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Lecture #12: Uninformed Search

Incremental Problem Formulation (The N-Queens Problem)
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Constraint satisfaction problem

From Wikipsdia, the free encyclopedia

Constraint satisfaction problems or CSPs are mathematical problerns where one must find states or objects that satisfy a nurmber of
constraints or ciiteria. CSPs are the subject of intense research in both artificial intelligence and operations research. Many CSPs require &
combination of heuristics and combinatorial search methods to be solved in a reasonable time.

Exarmples of constraint satisfaction problems:

= Eight queens puzzle
= Map coloring problern
= Sudoku

= [onléan satishabiiy

Algorithrms used for sohing constraint satisfaction problems include the AC-3 algorithr, Backtracking, and the min-conflicts algorithm.
Theoretical aspects of CSPs [edit]

CSPs are also studied in cormputational complexity theory and finite model theory. An important question is whether for each set of relations,
the set of all CSPs that can be represented using only relations chosen from that set is either in PTIME or otherwise NP-complete (assuming P
#NP). If such a dichotomy is true, then CSPs provide one of the largest known subsets of NP which avaids problems that are neither
polynorial time solvable nor NP-corplete, whose existence was demonstrated by Ladner. Dichotorny results are known for CSPs where the
dornain of values s of size 2 or 3, but the general case is still open

Most classes of CSPs that are known to be tractable are those where the hypergraph of constraints has bounded treewidth (and there are no
testrictions o the set of constraint relations), o where the constraints have arbitrary form but there exist essentially non-unary polymorphisms
ofthe set of canstraint relations.

See also [edit]

= Constraint satisfaction
= Declarative programming

= Canstraint programming
- Dictributad Constraint Satisfartinn Brohlam (Nis S

Dore




COMP-4640: Intelligent & Interactive Systems

Lecture #12

[image: image30.png]




COMP-4640: Intelligent & Interactive Systems

Lecture #12
CSP (Constraint Satisfaction Problems)

Treat States as Black boxes leads to the invention of a range of powerful new search methods and a deeper understanding of problem structure and complexity

Search Algorithm


Each state is a Black Box assessed through problem specific routines



-successor function



-heuristic function



- goal test

CSP – the standard representation of the goal test reveals the structure of the problem itself
CSP assessment

Initial state is empty assignment {}

Successor function-value can be assigned to any unassigned variable provided that it does not conflict with previously assigned variables
Goal test- the current assignment is complete

Path cost – constant cost (e.g. 1) for every step
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Constraint Satisfaction Search

· A constraint satisfaction problem (CSP) is a problem composed of variables and constraints. The objective is to assign values to variable in such a way that all of the constraints are satisfied.
· A CSP can be more formally viewed as a triple <D,X,C> where:
· D represents a set of n domains
· X represents a set of  n variables, each variable xi takes it value from Di    
· C represents a set of constraints.
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Consistent or Legal assignments – Do not violate any constraints
Complete assignment – one in which every variable is mentioned

Solution to CSP is a complete assignment that satisfies all the constraints

In a constraint graph


Nodes = variables

Arcs = constraints

[image: image31.emf]
In general CSPs can solve problems much bigger than general purpose search algorithms.
Two types of CSPs

-Finite domain CSPs 
· Ex. 8 queens problem
Variables= Q1, Q2, etc.
D = {                  }
· Ex.  Boolean CSPs variables true or false
in worst case can’t solve in polynomial time (NP)

-Infinite Domain CSPs

· Ex. Construction Jobs


Variable: Job1, Job2, etc.


D= {any valid date}

· Too big to enumerate all solutions so we need to create a Constraint Language

· If Job1 takes 5 days, then Job3 will start

· Job1 +5 < Job3

· CSPs with continuous domains are widely studies in fields of Operations Research 

and Linear Programming.

