set of n variables, each variable xi takes it value from Di
· C represents a set of constraints.
COMP-4640: Intelligent & Interactive Systems

Lecture #12
Consistent or Legal assignments – Do not violate any constraints
Complete assignment – one in which every variable is mentioned

Solution to CSP is a complete assignment that satisfies all the constraints

In a constraint graph

Nodes = variables

Arcs = constraints

[image: image31.emf]
In general CSPs can solve problems much bigger than general purpose search algorithms.
Two types of CSPs

-Finite domain CSPs
· Ex. 8 queens problem
Variables= Q1, Q2, etc.
D = { }
· Ex. Boolean CSPs variables true or false
in worst case can’t solve in polynomial time (NP)

-Infinite Domain CSPs

· Ex. Construction Jobs

Variable: Job1, Job2, etc.

D= {any valid date}

· Too big to enumerate all solutions so we need to create a Constraint Language

· If Job1 takes 5 days, then Job3 will start

· Job1 +5 < Job3

· CSPs with continuous domains are widely studies in fields of Operations Research

and Linear Programming.

Constraint Satisfaction Search (cont.)
Consider the following CSP <X, D,C> where

· X = {E, F, G}

· D = {DE = {e1, e2, e3}, DF = {f1, f2, f3}, DG = {g1, g2, g3}}

· C = {C1, C2, C3} where

· C1(E,F) = {<e1, f2>, <e1, f3>, <e2, f2>, <e3, f2>}

· C2(E,G) = {<e2, g3>, <e3, g1>}

· C3{F,G) = {<f2, g1>, <f2, g3>}

· The set of n-tuples that satisfy all of the constraints is known as the intent of the CSP, (
· Given the above CSP, (X,D,C = {<e2, f2, g3>, <e3, f2, g1>)

COMP-4640: Intelligent & Interactive Systems

Lecture #12
Constraint Satisfaction Search (cont.)

[image: image3.png]cl(AB)
A<B+2

c2(A.C)
A>C

¢3(B.C)

B==2C

· Using the above problem formulation we can incrementally assign values to A, B, and C using chronological backtracking (depth-first search)

· In chronological backtracking, thrashing occurs frequently

COMP-4640: Intelligent & Interactive Systems

Lecture #12
Constraint Satisfaction Search (cont.)

· In the search for a solution to the above CSP, the depth-first search algorithm backtracked frequently in order to find alternative assignments for B (particularly when A=1). However, the value assignments to B were not the problem. The real culprit was the value assignment to A. This type of “wasteful” backtracking is known as thrashing.
· One method that can be used to reduce thrashing in backtrack search is known as arc revision
· Arc revision removes values from the domains of variables that cannot be used to solve a particular constraint
· For example, if we want to revise the domain of A using the domain of B, we will remove the values from domain A that cannot be use to solve constraint c1(A,B).
· Arc Consistency algorithms use arc revision to reduce the domains of a CSP to their minimum cardinality.
· This reduces the size of the search space as well as the amount of thrashing.
COMP-4640: Intelligent & Interactive Systems

Lecture #12
Constraint Satisfaction Search (cont.)

Arc consistency reduces the search space from 64 candidate solutions to 12.

[image: image4.png]cl(AB)
A<B+2

c2(A.C)
A>C

¢3(B.C)

B==2C

COMP-4640: Intelligent & Interactive Systems

Lecture #12
Constraint Satisfaction Search (cont.)

The search trace for our new CSP is as follows

A=2

B=2

C=1
(solution

C=2

B=4

C=1

C=2

A=3

B=2

C=1
(solution

C=2

B=4

C=1

C=2
(solution

A=4

B=2

B=4

C=1

C=2
(solution

COMP-4640: Intelligent & Interactive Systems

Lecture #12
Constraint Satisfaction Search (Forward Checking)

· Is it possible to reduce the amount of thrashing further? YES!
We can use a technique called Forward Checking.

· Forward checking can be view as revising each uninstantiated
variable with the values of each instantiated variable.

COMP-4640: Intelligent & Interactive Systems

Lecture #12
[image: image5.png]

Forward Checking:

Whenever a variable X is assigned

the forward checking process looks at each unassigned variable Y that is connected to X by constraint

and deletes from Y’s domain any value that is inconsistent with the value chose for X.