Constraint Satisfaction Search (cont.)
Consider the following CSP  <X, D,C> where

· X = {E, F, G}

· D = {DE = {e1, e2, e3},  DF = {f1, f2, f3}, DG = {g1, g2, g3}}

· C = {C1, C2, C3} where

· C1(E,F) = {<e1, f2>, <e1, f3>, <e2, f2>, <e3, f2>}

· C2(E,G) = {<e2, g3>, <e3, g1>}

· C3{F,G) = {<f2, g1>, <f2, g3>}

· The set of n-tuples that satisfy all of the constraints is known as the intent of the CSP, (
· Given the above CSP, (X,D,C = {<e2, f2, g3>, <e3, f2, g1>)
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Constraint Satisfaction Search (cont.)
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· Using the above problem formulation we can incrementally assign values to A, B, and C using chronological backtracking (depth-first search)

·  In chronological backtracking, thrashing occurs frequently
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Constraint Satisfaction Search (cont.)

· In the search for a solution to the above CSP, the depth-first search algorithm backtracked frequently in order to find alternative assignments for B (particularly when A=1). However, the value assignments to B were not the problem. The real culprit was the value assignment to A. This type of “wasteful” backtracking is known as thrashing.
· One method that can be used to reduce thrashing in backtrack search is known as arc revision
· Arc revision removes values from the domains of variables that cannot be used to solve a particular constraint
· For example, if we want to revise the domain of A using the domain of B, we will remove the values from domain A that cannot be use to solve constraint c1(A,B).
· Arc Consistency algorithms use arc revision to reduce the domains of a CSP to their minimum cardinality.
· This reduces the size of the search space as well as the amount of thrashing.
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Constraint Satisfaction Search (cont.)

Arc consistency reduces the search space from 64 candidate solutions to 12.
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Constraint Satisfaction Search (cont.)

The search trace for our new CSP is as follows
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Constraint Satisfaction Search (Forward Checking)

· Is it possible to reduce the amount of thrashing further? YES!
We can use a technique called Forward Checking.

· Forward checking can be view as revising each uninstantiated
variable with the values of each instantiated variable.
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Forward Checking:

Whenever a variable X is assigned 


the forward checking process looks at each unassigned variable Y that is connected to X by constraint 

and deletes from Y’s domain any value that is inconsistent with the value chose for X.
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Notice that after we have assigned WA = red and Q=green


the domains of NT and SA are reduced to a single value.  


We have eliminated branching on these variables altogether by propagating information from WA and Q. 


MRV Minimum Remaining Value


 (heuristic of choosing variable with fewest “legal values” ) automatically selects SA and NT next.
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Final Solution
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Constraint Satisfaction Search (Forward Checking cont.)

[image: image29.png]cl(AB)
A<B+2

c2(A.C)
A>C

¢3(B.C)

B==2C





COMP-4640: Intelligent & Interactive Systems 

Lecture #12
Constraint Satisfaction Search (Forward Checking cont.)
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Constraint Satisfaction Search (Maintaining Arc Consistency)

· There is another backtrack-based algorithm that is even more efficient. 
      It is called the maintaining arc consistency (MAC) algorithm.

· Arc Consistency provides fast method of constraint propagation stronger than forward checking.

· Arc Consistency can be provided as preprocessing step (just as forward checking can be used to preprocess).

· In the MAC algorithm, rather than just revising each domain corresponding with the value of each instantiated variable MAC makes the network arc-consistent with respect to the instantiated variables (all arcs must be consistent).

· In Maintaining Arc Consistency, the process must be applied repeatedly until no more inconsistencies remain.

Node Consistency

1- consistency means that each individual variable by itself is consistent (node consistency)

2- consistency is arc consistency

3- consistency means that any pair of adjacent variables can always be extended to a third neighboring variable (i.e. path consistency or AC-3)

AC-3 uses a queue to keep track of nodes that need to be checked for inconsistency
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Using MAC the search traces is as follows:

Constraint Satisfaction Search (Maintaining Arc Consistency)
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Incremental State Problem Formulation 





Goal State: A set of assignments


 <A=x,B=y,C=z> that satisfies 


constraints c1, c2, and c3





Initial State: <A=__, B=__, C=__>





Operators: variable assignment





Path Cost: None











Problem Formation





Goal: A configuration where no queens can attack one another





Initial State: (Q1=3, Q2=1, Q3=__, Q4=__)





Operations: The queens can be assigned a value from the set {1, 2, 3, 4}





Path Cost: None
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