WA

NT

 Q

 NSW V SA T

	Initial domains
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B

	After WA=red
	
	
	
	
	
	
	

	After Q=green
	
	
	
	
	
	
	

	After V=Blue
	
	
	
	
	
	
	

[image: image6.png]

Assigning WA to Red: WA

NT

 Q

 NSW V SA T
	Initial domains
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B

	After WA=red
	
[image: image7.png]

	 G B
	 R G B
	 R G B
	 R G B
	 G B
	 R G B

	After Q=green
	
[image: image8.png]

	
	
	
	
	
	

	After V=Blue
	
[image: image9.png]

	
	
	
	
	
	

WA

NT

 Q

 NSW V SA T
	Initial domains
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B

	After WA=red
	
[image: image10.png]

	 G B
	 R G B
	 R G B
	 R G B
	 G B
	 R G B

	After Q=green
	
[image: image11.png]

	 B
	
[image: image12.png]

	 R
	 R G B
	 B
	 R G B

	After V=Blue
	
[image: image13.png]

	
	
[image: image14.png]

	
	
	
	

Notice that after we have assigned WA = red and Q=green

the domains of NT and SA are reduced to a single value.

We have eliminated branching on these variables altogether by propagating information from WA and Q.

MRV Minimum Remaining Value

 (heuristic of choosing variable with fewest “legal values”) automatically selects SA and NT next.

COMP-4640: Intelligent & Interactive Systems

Lecture #12
[image: image15.emf]

WA

NT

 Q

 NSW V SA T
	Initial domains
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B

	After WA=red
	
[image: image16.png]

	 G B
	 R G B
	 R G B
	 R G B
	 G B
	 R G B

	After Q=green
	
[image: image17.png]

	 B
	
[image: image18.png]

	 R B
	 R G B
	 B
	 R G B

	After V=Blue
	
[image: image19.png]

	 B
	
[image: image20.png]

	 R
	
[image: image21.png]

	
	 R G B

[image: image22.emf]
Final Solution

WA

NT

 Q

 NSW V SA T
	Initial domains
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B
	 R G B

	After WA=red
	
[image: image23.png]

	 G B
	 R G B
	 R G B
	 R G B
	 G B
	 R G B

	After Q=green
	
[image: image24.png]

	 B
	
[image: image25.png]

	 R B
	 R G B
	 B
	 R G B

	After V=Green
	
[image: image26.png]

	 B
	
[image: image27.png]

	 R
	
[image: image28.png]

	 B
	 R G B

COMP-4640: Intelligent & Interactive Systems

Lecture #12
Constraint Satisfaction Search (Forward Checking cont.)

[image: image29.png]cl(AB)
A<B+2

c2(A.C)
A>C

¢3(B.C)

B==2C

COMP-4640: Intelligent & Interactive Systems

Lecture #12
Constraint Satisfaction Search (Forward Checking cont.)

A=2

[DB={2,4}, DC={1}]

B=2

[DC={1}]

C=1
(solution

B=4

[DC={}]
A=3

[DB={2,4}, DC={1,2}]

B=2

[DC={1}]

C=1
(solution

B=4

[DC={2}]

C=2
(solution

A=4

[DB={4}, DC ={1,2}]

B=4

[DC={2}]

C=2
(solution
COMP-4640: Intelligent & Interactive Systems

Lecture #12
Constraint Satisfaction Search (Maintaining Arc Consistency)

· There is another backtrack-based algorithm that is even more efficient.
 It is called the maintaining arc consistency (MAC) algorithm.

· Arc Consistency provides fast method of constraint propagation stronger than forward checking.

· Arc Consistency can be provided as preprocessing step (just as forward checking can be used to preprocess).

· In the MAC algorithm, rather than just revising each domain corresponding with the value of each instantiated variable MAC makes the network arc-consistent with respect to the instantiated variables (all arcs must be consistent).

· In Maintaining Arc Consistency, the process must be applied repeatedly until no more inconsistencies remain.

Node Consistency

1- consistency means that each individual variable by itself is consistent (node consistency)

2- consistency is arc consistency

3- consistency means that any pair of adjacent variables can always be extended to a third neighboring variable (i.e. path consistency or AC-3)

AC-3 uses a queue to keep track of nodes that need to be checked for inconsistency

COMP-4640: Intelligent & Interactive Systems

Lecture #12
Using MAC the search traces is as follows:

Constraint Satisfaction Search (Maintaining Arc Consistency)

A=2

[DB={2}, DC={1}]

B=2

[DC={1}]

C=1
(solution

A=3

[DB={2,4}, DC={1,2}]

B=2

[DC={1}]

C=1
(solution

B=4

[DC={2}]

C=2
(solution

A=4

[DB={4}, DC={2}]

B=4

[DC={2}]

C=2
(solution

Incremental State Problem Formulation

Goal State: A set of assignments

 <A=x,B=y,C=z> that satisfies

constraints c1, c2, and c3

Initial State: <A=__, B=__, C=__>

Operators: variable assignment

Path Cost: None

Problem Formation

Goal: A configuration where no queens can attack one another

Initial State: (Q1=3, Q2=1, Q3=__, Q4=__)

Operations: The queens can be assigned a value from the set {1, 2, 3, 4}

Path Cost: None

WA

NT

Q

NSW

T

SA

 V

1
9

_1220735325

_1220768261

_1220735200

